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Perturbations in cosmic microwave background (CMB) photons and large scale structure of the Universe
are sourced primarily by the curvature perturbation which is widely believed to be produced during
inflation. In this paper we present a two-field inflationary model in which the inflaton couples
biquadratically to a spectator field. We show that the spectator induces a rapid growth of the momentum
of the curvature perturbation and the associated Gaussian van Neumann entropy during inflation such that
the initial conditions at the end of inflation are substantially different from the standard ones. Consequently,
one ought to reconsider the kinetic equations describing the evolution of the photon, dark matter, and
baryonic fluids in the radiation and matter eras and take into account the fact that the curvature perturbation
and its canonical momentum are two a priori independent stochastic fields. We also briefly analyze
possible imprints on the CMB temperature fluctuations from the more general inflationary scenario which
contains light spectator fields coupled to the inflaton.
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I. OVERVIEW AND MOTIVATION

It is a remarkable fact that all of the modern cosmic
microwave background (CMB) data, together with various
large scale structure (LSS) probes, can be described by a
class of simple cosmological models containing just six
parameters [1,2]. Two of these parameters—the amplitude
(As) and spectral slope (ns − 1) of the curvature spectrum—
are primordial in origin, while four—the Hubble parameter
today (H0) [or equivalently the angular scale of the first
acoustic peak (θ ¼ r�=DA)], the reionization optical depth
(τr), (relative) baryonic density (Ωb), and cold dark matter
density (Ωc)—are late-time observables. Since the simplest
“vanilla” cosmological model assumes a spatially flat
Universe (Ωκ ¼ 0), the dark energy density Ωde ¼ ΩΛ is
not an independent parameter, i.e.,Ωde ¼ 1 − Ωb − Ωc. For
more details we refer to [2,3].
Cosmological models have been tested for various other

features, such as various probes of isotropy and homo-
geneity, statistical Gaussianity (the amplitude of primordial
bispectrum and trispectrum), and the amplitude and slope
of tensor perturbations, but for all of these only upper
bounds exist, albeit there is statistically weak evidence
supporting some of the probes that indicate deviation from
statistical isotropy or Gaussianity [4].
Another interesting class of features is encoded in

isocurvature modes (see, e.g., Ref. [5]). Even though there

are many potential physical degrees of freedom (d.o.f.)
which can play the role of isocurvature modes, there is no
strong evidence in the data that would suggest that any of
these contribute dominantly to the CMB photon temper-
ature fluctuations. Indeed, the authors of [3] looked for
traces of cold dark matter density isocurvature (CDI),
neutrino density isocurvature (NDI), and neutrino velocity
isocurvature (NVI) modes in the data, and they placed
upper limits on the relative amount of CDI, NDI, and NVI
of 2.5%, 7.4%, and 6.8%, respectively, at the scale of
k ¼ 0.002 Mpc−1. Signatures that are analogous to iso-
curvature modes are produced by topological defects and
therefore similar upper bounds can be placed on the
contribution of various classes of topological defects
(which include cosmic strings, monopoles, and textures)
to the observed spectrum [6].
In this paper we study an idea with similar effects,

namely, how spectator fields during inflation decohere the
Gaussian density matrix of the curvature perturbation on
super-Hubble scales by means of quantum loop inter-
actions.1 This decoherence is manifested as an increase
of entropy during inflation and can produce similar signals
as isocurvature modes and topological defects in the
effective CMB temperature fluctuations. This is so because
isocurvature modes tend to produce peaks which are out of
phase with the adiabatic mode, and therefore tend to wash
out the coherent CMB oscillations. Let us be a bit more
precise about the last statement and recap the form of the
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effective photon temperature fluctuation ΔT̂ in momentum
space before recombination in a simple approximation
which we review in Appendix B,

ΔT̂ðk⃗; ηÞ ≈ 1

2
Ψ̂ðηcmb; k⃗Þ cos½krsðηÞ�

þ 2
Ψ0ðηcmb; k⃗Þ
kcsðηcmbÞ

sin½krsðηÞ�: ð1Þ

Here, csðηÞ denotes the speed of sound and the sound
horizon rsðηÞ is its integral over conformal time. The
stochastic variable Ψ̂ðηcmb; k⃗Þ is the gauge-invariant per-
turbation of the trace of the spatial metric at conformal time
η ¼ ηcmb within the radiation era some time before recom-
bination such that it is observable in the CMB. Its derivative
in conformal time, Ψ̂0ðηcmb; k⃗Þ, is an a priori stochastically
independent variable. We can conclude that coherent
CMB oscillations are possible if the stochastic operators
Ψ̂ðηcmb; k⃗Þ and Ψ̂0ðηcmb; k⃗Þ are linearly related (which
induces a phase shift) or if either of them is much smaller
than the other. As we pointed out above, Planck data are
mostly consistent with coherent CMB oscillation such that
the standard case is to discard the initial time derivative of
the gravitational potential and consider only the adiabatic
mode whose associated operator is conserved on super-
Hubble scales. Still, the constraints to wash out the CMB
oscillation reside in the range of percent so it is worth
studying mechanisms that can contribute to it. This allows
us to either target those effects by precision cosmology
or to rule them out. We remind ourselves in Appendix C
that the linear dynamics of single-field inflation on
super-Hubble scales effectively decreases the number of
independent stochastic operators to the aforementioned
adiabatic mode. Thus, one way of obtaining a nonvanishing
and stochastic independent time derivative of the initial
gravitational potential in (1) is to work with nontrivial
background trajectories in a multifield inflationary model,
leading to the aforementioned isocurvature modes whose
stochastic independence can be traced back to independent
quantum fluctuations whose presence is guaranteed by
vacuum expectation values of the additional fields.
We obtain a significant amount of decoherence at the end

of inflation by going beyond the tree-level analysis and
relying purely on interactions of the inflaton perturbation φ
with a spectator field χ that has a zero expectation value.
We chose such a simple model because the inflaton
coupling to the spectator field is controlled by a separate
coupling constant, which is independent on the loop
counting parameter of quantum gravity, κ2H2 ∼H2=
M2

P ∼ 10−12 (here H is the inflationary Hubble parameter
and MP ≃ 2.4 × 1018 GeV is the reduced Planck mass),
which governs the strength of interactions in the inflation
sector. Moreover, since the spectator field does not acquire
an expectation value, it is invariant under coordinate

transformations to first order in perturbations. Thus, if
we express corrections to the inflaton propagator in terms
of the gauge-invariant curvature perturbation R and take
corrections to the inflaton expectation value ϕ̄ into account,
our results are to first order in perturbations gauge invariant
and we may compare them to the tree-level analysis at the
end of inflation.
The effect of quantum corrections to the power spectrum

of the curvature perturbation has been studied in [8,9]
with the conclusion that loop corrections on super-Hubble
scales can at most be enhanced as powers of logarithms
of the scale factor. However, the power spectrum of the
RR-correlator remains approximately frozen due to the
coupling constant suppression and the limit on how long
inflation lasts. In this paper, we reconsider these observa-
tions with a concrete calculation in the above mentioned
model involving spectator fields. The model consists of
two canonical scalar fields on locally de Sitter background
that interact via a cubic interaction which is derived by
expanding a biquadratic action around the vacuum expect-
ation value (VEV) of the inflaton. While the interactions
with the spectator indeed produce logarithmic corrections
to the comoving curvature perturbations, the corrections to
the canonical momentum of the comoving curvature
perturbations grow exponentially in time (inverse power
in conformal time) and may induce considerable fluctua-
tions. The question whether these field excitations are
stochastically independent can be answered by calculating
the Gaussian part of the von Neumann entropy SvN
associated to R̂ and π̂R, which is conveniently represented
in momentum space by

SvN½R; πR� ¼
1

2

X
k⃗

svNðη; kÞ;

svN ¼ ΔR þ 1

2
log

ΔR þ 1

2
−
ΔR − 1

2
log

ΔR − 1

2
;

ð2Þ

which depends on the Gaussian invariant Δ2
R (see,

e.g., [10]),

Δ2
Rðη; kÞ ¼ 4½ΔRRðη; kÞΔπRπRðη; kÞ − Δ2

RπR
ðη; kÞ�; ð3Þ

where ΔRR, ΔπRπR , and ΔRπR are the equal-time momen-
tum space two-point functions. The Gaussian invariant Δ2

R
is identical to 1 for linearly evolved fields prepared in
a pure Gaussian initial state (an important example of
which is the Bunch-Davies vacuum) and thus yields zero
Gaussian von Neumann entropy. A large Gaussian invariant
on the other hand would indicate a big uncertainty in the
phase-space which is spanned by the operators R̂ and π̂R.
In order to see how quantum interactions with spectators

during inflation influence the CMB, we relate the gauge-
invariant gravitational potential Ψ̂ shortly before the end of
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inflation to the gauge-invariant curvature perturbation R̂
and evolve it to the radiation era where we assume a simple
scenario in which we switch off the interactions after
inflation. In Appendix B we review that Eq. (1) then takes
the following form:

ΔT̂ðη; k⃗Þ≈ 1

2

�
2

3
R̂ðηe; k⃗Þ−

a3ðηeÞ
a3ðηcmbÞ

H
2M2

pk2aðηeÞ
π̂Rðηe; k⃗Þ

�

× cos½krsðηÞ� þ
6H

kcsðηcmbÞ
a4ðηeÞ
a4ðηcmbÞ

×
�

H
2M2

pk2
π̂Rðηe; k⃗Þ þ aðηeÞR̂ðηe; k⃗Þ

�

× sin½krsðηÞ�; ð4Þ

where the parameter H is the Hubble scale at the beginning
of inflation and the argument ηe is some time shortly
before the end of inflation such that the slow-roll parameter
ϵ ¼ 1 −H−2H0, with Ha ¼ a0, is still small, ϵðηeÞ ≪ 1.
We see that the main contribution ∝ π̂R in (4) could wash
out the Sakharov oscillations if it were able to balance the
heavy suppression by the prefactor ∝ a−4, which is for
initially small amplitudes only possible if π̂R were growing
during inflation. As we review in Appendix C, linear
single-field inflation yields the following relation on
super-Hubble scales in the slow-roll regime:

π̂ðlinÞR ðηe; k⃗Þ ¼ −
2M2

paðηeÞϵðηeÞ
H

½R̂ðηe; k⃗Þ þOðkηeÞ�; ð5Þ

such that the stochastic independent off-peak contribu-
tion in (4) can safely be neglected. However, in models in
which the inflaton couples to other matter fields with
unsuppressed couplings (a notable example being Higgs
inflation), there is no reason to a priori expect that
the standard tree-level results apply and thus spectator
fields without VEVs might still contribute to stochastic
independent modes.
While this work is inspired by the large literature on

decoherence and classicalization of cosmological pertur-
bations [11–18], it also differs from it in important aspects.
In contrast with the effective approaches based on studying
the approximate evolution of the reduced density matrix
[19], we use standard perturbative methods of the quantum
field theory [10,20–23]. Furthermore, we identify the
late-time (CMB) observables that can be used to quantify
the amount of decoherence in the curvature perturbation
(expressed through the Gaussian part of the von Neumann
entropy) that occurs during inflation and subsequent
epochs, while most of the existing works base their analysis
on standard criteria for classicalization often used in
condensed matter systems, such as the diagonalization rate
of the reduced density matrix in a suitably chosen pointer
basis. While early works [11–18] used the late-time

observer’s inability to get complete access to the state of
cosmological perturbations as the principal source of
decoherence and classicalization (the so-called “decoherence
without decoherence”), later works used more realistic
settings, in which (dissipative) interactions among quantum
fields during (or after) inflation are the principal cause for
decoherence. The interactions considered range from self-
interactions of the inflaton field [24–27], interactions with
gravitational waves [28,29], interactions with other scalar
fields [30–33], and interactions with massive fermionic
fields [34].
Encouraged by the result of [18] we decided to inves-

tigate the effect of one-loop interactions between the
spectator and the inflaton where the fields interact biqua-
dratically. When this work was nearing completion, we
became aware that a similar problem was addressed in [7]
based on the density matrix formalism developed in
[35,36]. While the authors of Refs. [7,35,36] start from
a cubic interaction and make use of the density matrix
formalism, we start from a biquadratic interaction which
provides a stable theory for a positive coupling. By
expanding around the inflaton condensate, we also obtain
an effective cubic vertex which turns out to yield the
dominant contributions to decoherence. However, we
approach the problem differently by providing a one-loop
evaluation of the inflaton propagator Δφφðη; η0; kÞ from
which we can fully reconstruct the Gaussian part of the
density matrix.
The paper is organized as follows. In Sec. II we explain

the model setup and how to relate the various two-point
functions. In the follow-up Sec. III, we present the main
steps in the calculation, including renormalization, the
solution of the equation of motion for the statistical
propagator, symmetry properties, and the super-Hubble
limit. In Sec. IV we come back to the implications of our
results and discuss extensions of the presented analysis.
Moreover, we make a comparison with the findings of
Refs. [7,35,36]. Some important technical details of the
calculations are presented in several appendixes.
Wework in natural units in which c ¼ ℏ ¼ 1 and with the

metric tensor with a mostly plus signature, ð−;þ;þ;þÞ.

II. GROWING CURVATURE MOMENTUM
FROM QUANTUM INTERACTIONS

Coupling of the comoving curvature perturbation to
other fields can be mediated not only via tree-level
processes, but can also be studied at the quantum (loop)
level. Take a simple two-scalar-field inflationary model
with a biquadratic interaction term,

S½ϕ; χ� ¼ SEH þ
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
1

2
gμνð∂μϕÞð∂νϕÞ

−
1

2
gμνð∂μχÞð∂νχÞ − Vðϕ; χÞ

�
; ð6Þ
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where SEH is the Einstein-Hilbert action,

SEH ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p
R; ð7Þ

D is the number of space-time dimensions, R ¼ R½gμν� is
the Ricci curvature scalar, the field ϕ is the inflaton with the
perturbation,

φ̂ ¼ ϕ̂ − ϕ̄; ϕ̄ðtÞ ¼ hϕ̂ðxÞi; ð8Þ
the field χ is a spectator with a vanishing expectation value,
hχ̂i ¼ 0, and the potential Vðϕ; χÞ reads

Vðϕ; χÞ ¼ m2
ϕ

2
ϕ2 þm2

χ

2
χ2 þ g

4
χ2ϕ2; ð9Þ

where both fields are assumed to be light,

H ≫ mχ ; mϕ: ð10Þ
We are interested in studying the dynamics of the metric

and field perturbations around a cosmological background,
with the metric tensor (in the plasma rest frame) given by

ḡμν ¼ diag

�
−N̄2ðtÞ; a2ðtÞ;…; a2ðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

D−1 times

�
;

ḡ ¼ det½ḡμν� ¼ N̄2a2ðD−1Þ; ð11Þ

where N̄ðtÞ is the lapse function and aðtÞ is the scale factor.
While it would be of interest to study both the dynamics of
the quantum gravitational and quantum scalar perturba-
tions, for simplicity in this work we limit ourselves to
studying the dynamics of the scalar curvature perturbation
induced by its biquadratic interaction term given in Eq. (9).
This process is controlled by the coupling constant g which
is generally different from the gravitational coupling
constant κ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
, where G denotes the Newton

constant, and therefore can be separately studied. To show
that, in what follows we recall some of the basics of the
quantum perturbative gravity in inflationary space-times.
The theory (6) has two dynamical scalar d.o.f., which in

the comoving gauge, in which φ ¼ 0, are the scalar metric
perturbation ψ ¼ −Tr½δgij�=ð6a2Þ and the isocurvature
field, χ, and one transverse, traceless tensor perturbation,
hij ¼ δgij=a2, with δijhij ¼ 0 ¼ ∂ihij. In addition, there
are constraint d.o.f.: one scalar and one transverse vector
d.o.f., namely, the lapse function NðxÞ and the shift vector
NiðxÞ (with ∂iNi ¼ 0). Since one can choose a gauge in
which the lapse and shift decouple from the dynamical
d.o.f., one can ignore them [37,38].
The dynamics of the linear scalar cosmological pertur-

bations is governed by the well-known Mukhanov-Sasaki
action [39]. When written for the curvature perturbationR,
the action reads [39–41]

Sð2Þs ½R� ¼
Z

dDxN̄aD−12ϵM2
P

�
1

2
_R2 −

1

2a2
ð∂iRÞ2

�
;

