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We develop a model of Bose-Einstein condensate dark matter halos with a solitonic core and an
isothermal atmosphere based on a generalized Gross-Pitaevskii equation [P. H. Chavanis, Eur. Phys. J. Plus
132, 248 (2017)]. This equation provides a heuristic coarse-grained parametrization of the ordinary Gross-
Pitaevskii equation accounting for violent relaxation and gravitational cooling. It involves a cubic
nonlinearity taking into account the self-interaction of the bosons, a logarithmic nonlinearity associated
with an effective temperature, and a source of dissipation. It leads to superfluid dark matter halos with a
core-halo structure. The quantum potential or the self-interaction of the bosons generates a solitonic core
that solves the cusp problem of the cold dark matter model. The logarithmic nonlinearity generates an
isothermal atmosphere accounting for the flat rotation curves of the galaxies. The dissipation ensures that
the system relaxes towards an equilibrium configuration. In the Thomas-Fermi approximation, a dark
matter halo is equivalent to a barotropic gas with an equation of state P ¼ 2πasℏ2ρ2=m3 þ ρkBT=m, where
as is the scattering length of the bosons and m is their individual mass. We numerically solve the equation
of hydrostatic equilibrium and determine the density profiles and rotation curves of dark matter halos. We
impose that the surface density of the halos has the universal value Σ0 ¼ ρ0rh ¼ 141 M⊙=pc2 obtained
from the observations. For a boson with ratio as=m3 ¼ 3.28 × 103 fm=ðeV=c2Þ3, we find a minimum halo
mass ðMhÞmin ¼ 1.86 × 108 M⊙ and a minimum halo radius ðrhÞmin ¼ 788 pc. This ultracompact halo
corresponds to a pure soliton which is the ground state of the Gross-Pitaevskii-Poisson equation. For
ðMhÞmin < Mh < ðMhÞ� ¼ 3.30 × 109 M⊙ the soliton is surrounded by a tenuous isothermal atmosphere.
For Mh > ðMhÞ� we find two branches of solutions corresponding to (i) purely isothermal halos without
soliton and (ii) isothermal halos harboring a central soliton. The purely isothermal halos (gaseous phase)
are stable. For Mh > ðMhÞc ¼ 6.86 × 1010 M⊙, they are indistinguishable from the observational Burkert
profile. For ðMhÞ� < Mh < ðMhÞc, the deviation from the isothermal law (most probable state) may be
explained by incomplete violent relaxation, tidal effects, or stochastic forcing. The isothermal halos
harboring a central soliton (core-halo phase) are canonically unstable (having a negative specific heat) but
they are microcanonically stable so they are long-lived. By extremizing the free energy with respect to the
core mass, we find that the core mass scales as Mc=ðMhÞmin ¼ 0.626ðMh=ðMhÞminÞ1=2 lnðMh=ðMhÞminÞ.
For a halo of mass Mh ¼ 1012 M⊙, similar to the mass of the dark matter halo that surrounds our Galaxy,
the solitonic core has a mass Mc ¼ 6.39 × 1010 M⊙ and a radius Rc ¼ 1 kpc. The solitonic core cannot
mimic by itself a supermassive black hole at the center of the Galaxy but it may represent a large bulge
which is either present now or may have, in the past, triggered the collapse of the surrounding gas, leading
to a supermassive black hole and a quasar. On the other hand, we argue that large halos with a mass
Mh > 1012 M⊙ may undergo a gravothermal catastrophe leading ultimately to the formation of a
supermassive black hole (for smaller halos, the gravothermal catastrophe is inhibited by quantum effects).
We relate the bifurcation point and the point above which supermassive black holes may form to the
canonical and microcanonical critical points ðMhÞCCP ¼ 3.27 × 109 M⊙ and ðMhÞMCP ∼ 2 × 1012 M⊙ of
the “thermal” self-gravitating bosonic gas. Our model has no free parameter so it is completely predictive.
Extension of this model to noninteracting bosons and fermions will be presented in forthcoming papers.
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I. INTRODUCTION

The nature of dark matter (DM) is still unknown and
remains one of the greatest mysteries of modern cosmol-
ogy. In the standard cold dark matter (CDM) model, DM is*chavanis@irsamc.ups-tlse.fr
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assumed to be made of weakly interacting massive
particles (WIMPs) with a mass in the GeV to TeV
range. They may correspond to supersymmetric (SUSY)
particles [1]. These particles freeze out from thermal
equilibrium in the early Universe and, as a consequence
of this decoupling, cool off rapidly as the Universe
expands. As a result, DM can be represented by a
pressureless gas at zero thermodynamical temperature
(T th ¼ 0) described by the Euler-Poisson equations or as
a collisionless system of particles described by the
Vlasov-Poisson equations [2]. The CDM model works
remarkably well at large (cosmological) scales and is
consistent with ever improving measurements of the
cosmic microwave background from WMAP and
Planck missions [3,4]. However, it encounters serious
problems at small (galactic) scales. In particular, classical
collisionless N-body simulations suggest that DM halos
should be cuspy [5], with a density diverging as r−1 for
r → 0, while observations tend to favor a flat core
density [6]. On the other hand, the CDM model predicts
an overabundance of small-scale structures (subhalos/
satellites), much more than what is observed around
the Milky Way [7]. These problems are referred to as the
“cusp problem” and “missing satellite problem.” The
expression “small-scale crisis of CDM” has been coined.
The small-scale problems of the CDM model are some-

how related to the assumption that DM is pressureless.
In order to remedy this difficulty, some authors have
proposed to take into account the quantum nature of the
DM particle.1

If the DM particle is a fermion, like a massive
neutrino, as originally suggested in [11–13], gravita-
tional collapse is prevented by the Pauli exclusion
principle. Fermionic DM halos are described by the
Fermi-Dirac distribution [14–44]. They generically have
a core-halo structure consisting in a completely degen-
erate core (fermion ball) with a polytropic equation of
state P ¼ ð1=20Þð3=πÞ2=3h2ρ5=3=m8=3 and an isothermal
atmosphere with an equation of state P ¼ ρkBT=m. The
core is stabilized by quantum mechanics and solves the
cusp problem of the CDM model.2 On the other hand,
the density decreases as r−2 in the isothermal halo,
yielding flat rotation curves in agreement with the
observations [45]. This core-halo structure has been
studied in detail in [14–44]. The mass of the fermions

must be of the order of m ¼ 170 eV=c2 (see
Appendix D of [46]) to account for the size of ultra-
compact DM halos like Fornax (R ∼ 1 kpc and
M ∼ 108 M⊙) interpreted as the ground state (T ¼ 0)
of the self-gravitating Fermi gas.
In this paper, we shall assume that the DM particle is a

boson, like an ultralight axion (ULA) [47]. At very low
temperatures, bosons form self-gravitating Bose-Einstein
condensates (BECs). In that case, DM halos can be
viewed as gigantic bosonic atoms at T th ¼ 0 where the
bosonic particles are condensed in a single macroscopic
quantum state. They are described by a scalar field (SF)
that can be interpreted as the wave function ψðr; tÞ of the
condensate. The bosons may be noninteracting or self-
interacting. The wave properties of the SF are negligible
at large (cosmological) scales where the SF behaves as
CDM, but they become relevant at small (galactic) scales
and can prevent gravitational collapse. However, for
quantum mechanics to manifest itself at the scale of
DM halos, the mass of the DM particle must be extremely
small, of the order of m ¼ 2.92 × 10−22 eV=c2 (see
Appendix D of [46]). These ultralight particles are not
excluded by particle physics. This model is referred to as
wave DM, fuzzy DM (FDM), BECDM, ψDM, SFDM
[46–129] (see the introduction of [78] for a short history
of this model). In this model, gravitational collapse is
prevented by the quantum pressure arising from the
Heisenberg uncertainty principle or from the scattering
of the bosons. This leads to DM halos presenting a central
core instead of a cusp. Since the quantum Jeans scale is
finite [78], this suppresses the formation of small-scale
structures even at T th ¼ 0. Therefore, quantum mechanics
may be a way to solve the small-scale problems of the
CDM model such as the cusp problem and the missing
satellite problem. The viability of this model has been
recently demonstrated by the high resolution simulations
of Schive et al. [96,97] and the comprehensive paper of
Hui et al. [122].
At the scale of DM halos, Newtonian gravity can be

used so the evolution of the wave function of the BEC
is governed by the Gross-Pitaevskii-Poisson (GPP) equa-
tions [78]:

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ ; ð1Þ

ΔΦ ¼ 4πGjψ j2; ð2Þ

where Φ is the gravitational potential, m is the mass of the
bosons, and as is their scattering length. The interaction
between the bosons is repulsive when as > 0 and attractive
when as < 0. The mass density of a BECDM halo is
ρ ¼ jψ j2. Its total mass is M ¼ R

ρdr.
A serious DM particle candidate is the QCD axion

[130] which has been proposed as a solution of the

1Other possibilities to solve the CDM crisis invoke (i) self-
interacting CDM with a large scattering cross section but
negligible annihilation or dissipation [8], (ii) warm dark matter
(WDM) where the dispersion of the particles is responsible for a
pressure force that can halt gravitational collapse and prevent the
formation of cusps [9], (iii) the feedback of baryons that can
transform cusps into cores [10].

2In the case of large DM halos, quantum mechanics may be
negligible and the core may be stabilized by thermal effects (see
Appendix A).
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charge parity problem of quantum chromodynamics
(QCD) [131]. The QCD axion is a spin-0 boson with
a mass m ¼ 10−4 eV=c2 and an attractive self-interaction
as ¼ −5.8 × 10−53 m. Since the self-interaction is attrac-
tive, self-gravitating axions can form stable clusters only
below a maximum mass Mmax ¼ 1.012ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
and

above a minimum radius R99 ≥ 5.5ðjasjℏ2=Gm3Þ1=2 evi-
denced in Refs. [78,79]. The equilibrium states result
from the balance between the repulsive pressure arising
from the Heisenberg uncertainty principle, the attractive
self-interaction of the bosons, and the gravitational
attraction. For QCD axions the maximum mass of axion
stars is very small, of the order of Mmax ¼ 6.5 ×
10−14 M⊙ (corresponding to a radius R99 ¼ 3.3×
10−4 R⊙ ¼ 230 km) [119]. Obviously, QCD axions can-
not form DM halos (i.e., DM halos are not self-
gravitating BECs of QCD axions). QCD axions may
form mini axion stars of the asteroid size (axteroids).
These mini axion stars could be the constituents of DM
halos in the form of mini-MACHOS. However, since they
behave essentially as CDM, they cannot solve the CDM
small-scale crisis.
Other kinds of axions may exist with a much smaller

mass [47]. These ULAs could form DM halos similar
to gigantic boson stars (see Appendix D of [46]). If the
axions have a mass m ¼ 2.19 × 10−22 eV=c2 and an
attractive self-interaction as¼−1.11×10−62 fm, the
maximum mass Mmax and the minimum radius R99 of
axionic clusters become comparable to the size of
ultracompact DM halos like Fornax (R ∼ 1 kpc and
M ∼ 108 M⊙). If the axions are noninteracting they
must have a mass of the order of m ¼ 2.92 ×
10−22 eV=c2 to account for the size of ultracompact
DM halos. In that case, the equilibrium state results
from the balance between the repulsive pressure arising
from the Heisenberg principle and the gravitational
attraction. Finally, if the axions have a repulsive self-
interaction as > 0, they can account for the size of
ultracompact DM halos with a larger mass m because, in
the Thomas-Fermi (TF) limit, only the ratio as=m3 ¼
3.28 × 103 fm=ðeV=c2Þ3 is constrained. In that case, the
equilibrium state results from the balance between the
repulsive pressure arising from the self-interaction of
the bosons and the gravitational attraction. Cosmological
considerations suggest that the bosonic DM particle has
a repulsive self-interaction [46,98]. A repulsive self-
interaction may also solve some tensions encountered in
the noninteracting model (see the Remark at the end of
Appendix D. 4 of [46]).
Although the GPP equations are simple to write down,

they actually have a very complicated dynamics. A self-
gravitating BEC at T th ¼ 0 that is not initially in a steady
state undergoes gravitational collapse (Jeans instability or

free fall), displays damped oscillations, and finally settles
down on a quasistationary state (virialization) by radiat-
ing part of the scalar field [132–134]. This is the process
of gravitational cooling initially introduced by Seidel and
Suen [132] in the context of boson stars. As a result of
gravitational cooling, the system reaches an equilibrium
configuration with a core-halo structure. The condensed
core (soliton/BEC) is stabilized by quantum mechanics
and has a smooth density profile. This is a stable
stationary solution of the GPP equations at T th ¼ 0
(ground state). Gravitational collapse is prevented by
the quantum potential arising from the Heisenberg
principle or by the pressure P ¼ 2πasℏ2ρ2=m3 arising
from the self-interaction of the bosons. This solitonic
core (ground state) is surrounded by a halo of scalar
radiation corresponding to the quantum interferences of
excited states. As shown by Schive et al. [96,97], these
interferences produce time-dependent small-scale density
granules (of the size of the solitonic core) that counter
self-gravity and create an effective thermal pressure.
These noninteracting excited states are analogous to
collisionless particles in classical mechanics. As a result,
the halo behaves essentially as CDM and is approx-
imately isothermal with an equation of state P ¼ ρkBT=m
involving an effective temperature T (not to be confused
with the thermodynamic temperature T th which is equal
to zero). The solitonic core solves the cusp problem of
the CDM model (see also footnote 2) and the isothermal
halo where the density decreases as r−2 yields flat
rotation curves in agreement with the observations.3

This core-halo structure (and the presence of granules)
has been clearly evidenced in the numerical simulations
of Schive et al. [96,97].
Gravitational cooling is a dissipationless relaxation

mechanism similar in some respect to the concept of
violent relaxation introduced by Lynden-Bell [136] in
the context of collisionless self-gravitating systems des-
cribed by the Vlasov-Poisson equations. A collisionless
self-gravitating system that is not initially in a dynami-
cally stable steady state undergoes gravitational collapse
(Jeans instability or free fall), displays damped oscilla-
tions, and finally settles down on a quasistationary state
(virialization) by sending some of the particles at large
distances. This process is related to phase mixing and
nonlinear Landau damping. Lynden-Bell [136] developed

3The halo cannot be exactly isothermal otherwise it would
have an infinite mass [135]. In reality, the density in the
halo decreases as r−3, similarly to the Navarro-Frenk-White
(NFW) [5] and Burkert [6] profiles, instead of r−2 corre-
sponding to the isothermal sphere [135]. This extra confine-
ment may be due to incomplete relaxation, tidal effects, and
stochastic perturbations (see Sec. VI F and Appendix B for a
more detailed discussion).
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a statistical mechanics of this process and obtained, at the
coarse-grained scale, an equilibrium distribution similar
to the Fermi-Dirac distribution.4 The Lynden-Bell dis-
tribution function takes into account a sort of exclusion
principle implied by the Vlasov equation, similar to the
Pauli exclusion principle for fermions, but of a non-
quantum origin. In Lynden-Bell’s theory, the quasista-
tionary state has a core-halo structure with a completely
degenerate core (effective fermion ball) and an isothermal
atmosphere with an effective temperature, like in the
fermionic model. The equation of state in the core is
P ¼ ð1=5Þ½3=ð4πη0Þ�2=3ρ5=3 and the equation of state in
the halo is P ¼ ρTLB=η0. In the analogy between the
gravitational cooling of self-gravitating BECs and the
violent relaxation of collisionless self-gravitating systems,
the bosonic core (BEC/soliton) corresponds to the fer-
mion ball and the halo made of scalar radiation corre-
sponds to the isothermal halo predicted by Lynden-Bell.
Actually, since a collisionless system of bosons is
described by the Vlasov-Poisson equations at large scales
(where quantum effects become negligible), it is very
likely that both processes (gravitational cooling and
violent relaxation) are at work in self-gravitating BECs
and may even correspond to the same phenomenon. As a
result, self-gravitating BECs should have a core that is
partly bosonic (soliton) and partly fermionic (in the sense
of Lynden-Bell), surrounded by an effective isothermal
halo. In conclusion, gravitational cooling and violent
relaxation explain how collisionless self-gravitating sys-
tems can rapidly thermalize and acquire a large effective
temperature T even if T th ¼ 0 fundamentally. Gravitational
cooling and violent relaxation may be at work during
hierarchical clustering, a process by which small DM halos
merge and form larger halos in a bottom-up structure
formation scenario. It is believed that DM halos acquire an
approximately isothermal profile, or more realistically a