ϵ ¼ −
_H

H2
; M2

P ≡ 1

8πG
; ð12Þ

and the quadratic action for the tensor perturbations,
hij ¼ δgij=a2, in the traceless and transverse gauge
(δijhij ¼ 0 ¼ ∂ihij) reduces to

Sð2Þt ¼ M2
P

8

Z
dDxN̄aD−1

�
_h2ij −

1

a2
ð∂lhijÞ2

�
; ð13Þ

where a dot signifies a reparametrization-invariant deriva-
tive with respect to time, _X ≡ N̄−1∂tX. Note that both
actions (12) and (13) are manifestly gauge invariant, as they
are written for the gauge-invariant curvature perturbationR
and gauge-invariant tensor perturbation hij. If one fixes a
gauge completely, one can easily get the corresponding
gauge fixed action from (12). For example, in the comoving
gauge (φ ¼ 0), in which R → ψ , the action for ψ is
identical in form as the action (12) for R; in the zero-
curvature gauge (ψ ¼ 0), the action for φ is obtained by
exacting the replacement, R → φ=ð ffiffiffiffiffi

2ϵ
p

MPÞ in (12),

Sð2Þs ½φ� ¼
Z

dDxN̄aD−1
�
1

2
_φ2 −

1

2

�∂iφ

a

�
2

þ 1

4

�ðaD−1 _ϵÞ·
aD−1ϵ

−
1

2

_ϵ2

ϵ2

�
φ2

�
; ð14Þ

such that the linear dynamics of the inflaton perturbation
corresponds to that of a harmonic oscillator with a time-
dependent frequency. Since χ remains invariant to first
order under gauge transformations, the quadratic action for
χ is by itself gauge invariant,

Sð2Þs ½χ� ¼
Z

dDxN̄aD−1
�
1

2
_χ2 −

1

2

�∂iχ

a

�
2

−
1

2

�
m2

χ þ
g
2
ϕ̄2

�
χ2
�
: ð15Þ

In addition, there are two physical constraint fields, the
lapse and (transverse) shift function, but they decouple
from the dynamical d.o.f.R and hij. While this decoupling
is clearly evident (from the Helmholz decomposition) at
the linear order in the perturbations, one has to work harder
to show that it also works at higher order in perturbations
[37,38]. In fact, there are gauges in which the constraint
fields can play an important role [42]. The leading
order actions (13)–(15) are supplemented by the higher
order actions describing cubic, quartic, and higher order
interactions [37,38,43]. Generically, while all gravitational
interactions are suppressed by powers of the gravitational
coupling constant κ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
, the interactions involving
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the scalar curvature perturbation are in addition suppressed
by powers of the slow-roll parameters, ϵ ¼ − _H=H2, and/or
its derivatives (no such suppression occurs in the tensor
interactions). However, that does not mean that scalar loops
are suppressed when compared with the tensor loops, since
the scalar curvature propagator is enhanced by a factor ∼1=ϵ
when compared with the tensor propagator, thus nullifying
the slow-roll vertex suppression. The result is that, quite
generically, each gravitational loop contributes as ∼κ2H2∼
H2=M2

P. In addition, Weinberg’s theorem [8,9] allows for a
secular enhancement in the form of powers of the number
of e-foldings, N ¼ lnðaÞ. Since not much is known about
such secular enhancements of the gravitational loops (most
notably because the problem of gauge dependence of
gravitational loops is not well understood [44,45]), for the
sake of simplicity we neglect them in what follows.
From Eq. (15) we see that the inflaton condensate

ϕ̄ ∼HMP=mϕ generates a mass for the spectator field
χ of the order,

δm2
χ ¼

g
2
ϕ̄2 ∼ gH2

M2
P

m2
ϕ

: ð16Þ

Since light scalar field fluctuations grow during inflation,
their effect on the inflaton fluctuation will be larger than
from a heavy scalar field. Demanding that χ remain light
during inflation, δm2

χ ≪ H2, leads to the following con-
dition on the coupling constant:

0 < g≲ m2
ϕ

M2
P
∼ 10−12: ð17Þ

Let us first consider the tadpole contribution to the expect-
ation value of the inflaton field ϕ̄, which contributes to the
inflaton equation of motion as

ð□ −m2
ϕÞϕ̄ ¼ g

2
ϕ̄iΔχðx; xÞ: ð18Þ

This ought to be renormalized by the nonminimal coupling
counterterm,

R
dDxð− 1

2
δξRϕ̄2Þ. According to (10), we

assume that the coincident scalar propagator is that of
the massless scalar in de Sitter space. The finite part of the
coincident propagator is given by

iΔχðx; xÞfin ≃ ½H2=ð4π2Þ� lnðaÞ; ð19Þ

which exhibits a secular growth and modifies the inflaton
mass by δm2

ϕ ¼ ½gH2=ð8π2Þ� lnðaÞ ≪ m2
ϕ by a negligibly

small amount. Moreover, this contribution changes the
expansion rate and slow-roll parameters, but by a small
amount. These corrections are important for maintaining
gauge invariance of the corrected comoving curvature
perturbation at linear order. The reason is that the inflaton
VEVenters the definition of the curvature perturbation and

its corrections are of a similar order as the nonlocal self-
mass corrections. However, local terms will not induce
dissipative effects that could affect the entropy of cosmo-
logical perturbations [46] and they are negligible for the
canonical momentum of the comoving curvature perturba-
tion and correlators thereof, as we will see explicitly
later on.
The interaction between inflaton perturbation and spec-

tator fields is governed by cubic and quartic interactions,
whose actions are

Sð3Þs ½φ; χ� ¼
Z

dDxN̄aD−1
�
−
h
2
φχ2

�
; h ¼ gϕ̄; ð20Þ

Sð4Þs ½φ; χ� ¼
Z

dDxN̄aD−1
�
−
g
4
φ2χ2

�
: ð21Þ

Let us first make a rough comparison of the effects induced
by these two interactions on the dynamics of the inflaton
perturbation.
The one-loopOðgÞ contribution generated by the quartic

interaction (21) will (upon renormalization) generate a
time-dependent mass term for the inflaton fluctuations,
δm2

ϕ ¼ ðg=2ÞiΔφðx; xÞ, where iΔφðx; xÞ ¼ hφ̂ðxÞ2i denotes
the coincident two-point function for the inflaton pertur-
bation, and thus will not generate any entropy or any other
dissipative effects in the scalar sector of the theory.
Next, at order g2 there are two contributions: the one-

loop contribution in Fig. 1 which is generated by the cubic
action (20) and the two-loop contribution in Fig. 2 gen-
erated by the quartic interaction (21). Since we are
primarily interested in super-Hubble fluctuations, we shall
compare the size of these two diagrams for super-Hubble
distances, kx⃗ − x⃗0k ≫ 1=H, and at equal time, t ¼ t0.

FIG. 1. The one-loop Feynman diagram for the inflaton two-
point function (solid lines) generated by the cubic interaction
in (20). The spectator field χ (dashed lines) runs in the loop. The
vertex coupling strength is h ¼ gϕ̄.

FIG. 2. The two-loop diagram generated by the quartic inter-
action in (21) with the spectator χ (dashed lines) and inflaton
(solid lines) running in the loops. The vertex coupling strength
is g.
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It is not hard to see that the ratio of the two-loop to the
one-loop contribution scales roughly as

iΔφðt; x⃗; t; x⃗0Þ
ϕ̄ðtÞ2 ∼

m2
ϕ lnðaÞ
M2

P
≪ 1; ð22Þ

where we made use of iΔφðt; x⃗; t; x⃗0Þ ∼H2 lnðaÞ, ϕ̄∼
HMP=mϕ, and mϕ ≪ H (in the above estimate, factors
of order 1 such as powers of π have been neglected). This
means that the principal diagram that contributes (in a
dissipative manner) to the dynamics of the inflaton per-
turbation, and therefore also to the curvature perturbation,
is the one-loop diagram in Fig. 1.
In what follows we shall compare the size of the one-

loop spectator diagram with that of the quantum gravita-
tional loops. From Eq. (30) we see that the ratio of the
one-loop to the tree-level Hadamard function is of the order
δFφ=Fφ;dS ∼ ðh2=H2Þ ln3ðaÞ, which ought to be compared
with the corresponding quantum gravitational contribution,
κ2H2 lnngðaÞ ∼ ðH2=M2

PÞ lnngðaÞ, where ng is an unspeci-
fied positive integer which parametrizes our ignorance of
the quantum gravitational loops. Upon dividing the two
contributions we get

ðg2ϕ̄2=H2Þ ln3ðaÞ
κ2H2 lnngðaÞ ≲m2

ϕ

H2
½lnðaÞ�3−ng : ð23Þ

Knowing the secular terms can be crucial, since each power
of lnðaÞ produces an enhancement by a factor ∼102, and
that can be detrimental for determining whether the
quantum gravitational or spectator contributions in (23)
dominate. From the estimate in (23) we see that the
condition that χ remain light in inflation implies that the
contribution from the spectator loop can be comparable to
the quantum gravitational loops. This means that, before
one makes any definite conclusion concerning the strength
of decoherence during inflation, one also ought to inves-
tigate the effect of the quantum gravitational loops. In fact,
there have been several attempts to do precisely that
[26,27,30,31,47]. In addition, a lot of work has been
invested into a much easier set of problems, namely, into
studying how the inflaton coupling with the other quantum
fields (scalar, fermionic, or vector) induces decoherence in
the inflaton sector [16,18,31,34]. While the earlier works
considered simple models with bilinear couplings [16,18]
(since these couplings are nondissipative, they are not true
interactions), more recent works studied true interactions
[31,34]. These types of studies are much easier, since the
hardest problem—the problem of gauge dependence—is
absent in these studies.
While these attempts represent important first steps, it is

fair to say that no definite answer to that question has been
given as yet. The principal reason is that none of the
existing works has seriously addressed the issue of gauge
(in)dependence, nor have the authors performed a complete

quantum calculation which must include (a) a complete set
of Feynman rules, with all relevant vertices and propagators
included (currently there exists no propagator that encom-
passes the dynamics of both scalar and tensor perturbations
in inflation); (b) a complete calculation of the one-loop
diagrams that includes (preferably dimensional) regulari-
zation and renormalization, with the notable exception of
Refs. [7,35], where normal ordering was used to renorm-
alize the self-mass; (c) a study of how the inflaton two-
point function gets modified by the one-loop quantum
fluctuations, which also includes a detailed analysis of how
it depends on the choice of gauge. Before we have good
understanding of all of these steps and problems, we cannot
say anything definite regarding the importance of the
quantum gravitational loops for the evolution of cosmo-
logical perturbations.
As a final remark, we point out that, because the

spectator loop is controlled by a different coupling constant
(g) from that governing the quantum gravitational loops (κ),
one can unambiguously separate the two. In other words,
the quantum gravitational loops cannot cancel or compen-
sate the effects of the spectator loop studied in this work.
In principle we could include slow-roll corrections in our

study. However, including them would significantly com-
plicate the spectator propagator, and thus also the whole
calculation. Therefore, for simplicity, we shall consider a
nearly de Sitter inflation, in which the effects due to slow-
roll corrections are negligibly small. We point out that the
spectator field is very different from the inflaton in that
taking the limit ϵ → 0 in the scalar sector of the graviton is
a delicate one, because the curvature propagator is in that
limit enhanced as ∝ 1=ϵ; cf. the action for the curvature
perturbation (14). No such enhancement is present in the
spectator sector of the theory, implying that there is no
subtlety involved in taking the limit ϵ → 0. Moreover, the
tensor-to-scalar ratio r ≃ 16ϵ ≤ 0.065 is known to be small,
implying that ϵ < 1=200, such that taking the limit ϵ → 0
should give reasonably accurate answers. Next, the spectral
slope of the curvature perturbation is also quite small,
ns − 1 ≃ −0.035 ¼ −2ϵ − ϵ2 ≈ −ϵ2, and it is controlled by
the second slow-roll parameter ϵ2 ¼ _ϵ=ðϵHÞ ≃ 0.035. This
near scale invariance of the scalar perturbation also tells us
that approximating the tree-level equation for the inflaton
perturbation by that of a massless scalar, □φ ¼ 0, con-
stitutes a reasonably accurate approximation, where □ ¼
gμν∇μ∇ν is the d’Alembertian operator.
With these remarks in mind, we can now proceed to the

calculation of the Hadamard function induced by the one-
loop diagram shown in Fig. 1. The calculation will be done
entirely on spatially flat sections of de Sitter space
(Poincaré patch), in which the scale factor in conformal
time dη ¼ dt=a reads

aðηÞ ¼ −
1

Hη
; ðη < 0Þ: ð24Þ

PAVEL FRIEDRICH and TOMISLAV PROKOPEC PHYS. REV. D 100, 083505 (2019)

083505-6



The relevant action is simply

S½φ; χ� ≈
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
−ḡdS

p �
−
1

2
ḡμνdSð∂μφÞð∂νφÞ

−
1

2
ḡμνdSð∂μχÞð∂νχÞ −

h
2
φχ2

�
; ð25Þ

with a de Sitter background metric ḡdSμν . The free theory is

solved in momentum space, with k ¼ kk⃗k, for each field by
the Bunch-Davies vacuum whose positive (þ) and negative
(−) frequency mode functions are given by

u�dSðη; kÞ ¼
Hffiffiffiffiffiffiffi
2k3

p ð1� ikηÞe∓ikη: ð26Þ

In Appendix A, we give the definition of the Wightman
functions Δ∓�

φ as well as the spectral (causal) two-point

function Δc
φ and the Hadamard (statistical) two-point

function Fφ in momentum space. For the Bunch-Davies
vacuum they read

iΔ∓�
φ;dSðη; η0; kÞ ¼

H2

2k3
ð1� ikηÞð1 ∓ ikη0Þe∓ikðη−η0Þ; ð27Þ

Δc
φ;dSðη; η0; kÞ ¼

H2

k3
½kðη − η0Þ cos½kðη − η0Þ�

− ð1þ k2ηη0Þ sin½kðη − η0Þ��; ð28Þ

Fφ;dSðη; η0; kÞ ¼
H2

2k3
½ð1þ k2ηη0Þ cos½kðη − η0Þ�

þ kðη − η0Þ sin½kðη − η0Þ��: ð29Þ
In the following Sec. III, we compute the one-loop
correction to the statistical propagator in the super-
Hubble limit as

δFφðη; η0; kÞ ¼ ½Fφ − Fφ;dS�ðη; η0; kÞ

¼ h2

2633k3π2

�
6

�
4 log

�
H
2k

�
− 4γE þ 5

�
logð−2kηÞ logð−2kη0Þ

−
�
ð106 − 48γEÞ log

�
H
2k

�
− 18 log

�
μ

k

�
þ 36γEðγE − 3Þ þ π2 þ 208

3

�
logð4k2ηη0Þ

þ
�
12 log

�
H
2k

�
− 5

�
½log2ð−2kηÞ þ log2ð−2kη0Þ�

þ 4½log3ð−2kηÞ þ log3ð−2kη0Þ� þOðkη; kη0Þ
	
; ð30Þ

where the parameter μ is the renormalization scale and
the quantity γE ¼ −ψð1Þ ≈ 0.577216 is Euler’s constant,
where ψðzÞ ¼ ðd=dzÞ lnðΓðzÞÞ is the digamma function
(not to be confused with the spatial scalar metric perturba-
tion ψ). We now have to express these results in terms of the
comoving curvature perturbation which we achieve in a
first approximation by using linear relations. The comoving
curvature perturbation R and its canonical momentum πR
read to linear order in zero curvature gauge ψ ¼ 0,

R≡ ψ þH
_ϕ
φ →

H
_ϕ
φ ¼ 1ffiffiffiffiffi

2ϵ
p φ

Mp
; ð31Þ

πR ≡ 2a2M2
pϵ∂ηR →

ffiffiffiffiffi
2ϵ

p
Mpa2

�
∂ηφ − ð∂ηϵÞ

φ

2ϵ

�
: ð32Þ

This procedure gives results that are gauge invariant to first
order in coordinate gauge transformations if the one-loop
corrections discussed above are consistently taken into
account. However, our primary goal is to calculate the
entropy increase from the dissipative part of the spectator
loop in Fig. 1, which is controlled by the coupling constant
g and which is different—and thus independent—from the

gravitational coupling κ ¼ ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
. This observation pro-

vides evidence that our final result for the entropy is gauge
independent.
Using the linear relations (32) we can express the

statistical two-point functions of the comoving curvature
perturbation and its canonical momentum in terms of the
inflaton correlator to linear order as

ΔRRðη; kÞ≡ FRðη; η; kÞ ¼
1

2ϵM2
p
Fφðη; η; kÞ; ð33Þ

ΔRπRðη; kÞ≡ 2a2M2
pϵ∂η0FRðη; η0; kÞjη¼η0

¼ a2
�
1

2
∂η −

ð∂ηϵÞ
2ϵ

�
Fφðη; η; kÞ; ð34Þ

ΔπRπRðη; kÞ≡ ð2a2M2
pϵÞ2∂η∂η0FRðη; η0; kÞjη¼η0

¼ 2ϵM2
pa4

�
∂η∂η0Fφðη; η0; kÞjη¼η0

−
ð∂ηϵÞ
2ϵ

∂ηFφðη; η; kÞ þ
ð∂ηϵÞ2
4ϵ2

Fφðη; η; kÞ
�
:

ð35Þ
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Thus, shortly before the end of inflation at η ¼ ηe such that the slow-roll parameter ϵðηeÞ is still small and to leading order a
constant, we have the following leading order corrections to the comoving curvature correlators on super-Hubble scales
jkηej ≪ 1:

ΔRRðηe; kÞ ≈
H2

4M2
pk3ϵðηeÞ

�
1þ h2

108π2H2
½log3ð−2kηeÞ þOðlog2ð−2kηeÞÞ� þOðϵðηeÞ; kηeÞ

�
; ð36Þ

ΔRπRðηe; kÞ ≈ −
HaðηeÞ
2k

�
1þ a2ðηeÞh2

72π2k2
½log2ð−2kηeÞ þOðlogð−2kηeÞÞ� þOðϵðηeÞ; kηeÞ

�
; ð37Þ

ΔπRπRðηe; kÞ ≈ kM2
pa2ðηeÞϵðηeÞ

�
1þ h2a4ðηeÞH4

36π2H2k4

�
log

�
H
2k

�
þ 5

4
− γE

�
þOðϵðηeÞ; kηeÞ

�
: ð38Þ

We note that our result satisfies Weinberg’s theorem,
since the ΔRR correlator in (36) receives only logarithmic
corrections in time multiplying a constant:

∝ h2H−2 ¼ g2ϕ̄2H−2 ∼ g2M2
Pm

−2 ≲ 10−12: ð39Þ

The one-loop corrections to ϵ are also small as argued
below (18). Although corrections to ΔRR are negligible,
the corrections to ΔRπR and ΔπRπR , which are induced
by dissipative effects, can become very large since they
multiply powers of the scale factor.
In order to study the physical implications at the end

of inflation on supper-Hubble scales, we will rescale πR
by its linear relation to the gauge-invariant gravitational
potential (B14),

Ψ ¼ −
H

2M2
pk2a2

πR: ð40Þ

We quantify possibly large corrections of the πRπR-
correlator to the tree-level result Δ̄πRπR by the ratio

Δinfl ≡ H
2M2

pk2aðηeÞ




ΔπRπR − Δ̄πRπR

ΔRR






1=2

≈
ϵðηeÞh
6πH

a2ðηeÞH2

k2





 log
�
H
k

�



1=2

≲ 10−12
ϵðηeÞ
6π

a2ðηeÞH2

k2





 log
�
H
k

�



1=2; ð41Þ

where we kept only the dominant logarithmic contribution
and substituted the estimate for the coupling constant
h ¼ gϕ̄ from (17). We note that the quantity Δinf in (41)
is order 1 after the mode k spends

Ndec ≈
1

2
log

�
6πH

ϵðηeÞhj logðH=kÞj1=2
�
≳ 20 ð42Þ

e-folds on super-Hubble scales. This marks the time
at which quantum corrections dominate the tree-level

result for the πRπR-correlator and the decoherence sets
in. In fact, the timescale (42) is a couple of e-folds
longer than the decoherence time associated with the
growth of entropy, which is controlled by the time
at which the momentum-momentum correlator (38)
becomes loop dominated, Nentropy ≃ 1

2
log½ 6πH

hj logðH=kÞj1=2� ¼
Ndec − 1

2
logð1=ϵðηeÞÞ. Furthermore, the decoherence

timescale Ndec in (42) differs essentially from the break-
down time of standard perturbation theory which is
governed by the perturbativity time associated with the
RR-correlator (36),2

Npert ≈
�
108π2H2

h2

�1
3 ≳ 109; ð43Þ

which is a much larger timescale because the correlators
entering loop calculations grow only logarithmically with
the scale factor. We can also quantify possibly large
corrections of the RπR-correlator to the tree-level result
by the ratio

θinfl ≡ H
2M2

pk2aðηeÞ




ΔRπR − Δ̄RπR

ΔRR






≈ ϵðηeÞ

a2ðηeÞh2
72π2k2

log2ð−2kηeÞ

≲ 10−24ϵðηeÞ
a2ðηeÞH2

72π2k2





log2
�
HaðηeÞ

k

�



: ð44Þ

From (41) and (44), we see an enhancement of the π̂R
operator by the factor a2ðηeÞH2=k2 at the end of inflation.
The source of this amplification, however, lies in the
vacuum quantum uncertainty of the spectator field χ which

2The standard estimate for the perturbativity time is larger,
Npert ∼ 1013 e-folds, and it is based on the assumption that there
are only two powers of the logarithms in theRR-correlator (36).
However, the detailed calculation performed in this work shows
that there are in fact three powers of the logarithm, thus short-
ening significantly Npert.
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is coupled to the inflaton via the interaction term ϕ̄φχ2.
Since the quantum fluctuations of the spectator are inde-
pendent of the inflaton quantum fluctuations they will lead
to an independent, amplified late-time stochastic source.
We can make the latter statement quantitative by invoking
the Gaussian entropy of the corrected two-point functions.
Since we used linear relations as a first approximation, the
Gaussian invariant associated with the comoving curvature
perturbation is identical to the Gaussian invariant associ-
ated with the inflaton perturbation,

Δ2
Rðη; kÞ
4

¼ ΔRRðη; kÞΔπRπR
ðη; kÞ − Δ2

RπR
ðη; kÞ

¼ a4
�
Fφðη; η; kÞ∂η∂η0Fφðη; η0; kÞjη¼η0

−
1

4
ð∂ηFφðη; η; kÞÞ2

�
¼ Δ2

φðη; kÞ
4

: ð45Þ

The Gaussian invariant Δ2
φ of the inflaton perturbation φ

and hence of the comoving curbature perturbation Δ2
R is

given by

Δ2
φðη; kÞ
4a4

¼ Δ2
Rðη; kÞ
4a4

¼ Fφðη; η0; kÞ∂η∂η0Fφðη; η0; kÞ
− ½∂η0Fφðη; η0; kÞ�2jη0¼η; ð46Þ

which can be used to calculate the Gaussian part of the von
Neumann entropy,

SvN½R� ¼ ΔR þ 1

2
log

ΔR þ 1

2
−
ΔR − 1

2
log

ΔR − 1

2

¼ SvN½φ�: ð47Þ

The last equality follows from the fact that R and φ are
related by a (time-dependent) rescaling, and since the von
Neumann entropy is expressed in terms of the Gaussian
invariant of the state Δ2

φ, it cannot depend on a linear field
redefinition. This is one way to understand why local mass
corrections changing the VEVof the inflaton via (18) do not
contribute to the entropy.
The mode functions of the noninteracting theory in the

Bunch-Davies vacuum yield a Gaussian invariant that is
identical to 1 and hence result in zero von Neumann
entropy. The same reasoning holds for the spectator field
χ which we also prepare in the Bunch-Davies vacuum.
Thus, the Bunch-Davies vacuum for the fields φ and χ
represents a state with minimal uncertainty which is solely
due to the quantum nature of the theory. However, once
interactions are taken into account, the Gaussian invariant
and hence the entropy get perturbatively corrected:

δ

�
Δ2

φ

4a4

�
¼ δ½Fφðη; ηÞ∂η∂η0Fφðη; η0Þ − ½∂η0Fφðη; η0Þ�2�jη0¼η

¼ ½Fφ;dSðη; ηÞ∂η∂η0δFφðη; η0Þ
þ δFφðη; ηÞ∂η∂η0Fφ;dSðη; η0Þ
− 2½∂η0Fφ;dSðη; η0Þ�∂η0δFφðη; η0Þ�jη0¼η

¼ H2

2k
½ð1þ k2η2Þ∂kη∂kη0δFφðη; η0Þ

þ δFφðη; ηÞk2η2 − 2η∂η0δFφðη; η0Þ�jη0¼η: ð48Þ

The correction to the Gaussian invariant of the inflaton
perturbation is to leading order in the super-Hubble limit
given by

δ

�
Δ2

φ

4

�
¼ 1

9π2
h2

H2

�
Ha
2k

�
6
�
4 log

�
H
2k

�
þ 5−4γEþOðkηÞ

�
:

ð49Þ

This expression is greater than zero for H > 2k, which is
amply satisfied for the scales we will be interested in. We
conclude that cubic interactions in inflation of the type
gϕ̄φχ2 lead to a growth of the Gaussian invariant Δ2

φ by a
factor of a6 on super-Hubble scales and correspondingly to
a growth of the Gaussian entropy. This growth is to leading
order due to the quantum loop corrected πRπR-correlator
which grows much faster than the correction to the RR-
correlator. This leads to two conclusions. First, the πRπR-
correlator in (38) which was calculated with dissipative
corrections is linearly gauge invariant. This follows from
the fact that entropy production results only from dissipa-
tive effects [46] and the statement that the entropy [or the
associated Gaussian invariant (46)] is to linear order gauge
invariant. The second conclusion is that we can view the
quantum loop corrected operators R̂ and π̂R as stochas-
tically independent at the end of inflation, in contrast to the
tree-level result (C16).
Let us visualize this statement by three snapshots of a

phase-space diagram associated to Rðk⃗Þ and πRðk⃗Þ for a
given mode k⃗. The first snapshot in Fig. 3 is taken while the

FIG. 3. Phase diagram for mode k early in the sub-Hubble
regime. The rescaling for the momentum πR follows from initial
conditions of the linear evolution (C14) at early times.
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mode is deep in the sub-Hubble regimewhere it is governed
by tree-level dynamics due to the smallness of the coupling
constant. The state is then approximately in its adiabatic,
Gaussian vacuum, indicated by the circle on the phase
space diagram, representing the set of points of equal
probability amplitude. In an intermediate step in snapshot
in Fig. 4, the mode becomes super-Hubble but the enhance-
ment due to the factor of k−2a2H2 in (41) is still too small to
compensate the small coupling hH−1. This phase is thus
still dominated by the linear analysis and results in the usual
squeezed state [48]. The final snapshot in Fig. 5 represents
the end of inflation, more precisely, it is representative for
all modes that have evolved for ≳20 e-folds on super-
Hubble scales, cf. the estimate (42). For these modes, the
enhancement of the πRπR-correlator due to the factor
k−2a2H2 in (41) is now big enough to overcome the
suppression of the small coupling hH−1. The state is still
squeezed, but now mostly in the momentum direction.

A tempting question to ask is how the enhanced πR-
operator at the end of inflation affects the effective temper-
ature perturbation. In order to answer this question we still
have to map these correlators to a time deep in the radiation
era ηcmb ≈ 10−1ηrec, some time before recombination at
η ¼ ηrec. As a first attempt, we pick the simplest possible
scenario and assume that the comoving curvature pertur-
bation R and the gauge-invariant gravitational potential Ψ
will not be further affected on super-Hubble scales during
the transition to radiation such that we can make use of
standard linear relations. We review this process in
Appendix B. The effective photon temperature perturbation
relevant for the CMB at ηcmb (which is a conformal time
early enough from the decoupling time such that the linear
collisionless evolution still applies) may then be expressed
according to (B18) in terms of the comoving curvature
perturbation just before the end of inflation at ηe as follows:

ΔT̂ðη; k⃗Þ ≈ 1

2

�
2

3
R̂ðηe; k⃗Þ −

a3ðηeÞ
a3ðηcmbÞ

H
2M2

pk2aðηeÞ
π̂Rðηe; k⃗Þ

�
cos½krsðηÞ�

þ 6H
kcsðηcmbÞ

a4ðηeÞ
a4ðηcmbÞ

�
H

2M2
pk2

π̂Rðηe; k⃗Þ þ aðηeÞR̂ðηe; k⃗Þ
�
sin½krsðηÞ�: ð50Þ

We already know that the tree-level contribution to the sine term in Eq. (50) is insignificant in this scenario. Let us thus
define here another quantity that allows us to measure the relative amplitude of orthogonal oscillations in (50) if we assume
the quantum contributions to the πR operator to be dominant,

Δsin

Δcos
≡ a4ðηeÞ

a4ðηcmbÞ
18HaðηeÞ
kcsðηcmbÞ

Δinfl ∼
h
H

a4ðηeÞ
a4ðηcmbÞ

3ϵðηeÞ
π

a3ðηeÞH3

k3csðηcmbÞ




 log

�
H
k

�



: ð51Þ

Putting in the estimate for our coupling constant h from (17) we get

Δsin

Δcos
≲ 10−12

aðηeÞ
aðηcmbÞ

3ϵðηeÞ
π

H3ðηcmbÞ
k3csðηcmbÞ





 log
�
H
k

�



 ≪ 1: ð52Þ

It is thus not sufficient to have quantum loop enhancements of the πRπR-correlator only during inflation since the linear
evolution throughout radiation suppresses it such that at the times of CMB it again becomes small. It is a natural question to
ask whether quantum corrections during radiation will hinder this decay in a way that is similar to the quantum corrected
processes that take place during inflation and we leave this for future studies.

FIG. 5. Phase diagram for mode kwhich is super-Hubble at late
times where quantum loop corrections balance the suppression
from the small coupling constant. Note that the axes in this figure
are compressed, which was necessary as the surface area of this
state is very large when measured in units of ℏ.