NFW or Burkert profile (see footnote 3), as a result of
successive mergings.
In view of these remarks, it is important to obtain a

parametrization of the processes of violent relaxation and
gravitational cooling on a coarse-grained scale.
A classical collisionless stellar system is basically

described by the Vlasov-Poisson equations. However, these
equations generate a complicated dynamics associated with
the concepts of phase mixing, violent relaxation, and
nonlinear Landau damping. While the fine-grained distri-
bution function fðr; v; tÞ develops intermingled filaments
and does not relax towards a steady state, the coarse-
grained distribution function f̄ðr; v; tÞ, which averages over
these filaments, does relax towards a steady state. However,
the coarse-grained distribution function f̄ðr; v; tÞ does not
satisfy the Vlasov-Poisson equations. It satisfies a more
complex kinetic equation. We have introduced in
[137–139] a heuristic parametrization of violent relaxation
in the form of a fermionic Fokker-Planck (or Landau)
equation involving a diffusion term and a friction term. This
equation respects the Lynden-Bell exclusion principle. The
diffusion term accounts for effective thermal effects (fluc-
tuations) and the friction term accounts for collisionless
dissipation (nonlinear Landau damping). The competition
between these two terms establishes, at statistical equilib-
rium, the Lynden-Bell distribution5 in a process reminiscent
of the fluctuation-dissipation theorem.
Analogously, in [140,141] we have introduced a heu-

ristic parametrization of gravitational cooling and violent
relaxation for self-gravitating BECs described by the
GPP equations. We proposed to model these complicated
processes on a coarse-grained scale by the generalized GPP
equations [140,141]6:

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmðΦþΦextÞψ þ Kγm

γ − 1
jψ j2ðγ−1Þψ

þm
2

�
3

4πη0

�
2=3

jψ j4=3ψ þ 2kBT ln jψ jψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
�
ln

�
ψ

ψ�

���
ψ ; ð3Þ

ΔΦ ¼ 4πGjψ j2; ð4Þ

4The theory of Lynden-Bell [136] applies to collisionless
classical particles like stars as well as to collisionless quantum
particles like fermions or bosons. Actually, in the fermionic DM
model mentioned at the beginning of this Introduction, the Fermi-
Dirac distribution is justified by the theory of violent relaxation
(see the discussion in [26,39,40]), not by standard quantum
mechanics. Indeed, the relaxation time towards the true Fermi-
Dirac distribution with a temperature T th ≠ 0 is larger than the
age of the Universe by many orders of magnitude. Therefore, the
DM halos cannot thermalize by a “collisional” process and one
must rather invoke a process of violent collisionless relaxation
[136]. As a result, the temperature T appearing in the Fermi-Dirac
distribution is an effective temperature (the true thermodynamic
temperature T th is very small and can be taken equal to zero).
It can be shown that the maximum value of the distribution
function η0 appearing in the Lynden-Bell distribution is of the
same order as the bound m4=h3 set by the Pauli exclusion
principle (see footnote 34 of [40]). This makes the analogy
between the Lynden-Bell distribution and the Fermi-Dirac dis-
tribution even closer.

5When coupled to the Poisson equation, the Lynden-Bell (or
Fermi-Dirac) distribution generates a halo with an infinite mass
like the classical isothermal sphere [136]. This is because the
Lynden-Bell distribution does not take into account the escape of
high energy particles. However, it is possible to derive from the
kinetic theory a truncated Lynden-Bell distribution taking into
account the escape of high energy particles [138]. This model,
which can be viewed as a sort of fermionic King model [39,40],
has a finite mass.

6A detailed derivation of these equations will be given in a
forthcoming paper [142].
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where hXi ¼ 1
M

R
ρXdr denotes a spatial average over the

halo. The terms on the first line of Eq. (3) correspond to the
ordinary GP equation (1). For the sake of generality, we
have introduced an external potential Φext that could take
into account the presence of a central black hole7 or model
other effects of astrophysical interest. In the following, for
illustration, we shall consider the harmonic potential

Φext ¼
1

2
ω2
0r

2: ð5Þ

When ω2
0 > 0, it can mimic the tidal interactions arising

from neighboring galaxies. When ω2
0 < 0, it can mimic a

solid-body rotation of the system or the effect of dark
energy (cosmological constant). The last term on the first
line of Eq. (3) takes into account the self-interaction of the
bosons. For the sake of generality, we have considered an
arbitrary power-law nonlinearity [140,141] instead of the
cubic nonlinearity present in the ordinary GP equation
[144–147]. In the theoretical part of this paper, we shall
give results valid for arbitrary values of γ and K. They can
be useful in more general situations. However, in the
applications, we shall specifically consider the standard
BEC model corresponding to

K ¼ 2πasℏ2

m3
and γ ¼ 2: ð6Þ

The terms on the second and third lines of Eq. (3)
correspond to our heuristic parametrization of gravitational
cooling and violent relaxation. The first term on the second
line of Eq. (3) accounts for an effective fermionic core and
the second term on the second line of Eq. (3) accounts for
an isothermal halo, with an effective temperature T,
surrounding the core. This fermionic core and this iso-
thermal halo are justified by Lynden-Bell’s theory of
violent relaxation (the isothermal halo is also expected
from the process of gravitational cooling).8 These two
terms could be combined into a single nonlinearity
expressed as an enthalpic function hLBðjψ j2Þ associated
with the equation of state arising from the Lynden-Bell
(∼ Fermi-Dirac) distribution or from the fermionic King
model (see [140,141] for a general formalism). In the
present paper, we shall assume that the system is non-
degenerate in the sense of Lynden-Bell and we shall
accordingly neglect the contribution of the fermionic core.9

As a result, we just consider the contribution of the

isothermal halo and formally take η0 → þ∞. Finally, the
term on the third line of Eq. (3) is a damping term that
ensures that the system relaxes towards an equilibrium
state. This is guaranteed by an H-theorem for a generalized
free energy functional [140,141]. It is natural to have a
friction term and a temperature term in the phenomenology
of violent relaxation and gravitational cooling. This man-
ifests a sort of fluctuation-dissipation theorem.10 It can be
shown [141,142] that the hydrodynamic representation of
the generalized GPP equations (3) and (4) is consistent with
the hydrodynamic moments of the fermionic Fokker-
Planck equation introduced in [137] to parametrize the
classical process of violent relaxation. In the case of BECs,
quantum mechanics introduces additional terms which are
the quantum potential and the pressure associated with the
self-interaction of the bosons. When these terms become
negligible at large scales one recovers the hydrodynamic
equations of [137]. This consistency suggests that the
parametrization of the GPP equations provided by
Eqs. (3) and (4) is physically relevant.
This paper is organized as follows. In Sec. II we review

the main properties of the generalized GPP equations (3)
and (4) introduced in [140]. In Secs. III and IV we show
that the equilibrium states of these equations determine a
DM halo with a core-halo structure made of a solitonic core
and an isothermal atmosphere. In Sec. V we provide a
semianalytical description of this core-halo structure. We
mention the analogy with the core-halo structure of
fermionic DM halos studied in the past. In Sec. VI, we
introduce a first model of BECDM halos (model I) in which
the density profile does not present a plateau between the
core and the halo. This model describes ultracompact DM
halos that are purely solitonic (quantum ground state),
small DM halos with a solitonic core and a tenuous
isothermal atmosphere (quantum phase), and large DM
halos which are purely isothermal without a solitonic core
(gaseous phase). In Sec. VII, we introduce a second model
of BECDM halos (model II) in which the density profile
may present a plateau between the core and the halo. This
model describes large halos that are purely isothermal
without a solitonic core (gaseous phase) as in model I and
large halos with a solitonic core and a massive isothernal
atmosphere (core-halo phase). We argue that the solitonic
core may represent a bulge but that it cannot mimic a
supermassive black hole (SMBH). In Sec. VIII, we show
that the previous solutions (quantum, gaseous, core-halo)
can be recovered by studying the phase transitions of a
thermal self-gravitating boson gas in a box. We discuss the
stability of these solutions and determine the solitonic core
mass as a function of the halo mass from thermodynamical
considerations. We argue that, above a critical DM halo

7The case of an external potential ΦBH ¼ −GMBH=r created
by a central black hole is treated specifically in Ref. [143].