FIG. 4. Phase diagram for mode k at intermediate times such
that k is super-Hubble but quantum loop corrections are still
negligible. The Semiminor axis is enlarged to be visible and is
substantially smaller than the one in Fig. 5.
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III. KADANOFF-BAYM EQUATION FOR THE
STATISTICAL PROPAGATOR

A. Effective action

In this section, we lay out in some detail how we
calculate the quantum loop correction to the statistical
propagator of the inflaton perturbation that we present in
(30). We will perform this calculation in the Schwinger-
Keldysh formalism for which the first step is to write down
the two-particle-irreducible (2PI) effective action [49]. We
will work with an accuracy of a two-loop effective action,
where dissipative effects can occur. The 2PI effective action
corresponding to the tree-level action (25) can be written in
the two-loop approximation as

Γ½iΔcd
φ ; iΔcd

χ � ¼ Γ0½iΔcd
φ ; iΔcd

χ � þ Γ1½iΔcd
φ ; iΔcd

χ �
þ Γ2½iΔcd

φ ; iΔcd
χ �; c; d ¼ �; ð53Þ

where the three constituent functionals are given by

Γ0½iΔcd
φ ; iΔcd

χ � ¼ 1

2

Z
dDxdDx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðxÞ

p

×

� X
c;d¼�

□̄
dS
x δDðx − x0ÞcδcdiΔdc

φ ðx0; xÞ

þ
X
c;d¼�

□̄
dS
x δDðx − x0ÞcδcdiΔdc

χ ðx0; xÞ
�
;

ð54Þ

Γ1½iΔcd
φ ; iΔcd

χ � ¼ −
i
2
Tr½logðiΔcd

φ ðx; x0ÞÞ�

−
i
2
Tr½logðiΔcd

χ ðx; x0ÞÞ�; ð55Þ

Γ2½iΔcd
φ ; iΔcd

χ � ¼
Z

dDxdDx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðx0Þ

p

×
X
c;d¼�

cd
ih2

4
ðiΔcd

χ ðx; x0ÞÞ2iΔcd
φ ðx; x0Þ;

ð56Þ

and the elements of the Keldysh propagators iΔcd
φ;χ may be

identified in terms of the statistical and spectral two-point
functions,

iΔ∓�
φ;χ ðx; x0Þ ¼ Fφ;χðx; x0Þ �

1

2
iΔc

φ;χðx; x0Þ; ð57Þ

iΔ��
φ;χ ðx; x0Þ ¼ Fφ;χðx; x0Þ �

1

2
sign½x0 − ðx0Þ0�iΔc

φ;χðx; x0Þ:
ð58Þ

Applying the variational principle yields the following
equations of motion:

□̄
dS
x iΔab

φ ðx; x00Þ ¼ aδabiδDðx − x00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðxÞ

p þ
Z

dDx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðx0Þ

p

×
X
c¼�

ciMac
φ ðx; x0ÞiΔcb

φ ðx0; x00Þ; ð59Þ

□̄
dS
x00 iΔ

ab
φ ðx; x00Þ ¼ aδabiδDðx − x00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ḡdSðxÞ
p þ

Z
dDx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ḡdSðx0Þ

p

×
X
c¼�

ciΔac
φ ðx; x0ÞiMcb

φ ðx0; x00Þ; ð60Þ

where the corresponding self-masses iMab
φ ðx; x0Þ read

iMab
φ ðx; x0Þ ¼ −

ih2

2
ðiΔcd

χ ðx; x0ÞÞ2: ð61Þ

B. Renormalizing the self-mass

We attempt to solve Eq. (59) by using the expression for
the free propagators in the Bunch-Davies vacuum,

iMab
φ ðx; x0Þ ¼ −

ih2

2
ðiΔab

χ ðx; x0ÞÞ2 ≈ −
ih2

2
ðiΔab

dSðx; x0ÞÞ2:
ð62Þ

The self-masses (62) are products of distributions that
have local contributions ∝ δDðx; x0Þ which would yield
indefinite answers when integrated against a test function.
The singularities can be isolated by differential, dimen-
sional regularization in position space where they take the
form ∝ ðD − 4Þ−1δDðx; x0Þ (and/or derivatives thereof). We
renormalize the self-mass (62) by adding suitable local
counterterms to the effective action which can be used to
subtract these divergent contributions, yielding eventually
finite answers in the limit D → 4.
Let us first write down the de Sitter Feynman propagator

in position space in D space-time dimensions which has
been computed in terms of the quantity

y≡ yþþ; ð63Þ
where in de Sitter–invariant length functions

yab ¼ aa0H2Δx2ab ¼ aðηÞaðη0ÞH2Δx2abðη − η0; x⃗ − x⃗0Þ

¼ Δx2abðη − η0; x⃗ − x⃗0Þ
ηη0

ð64Þ

can be expressed with the Lorentz-invariant length func-
tions

Δx2�� ¼ −ðjη − η0j ∓ iεÞ2 þ kx⃗ − x⃗0k2; ð65Þ

Δx2�∓ ¼ −ðη − η0 � iεÞ2 þ kx⃗ − x⃗0k2: ð66Þ

The de Sitter propagator in position space has been given
by [50]
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iΔþþ
dS ¼ HD−2

ð4πÞD=2

�
−
X∞
n¼0

1

n− D
2
þ 1

Γ½nþ D
2
�

Γ½nþ 1�
�
y
4

�
n−D

2
þ1

−
Γ½D− 1�
Γ½D

2
� π cot

�
π
D
2

�
þ
X∞
n¼1

1

n
Γ½nþD− 1�
Γ½nþ D

2
�

�
y
4

�
n

þ Γ½D− 1�
Γ½D

2
� log½aa0�

�
; ð67Þ

where we use in this section the notation a0 ¼ aðη0Þ and it
should be clear from the context whether a prime denotes a
time derivative or refers to a coordinate. We can expand
expression (67) around D ¼ 4 and get

iΔþþ
dS ¼ HD−2

ð4πÞD=2

�
Γ
�
D − 2

2

��
y
4

�
1−D

2

− 2 log

� ffiffiffi
e

p
y

4aa0

��

þOðD − 4Þ: ð68Þ

Taking the square leads to

ðiΔþþ
dS Þ2 ¼ H2D−4

ð4πÞD
�
Γ2

�
D − 2

2

��
y
4

�
2−D

−
16

y
log

� ffiffiffi
e

p
y

4aa0

�

þ 4log2
� ffiffiffi

e
p

y
4aa0

��
þOðD − 4Þ; ð69Þ

and we note that the nonintegrable piece of the self-mass is
contained in the first term ∝ y2−D. Let us simplify the
notation and denote the de Sitter d’Alembert operator as3

□

H2
≡ □̄

dS

H2
¼ η2

�
−

∂2

∂η2 þ
D − 2

η

∂
∂ηþ δij

∂2

∂xi∂xj
�
: ð71Þ

We will make use of two relations that were established
in [51],

�
y��
4

�
2−D

¼
�

2

ðD − 3ÞðD − 4Þ
□

H2
−

DðD − 2Þ
2ðD − 3ÞðD − 4Þ þ

D − 6

2ðD − 3Þ
��

y��
4

�
3−D

−
�

2

ðD − 3ÞðD − 4Þ
□

H2
−

DðD − 2Þ
2ðD − 3ÞðD − 4Þ

��
y��
4

�
1−ðD=2Þ

� 2ð4πÞD=2

ðD − 3ÞðD − 4ÞΓ½D
2
− 1�

iδDðx − x0Þ
ðHaÞD ; ð72Þ

as well as

□

H2

�
y��
4

�
1−ðD=2Þ

¼ � ð4πÞD=2

Γ½D
2
− 1�

iδDðx − x0Þ
ðHaÞD þDðD − 2Þ

4

�
y��
4

�
1−ðD=2Þ

: ð73Þ

Let us introduce the renormalization parameter μ with energy dimension 1. We can rewrite (72) by adding a μ-dependent
term that vanishes onD ¼ 4 in such a way that the divergence in the self-mass may be removed with a mass counterterm in
the action ∝ ðD − 4Þ−1μD−4a−DδDðx − x0Þ. Moreover, we use

�
y��
4

�
3−D

¼
�
y��
4

�
1−ðD=2Þ�

1 −
D − 4

2
log½y��� þO½ðD − 4Þ2�

�
ð74Þ

and expand the nonsingular terms in (72),

�
y��
4

�
2−D

¼ � 2ð4πÞD=2

ðD − 3ÞðD − 4ÞΓ½D
2
− 1�

�
μ

H

�
D−4 iδDðx − x0Þ

ðHaÞD

−
□

H2

�
4

y��
log

�
μ2y��
H2

��
−

4

y��

�
2 log

�
μ2y��
H2

�
− 1

�
þOðD − 4Þ; ð75Þ

which leads to

3We would like to remark that due to symmetry reasons we may use in the following derivations also derivatives acting on primed
coordinates:

□
0

H2
¼ ðη0Þ2

�
−

∂2

∂ðη0Þ2 þ
D − 2

η0
∂
∂η0 þ δij

∂2

∂ðxiÞ0∂ðxjÞ0
�
: ð70Þ
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ðiΔ��
dS Þ2 ¼ � 2Γ½D

2
− 1�μD−4

ð4πÞD=2ðD − 3ÞðD − 4Þ
iδDðx − x0Þ

aD

−
H2D−4

ð4πÞD
�
□

H2

�
4

y��
log

�
μ2y��
H2

��
−

4

y��

�
2 log

�
μ2y��
H2

�
− 1

�

þ 16

y��
log

� ffiffiffi
e

p
y

4aa0

�
− 4log2

� ffiffiffi
e

p
y��

4aa0

��
þOðD − 4Þ: ð76Þ

The divergent local contribution in the first line of (76) yields a divergent contribution to the self-mass (62),

ðiMcd
φ ðx; x0ÞÞdiv ¼ h2

Γ½D
2
− 1�μD−4

ð4πÞD=2ðD − 3ÞðD − 4Þ
δDðx − x0Þ

aD
cδcd; ð77Þ

which can be removed by adding the following counterterm action4:

Sct ¼
Z

dDxaD
�
−
1

2
δm2

X
c;d¼�

cδcdiΔcd
φ ðx; xÞ

�
; ð79Þ

where δm2 is proportional to the inflaton condensate squared,

δm2 ¼ −g2ϕ̄2
ΓðD

2
− 1ÞμD−4

ð4πÞD=2ðD − 3ÞðD − 4Þ ; ð80Þ

and diverges as ∝ 1=ðD − 4Þ. Clearly, the counterterm (79) is the divergent mass counterterm of the 2PI formalism. It is
easy to check that varying the action (79) and adding it to the equations of motion (59)–(60) removes the divergent parts of
the self-masses. The resulting renormalized self-mass iMþþ

ϕ;ren is

iMþþ
φ;renðx; x0Þ ¼

ih2

2

H4

ð4πÞ4
�
□

H2

�
4

y
log

�
μ2y
H2

��
−
4

y

�
2 log

�
μ2y
H2

�
− 1

�
þ 16

y
log

� ffiffiffi
e

p
y

4aa0

�
− 4log2

� ffiffiffi
e

p
y

4aa0

��
: ð81Þ

The other renormalized self-masses, iMab
φ;renðx; x0Þ (a;b¼�),

areobtained simplyby replacingyðx; x0Þ ¼ yþþðx; x0Þ in (81)
by yabðx; x0Þ.

C. Self-mass in momentum space

Ultimately, we will be interested in the Wigner transform
of the spatially dependent piece of the self-mass. This may
be conveniently achieved by extracting d’Alembert’s oper-
ators and dropping homogeneous (momentum-independent)
contributions. If the d’Alembertian in de Sitter space-time
is acting on nonsingular functions (not containing y−1), we
have

□

H2
fðyÞ ¼ ð4 − yÞyf00ðyÞ þ 4ð2 − yÞf0ðyÞ; ð82Þ

which gives the identities

1

y
¼ 1

4

□

H2
logðyÞ þ 3

4
; ð83Þ

logðyÞ
y

¼ 1

8

□

H2
½log2ðyÞ − 2 logðyÞ� þ 3

4
logðyÞ − 1

2
: ð84Þ

These identities allow us to rewrite the self-mass (81) as

iMþþ
φ;renðx; x0Þ ¼

ih2

2

H4

ð4πÞ4
�
□

2

H4

�
1

2
log2

�
y
4

�
þ log

�
4μ2

eH2

�
log

�
y
4

��

þ 2
□

H2

�
1

2
log2

�
y
4

�
þ log

�
eH2

4μ2

�
log

�
y
4

��
þ 2½1 − 2 logðaa0Þ� □

H2
log

�
y
4

�

þ 2½1þ 4 logðaa0Þ� log
�
y
4

�
− 4log2

�
y
4

�	
þ hom :; ð85Þ
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where hom. encode spatially homogeneous (y-independent) contributions, which are of no importance for this study. At this
stage, we would like to emphasize that the expression for the self-mass (85) could have also been written with the de Sitter
d’Alembertian operators acting on the primed space-time coordinates. We now perform the spatial Wigner transform of the
self-mass (85) according to

iMþþ
φ;renðη; η0; kÞ ¼

Z
d3ðx − x0ÞiMþþ

ϕ;renðx; x0Þe−ik⃗·ðx⃗−x⃗
0Þ: ð86Þ

Furthermore, spatially homogeneous contributions are proportional to delta functions in k-space or derivatives thereof:

Z
∞

0

drr sinðkrÞ ¼ −π∂kδðkÞ: ð87Þ

We will drop again such contributions. In Appendix D we establish the following Wigner transformation:

Z
d3ðx − x0Þe−ik⃗·ðx⃗−x⃗0Þ

�
1

2
log2

�
y
4

�
þ fðη; η0Þ log

�
y
4

��

¼ −
4π2

k3

�
2þ ½1þ ikjΔηj�

�
log

�
aa0H2jΔηj

2k

�
þ i

π

2
− γE þ fðη; η0Þ

��
e−ikjΔηj

þ 4π2

k3
ð1 − ikjΔηjÞ½ci½2kjΔηj� − isi½2kjΔηj��eþikjΔηj; ð88Þ

where Δη ¼ η − η0 and fðη; η0Þ is some k-independent function. We make use of the Wigner transform (88); rewrite the
scale factor as a ¼ −ðHηÞ−1; and obtain, after some simplifications, the self-mass in momentum space as follows:

iMþþ
φ;renðη; η0; kÞ ¼ −

4π2

k3
ih2

2

H4

ð4πÞ4
�
□2

k

H4

��
2þ ½1þ ikjΔηj�

�
log

�
2jΔηjμ2
kηη0H2

�
þ i

π

2
− γE − 1

��
e−ikjΔηj

− ð1 − ikjΔηjÞ½ci½2kjΔηj� − isi½2kjΔηj��eþikjΔηj
�

þ 2
□k

H2

��
2þ ½1þ ikjΔηj�

�
log

�jΔηjH2

8kηη0μ2

�
þ i

π

2
− γE þ 1

��
e−ikjΔηj

− ð1 − ikjΔηjÞ½ci½2kjΔηj� − isi½2kjΔηj��eþikjΔηj
�

þ 2½1þ 2 logðH2ηη0Þ�□k

H2
½½1þ ikjΔηj�e−ikjΔηj�

− 8

��
2þ ½1þ ikjΔηj�

�
log

�
H2jΔηj
2k

�
þ i

π

2
− γE −

1

4

��
e−ikjΔηj

− ð1 − ikjΔηjÞ½ci½2kjΔηj� − isi½2kjΔηj��eþikjΔηj
�	

þ hom :; ð89Þ

where

□k

H2
¼ −η2

�
∂2
η −

2

η
∂η þ k2

�
ð90Þ

is the d’Alembertian in momentum space. For a computational convenience we shall split the self-mass (89) in the following
way:

Mþþ
ϕ;renðη; η0; kÞ ¼ −2½1þ 2 logðH2ηη0Þ�□k

H2
M̂þþðjΔηj; kÞ þ

X2
n¼0

�
□k

H2

�
n
Mþþ

ðnÞ ðη; η0; kÞ; ð91Þ

which is based on the definitions,
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Mþþ
ðnÞ ðη; η0; kÞ≡ αðnÞ½M̃þþ

I ðjΔηj; kÞ þ M̃þþ
II ðjΔηj; kÞ� þ βðnÞM̂þþðjΔηj; kÞ

þ γðnÞM̂þþðjΔηj; kÞ log
�
ηη0H4

4μ2

�
; ð92Þ

where

αðnÞ ¼ f−8; 2; 1g; βðnÞ ¼
�
−2;−2þ 8 log

�
2μ

H

�
; 1

	
; γðnÞ ¼ f0; 2; 1g; ð93Þ

and

M̂þþðjΔηj; kÞ≡ 4π2

k3
h2

2

H4

ð4πÞ4 ½1þ ikjΔηj�e−ikjΔηj; ð94Þ

M̃þþ
I ðjΔηj; kÞ≡ −

4π2

k3
h2

2

H4

ð4πÞ4
�
2þ ½1þ ikjΔηj�

�
log

�
H2jΔηj
2k

�
þ i

π

2
− γE

��
e−ikjΔηj; ð95Þ

M̃þþ
II ðjΔηj; kÞ≡ −

4π2

k3
h2

2

H4

ð4πÞ4 ð1 − ikjΔηjÞE1½2ikjΔηj�eþikjΔηj: ð96Þ

Here, we made use of the identity for the exponential integral function,

E1½2ikjΔηj� ¼ isi½2kjΔηj� − ci½2kjΔηj�; ð97Þ

which holds when k > 0. The sine (si) and cosine (ci) integrals are defined in Eqs. (A7) and (A8), respectively. The
calculation of the other self-masses iM�∓

ϕ;ren and iM−−
ϕ;ren proceeds similarly. By writing

logðΔx2−−Þ ¼ logðjΔη2 − kx⃗ − x⃗0k2jÞ − iπθðΔη2 − kx⃗ − x⃗0k2Þ; ð98Þ

we see that

M−−
ϕ;ren ¼ ½Mþþ

ϕ;ren��: ð99Þ
Moreover, due to

logðΔx2∓�Þ ¼ logðjΔη2 − kx⃗ − x⃗0k2jÞ � isignðη; η0ÞπθðΔη2 − kx⃗ − x⃗0k2Þ; ð100Þ
we see that

Mab
ϕ;renðη; η0; kÞ ¼ −4½1þ logðηη0H2Þ�□k

H2
M̂abðjΔηj; kÞ þ

X2
n¼0

�
□k

H2

�
n
Mab

ðnÞðη; η0; kÞ; ð101Þ

where

M∓�
ðnÞ ¼ M��

ðnÞ θðΔηÞ þM∓∓
ðnÞ θð−ΔηÞ; M̂∓�

ðnÞ ¼ M̂��
ðnÞ θðΔηÞ þ M̂∓∓

ðnÞ θð−ΔηÞ; ð102Þ
where signðη; η0Þ ¼ θðη − η0Þ − θðη0 − ηÞ and θ is the Heaviside step function. It will be convenient to define

MF
ðnÞ ≡

1

2
½Mþþ

ðnÞ þM−−
ðnÞ� ¼ ReMþþ

ðnÞ ; ð103Þ

Mc
ðnÞðη; η0Þ≡

signðΔηÞ
i

½Mþþ
ðnÞ −M−−

ðnÞ�ðη; η0Þ ¼ 2signðΔηÞImMþþ
ðnÞ ; ð104Þ

M̂F ≡ 1

2
½M̂þþ þ M̂−−� ¼ ReM̂þþ; ð105Þ

M̂cðη; η0Þ≡ signðΔηÞ
i

½M̂þþ − M̂−−�ðη; η0Þ ¼ 2signðΔηÞImM̂þþ; ð106Þ
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and note the relations

½Mþþ
ðnÞ −M−−

ðnÞ � ðM−þ
ðnÞ −Mþ−

ðnÞ Þ�ðη; η0Þ ¼ �2θð�ΔηÞiMc
ðnÞðη; η0Þ; ð107Þ

½Mþþ
ðnÞ þM−−

ðnÞ�ðη; η0Þ þ signðτ − τ0Þ½M−þ
ðnÞ þMþ−

ðnÞ �ðη; η0Þ ¼ 4θðτ − τ0ÞMF
ðnÞðη; η0Þ; ð108Þ

which also hold for M̂ab.

D. Perturbative solution for the statistical propagator

Let us look at the renormalized version of equations of motion (59) for the Keldysh propagators iΔab
φ . By rewriting the

two-point functions in terms of real and imaginary parts, we obtain

□xFφðx; x00Þ ¼
i
2

Z
dη0d3x0ðη0HÞ−4½Mþþ

φ;ren −M−−
φ;ren þM−þ

φ;ren −Mþ−
φ;ren�ðx; x0ÞFφðx0; x00Þ

−
1

4

Z
dη0d3x0ðη0HÞ−4½signðη0 − η00ÞðMþþ

φ;ren þM−−
φ;renÞ −M−þ

φ;ren −Mþ−
φ;ren�ðx; x0ÞΔc

φðx0; x00Þ: ð109Þ

Wewill solve for the statistical propagator perturbatively by approximating Fφ andΔc
φ on the right-hand side of (109) by the

expressions for the Bunch-Davies vacuum (28) and (29), respectively. Inserting the concrete expressions (91) for our model
in momentum space, we find

□kFφðη; η00; kÞ ≈ −
X2
n¼0

�
□k

H2

�
n
Z

η

−∞
dη0ðη0HÞ−4Mc

ðnÞðη; η0; kÞFφ;dSðη0; η00; kÞ

þ
X2
n¼0

�
□k

H2

�
n
Z

η00

−∞
dη0ðη0HÞ−4MF

ðnÞðη; η0; kÞΔc
φ;dSðη0; η00; kÞ

þ 2

Z
∞

−∞
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

□k

H2
½θðη − η0ÞM̂cðη; η0; kÞ�Fφ;dSðη0; η00; kÞ

− 2

Z
η00

−∞
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

□k

H2
½M̂Fðη; η0; kÞ�Δc

φ;dSðη0; η00; kÞ: ð110Þ

Expanding the last two terms and rearranging the integration boundaries gives

□kFϕðη; η00; kÞ ≈ −2Im
X2
n¼0

�
□k

H2

�
n
Z

η

−∞
dη0ðη0HÞ−4Mþþ

ðnÞ ðη; η0; kÞiΔþ−
φ;dSðη0; η00; kÞ

−
X2
n¼0

�
□k

H2

�
n
Z

η

η00
dη0ðη0HÞ−4ReMþþ

ðnÞ ðη; η0; kÞΔc
φ;dSðη0; η00; kÞ

þ 4Im
Z

η

−∞
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

�
□k

H2
M̂þþðη; η0; kÞ

�
iΔþ−

φ;dSðη0; η00; kÞ

þ 2

Z
η

η00
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

�
□k

H2
ReM̂þþðη; η0; kÞ

�
Δc

φ;dSðη0; η00; kÞ: ð111Þ

We will solve Eq. (111) by using a retarded Green’s function Gretðη; η0; kÞ (which yields no contributions of the particular
solution to the initial values) for the d’Alembertian operator in momentum space:

□kGretðη; η0; kÞ ¼ H2η2
�
−∂2

η þ
D − 2

η
∂η − k2

�
Gretðη; η0; kÞ ¼ a−4ðη0Þδðη − η0Þ;

Gretðη; η0; kÞ ¼ θðη − η0ÞH
2

k3
½kðη − η0Þ cos½kðη − η0Þ� − ð1þ k2ηη0Þ sin½kðη − η0Þ��: ð112Þ

PAVEL FRIEDRICH and TOMISLAV PROKOPEC PHYS. REV. D 100, 083505 (2019)

083505-16



We have

Fφðη; η00; kÞ ¼
□k

H2
Bð2Þðη; η00; kÞ þ Bð1Þðη; η00; kÞ

þH2

Z
∞

−∞
dτ

Gretðη; τ; kÞ
ðτHÞ4 ½Bð0Þðτ; η00; kÞ þ Blog

ð0Þðτ; η00; kÞ� þ Fhom :ðη; η00; kÞ; ð113Þ

where

BðnÞðη; η00; kÞ≡ −
2

H2
Im

Z
η

−∞

dη0

ðη0HÞ4M
þþ
ðnÞ ðη; η0; kÞiΔþ−

φ;dSðη0; η00; kÞ

−
1

H2

Z
η

η00

dη0

ðη0HÞ4 ReM
þþ
ðnÞ ðη; η0; kÞΔc

φ;dSðη0; η00; kÞ; ð114Þ

Blog
ð0Þðη; η00; kÞ≡ 4Im

Z
η

−∞
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

�
□ηðkÞ
H2

M̂þþðη; η0; kÞ
�
iΔþ−

φ;dSðη0; η00; kÞ

þ 2

Z
η

η00
dη0

1þ 2 logðηη0H2Þ
ðη0HÞ4

�
□ηðkÞ
H2

ReM̂þþðη; η0; kÞ
�
Δc

φ;dSðη0; η00; kÞ; ð115Þ

and

□kFhom :ðη; η00; kÞ ¼ 0: ð116Þ
Let us define

F̂ðη; η00; kÞ≡ Fφðη; η00; kÞ − Fhom :ðη; η00; kÞ: ð117Þ
The homogeneous solution has to be chosen in such a way that the symmetry properties of the statistical two-point function
are satisfied,

Fhom :ðη; η00; kÞ − Fhom :ðη00; η; kÞ ¼ F̂ðη00; η; kÞ − F̂ðη; η00; kÞ; ð118Þ
and the full solution reads

Fφðη; η00; kÞ ¼
1

2
½F̂ðη; η00; kÞ þ F̂ðη00; η; kÞ� þ 1

2
½Fhom :ðη; η00; kÞ þ Fhom :ðη00; η; kÞ�: ð119Þ

We immediately get the consistency requirement

□k□
00
k ½F̂ðη; η00; kÞ − F̂ðη00; η; kÞ� ¼ 0; ð120Þ

which can be used as a nontrivial check of the result of the calculation. Let us also fix a common prefactor for the
subsequent integrals

λ≡ h2

256π2k3
; ð121Þ

which gives the statistical two-point function Fφ correct dimensions in momentum space if all other factors and ratios are
dimensionless.
Let us proceed with the calculation of (113). The integrals with logarithms Blog

ð0Þ in (115) combine to give the following
expression:

Blog
ð0Þðη; η00; kÞ ¼ −8λfcos½kðη − η00Þ�ð2þ log½H2η2�Þ

þ sin½kðη − η00Þ�ð2kðη − η00Þ − kη00 log½H2η2� þ kη log½H2ηη00�Þ
þ kηðci½−2kη� þ ci½−2kη00�Þðkη00 cos½kðηþ η00Þ� − sin½kðηþ η00Þ�Þ
þ kηðπ þ si½−2kη� þ si½−2kη00�Þðcos½kðηþ η00Þ� þ kη00 sin½kðηþ η00Þ�Þg

→ −8λð2þ log½H2η2�Þ; ð122Þ
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where the arrow denotes the super-Hubble limit. The next step is to tackle the B2;1;0 terms in (114) for which we note that the
integrals containing negative infinity as a boundary may be rewritten as
Z

η

−∞

dτ
ðτHÞ4 M

þþ
ðnÞ ðη; τ; kÞiΔþ−

φ;dSðτ; η00; kÞ ¼
1

2
ð1þ ikη00Þ e

−ikðη00−ηÞ

H2

Z
∞

0

dx

�
αðnÞ

�
M̃þþ

I

�
x
k
; k

�
þ M̃þþ

II

�
x
k
; k

��

þ βðnÞM̂þþ
�
x
k
; k
�
þ γðnÞM̂þþ

�
x
k
; k
�
log

�
ηðkη − xÞH4

4kμ2

��
1 − iðkη − xÞ
ðkη − xÞ4 e−ix:

ð123Þ
We then have to solve the following integrals (η; η00 < 0; k > 0):

IR̃ðη; η00; kÞ≡ −
1

λH2

Z
η

η00
dτðτHÞ−4Re½M̃þþ

I þ M̃þþ
II �ðη; τ; kÞΔc

φ;dSðτ; η00; kÞ; ð124Þ

IR̂ðη; η00; kÞ≡ −
1

λH2

Z
η

η00
dτðτHÞ−4ReM̂ðη; τ; kÞΔc

φ;dSðτ; η00; kÞ; ð125Þ

IRlog
ðη; η00; kÞ≡ −

1

λH2

Z
η

η00
dτðτHÞ−4ReM̂ðη; τ; kÞ log

�
ητH4

4μ2

�
Δc

φ;dSðτ; η00; kÞ; ð126Þ

IM̃ðη; kÞ≡ −
eikη

2λH4

Z
∞

0

dx

�
M̃þþ

I

�
x
k
; k

�
þ M̃þþ

II

�
x
k
; k

��
1 − iðkη − xÞ
ðkη − xÞ4 e−ix; ð127Þ

IM̂ðη; kÞ≡ −
eikη

2λH4

Z
∞

0

dxM̂þþ
�
x
k
; k

�
1 − iðkη − xÞ
ðkη − xÞ4 e−ix; ð128Þ

IMlog
ðη; kÞ≡ −

eikη

2λH4

Z
∞

0

dx log

�
ηðkη − xÞH4

4kμ2

�
M̂þþ

�
x
k
; k

�
1 − iðkη − xÞ
ðkη − xÞ4 e−ix: ð129Þ

We are able to solve all integrals except for the first one in terms of the finite sums of exponentials, exponential integrals,
and generalized hypergeometric functions. However, for the integral IR̃ we have to define the function

J ðη; η00; kÞ≡
Z

1

0

dxE1½−2ikðxðη − η00Þ þ η00Þ� 1 − e−2ikðη−η00Þðx−1Þ

x − 1
: ð130Þ

We note that (130) approaches a constant in the super-Hubble limit. We solve the IR integrals in Appendix E and the IM
integrals in Appendix F. We then have

BðnÞðη; η00; kÞ ¼ λαðnÞ½2Imðð1þ ikη00Þe−ikη00IM̃ðη; kÞÞ þ IR̃ðη; η00; kÞ�
þ λβðnÞ½2Imðð1þ ikη00Þe−ikη00IM̂ðη; kÞÞ þ IR̂ðη; η00; kÞ�
þ λγðnÞ½2Imðð1þ ikη00Þe−ikη00IMlog

ðη; kÞÞ þ IRlog
ðη; η00; kÞ�; ð131Þ

where the coefficients are given in (93). If we now act with the de Sitter d’Alembertian on Bð2Þ we have

□k

H2
Bð2Þðη; η00; kÞ ¼ 2λ

�
cos½kðη − η00Þ� − kðη − η00Þ sin½kðη − η00Þ�

þ ðcos½kðη − η00Þ� þ kðη − η00Þ sin½kðη − η00Þ�Þ
�
cið2kjη − η00jÞ þ γE − log

�
2μ2jη − η00j
H2kηη00

��

þ signðη − η00Þ½πkðη − η00Þ cos½kðη − η00Þ� − 1

2
sin½kðη − η00Þ�

− ðkðη − η00Þ cos½kðη − η00Þ� − sin½kðη − η00Þ�Þsið2kjη − η00jÞ�
	

→ 2λ

�
2γE − 1þ log

�
H2k2ηη00

μ2

��
; ð132Þ
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where we made use of

E1½2ikðη − η00Þ� ¼ −cið2kjη − η00jÞ þ isignðη − η0Þsið2kjη − η00jÞ − i
π

2
signðη − η0Þ: ð133Þ

The expression for Bð1Þ is unfortunately much lengthier which is why we give here only the super-Hubble limit:

Bð1Þðη; η00; kÞ →
2

3
λ

�
log2ð−2kηÞ þ log2ð−2kη00Þ þ 2 logð−2kηÞ logð−2kη00Þ

þ 4

3
log½4k2ηη00�

�
3 log

�
2μ

H

�
þ 3γE − 4

�

þ 17

4
−
32

3
γE þ 4γ2E þ π2

3
þ 2ð4γE − 5Þ log

�
2μ

H

��
: ð134Þ

We see that the above expressions are already symmetric and we will not need a homogeneous solution for symmetrizing
them. Finally, we turn to the integral that involves the Green’s function,

Gðη; η00; kÞ≡H2

Z
∞

−∞
dτ

Gretðη; τ; kÞ
ðτHÞ4 ½Bð0Þðτ; η00; kÞ þ Blog

ð0Þðτ; η00; kÞ� þ Fhom :ðη; η00; kÞ: ð135Þ

We realize that the integral boundary at negative infinity will lead to logarithmic divergences, which is why we add a
homogeneous solution to cancel them:

Gðη; η00; kÞ ¼ H2

Z
∞

η00
dτ

Gretðη; τ; kÞ
ðτHÞ4 ½Bð0Þðτ; η00; kÞ þ Blog

ð0Þðτ; η00; kÞ� þ F̃hom :ðη; η00; kÞ: ð136Þ

We computed (136) in terms of finite sums of exponentials, exponential integrals, and generalized hypergeometric
functions, as well as an additional integral which contains similar functions as (130) but is more complicated. We also find
that the consistency condition (120) applies which is a highly nontrivial statement with regard to how the various terms
contribute. However, since the result fills pages and includes a lot of partial integration, we decided to give only the super-
Hubble limit in this paper. We note that the Green’s function has the super-Hubble limit,

Gretðη; η0; kÞ → θðη − η0ÞH
2

k3

�
−
1

3
k3ðη − η0Þ3

�
; ð137Þ

such that the full integral in the super-Hubble limit reduces to a rather simple expression:

Gðη; η00; kÞ → −
1

3

Z
η

η00
dτ

ðη − τÞ3
τ4

�
16

3
log2ð−2kτÞ þ 4

3

�
8 log

�
H
2k

�
− 9

�
logð−2kτÞ

þ 4

3

�
8 log

�
H
2k

�
þ 7 − 8γE

�
logð−2kη00Þ

−
70

3
þ 40γE − 16γ2E −

4

9
π2 þ 64

3
ðγE − 2Þ log

�
H
2k

��
þ F̃hom :ðη; η00; kÞ: ð138Þ

The last step is to symmetrize the result by means of a homogeneous solution that should also include the tree-level solution
for the Bunch-Davies vacuum,

F̃hom :ðη; η00; kÞ ¼ Fφ;dSðη; η00; kÞ þ λ½h1ðη00Þ þ iðkη00Þ−3h2ðη00Þ�ð1þ ikηÞe−ikη þ λ½h1ðη00Þ − iðkη00Þ−3h2ðη00Þ�ð1 − ikηÞeikη;
ð139Þ

where h1;2 are real functions that we determine perturbatively as
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h1ðη00Þ → −
733

486
þ 1

81

�
18γEð3þ 2γEÞ þ 7π2 þ 16ð6γE − 11Þ log

�
H
2k

�
þ 216ðγE − 2Þ log

�
2μ

H

��

þ 2

81
logð−2kη00Þ

�
355 − 12γEð47þ 18γEÞ þ 6π2 − 288ðγE − 2Þ log

�
H
2k

��

þ 4

27
log2ð−2kη00Þ

�
1þ 12γE − 24 log

�
H
2k

��
−
16

27
log3ð−2kη00Þ; ð140Þ

h2ðη00Þ → −
353

81
þ 2

27

�
18γEð2γE − 5Þ þ π2 − 8ð11 − 6γEÞ log

�
H
2k

��

−
4

27
logð−2kη00Þ

�
1 − 12γE þ 24 log

�
H
2k

��
−
8

9
log2ð−2kη00Þ: ð141Þ

Adding up all contributions for the statistical two-point function,

Fφðη; η00; kÞ ¼ Fφ;dSðη; η00; kÞ þ λ

�
□k

H2
Bð2Þðη; η00; kÞ þ Bð1Þðη; η00; kÞ þ Gðη; η00; kÞ

þ ½h1ðη00Þ þ iðkη00Þ−3h2ðη00Þ�ð1þ ikηÞe−ikη þ ½h1ðη00Þ − iðkη00Þ−3h2ðη00Þ�ð1 − ikηÞeikη
�
; ð142Þ

yields expression (30) in the super-Hubble limit.