8The effective temperature appearing in Eq. (3) is related to the
Lynden-Bell temperature by kBT=m ¼ TLB=η0. Since the massm
of the particles does not intervene in collisionless systems, only
the ratio kBT=m makes sense in our model. In other words, the
temperature is proportional to mass [136].

9This term will be considered in a forthcoming paper [142].

10We show in Appendix C that these two terms emerge
from a unified framework related to Nottale’s theory of scale
relativity [148].
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mass, the quantum core (bulge) becomes unstable and is
replaced by a SMBH. In Sec. IX, we consider astrophysical
applications of our model. In particular, we connect the
bifurcation between the gaseous phase (with a positive
specific heat) and the core-halo phase (with a negative
specific heat) to the canonical critical point ðMhÞCCP ¼
3.27 × 109 M⊙ of the thermodynamical model and we
connect the possible formation of SMBHs at the centers
of galaxies to the microcanonical critical point ðMhÞMCP ∼
2 × 1012 M⊙.

II. PROPERTIES OF THE GENERALIZED
GPP EQUATIONS

We propose to heuristically model the process of gra-
vitational cooling and violent relaxation of self-gravitating
BECs at T th ¼ 0 by the generalized GPP equations (3) and
(4) which include a logarithmic nonlinearity and a source of
dissipation (damping). These equations provide an effective
description of the system’s dynamics on a coarse-grained
scale. In other words, they provide a coarse-grained para-
metrization of the fined-grained GPP equations (1) and (2).
In this paper we assume that the system is nondegenerate
(in the sense of Lynden-Bell) and ignore the contribution of
the effective fermionic core (η0 → þ∞).

A. Madelung transformation

In order to enlighten the physical meaning of the gen-
eralized GPP equations (3) and (4), we can write them
in the form of hydrodynamic equations by using the
Madelung [149] transformation. We write the wave
function as

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ð7Þ

where ρ ¼ jψ j2 is the density and Sðr; tÞ ¼ −iðℏ=2Þ ×
lnðψ=ψ�Þ is the action. We note that the effective temper-
ature term in the generalized GP equation (3) can be written
as kBT ln ρψ and the dissipative term as ξðS − hSiÞψ .
Following Madelung, we introduce the velocity field
u ¼ ∇S=m. Since the velocity is potential, the flow is
irrotational: ∇ × u ¼ 0. Substituting Eq. (7) into Eq. (3)
and separating the real and imaginary parts, we find that
the generalized GPP equations (3) and (4) are equivalent to
the hydrodynamic equations [140]

∂ρ
∂t þ∇ · ðρuÞ ¼ 0; ð8Þ

∂u
∂t þ ðu ·∇Þu ¼ −

1

ρ
∇P −∇Φ −∇Φext −

1

m
∇Q − ξu;

ð9Þ
ΔΦ ¼ 4πGρ; ð10Þ

where

Q ¼ −
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p ð11Þ

is the quantum potential and

P ¼ Kργ þ ρ
kBT
m

ðγ ¼ 1þ 1=nÞ ð12Þ

is the total pressure. The equation of state (12) is the sum of
a polytropic equation of state due to the power-law non-
linearity in the generalized GP equation (3) and an
isothermal (linear) equation of state due to the logarithmic
term in the generalized GP equation (3). For the standard
BEC model of Eq. (6), the polytropic equation of state
writes

P ¼ 2πasℏ2

m3
ρ2; ð13Þ

corresponding to a polytropic index γ ¼ 2 (n ¼ 1). It takes
into account the self-interaction of the bosons. In that case,
the total equation of state (12) becomes

P ¼ 2πasℏ2

m3
ρ2 þ ρ

kBT
m

: ð14Þ

On the other hand, Eq. (8) is the continuity equation,
Eq. (9) is the momentum equation, and Eq. (10) is the
Poisson equation. We note that the momentum equation
involves a damping term, proportional and opposite to the
velocity, corresponding to the last term in the generalized
GP equation (3). Using the continuity equation (8), the
momentum equation (9) can be rewritten as

∂
∂t ðρuÞ þ∇ðρu ⊗ uÞ ¼ −∇P − ρ∇Φ − ρ∇Φext

−
ρ

m
∇Q − ξρu: ð15Þ

Equations (8)–(15) form the quantum damped barotropic
Euler equations. When the quantum potential is neglected
(TF approximation), we recover the classical damped
barotropic Euler equations. These equations do not involve
viscous terms since they are equivalent to the generalized
GPP equations (3) and (4). As a result, they describe a
superfluid. For dissipationless systems (ξ ¼ 0), we recover
the quantum and classical barotropic Euler equations.

B. Connection with the equations of Brownian theory

In the overdamped limit ξ → þ∞, we can formally
neglect the inertial term in Eq. (9) so that

ξu ≃ −
1

ρ
∇P −∇Φ −∇Φext −

1

m
∇Q: ð16Þ

Substituting this relation into the continuity equation (8),
we obtain the quantum barotropic Smoluchowski equation
[150]:
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ξ
∂ρ
∂t ¼ ∇ ·

�
∇Pþ ρ∇Φþ ρ∇Φext þ

ρ

m
∇Q

�
: ð17Þ

When the quantum potential is neglected (TF approxima-
tion), we obtain the classical barotropic Smoluchowski
equation which arises in the context of nonlinear
Fokker-Planck equations and generalized thermodynamics
[151,152]. The isothermal equation of state P ¼ ρkBT=m
yields an ordinary diffusion term with a diffusion coef-
ficient given by the Einstein formula D ¼ kBT=ξm. The
polytropic equation of state P ¼ Kργ leads to anomalous
diffusion. If we neglect the advection term ∇ðρu ⊗ uÞ in
Eq. (15), but retain the term ∂ðρuÞ=∂t, and combine the
resulting equation with the continuity equation (8), we
obtain the quantum telegraph equation

∂2ρ

∂t2 þ ξ
∂ρ
∂t ¼∇ ·

�
∇Pþ ρ∇Φþ ρ∇Φext þ

ρ

m
∇Q

�
; ð18Þ

which can be seen as a generalization of the quantum
barotropic Smoluchowski equation (17) taking inertial (or
memory) effects into account. When the quantum potential
is neglected, we recover the classical telegraph equation.
It is interesting to recover the equations of Brownian

theory from the generalized GP equation (3) in the strong
friction limit ξ → þ∞. In this sense, the generalized GP
equation (3) makes the connection between quantum
mechanics (ξ ¼ 0) and Brownian theory (ξ → þ∞).
However, the analogy with Brownian theory is essentially
effective as discussed in more detail in [140,141]. The
Smoluchowski-Poisson equations describing self-gravitat-
ing Brownian particles in the strong friction limit have been
studied in [153] and subsequent papers. If the strong
friction limit is relevant,11 these equations may find a
new application (with a different interpretation) in the
context of DM halos.

C. Generalization of the CDM model

The hydrodynamic equations associated with the CDM
model correspond to Eqs. (8)–(10) with P ¼ Q ¼ ξ ¼ 0.
Therefore, the fluid equations (8)–(10) associated with the
GPP equations (3) and (4) generalize the hydrodynamic
equations of the CDMmodel in different respects. First, the
Euler equation (9) includes a quantum force FQ ¼
−ð1=mÞ∇Q that takes into account the Heisenberg uncer-
tainty principle. This force is equivalent to an anisotropic
pressure force of the form ðFQÞi ¼ −ð1=ρÞ∂jPij, where
Pij ¼ −ðℏ2=4m2Þρ∂i∂j ln ρ is the quantum pressure tensor.
The Euler equation (9) also includes an isotropic pressure
force with a polytropic equation of state P ¼ Kργ due to the
power-law nonlinearity in the generalized GP equation (3).
For the standard BEC model (6), this pressure force takes

into account the self-interaction of the bosons. These two
terms (quantum force and self-interaction) are already
present in the hydrodynamic equations associated with
the standard GPP equations (1) and (2) [78]. The hydro-
dynamic equations (8)–(10) associated with the generalized
GPP equations (3) and (4) involve, in addition, a pressure
force with an isothermal equation of state P ¼ ρkBT=m due
to the logarithmic nonlinearity present in the generalized
GP equation (3). As a result, the complete equation of state
is given by Eq. (12). Finally, the Euler equation (9) includes
a damping term −ξu. The damping term ensures that the
system relaxes towards an equilibrium state. This result is
guaranteed by the existence of an H-theorem as discussed
in the next section.

D. H-theorem

The free energy associated with the generalized GPP
equations can be written in the usual form F ¼ E0 − TSB,
where E0 is the total energy, T the effective temperature,
and SB ¼ −kB

R ðρ=mÞðln ρ − 1Þdr the Boltzmann entropy.
The total energy E0 ¼ Θc þ ΘQ þW þWext þ U is the
sum of the classical kinetic energyΘc ¼ ð1=2Þ R ρu2dr, the
quantum kinetic energy ΘQ ¼ ð1=mÞ R ρQdr, the gravita-
tional potential energy W ¼ ð1=2Þ R ρΦdr, the external
potential energyWext ¼

R
ρΦextdr ¼ ð1=2Þω2

0I (where I ¼R
ρr2dr is the moment of inertia) and the internal energy

U ¼ ½K=ðγ − 1Þ� R ργdr arising from the self-interaction
of the bosons.12 The generalized GPP equations satisfy an
H-theorem [140]:

_F ¼ −ξ
Z

ρu2dr ≤ 0: ð19Þ

When ξ ¼ 0, the generalized GPP equations (3) and (4)
conserve the free energy ( _F ¼ 0). When ξ > 0, the free
energy decreases monotonically ( _F ≤ 0). We note that
_F ¼ 0 if, and only if, u ¼ 0. Therefore, the dissipative
term ensures that the system relaxes towards an equilibrium
state for t → þ∞.13 In this sense, the generalized GPP

11Some arguments in favor of the strong friction limit are given
in [141].

12The free energy can also be written as F ¼ E� − TSB − KSγ ,
where E� ¼ Θc þ ΘQ þW þWext is the ideal energy (without
the self-interaction term), Sγ ¼ −½1=ðγ − 1Þ� R ðργ − ρÞdr is the
Tsallis entropy of index γ (the standard BEC model corresponds
to a quadratic entropy with γ ¼ 2), and K is the polytropic
temperature. We can introduce a mixed entropy combining the
Boltzmann and Tsallis entropies as discussed in [140].

13This result assumes that F is bounded from below. For
isothermal self-gravitating systems this is not the case. There is
no minimum of free energy at fixed mass because the system can
always lose free energy by evaporating. However, evaporation is
a slow process. In practice, the system relaxes towards a
quasiequilibrium state which occupies a finite region of space.
When necessary, we shall artificially confine the system within a
box, where the size of the box represents the typical size of the
system [33,154].
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equations can account, at least heuristically, for the com-
plicated processes of violent relaxation and gravitational
cooling.
Remark: The generalized GPP equations (3) and (4) are

associated with the canonical ensemble (fixed temperature
T). However, they can be extended to the microcanonical
ensemble (fixed energy E) as discussed in Appendix I
of [140].

E. Equilibrium state

Using Lyapunov’s direct method, we can deduce from
Eq. (19) that a stable equilibrium state of the generalized
GPP equations is a minimum of free energy F at fixed
mass M. Therefore, it satisfies the variational principle
δF − ðμ=mÞδM ¼ 0, where μ is a Lagrange multiplier
(chemical potential) taking into account the conservation
of mass. This gives the relation [140]

QþmΦþ 1

2
mω2

0r
2 þ kBT ln ρþ Kγm

γ − 1
ργ−1 ¼ μ ð20Þ

that coincides with a static state ψðr; tÞ ¼ ϕðrÞe−iEt=ℏ of
the generalized GPP equations (3) and (4) provided that
we make the identification between the eigenenergy and the
chemical potential: E ¼ μ [140]. Equation (20) can be
rewritten as

ρ ¼
	

kBT
jKjγmW

�jKjγm
kBT

e−
γ−1
kBT

ðmΦþQþ1
2
mω2

0
r2−μÞ

�
 1
γ−1
; ð21Þ

where WðzÞ is a (generalized) Lambert function defined
implicitly by the equation WeW ¼ z when K > 0 and
We−W ¼ z when K < 0. This equation determines the
relation between the density ρ and the gravitational
potential Φ at equilibrium.14 When K ¼ 0 (W ¼ z), we
obtain the quantum Boltzmann distribution

ρ ¼ e−
1

kBT
ðmΦþQþ1

2
mω2

0
r2−μÞ ð22Þ

associated with the isothermal equation of state. When
T¼0 (W¼ lnz), we obtain the quantum Tsallis distribution

ρ ¼
�
−
γ − 1

Kγm
ðmΦþQþ 1

2
mω2

0r
2 − μÞ

� 1
γ−1 ð23Þ

associated with the polytropic equation of state. For the
standard BEC model, corresponding to γ ¼ 2, the relation-
ship between ρ and Φ is linear (in the TF approximation).
Combining Eq. (21) with the Poisson equation (10), we
obtain a differential equation that determines Φ and ρ.

When K ¼ 0, it reduces to the quantum Boltzmann-
Poisson equation and when T ¼ 0 it reduces to the
quantum Tsallis-Poisson equation.

F. Virial theorem

In order to understand qualitatively how the system
relaxes towards equilibrium, it may be useful to consider
the virial theorem. From the damped quantum barotropic
Euler-Poisson equations (8)–(15), we can derive the time-
dependent scalar virial theorem [140]:

1

2
̈I þ 1

2
ξ_I þ ω2

0I ¼ 2ðΘc þ ΘQÞ þ 3

Z
PdrþW: ð24Þ

This equation, together with the H-theorem (19), shows
that the system generically converges towards an equilib-
rium state (or a quasiequilibrium state) by exhibiting
damped oscillations. These damped oscillations are con-
sistent with the phenomenology of gravitational cooling
[132–134] and violent relaxation [136].