IV. CONCLUSION AND OUTLOOK

In the literature on cosmological perturbations, their
properties are often specified solely in terms of an equal
time two-point function of the comoving curvature per-
turbation R. This picture is correct if the fields are
Gaussian distributed and if the decaying mode on
super-Hubble scales makes the (canonical) momentum
perturbation πR small and/or stochastically dependent on
R, such that no useful or additional information is
contained in it. This rationale can be extended at the
linear level to include isocurvature modes stemming from
additional field perturbation in a multifield inflation
scenario. On the other hand, one can discuss the self-
interactions of the inflaton perturbation. There is another
possibility that we discuss in this paper, namely, that the
momentum of the comoving curvature perturbation can
become significant at the end of inflation via quantum
interactions with a spectator field.
We study this scenario for a simple two-field model of

inflation (6) in which the inflaton field couples biquadrati-
cally to a light spectator scalar field. Expanding around
the inflaton condensate yields a dominant cubic coupling
at the level of perturbations in which the inflaton pertur-
bation couples linearly to the spectator (cf. Fig. 1). We
investigate how the spectator field affects the curvature
perturbation by performing an explicit one-loop calcu-
lation with renormalized self-masses in the 2PI formalism.
Quantum gravitational interactions during inflation have
been addressed in [8,9] with the conclusion that, in the

single field inflationary models, corrections to the curva-
ture perturbation grow on super-Hubble scales at most
with powers of logarithms of the scale factor. We confirm
this observation for our model in (30).
However, the momentum correlators (37)–(38) grow as

powers of the scale factor, such that they are not
necessarily suppressed at the end of inflation. We calcu-
late the Gaussian, von Neumann entropy of the curvature
perturbation (47) and show that during inflation and on
super-Hubble scales it grows as ∼6 lnðaÞ. This rapid
growth of the entropy indicates a rapid classicalization
of the curvature perturbation on super-Hubble scales
during inflation, and it is a consequence of the rapid
growth [∝ a6; see Eq. (49)] of the Gaussian invariant of
the state (46), which in turn can be attributed to the rapid
growth of momentum correlators (37)–(38). This then
implies that the momentum operator of the curvature
perturbation (32) should be regarded as stochastically
independent from the curvature perturbation.
When this work was nearing completion, we became

aware that the idea of obtaining decoherence from specta-
tors has been addressed in [7], based on the work in [35,36].
Strictly speaking, the theory with a cubic interaction
studied in [7,35,36] is unstable and not the same as the
biquadratic theory we start from in Eqs. (6)–(9), which is a
stable theory for a positive coupling g. However, since the
two-loop diagram in Fig. 2 is suppressed, the principle
source of decoherence in our theory is incidentally a
diagram that is topologically the same as the diagram used
in [7,35,36], provided one identifies our coupling h ¼ gϕ̄
with their coupling λ. Since ϕ̄ ¼ ϕ̄ðtÞ, this identity is never
exact and at some level the theories do differ.
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We also emphasize that our approach (based on the one-
loop evaluation of the inflaton two-point function) differs
significantly from the reduced density matrix approach
used in [7,35,36]. Furthermore, our results qualitatively
differ in that we find the leading order growth of the
inflaton two-point function correlator to be log3ð−kηÞ,
which differs by one power from the result obtained in
[7,35,36]. Moreover, our result differs by a sign. Namely,
we get that the two-point function increases at late times
while the above mentioned references find a suppression.
Since both calculational frameworks differ significantly
and bear a lot of complexity, we leave it as an impor-
tant task for the future to explain how this difference
comes about.
Our study shows that the effects of interactions are

typically large at the end of inflation, which can be clearly
seen from Eq. (41) and is illustrated in Figs. 3–5. On the
other hand, if interactions switch off rapidly after inflation,
quite generically by the end of the radiation era the
momentum fluctuations will decay such that their effects
will be too small to leave any observable imprint in the
CMB or LSS, which is corroborated by the estimate given
in Eqs. (51)–(52). This conclusion holds, however, only if
the inflaton-spectator interactions are switched off rapidly
enough after inflation, such that the postinflationary evo-
lution of cosmological perturbations on super-Hubble
scales can be well approximated by the corresponding
free, linear evolution, according to which the large curva-
ture momentum perturbation from the end of inflation
decays swiftly during radiation. One way to hinder the
decay of the momentum correlators is to keep the inflaton-
spectator interactions active during the early parts of the
radiation era. This can be achieved, for example, by
delaying the postinflationary decays of the inflaton and
spectator fluctuations, and by demanding that both fields
are light enough such that, for some time during radiation,
they remain approximately massless, i.e., mϕ; mχ ≪ HðtÞ,
where HðtÞ ≃ 1=ð2tÞ is the Hubble rate in the radiation era.
We leave a detailed study of decoherence on super-Hubble
scales during radiation for future work.
Broadly speaking, investigations of quantum loop cor-

rections to cosmological perturbations in an inflationary
setting, a simple example of which is performed in this
work, can be used to test the consistency of various
inflationary models and can be considered as complemen-
tary to effective field theory methods, which can be very
useful for studying the internal consistency of inflationary
models such as Higgs inflation [52,53]. Furthermore, since
quantum loop corrections from light matter fields may
leave observable imprints in the CMB and large scale
structure, one can use the signatures imprinted in the CMB
and large scale structure by the momentum correlators of
cosmological perturbations as a means to study inflationary
interactions, thus opening a novel observational window to
inflationary physics.
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APPENDIX A: DEFINITIONS AND
CONVENTIONS

We make use of the d’Alembert operator in de Sitter
space-time where

□

H2
≡ □̄dS

H2
¼ η2

�
−∂2

η þ
D − 2

η
∂η þ δij∂i∂j

�
; ðA1Þ

where the constant parameter H is the Hubble rate at
the beginning of inflation and η denotes conformal time.
We use the following general notation for the Wightman
functions and causal and statistical propagators in the
cosmological context:

iΔ∓�
φ ðη; η0; kÞ ¼ Fφðη; η0; kÞ �

i
2
Δc

φðη; η0; kÞ; ðA2Þ

Fφðη; η0; kÞ ¼
Z

d3ðx − x0Þe−ik⃗·ðx⃗−x⃗0ÞFϕðx; x0Þ; ðA3Þ

iΔc
φðη; η0; kÞ ¼

Z
d3ðx − x0Þe−ik⃗·ðx⃗−x⃗0ÞiΔc

ϕðx; x0Þ; ðA4Þ

with

Fφðx; x0Þ ¼
1

2
Tr½ρ̂ðη0Þfφ̂ðxÞ; φ̂ðx0Þg�;

iΔc
φðx; x0Þ ¼ Tr½ρ̂ðη0Þ½φ̂ðx0Þ; φ̂ðxÞ��; ðA5Þ

where ρ̂0 ≡ ρ̂ðη0Þ is the initial density matrix (defined at
η ¼ η0). Moreover, we define the correlators

ΔXYðx; x0Þ≡ 1

2
Tr½ρ̂ðη0ÞfX̂ðxÞ; Ŷðx0Þg�: ðA6Þ

We make frequent use of the following functions:

siðzÞ ¼ −
Z

∞

z

sinðtÞdt
t

¼
Z

z

0

sinðtÞdt
t

−
π

2
¼ SiðzÞ − π

2
;

ðA7Þ

ciðzÞ ¼ −
Z

∞

z

cosðtÞdt
t

; ðA8Þ
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E1ðixÞ ¼ −γE − logðixÞ −
X∞
k¼1

ð−ixÞk
kk!

¼ isiðxÞ − ciðxÞ;

x > 0; ðA9Þ

EinðzÞ ¼
Z

z

0

1 − e−t

t
dt ¼

X∞
n¼1

ð−1Þn−1zn
n!n

¼ E1ðzÞ þ logðzÞ þ γE; ðA10Þ

3F3

�
1 1 1

2 2 2
; z

�
¼ 1

z

Z
z

0

EinðtÞ
t

dt: ðA11Þ

APPENDIX B: PHOTON KINETIC EQUATION

The starting point for our recapitulation is the Boltzmann
equation for the temperature perturbation of the photon
fluids which takes the following form in Fourier space
(we follow closely the standard literature; see, e.g., [54]
or [55]):

∂ηΘðk; μÞ þ ikμ½Θðk; μÞ þΦðkÞ� − ∂ηΨðkÞ

¼ −ð∂ητÞ
�
Θ0ðkÞ − Θðk; μÞ þ μvbðkÞ −

1

2
P2ðμÞΣðkÞ

�
;

μ ¼ k⃗ · p⃗
kp

: ðB1Þ

Here, Θðk; μÞ is the time-dependent gauge-invariant (inte-
grated) photon temperature perturbation that is obtained
from

Θðk; μÞ ¼
X∞
l¼0

ð−iÞlθlðη; kÞPlðμÞ ∝
Z

dpp3δfðη; p⃗; k⃗Þ;

ðB2Þ
where δf is the perturbed, gauge-invariant photon distri-
bution function as defined in [54], and Pl are Legendre
polynomials. The Bardeen potentials Φ and Ψ (as defined
in [40]) are related to temporal and spatial metric pertur-
bations. The time-dependent variable τðηÞ is the optical
depth related to Thomson scattering with vb the (longi-
tudinal) baryon velocity perturbation and Σ the anisotropic
stress which depends on the polarization and quadrupole
moment Θ2, both of which are usually neglected in a first
approximation [54,55]. We note that the gravitational slip is
given by

Ψ −Φ ¼ a2

M2
p
Σ; ðB3Þ

and we can identify the two potentials once anisotropic
stress is absent or neglected. Moreover, we have to consider
the speed of sound cs of the photon-baryon fluid, which is
defined via

δP ¼ c2sδρþ δPnad; ðB4Þ

where δP, δρ, and δPnad are the pressure, density, and
nonadiabatic pressure perturbations, respectively. The
speed of sound in radiation domination is related to the

background density of photons ρð0Þγ and baryons ρð0Þb via

c2sðηÞ ¼
1

3ð1þ RðηÞÞ ; RðηÞ≡ 3

4

ρð0Þb ðηÞ
ρð0Þγ ðηÞ

: ðB5Þ

Since the baryon density is much smaller than the photon
density in the radiation dominated phase, we can take as
another approximation c2s ≈ 1=3 during this time, which
also determines the baryon velocity to first order through
the photon dipole moment as

vb ¼ −3iΘ1 þOðRÞ: ðB6Þ

Putting it all together, one can derive a second-order dif-
ferential equation for the effective temperature fluctuation
ΔT ¼ Θ0 þΦ and the gravitational potentials [54,55],

�
d2

dη2
þ R
1þ R

H
d
dη

þ k2c2s

�
ΔT

¼ k2
�
c2s −

1

3

�
Φþ

�
d2

dη2
þ R
1þ R

H
d
dη

�
½ΨþΦ�: ðB7Þ

We see that if we neglect the damping term by c2s ≈ 1=3, we
have a forced harmonic oscillator, whose homogeneous
solutions are determined by the monopole densityΘ0ðηcmbÞ
and its time derivative Θ0

0ðηcmbÞ as well as the gravitational
potential ΨðηcmbÞ and its time derivative Ψ0ðηcmbÞ at some
time within the radiation dominated phase ηcmb that is close
to recombination ηcmb ≈ 10−1ηrec,

ΔTðηÞ≈ ½Θ0 þΦ�ðηcmbÞ cos½krsðηÞ�

þ
�
Θ0

0 þΦ0

kcs

�
ðηcmbÞ sin½krsðηÞ�

þ
ffiffiffi
3

p

k

Z
η

ηcmb

½Φ00ðη̄Þ þΨ00ðη̄Þ� sin½krsðηÞ− krsðη̄Þ�dη̄;

ðB8Þ

where we defined the sound horizon,

rsðηÞ ¼
Z

η

ηcmb

csðη̄Þdη̄; ðB9Þ

and we keep the time dependence of the speed of sound
only in the phases. By making use of (B1) in the super-
Hubble limit, in which also the gravitational slip vanishes,
we obtain Θ0

0ðηcmbÞ¼Ψ0ðηcmbÞ¼Φ0ðηcmbÞ and the tempo-
ral integration turns out to yield 2Θ0ðηcmbÞ ¼ −ΨðηcmbÞ ¼
−ΦðηcmbÞ [54,55]. We also recall that the gravitational
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potential Ψ obeys in the absence of gravitational slip the
following differential equation [40]:

∂2
ηΨþ 3ð1þ c2sÞH∂ηΨþ ½2∂ηHþ ð1þ 3c2sÞH2 þ c2sk2�Ψ

¼ 1

2M2
p
δPnad: ðB10Þ

As a first approximation to the inhomogeneous solution
in (B8), we can solve (B10) for vanishing nonadiabatic
pressure, δPnad → 0, with c2s ≈ 1=3 during radiation unless
it will appear as a phase in conjunction with the momentum
k. Thus, we write

∂2
ηΨþ 4H∂ηΨþ c2sk2Ψ ≈ 0: ðB11Þ

We see that the solution will stay constant on super-Hubble
scales or decay otherwise during radiation and we thus
neglect the integral in (B8). We then have

ΔTðk;ηÞ≈ 1

2
ΨkðηcmbÞ cos½krsðηÞ� þ 2

Ψ0
kðηcmbÞ

kcsðηcmbÞ
sin½krsðηÞ�:

ðB12Þ
Finally, in order to make contact with the era of inflation,
we would like to relate Eq. (B12) to the gauge-invariant
curvature perturbation R in the case of vanishing (linear)
nonadiabatic pressure (δPnad ¼ 0). First we note that the
gauge-invariant curvature perturbationRmay be expressed
in terms of the gauge-invariant gravitational potential Ψ
via [40]

R≡ΨþΦ
ϵ
þ ∂ηΨ

Hϵ
¼ Ψþ Ψ

ϵ
þ ∂ηΨ

Hϵ
; ϵ ¼ 1 −

∂ηH

H2
;

ðB13Þ

where we neglected the gravitational slip in the second
equality, which is justified on super-Hubble scales.
The squared adiabatic sound speed may be expressed as

c2s ≡ ∂ηP̄

∂ηρ̄
¼ −1þ 2

3
ϵ −

∂ηϵ

3Hϵ
;

where P and ρ are the background pressure and energy
density, respectively. Taking a derivative of (B13), using
(B11), we find

∂ηR ¼ −
c2sk2

ϵH
Ψ:

Note that the latter relation holds also in an inflationary
context with c2s set equal to 1. We can solve for Ψ and ∂ηΨ
in terms of R and ∂ηR, which yields

Ψ ¼ −
ϵH
c2sk2

∂ηR≡ −
H

2M2
pk2a2

πR;

∂ηΨ ¼ ϵHRþ ð1þ ϵÞ H2

2M2
pk2a2

πR; ðB14Þ

where we defined the canonical momentum πR associated
to R as in Appendix C. We now would like to evolve the
gravitational potential on super-Hubble scales from the end
of inflation deep into the radiation era by using linear
relations. Therefore, we make use of Weinberg’s theorem
[56], according to which there are always two solutions for
the gravitational potential on super-Hubble scales which
take the following form:

ΨadðηÞ ¼ −
�

1

2M2
pk2

πRðηeÞ þ
a2ðηeÞ
HðηeÞ

RðηeÞ
�
HðηÞ
a2ðηÞ

þRðηeÞ
�
1 −

HðηÞ
a2ðηÞ

Z
η

ηe

a2ðη̄Þdη̄
�
; ðB15Þ

where the time ηe signals some time shortly before the end
of inflation such that we still have that ϵðηeÞ ≪ 1. In order
to set initial conditions for the CMB spectrum at time
ηcmb ≈ 10−1ηrec close to recombination, we stick to a
simplified scenario in which we neglect small contributions
due to the transition from inflation to radiation and keep
only leading order terms in each variable,

ΨadðηcmbÞ ≈ −
1

2M2
pk2

Ha2ðηeÞ
a3ðηcmbÞ

πRðηeÞ þ
2

3
RðηeÞ; ðB16Þ

Ψ0
adðηcmbÞ ≈ 3

H2a3ðηeÞ
a4ðηcmbÞ

�
1

2M2
pk2

πRðηeÞ þ
a2ðηeÞ
H

RðηeÞ
�
:

ðB17Þ
Inserting the above super-Hubble initial conditions into the
approximate solution for the effective CMB temperature
perturbation (B12) and making the stochastic character of
the involved operators manifest, we have

ΔT̂ðη; k⃗Þ ≈ 1

2

�
2

3
R̂ðηe; k⃗Þ −

a3ðηeÞ
a3ðηcmbÞ

H
2M2

pk2aðηeÞ
π̂Rðηe; k⃗Þ

�
cos½krsðηÞ�

þ 6H
kcsðηcmbÞ

a4ðηeÞ
a4ðηcmbÞ

�
H

2M2
pk2

π̂Rðηe; k⃗Þ þ aðηeÞR̂ðηe; k⃗Þ
�
sin½krsðηÞ�: ðB18Þ
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This relation is used in Eqs. (50)–(52) of Sec. II to estimate
the size of the photon temperature fluctuations induced by
the enhanced inflationary momentum perturbation.