G. Gaussian ansatz

In order to determine accurately the dynamical evolution
of a self-gravitating BEC, one must solve the (generalized)
GPP equations (3) and (4) numerically. However, an
approximate analytical solution can be obtained by making
a Gaussian ansatz for the wave function. From the virial
theorem, we can obtain a simple differential equation
governing the temporal evolution of the typical radius
RðtÞ of the BEC. It is given by [140]

αM
d2R
dt2

þ ξαM
dR
dt

þ αω2
0MR ¼ 2σ

ℏ2M
m2R3

þ 3
MkBT
mR

þ 3ζ
KMγ

R3ðγ−1Þþ1
− ν

GM2

R2
:

ð25Þ
The coefficients are α ¼ 3=2, σ ¼ 3=4, ζ ¼ π−3ðγ−1Þ=2γ−3=2

and ν ¼ 1=
ffiffiffiffiffiffi
2π

p
. At equilibrium ( _R ¼ R̈ ¼ 0), this equation

determines an approximate expression of the mass-radius
relation of the self-gravitating BEC. In many cases, this
approximate mass-radius relation gives a good agreement
with the exact mass-radius relation obtained by solving the
GPP equations numerically [78,79]. On the other hand, as
illustrated in Fig. 1, the dynamical equation (25) confirms
that the system generically relaxes towards the equilibrium
state by undergoing damped oscillations.15

14We note that Eq. (21) is a complicated differential equation
because of the presence of the quantum potential that involves
derivatives of ρ. It is only in the TF approximation (Q ¼ 0) that
the relationship between ρ and Φ is explicit.

15We note that if we make the Gaussian ansatz on the usual
GPP equations (1) and (2), we miss the important processes of
gravitational cooling and violent relaxation because the resulting
differential equation for RðtÞ does not exhibit damped oscillations
(since ξ ¼ 0) [78] while the GPP equations (1) and (2) do
[132–134]. This shows the interest of our heuristic parametriza-
tion based on the generalized GPP equations (3) and (4).
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H. Complex pulsation

Close to equilibrium, the complex pulsation can be
determined approximately from the Gaussian ansatz. It is
given by [140]

ω2 ¼ 6ΘQ þ 3ðγ − 1Þð3γ − 2ÞU þ 2W þ ω2
0I þ 3NkBT

I
:

ð26Þ
Alternative expressions of the pulsation can be obtained by
using the equilibrium form of the free energy and of the
virial theorem (̈I ¼ _I ¼ Θc ¼ 0):

F ¼ ΘQ þU þW þ 1

2
ω2
0I − TSB; ð27Þ

2ΘQ þ 3

Z
PdrþW − ω2

0I ¼ 0: ð28Þ

For the equation of state (14), we have
R
Pdr ¼ ðγ − 1ÞUþ

NkBT. Particular cases are considered specifically in [140].
In the TF approximation, they agree with the approxi-
mate expression of the pulsation given by the Ledoux
formula [155].

III. CORE-HALO STRUCTURE OF THE
EQUILIBRIUM STATES

A. Fundamental equation of quantum
hydrostatic equilibrium

In order to determine the equilibrium states of a self-
gravitating BECDM halo, instead of solving the coupled
equations (10) and (21), it is more convenient to proceed as
follows. We first take the gradient of Eq. (20) and obtain the
condition of quantum hydrostatic equilibrium [140]:

ρ

m
∇Qþ∇Pþ ρ∇Φþ ρ∇Φext ¼ 0: ð29Þ

This equation also corresponds to a static state (∂tρ ¼ 0,
u ¼ 0) of the damped quantum Euler equations (8) and (9).
It describes the balance between the quantum potential
arising from the Heisenberg uncertainty principle, the
pressure due to short-range interactions (scattering), the
pressure due to the effective temperature, the gravitational
attraction, and the external potential. Combining Eq. (29)
with the Poisson equation (10), we obtain the fundamental
differential equation of quantum hydrostatic equilibrium
[140]:

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−∇ ·

�∇P
ρ

�
¼ 4πGρþ 3ω2

0: ð30Þ

For the equation of state (12), it takes the form

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−

Kγ

γ − 1
Δργ−1 −

kBT
m

Δ ln ρ

¼ 4πGρþ 3ω2
0: ð31Þ

This differential equation determines the general equilib-
rium density profile ρðrÞ of a BECDM halo in our model.
This profile generically has a core-halo structure with a
solitonic core and an isothermal halo (we assume that
γ > 1). In the following, for simplicity, we take ω0 ¼ 0 and
consider spherically symmetric distributions.

B. Solitonic core

In the core, where the density is high, the equation of
state (12) is dominated by the polytropic (self-interaction)
term and the thermal term can be neglected (T ¼ 0). The
gravitational attraction is counterbalanced by the quantum
potential and by the self-interaction of the bosons. In that
case, Eq. (31) reduces to

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−

Kγ

γ − 1
Δργ−1 ¼ 4πGρ: ð32Þ

The solution of Eq. (32) is called a soliton, being a static
state of the ordinary GPP equations (1) and (2).16 The
ground state corresponds to the density profile that has
no node.

1. Noninteracting limit

In the noninteracting limit (K ¼ 0), the gravitational
attraction is counterbalanced by the quantum potential. In
that case, Eq. (32) reduces to

0 5 10 15 20
t

0

0.5

1

1.5

2

2.5

R
(t

)
R

0

R
e

FIG. 1. Damped oscillations of the radius of the self-gravitating
BEC during its relaxation towards equilibrium (schematic evo-
lution based on the Gaussian ansatz).

16In the TF approximation (see below), we will still call the
solution of Eq. (32) a soliton although this terminology is abusive
since the effect of the quantum potential which usually gives rise
to the soliton in the absence of self-interaction is neglected.
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ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�

¼ 4πGρ: ð33Þ

This equation has been solved numerically in [50,79,96,97,
111,133,134,156] and the exact density profile has been
obtained in these papers. The result of [79] is reproduced in
Fig. 2 where the density is normalized by the central
density ρ0 and the radial distance is normalized by the halo
radius rh defined by Eq. (D3). This profile has not a
compact support, i.e., it extends to infinity. The exact mass-
radius relation is given by [50,78,79]

R99 ¼ 9.946
ℏ2

GMm2
; ð34Þ

where R99 is the radius of the configuration containing 99%
of the mass.
In [78] we have approximated the solitonic density

profile by a Gaussian:

ρ ¼ ρ0e−r
2=R2

: ð35Þ

From this distribution, we can obtain the following
results. The total mass is given by M ¼ 5.57ρ0R3. The
radius containing 99% of the mass is R99 ¼ 2.38R. The
halo radius where the central density is divided by 4 is
rh ¼ 1.18R and the core radius where the central density
is divided by 2 is rc ¼ 0.833R. We also find that
Mh=ðρ0r3hÞ ¼ 1.95, where Mh is the halo mass defined
by Eq. (D5). Using Eq. (34), we obtain rh ¼ 2.82ℏ2=
ðGm2MhÞ and ρ0 ¼ 1.45ℏ2=ðGm2r4hÞ.
On the other hand, Schive et al. [96,97] have introduced

a fit of a form

ρ ¼ ρ0
½1þ ðr=RÞ2�8 : ð36Þ

From this distribution, we can obtain the following
results. The total mass is given by M ¼ 0.318ρ0R3. The
radius containing 99% of the mass is R99 ¼ 1.151R.
The halo radius where the central density is divided
by 4 is rh ¼ 0.435R and the core radius where the central
density is divided by 2 is rc ¼ 0.301R. We also find
that Mh=ðρ0r3hÞ ¼ 1.91. Using Eq. (34), we obtain rh ¼
1.85ℏ2=ðGm2MhÞ and ρ0 ¼ 0.969ℏ2=ðGm2r4hÞ.
These fits are compared with the exact density profile

from [79] in Fig. 2. The Gaussian profile [78] works very
well up to the halo radius rh. The fit of Schive et al. [96,97]
is valid on a slightly longer distance ∼2.5rh. For compari-
son, we have plotted the Burkert profile (see Appendix D 4)
that will be considered thereafter.
Remark: We have recently found in Ref. [157] another

solution of Eq. (33) which has a compact support.

2. TF approximation

In this section, we assume that the bosons have a
repulsive self-interaction (K > 0). In the TF approximation
(Q ¼ 0), Eq. (32) reduces to

−
Kγ
γ − 1

Δργ−1 ¼ 4πGρ: ð37Þ

This equation is equivalent to the Tsallis-Poisson equation
obtained by combining Eqs. (10) and (23). It is also
equivalent to the Lane-Emden equation (D28) [158]. It
describes the balance between the gravitational attraction
and the repulsion due to the short-range interactions.
For the standard BEC model (6), the system is equivalent

to a polytrope of index n ¼ 1. In that case, Eq. (37)
becomes

Δρþ Gm3

asℏ2
ρ ¼ 0: ð38Þ

This equation has a simple analytical solution given
by [158]

ρðrÞ ¼ ρ0
sinðπr=RÞ
πr=R

; ð39Þ

where ρ0 is the central density and

R ¼ π

�
asℏ2

Gm3

�
1=2

ð40Þ

is the radius of the configuration at which the density
vanishes (the density profile has a compact support). The
radius of a polytrope n ¼ 1 is independent of its mass
[158]. The central density is related to the mass by

ρ0 ¼
πM
4R3

¼ M
4π2

�
Gm3

asℏ2

�
3=2

: ð41Þ
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FIG. 2. Normalized density profile of the soliton. It is compared
with the Gaussian profile (35) considered in [78], the profile (36)
proposed by Schive et al. [96,97], and the Burkert profile [6].
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These results have been derived by several authors in the
context of self-gravitating BECs and SFs [53,60,67,69,
78,159,160].
Using Eq. (39), we find that the accumulated mass and

circular velocity profiles defined by Eqs. (D4) and (D6) are
given by

MðrÞ ¼ 4ρ0R3

π2

�
sin

�
πr
R

�
−
πr
R
cos

�
πr
R

��
; ð42Þ

v2ðrÞ ¼ 4Gρ0R2

π

�
R
πr

sin

�
πr
R

�
− cos

�
πr
R

��
: ð43Þ

For r → 0, the velocity increases linearly with r as for a
uniform sphere with density ρ0: vðrÞ ∼ ð4πρ0G=3Þ1=2r. For
r ≥ R, we recover the Keplerian law vðrÞ ¼ ðGM=rÞ1=2.
The halo radius, the halo mass, and the circular velocity

at the halo radius are given by (see Appendix D 3)

rh
R

¼ 0.788;
Mh

ρ0r3h
¼ 2.12; ð44Þ

v2h
4πGρ0r2h

¼ 0.169: ð45Þ

The density and circular velocity profiles are plotted in
Figs. 3 and 4. For comparison, we have plotted the Burkert
profile (see Appendix D 4). We recall that the Burkert
profile is empirical. In particular, the Burkert density profile
behaves like r instead of r2 as r → 0, which is not physical
for spherically symmetic systems. This explains the dis-
agreement between the two density profiles for r ≤ rh.
In spite of this difference, the circular velocity profiles
are relatively close to each other up to the halo radius rh.
As discussed in Sec. VI F, the solitonic solution of the
BECDM model is expected to provide a better description

of ultracompact DM halos than the Burkert profile that is
more adapted to describe larger DM halos.

3. General case

In the general case, Eq. (32) has been solved numerically
in [79,134] for the standard BEC model (γ ¼ 2). It leads to
a general soliton profile taking the quantum potential and
the self-interaction into account. This profile is relatively
well approximated by a Gaussian distribution, especially
when the self-interaction is weak. The solitonic density
profile does not diverge at the origin. This may solve the
cusp problem of the CDM model. The mass-radius relation
of self-gravitating BECs at T ¼ 0 (representing the soli-
tonic core of DM halos) has been obtained analytically
(approximately) and numerically (exactly) in [78,79] for
the standard BEC model (γ ¼ 2). The case of a self-
gravitating BEC with an attractive self-interaction (as <0)
has also been considered in these papers. It is found that
stable configurations only exist below a maximum mass and
above a minimum radius given by [78,79]

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ; ð46Þ

R99 ¼ 5.5

�jasjℏ2

Gm3

�
1=2

: ð47Þ

C. Isothermal halo

In the halo, where the density is low, the equation of state
(12) is dominated by the linear (thermal) term and the self-
interaction of the bosons can be neglected (K ¼ 0). The
quantum potential can also be neglected (Q ¼ 0). In that
case, Eq. (31) reduces to

−
kBT
m

Δ ln ρ ¼ 4πGρ: ð48Þ

This equation is equivalent to the Boltzmann-Poisson
equation obtained by combining Eqs. (10) and (22). It is
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FIG. 3. Density profile of a self-gravitating BEC with a
repulsive self-interaction in the TF limit (polytrope n ¼ 1). It
is compared to the Burkert profile (dashed line).
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FIG. 4. Same as Fig. 3 for the circular velocity profile.
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also equivalent to the Emden equation (D13) [158].17 It
describes the balance between the gravitational attraction
and the thermal pressure. This equation has no simple
analytical solution and must be solved numerically.
However, its asymptotic behavior is known analytically
[158]. The density of a self-gravitating isothermal halo
decreases as ρðrÞ ∼ kBT=ð2πGmr2Þ for r → þ∞, corre-
sponding to an accumulated mass MðrÞ ∼ 2kBTr=ðGmÞ
increasing linearly with r. This leads to flat rotation curves
v2ðrÞ ¼ GMðrÞ=r → v2∞ ¼ 2kBT=m in agreement with the
observations [135].
We note that the isothermal profile has not a compact

support so that it extends up to infinity. Furthermore its total
mass is infinite [135]. This is why self-gravitating systems
have no statistical equilibrium state in an unbounded
domain (see [33,154] and footnote 13). In practice, the
isothermal equation of state is not valid at arbitrarily large
distances and the halo is confined by other effects (see
Appendix B). From Eq. (48) we can define a characteristic
radius

r0 ¼
�

kBT
4πGρ0m

�
1=2

ð49Þ

that we shall call the thermal core radius. It represents the
typical core radius of an isothermal halo of central densityρ0.
The halo mass, the temperature, and the circular velocity

at the halo radius are given by (see Appendix D 2)

rh
r0

¼ 3.63;
Mh

ρ0r3h
¼ 1.76; ð50Þ

kBT
Gmρ0r2h

¼ 0.954;
v2h

4πGρ0r2h
¼ 0.140: ð51Þ

The density and circular velocity profiles of a purely
isothermal halo are plotted in Figs. 5 and 6 (see
Appendix D 2). For comparison, we have plotted the
empirical (observational) Burkert profile [6] (see
Appendix D 4). The isothermal profile is close to the
Burkert profile up to r=rh ¼ 6. We have also plotted some
analytical profiles that have been introduced in the liter-
ature to fit the isothermal profile. The pseudo-isothermal
profile (see Appendix D 5) provides a good fit of the
isothermal profile up to r=rh ¼ 1. The modified Hubble
profile [135] (see Appendix D 6) provides a good fit of the
isothermal profile up to r=rh ¼ 3. The Natarajan and
Lynden-Bell profile [161] (see Appendix D 7) provides a
good fit of the isothermal profile for all radii.
Remark: The modified Hubble profile provides a good fit

to the isothermal profile for r=rh ≤ 3. In particular, it
provides a better fit than the pseudo-isothermal profile even
though the pseudo-isothermal profile decreases asymptoti-
cally as r−2, like the isothermal profile, while the modified
Hubble profile decreases asymptotically as r−3. The reason
is that, for r=rh ≤ 3, we are not in the asymptotic limit where
the isothermal density profile displays a logarithmic slope
−2. This remark may explain why, in certain circumstances,
we observe a density profile with an effective logarithmic
slope −3 (like for the observational Burkert profile and for
the numerical NFW profile) instead of −2 (corresponding to
the isothermal profile predicted by statistical mechanics).
Indeed, at intermediate distances r=rh ≤ 3, the isothermal
profile presents an effective logarithmic slope −3 (see
Fig. 5). In this sense, the Burkert and NFW profiles are
not in contradiction with the isothermal profile although their

0.1 1 10
r/r

h

10
-4

10
-3

10
-2

10
-1

10
0

ρ/
ρ 0

Hubble

Burkert

pseudo
isothermal

Natarajan &
Lynden-Bell

FIG. 5. Normalized isothermal density profile up to 30rh. It is
compared to the Burkert profile and to other profiles introduced
in the literature (see Appendix D).
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FIG. 6. Normalized circular velocity profile corresponding to
the isothermal sphere (the circular velocity reaches its maximum
value vmax=vh ¼ 1.17 at r�=rh ¼ 2.48). It is compared to the
Burkert profile (vmax=vh ¼ 1.30 at r�=rh ¼ 3.24).