APPENDIX C: LINEAR EVOLUTION OF
CURVATURE PERTURBATION

The gauge-invariant curvature perturbation can be defined
in terms of the metric perturbation ψ and the perturbation of
the velocity potential φv [57] (in single-field inflationary
models, φv reduces to the inflaton field perturbation) as

R ¼ ψ þ Hffiffiffiffiffiffiffiffiffiffiffiffi
ρþ P

p φv; ðC1Þ

where ψ ¼ −Tr½δgij�=ð6a2Þ, and ρ and P are the back-
ground fluid density and pressure [in inflation ρþ P →
ð _ϕÞ2, where ϕðtÞ≡ hϕ̂ðxÞi is the inflaton expectation
value]. Let us solve for the curvature perturbation R in
postinflationary epochs. The quadratic (reparametrization-
invariant) action for R reads (see, e.g., [38,57])

S½R� ¼ ð2M2
pÞ

Z
d3xdtN̄ðtÞa3ϵ

�
1

2c2s
_R2 −

1

2a2
ð∂iRÞ2

�
;

ðC2Þ
where N̄ ¼ N̄ðtÞ is the lapse function of the ADM decom-
position (defined on a global equal time hypersurface Σt),

ϵðtÞ ¼ −
_H

H2
ðC3Þ

is the principal slow-roll parameter, and _XðtÞ≡ N̄−1∂=∂t is
the time derivative invariant under time reparametrizations.

In inflation ϵ ≪ 1, in radiation ϵ ¼ 2, and in the matter
era ϵ ¼ 3=2. From (C2) one easily finds the canonical
momentum of R,

πRðt; x⃗Þ≡ δS
δ∂tRðt; x⃗Þ ¼

2M2
pa3ϵ

N̄c2s
∂tR; ðC4Þ

and the Hamiltonian,

HðtÞ ¼
Z

d3x

�
N̄c2s

4M2
pa3ϵ

π2R þM2
pN̄aϵð∂iRÞ2

�
: ðC5Þ

From (C5) one easily arrives at the Heisenberg equations,

∂tR̂ ¼ N̄c2s
2M2

pa3ϵ
π̂R; ∂tπ̂R ¼ 2M2

pN̄aϵ∂2
i R̂; ðC6Þ

where R̂ and π̂R are the canonical pair obeying

½R̂ðt; x⃗Þ; π̂Rðt; x⃗0Þ� ¼ iℏδ3ðx⃗ − x⃗0Þ: ðC7Þ

One can solve (C6) in space-times of constant ϵ as
follows. Let us introduce a time, adη ¼ N̄dt (notice that
time η reduces to the usual conformal time in the gauge,
N̄ ¼ a), and (C6) reduces to

∂η½a2∂ηR̂� − a2c2s∇2R̂ ¼ 0; ðC8Þ

where we made use of _ϵ ¼ 0 and _cs ¼ 0. Since we are
primarily interested in the spectra, it is convenient to
perform the following mode decomposition:

R̂ðη; x⃗Þ ¼
Z

d3k
ð2πÞ3 ðe

ik⃗·x⃗Rðη; kÞâðk⃗Þ þ e−ik⃗·x⃗R�ðη; kÞâþðk⃗ÞÞ≡
Z

d3k
ð2πÞ3 e

−ik⃗·x⃗R̂ðη; k⃗Þ

π̂Rðη; x⃗Þ ¼
Z

d3k
ð2πÞ3 ðe

ik⃗·x⃗πRðη; kÞâðk⃗Þ þ e−ik⃗·x⃗π�Rðη; kÞâþðk⃗ÞÞ≡
Z

d3k
ð2πÞ3 e

−ik⃗·x⃗π̂Rðη; k⃗Þ; ðC9Þ

where

½âðk⃗Þ; âþðk⃗0Þ� ¼ ð2πÞ3δ3ðk⃗ − k⃗0Þ;
Rðη; kÞπ�Rðη; kÞ −R�ðη; kÞπRðη; kÞ ¼ i: ðC10Þ

The equation of motion for the modes Rðη; kÞ then
becomes

�
d2

dη2
þ c2sk2 − ðH2 þ ∂ηHÞ

�
ðaRÞ ¼ 0; ðC11Þ

where H ¼ ∂η lnðaÞ ¼ aH is the conformal Hubble rate.
For inflation we have c2s ¼ 1 and set to leading order in the

slow-roll parameters aðηÞ ¼ −Hη−1 (H ≈ const). Thus, the
two fundamental solutions in inflation are to leading order
given by

1ffiffiffiffiffi
2ϵ

p
MP

Hffiffiffiffiffiffiffi
2k3

p ð1 ∓ ikηÞe�ikη; ðC12Þ

such that

R̂ðη; k⃗Þ ¼ 1ffiffiffiffiffi
2ϵ

p
MP

Hffiffiffiffiffiffiffi
2k3

p

× ½ð1þ ikηÞe−ikηâð−k⃗Þ þ ð1 − ikηÞeikηâþðk⃗Þ�;
ðC13Þ
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π̂Rðη; k⃗Þ ¼
1ffiffiffiffiffi

2ϵ
p

MP

Hffiffiffiffiffiffiffi
2k3

p 2M2
pa2ϵk2η

× ½e−ikηâð−k⃗Þ þ eikηâþðk⃗Þ�: ðC14Þ
We now restrict the d.o.f. of (let us say) a Gaussian state
associated to R and πR to the Bunch-Davies vacuum with
âðk⃗Þj0i ¼ 0 by picking up only the commutator in any two-
point function. However, the dynamics of single-field
inflation on super-Hubble scales within the standard linear
treatment reduces the effective d.o.f. of the Gaussian state
in any case to only one stochastic variable. In other words,
if we look on super-Hubble scales jkηj ≪ 1, we find that R̂
and π̂R are effectively no longer independent operators,

R̂ðη; k⃗Þ → 1ffiffiffiffiffi
2ϵ

p
MP

Hffiffiffiffiffiffiffi
2k3

p ½âð−k⃗Þ þ âþðk⃗Þ þOðkηÞ�;

ðC15Þ

π̂Rðη; k⃗Þ →
1ffiffiffiffiffi

2ϵ
p

MP

Hffiffiffiffiffiffiffi
2k3

p 2M2
pa2ϵk2η

× ½âð−k⃗Þ þ âþðk⃗Þ þOðkηÞ�

¼ −
2ϵM2

pa2

H
k2½R̂ðη; k⃗Þ þOðkηÞ�: ðC16Þ

In conclusion, we would like to emphasize that R̂ and π̂R
are for every k⃗ a priori independent and it is either the
choice of state or the dynamics that could effectively cease
this independence.

APPENDIX D: WIGNER TRANSFORM
OF LOGARITHMS

In this appendix we show that

Z
d3ðx − x0Þe−ik⃗·ðx⃗−x⃗0Þ

�
1

2
log2

�
y
4

�
þ fðη; η0Þ log

�
y
4

��

¼ −
4π2

k3

�
2þ ½1þ ikjΔηj�

�
log

�
aa0H2jΔηj

2k

�
þ i

π

2
− γE þ fðη; η0Þ

��
e−ikjΔηj

þ 4π2

k3
ð1 − ikjΔηjÞ½ci½2kjΔηj� − isi½2kjΔηj��eþikjΔηj; ðD1Þ

where Δη ¼ η − η0 and fðη; η0Þ is some k-independent
function. We need integrals of the following type:

InðxÞ≡ x2
Z

∞

0

dzz sin½xz�lognðj1 − z2jÞ ðD2Þ

¼ x2
�
dn

dbn

Z
∞

0

dzz sin½xz�j1 − z2jb
�
b¼0

: ðD3Þ

By using

Z
∞

0

dzz sin½xz�j1 − z2jb ¼
ffiffiffi
π

p
2

�
2

x

�
bþ1

2

Γ½bþ 1�

× ½Jbþ3
2
ðxÞ þ Y−b−3

2
ðxÞ�;

x > 0;−1 < b < 0; ðD4Þ
with Jn, Ym being the Bessel functions of the first and
second kind, by analytically extending we find

I1ðxÞ ¼ −π½cosðxÞ þ x sinðxÞ� ðD5Þ

and

I2ðxÞ ¼ 2π

�
−2 cosðxÞ þ ½cosðxÞ þ x sinðxÞ�

×

�
cið2xÞ þ γE − log

�
2

x

��

þ ½sinðxÞ − x cosðxÞ�sið2xÞ
�
; ðD6Þ

where we used

ciðxÞ ¼ −
Z

∞

x

cosðyÞ
y

dy; siðxÞ ¼ −
Z

∞

x

sinðyÞ
y

dy:

ðD7Þ
Remembering that

logðΔx2þþÞ ¼ logðjΔη2 − jx⃗− x⃗0j2jÞ þ iπθðΔη2 − jx⃗− x⃗0j2Þ;
ðD8Þ

we get

ENTROPY PRODUCTION IN INFLATION FROM SPECTATOR … PHYS. REV. D 100, 083505 (2019)

083505-25



Z
d3ðx − x0Þe−ik⃗·ðx⃗−x⃗0Þ log

�
y
4

�
¼ 4π

k

Z
∞

0

drr sinðkrÞ log
�
y
4

�

¼ 4π

k

Z
∞

0

drr sinðkrÞ logðj1 − r2Δη−2jÞ þ i
4π2

k

Z
∞

0

drr sinðkrÞθðΔη2 − r2Þ þ hom :

¼ 4π

k3
½kΔη�2

Z
∞

0

dzz sin½kjΔηjz� logðjz2 − 1jÞ þ i
4π2

k

Z jΔηj

0

drr sinðkrÞ þ hom :

¼ −
4π2

k3
½1þ ikjΔηj�e−ikjΔηj þ hom : ðD9Þ

Moreover, we calculate

Z
d3ðx− x0Þe−ik⃗·ðx⃗−x⃗0Þlog2

�
y
4

�
¼ 4π

k

Z
∞

0

drr sinðkrÞlog2ðj1− r2Δη−2jÞ

þ 8π

k
log

�
aa0H2Δη2

4

�Z
∞

0

drr sinðkrÞ logðj1− r2Δη−2jÞ

þ i
8π2

k

Z
∞

0

drr sinðkrÞ logðj1− r2Δη−2jÞθðΔη2 − r2Þ− 4π3

k

Z
∞

0

drr sinðkrÞθðΔη2 − r2Þ

þ i
8π2

k
log

�
aa0H2Δη2

4

�Z
∞

0

drr sinðkrÞθðΔη2 − r2Þ þ hom :

¼ 4π

k3
½kΔη�2

Z
∞

0

dzz sin½kjΔηj�log2ðj1− z2jÞ

þ 8π

k3
log

�
aa0H2Δη2

4

�
½kΔη�2

Z
∞

0

dzz sin½kjΔηjz� logðj1− z2jÞ

þ i
8π2

k3
½kΔη�2

Z
1

0

dzz sin½kjΔηjz� logðj1− z2jÞ

−
4π2

k

�
π − 2i log

�
aa0H2Δη2

4

��Z jΔηj

0

drr sinðkrÞ þ hom :

¼ 8π2

k3
½−2 cosðkjΔηjÞ þ ½cosðkjΔηjÞ þ kjΔηj sinðkjΔηjÞ�

�
cið2kjΔηjÞ þ γE − log

�
2

kjΔηj
��

þ ½sinðkjΔηjÞ− kjΔηj cosðkjΔηjÞ�sið2kjΔηjÞ�

−
8π2

k3
log

�
aa0H2Δη2

4

�
½cosðkjΔηjÞ þ kjΔηj sinðkjΔηjÞ�

þ i
8π2

k3

�
2 sinðkjΔηjÞ þ ½sinðkjΔηjÞ− kjΔηjcosðkjΔηjÞ�

�
cið2kjΔηjÞ− γE þ log

�
2

kjΔηj
��

− ½cosðkjΔηjÞ þ kjΔηj sinðkjΔηjÞ�
�
sið2kjΔηjÞ þ π

2

��

−
4π2

k3

�
π − 2i log

�
aa0H2Δη2

4

��
½sin½kjΔηj�− kjΔηj cos½kjΔηj�� þ hom :

¼ −
8π2

k3

�
2þ ½1þ ikjΔηj�

�
log

�
aa0H2jΔηj

2k

�
þ i

π

2
− γE

��
e−ikjΔηj

þ 8π2

k3
ð1− ikjΔηjÞ½ci½2kjΔηj�− isi½2kjΔηj��eþikjΔηj; ðD10Þ

where γE ≈ 0.57721 is Euler’s constant. We combine the results (D9) and (D10) in order to get (D1).
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APPENDIX E: IR INTEGRALS

In this appendix we calculate the integrals (124), (125), and (126). Let us start with

IR̃ðη; η00; kÞ ¼ −λ−1H−2signðη; η00Þ
Z
Cðη;η00Þ

dτðτHÞ−4Re½M̃þþ
I þ M̃þþ

II �ðη; τ; kÞΔc
ϕ;BDðτ; η00; kÞ

¼ Imf½ð1þ ikη00Þe−ikη00 �½eikηR̃1ðη; η00; kÞ þ e−ikηR̃2ðη; η00; kÞ�g; ðE1Þ
where

ĨR1
ðη; η00; kÞ≡ 1

k3

Z
η00

η
dτ

�
2þ ½1 − ikðη − τÞ�

�
log

�
iH2ðη − τÞ

2k

�
− iπsignðη − η00Þ

− γE þ E1½2ikðη − τÞ�
��

1 − ikτ
τ4

; ðE2Þ

ĨR2
ðη; η00; kÞ≡ 1

k3

Z
η00

η
dτ

�
2þ ½1þ ikðη − τÞ�

�
log

�
−i

H2ðη − τÞ
2k

�
þ iπsignðη − η00Þ

− γE þ E1½−2ikðη − τÞ�
��

e2ikτ
1 − ikτ

τ4
: ðE3Þ

We were able to drop the absolute value signs in the above expressions since the function that effectively appears has no
branch cut as one might expect naively due to the logarithm and the exponential integral. The branch cut is exactly canceled
and we are dealing with the entire function EinðzÞ, the complementary exponential integral,

EinðzÞ ¼
Z

z

0

1 − e−t

t
dt ¼

X∞
n¼1

ð−1Þn−1zn
n!n

¼ E1ðzÞ þ logðzÞ þ γE; ðE4Þ

converging for all finite values of jzj. We define

J ðη; η00; kÞ≡
Z

1

0

dxE1½−2ikðxðη − η00Þ þ η00Þ� 1 − e−2ikðη−η00Þðx−1Þ

x − 1
; ðE5Þ

and have the following result:

IR̃ðη;η00; kÞ ¼ Im½ð1þ ikη00Þe−ikη00
�
eikη

�
−

4

3k3η3
þ 4i
3k2η2

−
4

3kη
þ 2

3k3ðη00Þ3 −
2i

3k2ðη00Þ2 þ
2

3kη00

þ
�
i
3
þ 1

3k3ðη00Þ3 −
ikη

3k3ðη00Þ3 −
kη

2k2ðη00Þ2 þ
1

kη00

��
E1½2ikðη− η00Þ� þ log

�
iH2ðη− η00Þ

2k

�
− γE − iπsignðη− η00Þ

�

−
�

2

3k3η3
−

2i
3k2η2

þ 1

kη
þ 2i

3

��
log

�
H2

4k2

�
− 2γE

�
þ i
3
log

�
η

η00

��

þ e−ikη
�
E1½−2ikη00�

�
iþ 2

3
ði− kηÞ

�
E1½−2ikðη− η00Þ� þ log

�
H2ðη− η00Þ

2ik

�
þ iπsignðη− η00Þ− γE

��

−E1ð−2ikηÞ
�
iþ 2

3
½i− kη�

�
log

�
H2

4k2

�
þ iπsignðη− η00Þ− 2γE

���

− e−ikηþ2ikη00
�

2

3k3ðη00Þ3 −
2i

3k2ðη00Þ2 þ
2

3kη00

þ
�

1

3k3ðη00Þ3 þ
ikη

3k3ðη00Þ3 −
2i

3k2ðη00Þ2 þ
kη

6k2ðη00Þ2 þ
1

3kη00
þ ikη
3kη00

�

×

�
E1½−2ikðη− η00Þ� þ log

�
H2ðη− η00Þ

2ik

�
þ iπsignðη− η00Þ− γE

��

þ 2

3
ið1þ ikηÞe−ikηJ ðη;η00; kÞ

	�
: ðE6Þ
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On super-Hubble scales this simplifies to

IR̃ðη; η00; kÞ → −
4

3

�
log

�
η

η00

�
−
1

3
þ 1

3

ðη00Þ3
η3

��
γE − 1 − log

�
H
2k

��
: ðE7Þ

The next integral we calculate is

IR̂ðη; η00; kÞ ¼ −λ−1H−2
Z

η

η00
dτðτHÞ−4½ReM̂ðη; τ; kÞ�Δc

ϕ;BDðτ; η00; kÞ

¼ −λ−1H−2 ð2πÞ3H2h2

2k6ð4πÞ5 Im

�
ð1þ ikη00Þe−ikη00

Z
η00

η
dττ−4½½1þ ikðη − τÞ�eikðτ−ηÞ

þ ½1 − ikðη − τÞ�e−ikðτ−ηÞ�½ð1 − ikτÞeikτÞ�
	

¼ −Im
�
ð1þ ikη00Þe−ikη00

�
−
2

3
ðkη − iÞe−ikηE1½−2ikη�

× eikη
�
i
3
þ 2

3k3η3
−

2i
3k2η2

þ 1

kη
−

1

3k3ðη00Þ3 þ
ikη

3k3ðη00Þ3 þ
kη

2k2ðη00Þ2 −
1

kðη00Þ
�

þ e2ikη
00−ikη

�
−

1

3k3ðη00Þ3 −
ikη

3k3ðη00Þ3 þ
2i

3k2ðη00Þ2 −
kη

6k2ðη00Þ2 −
1

3kη00
−

ikη
3kη00

�

þ 2

3
ðkη − iÞe−ikηE1½−2ikη00�

	�
; ðE8Þ

where we again made use of the fact that the absolute value sign does not matter for the real part of M̂. On super-Hubble
scales we have here

IR̂ðη; η00; kÞ → −
2

3

�
log

�
η

η00

�
−
1

3
þ 1

3

ðη00Þ3
η3

�
: ðE9Þ

We also have to calculate

R̂logðη; η00; kÞ ¼ −λ−1H−2
Z

η

η00
dτðτHÞ−4

�
ReM̂ðη; τ; kÞ log

�
ητH4

4μ2

��
Δc

ϕ;BDðτ; η00; kÞ

¼ λ−1H−2 log

�
−ηH4

4μ2

�
R̂ðη; η00; kÞ − λ−1H−2 ð2πÞ3H2h2

2k6ð4πÞ5 Im
∂
∂ν

×

�
ð1þ ikη00Þe−ikη00

Z
η00

η
dτð−τÞ−4þν½½1þ ikðη − τÞ�eikðτ−ηÞ þ ½1þ ikðτ − ηÞ�eikðη−τÞ�½ð1 − ikτÞeikτÞ�

	
ν¼0

¼ −Im
�
ð1þ ikη00Þe−ikη00

��
−
14i
9

þ 5kη
9

−
2

3
½i − kη� log

�
ητH4

4μ2

��
e−ikηE1½−2ikτ�

þ
�
−

1

9k3τ3
þ ikη
9k3τ3

þ kη
4k2τ2

−
1

kτ
þ
�
−

1

3k3τ3
þ ikη
3k3τ3

þ kη
2k2τ2

−
1

kτ

�
log

�
ητH4

4μ2

��
eikη

þ
�
−

1

9k3τ3
−

ikη
9k3τ3

þ 2i
9k2τ2

þ kη
36k2τ2

−
7

9kτ
−
5ikη
18kτ

þ
�
−

1

3k3τ3
−

ikη
3k3τ3

þ 2i
3k2τ2

−
kη

6k2τ2
−

1

3kτ
−
ikη
3kτ

�
log

�
ητH4

4μ2

��
eikð2τ−ηÞ

þ
�
π

3
ð−14 − 5ikηÞ − π2

6
ði − kηÞ − 2γEði − kηÞ log½−2ikτ� − γ2Eði − kηÞ

þ 4kτð1þ ikηÞ3F3

�
1; 1; 1

2; 2; 2
; 2ikτ

�
− ði − kηÞ log½−2ikτ�2

�
e−ikη

3

�
τ¼η00

τ¼η

	
; ðE10Þ
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where 3F3½12 1
2

1
2
; 2ikτ� is a generalized hypergeometric function. On super-Hubble scales we get

IRlog
ðη; η00; kÞ → 2

3
logð−2kηÞ logð−2kη00Þ − log2ð−2kηÞ þ 1

3
log2ð−2kη00Þ

−
4

9
logð−2kηÞ ðη

00Þ3
η3

þ 2

9
logð4k2ηη00Þ − 4

3
log

�
η

η00

�
log

�
H2

4kμ

�

þ 4

9

�
1 −

ðη00Þ3
η3

�
log

�
H2

4kμ

�
þ 2

27

�
1 −

ðη00Þ3
η3

�
: ðE11Þ

APPENDIX F: IM INTEGRALS

In this appendix we will calculate the integrals (127), (128), and (129). Let us start by calculating the following integral:

IM̃I
ðη; kÞ ¼

Z
∞

0

dx
1 − iðkη − xÞ
ðkη − xÞ4

�
2þ ð1þ ixÞ

�
log

�
H2x
2k2

�
þ i

π

2
− γE

��
e−2ix

¼ 1

6k3

�
2þ ð1þ ikηÞ

�
log

�
H2

2k2

�
þ i

π

2
− γE

��
∂3
η

Z
∞

0

dx
e−2ix

x − kη

þ i
2k2

�
2þ ð2þ ikηÞ

�
log

�
H2

2k2

�
þ i

π

2
− γE

��
∂2
η

Z
∞

0

dx
e−2ix

x − kη

−
1

k

�
log

�
H2

2k2

�
þ i

π

2
− γE

�
∂η

Z
∞

0

dx
e−2ix

x − kη
þ 1

6k3
½1þ ikη�∂3

η

Z
∞

0

dx
log½x�e−2ix
x − kη

−
1

2k2
½kη − 2i�∂2

η

Z
∞

0

dx
log½x�e−2ix
x − kη

−
∂η

k

Z
∞

0

dx
log½x�e−2ix
x − kη

: ðF1Þ

In order to proceed, we will make use of the following identities:

Z
∞

0

dx
e−2ix

x − kη
¼ e−2ikηE1½−2ikη�; ðF2Þ

∂η

k
½e−2ikηE1½−2ikη�� ¼ −2ie−2ikηE1½−2ikη� −

1

kη
; ðF3Þ

∂2
η

k2
½e−2ikηE1½−2ikη�� ¼ −4ie−2ikηE1½−2ikη� þ

1þ 2ikη
k2η2

; ðF4Þ

∂3
η

k3
½e−2ikηE1½−2ikη�� ¼ 8ie−2ikηE1½−2ikη� −

2þ 2ikη − 4k2η2

k3η3
; ðF5Þ

Z
∞

0

dx
log½x�e−2ix
x − kη

¼ −∂ν

Z
∞

0

dx
e−2ix

xνðx − kηÞ





ν¼0

¼ −∂ν

�
Γð1 − νÞ
ð−kηÞν e−2ikηΓ½ν;−2ikη�

�
ν¼0

¼ −e−2ikη
�
γE þ i

π

2
þ logð2Þ

�
E1½−2ikη�

− e−2ikη
1

2

�
γ2E þ π2

6
þ 4ikη3F3

�
1; 1; 1

2; 2; 2
; 2ikη

�
þ 2γE log½−2ikη� þ log2½−2ikη�

�
; ðF6Þ

and

d
dx

�
x3F3

�
1 1 1

2 2 2
; x

��
¼ −

γE þ logð−xÞ þ E1ð−xÞ
x

: ðF7Þ
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Plugging these expressions into (F1), we find

IM̃I
ðη; kÞ ¼

�
1

3k3η3
þ i
3k2η2

þ 1

2kη
þ 2i

3

�
2γE − 2 − log

�
H2

4k2

��
þ 2

3
kη

�
log

�
H2

4k2

�
− 2γE

��
e−2ikηE1½−2ikη�

þ 4γE − 1 − 2 log½H2

4k2�
6k3η3

þ i
3 − 4γE þ 2 log½H2

4k2�
6k2η2

þ 6γE − 5 − 3 log½H2

4k2�
6kη

þ i
3

�
2γE − log

�
H2

4k2

��

þ 1

3
ði − kηÞe−2ikη

�
γ2E þ π2

6
þ 4ikη3F3

�
1; 1; 1

2; 2; 2
; 2ikη

�
þ 2γE log½−2ikη� þ log2½−2ikη�

�
: ðF8Þ

The next integral we calculate is

IM̃II
ðη; kÞ ¼

Z
∞

0

dx
ðkη − xÞ4 ð1 − ixÞE1½i2x�½1 − iðkη − xÞ�

¼ −
1

2k3η3
þ i
6k2η2

þ 1

6kη
−
1

3

�
1

k3η3
þ i
k2η2

þ 3

2kη
− i

�
e−2ikηE1½−2ikη�; ðF9Þ

where we used the indefinite integrals

Z
dx
x2

E1½axþ b� ¼ 1

b

�
ae−bE1½ax� −

1

x
ðaxþ bÞE1½axþ b�

�
; ðF10Þ

Z
dx
x3

E1½axþ b� ¼ ae−ax−b

2bx
−
a2ð1þ bÞe−bE1½ax�

2b2
þ
�
a2

2b2
−

1

2x2

�
E1½axþ b�; ðF11Þ

Z
dx
x4

E1½axþ b� ¼ 1

3

a3

b3
e−ax−b

�
−

b
ax

þ 1

2
ð1 − axÞ b2

a2x2

�

þ 1

3

a3

b3

�
1þ bþ b2

2

�
e−bE1½ax� −

1

3

�
1

x3
þ a3

b3

�
E1½axþ b�: ðF12Þ

Adding up the last two major integrals we find the integral (127),

IM̃ðη; kÞ ¼ −
eikη

2λH4

Z
∞

0

dx

�
M̃þþ

I

�
x
k
; k

�
þ M̃þþ

II

�
x
k
; k

���
1

ðkη − xÞ4 −
i

ðkη − xÞ3
�
e−ix

¼ eikη½IM̃I
þ IM̃II

�ðη; kÞ

¼ 2

3

�
i

�
2γE −

3

2
− log

�
H2

4k2

��
þ kη

�
log

�
H2

4k2

�
− 2γE

��
e−ikηE1½−2ikη�

þ 1

3
e−ikη

�
2γE − 2 − log½H2

4k2�
k3η3

þ i
2 − 2γE þ log½H2

4k2�
k2η2

þ 6γE − 4 − 3 log½H2

4k2�
2kη

þ i

�
2γE − log

�
H2

4k2

���

þ 1

3
ði − kηÞe−ikη

�
γ2E þ π2

6
þ 4ikη3F3

�
1; 1; 1

2; 2; 2
; 2ikη

�
þ 2γE log½−2ikη� þ log2½−2ikη�

�
: ðF13Þ

The next integral we calculate is (128) and we have
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IM̂ðη; kÞ ¼ −
eikη

2λH4

Z
∞

0

dxM̂þþ
�
x
k
; k

�
1 − iðkη − xÞ
ðkη − xÞ4 e−ix ¼ −eikη

Z
∞

0

dx
1 − iðkη − xÞ
ðkη − xÞ4 ð1þ ixÞe−2ix

¼ −
eikη

6k3
½1þ ikη�∂3

η

Z
∞

0

dx
e−2ix

x − kη
− eikη

i
2k2

½2þ ikη�∂2
η

Z
∞

0

dx
e−2ix

x − kη
þ eikη

1

k
∂η

Z
∞

0

dx
e−2ix

x − kη

¼ −
eikη

6k3
½1þ ikη�∂3

ηðe−2ikηE1½−2ikη�Þ − eikη
i

2k2
½2þ ikη�∂2

ηðe−2ikηE1½−2ikη�Þ þ eikη
1

k
∂ηðe−2ikηE1½−2ikη�Þ

¼ eikη
�

1

3k3η3
−

i
3k2η2

þ 1

2kη
−
i
3

�
þ 2

3
ði − kηÞe−ikηE1½−2ikη�: ðF14Þ

The last integral we calculate in this appendix is (129), where we use similar techniques as above:

IMlog
ðη; kÞ ¼ −

eikη

2λH4

Z
∞

0

dx log

�
ηðkη − xÞH4

4kμ2

�
M̂þþ

�
x
k
; k

�
1 − iðkη − xÞ
ðkη − xÞ4 e−ix

¼ eikη
��

1

3k3η3
−

i
3k2η2

þ 1

2kη
þ i
3
þ 2

3
ði − kηÞe−2ikηE1½−2ikη�

�
log

�
H4η2

4μ2

�

þ 1

9k3η3
− i

1

9k2η2
þ 3

4kη
þ i

5

18
þ e−2ikη

9
ð14i − 5kηÞE1½−2ikη�

þ e−2ikη

3
ði − kηÞ

�
γ2E þ π2

6
þ 4ikη3F3

�
1; 1; 1

2; 2; 2
; 2ikη

�
þ 2γE log½−2ikη� þ log2½−2ikη�

�	
: ðF15Þ

We are also interested in the super-Hubble limit of the integrals that we calculated in this appendix. However, let us multiply
them with ð1þ ikη00Þe−ikη00 before, since these are the expressions that enter the calculation via (123). Thus, on super-
Hubble scales we have

Im½ð1þ ikη00Þe−ikη00IM̃ðη; kÞ� → −
1

3
log2ð−2kηÞ þ

�
2

3
γE − 1 −

2

3
log

�
H2

4k2

��
logð−2kηÞ þ 2

9

ðη00Þ3
η3

�
γE − 1 − log

�
H
2k

��

þ 8

9
−
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9
γE þ γ2E þ π2

36
þ 1

9
ð17 − 12γEÞ log

�
H
2k

�
; ðF16Þ

Im½ð1þ ikη00Þe−ikη00IM̂ðη; kÞ� →
2

3
logð−2kηÞ þ 1

18

�
12γE − 17þ 2

ðη00Þ3
η3

�
; ðF17Þ

Im½ð1þ ikη00Þe−ikη00IMlog
ðη; kÞ� → log2ð−2kηÞ þ 1
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logð−2kηÞ

�
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�
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−
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−
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1
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−
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