17The Boltzmann-Poisson equations and the Emden equation
describe the equilibrium state of a classical self-gravitating gas
with an isothermal equation of state [158]. They also describe the
statistical equilibrium (most probable) state of stellar systems
[33,154]. In these two cases, the isothermal distribution results
from a collisional relaxation due to strong collisions (gas) or to
weak two-body gravitational encounters (stellar systems). By
contrast, in the present paper, the effective isothermal halo is
justified by Lynden-Bell’s statistical mechanics of collisionless
violent relaxation [136].
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asymptotic slopes (for r → þ∞) are different. This remark
is important since the Burkert and NFW profiles are purely
empirical while the isothermal profile is justified by stat-
istical mechanics (in the sense of Lynden-Bell). This argu-
ment may provide a physical justification of the Burkert and
NFW profiles. A detailed comparison between the iso-
thermal and Burkert profiles is made is Sec. VI F.

IV. COMPLETE CORE-HALO SOLUTION

When studying BECDM halos, many authors [47,96,
97,122] assume that the bosons are noninteracting (as ¼ 0).
However, cosmological constraints impose that the bosons
should have a repulsive self-interaction [46,98]. A repulsive
self-interaction may also solve some tensions encountered in
the noninteracting model (see the Remark at the end of
Appendix D. 4 of [46]). Therefore, a self-interacting SF may
be more relevant than a noninteracting SF. In this paper, we
consider BECDM halos with a repulsive self-interaction. We
assume that the self-interaction is sufficiently strong so that
the TF approximation, which amounts to neglecting the
quantum potential, is applicable.18 We shall obtain the
complete core-halo profile of BECDM halos in the TF
approximation. Other situations (noninteracting bosons,
bosons with an attractive self-interaction, fermions, etc.)
will be considered in a forthcoming paper [142].

A. Generalized Emden equation

We start from the general equation (31) determining the
complete core-halo structure of the system. We consider the
standard BEC model (6). We assume that the bosons have a
repulsive self-interaction (as > 0) and we make the TF
approximation (Q ¼ 0). We also ignore the harmonic
potential (ω0 ¼ 0) and restrict ourselves to spherically
symmetric configurations. In that case, Eq. (31) reduces to

−
4πasℏ2

m3
Δρ −

kBT
m

Δ ln ρ ¼ 4πGρ: ð52Þ

This equation is equivalent to the equation obtained by com-
bining Eq. (21) with the Poisson equation (10). We write

ρ ¼ ρ0e−ψ and ξ ¼ r
r0
; ð53Þ

where ρ0 is the central density and r0 is the thermal core
radius defined by Eq. (49). We also introduce the dimen-
sionless parameter

χ ¼ 4πasℏ2ρ0
m2kBT

; ð54Þ

which is a measure of the central density ρ0 for a given value
of the temperature T. We call it the concentration parameter.
Equation (52) then takes the form of a generalized Emden
equation

Δψ þ χ∇ · ðe−ψ∇ψÞ ¼ e−ψ : ð55Þ
The ordinary Emden equation (D13) is recovered for
χ ¼ 0. Another transformation in which Eq. (52) takes
the form of a generalized Lane-Emden equation is proposed
in Appendix E. For a spherically symmetric configuration,
the generalized Emden equation (55) takes the form

1

ξ2
d
dξ

�
ξ2

dψ
dξ

�
þ χ

ξ2
d
dξ

�
ξ2e−ψ

dψ
dξ

�
¼ e−ψ ; ð56Þ

or, equivalently,

d2ψ
dξ2

þ 2

ξ

dψ
dξ

¼ χðdψdξÞ2 þ 1

χ þ eψ
: ð57Þ

For a given value of χ, this equation can be solved numeri-
cally with the boundary conditions ψð0Þ ¼ ψ 0ð0Þ ¼ 0. We
note that ψ 00ð0Þ ¼ 1=½3ð1þ χÞ�. The density profile is
plotted in Fig. 7 for χ ¼ 20.

B. Mass and circular velocity profiles

According to Eqs. (53) and (D4), the mass contained
within a sphere of radius r is

MðrÞ ¼ ρ0r30

Z
ξ

0

e−ψ4πξ02dξ0: ð58Þ
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FIG. 7. Normalized density profile corresponding to χ ¼ 20. It
presents a core-halo structure with a solitonic core and an
isothermal halo (see Sec. V). The long-dashed line corresponds
to a pure isothermal halo (χ ¼ 0) decreasing as ρ=ρ0 ∼ 2=ξ2. The
short-dashed line corresponds to a pure solitonic profile whose
analytical expression is ρ=ρ0 ¼ ð ffiffiffi

χ
p

=ξÞ sinðξ= ffiffiffi
χ

p Þ.

18The considerations developed in Appendix D. 4 of [46]
indicate that DM halos with an attractive self-interaction may be
just at the transition between the noninteracting regime and the
TF regime. Therefore, the TF approximation may be just margin-
ally applicable. In principle, we should take into account both the
quantum potential and the self-interaction of the bosons as done
in [78,79] for the self-gravitating BEC model at T ¼ 0. In this
paper, for simplicity, we ignore the contribution of the quantum
potential.
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Using the generalized Emden equation (56), we get

MðrÞ
4πρ0r30

¼ ξ2ψ 0ðξÞ½1þ χe−ψðξÞ�: ð59Þ

The circular velocity defined by Eq. (D6) is given by

v2ðrÞ
4πGρ0r20

¼ ξψ 0ðξÞ½1þ χe−ψðξÞ�: ð60Þ

Using Eq. (49), we find that the temperature satisfies the
relation

kBT
m

¼ 4πGρ0r20: ð61Þ

Therefore, we can rewrite Eq. (60) as

mv2ðrÞ
kBT

¼ ξψ 0ðξÞ½1þ χe−ψðξÞ�: ð62Þ

The circular velocity profile is plotted in Fig. 8
for χ ¼ 20.

C. Normalized halo parameters

The halo radius defined by Eq. (D3) is given by

rh ¼ ξhr0; ð63Þ

where the function ξhðχÞ is determined by the equation

e−ψðξhÞ ¼ 1

4
: ð64Þ

Using Eqs. (59) and (63) the halo mass defined by Eq. (D5)
is given by

Mh

ρ0r3h
¼ 4π

ψ 0ðξhÞ
ξh

½1þ χe−ψðξhÞ�: ð65Þ

Using Eqs. (60) and (63) the circular velocity at the halo
radius defined by Eq. (D7) is given by

v2h
4πGρ0r2h

¼ ψ 0ðξhÞ
ξh

½1þ χe−ψðξhÞ�: ð66Þ

Finally, using Eqs. (61) and (63), the normalized temper-
ature satisfies the relation

kBT
Gmρ0r2h

¼ 4π

ξ2h
: ð67Þ

The normalized halo radius ξh ¼ rh=r0 and the normal-
ized halo mass Mh=ρ0r3h are plotted as a function of χ in
Figs. 9 and 10. The evolution with χ of the normalized
circular velocity at the halo radius v2h=4πGρ0r

2
h and the
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FIG. 8. Normalized circular velocity profile corresponding
to χ ¼ 20. It displays a dip due to the presence of the solitonic
core (see Sec. V). The long-dashed line corresponds to a pure
isothermal profile (χ ¼ 0) tending to mv2=kBT → 2. The short-
dashed line corresponds to a pure solitonic profile whose
analytical expression is mv2=kBT ¼ χ½ð ffiffiffi

χ
p

=ξÞ sinðξ= ffiffiffi
χ

p Þ −
cosðξ= ffiffiffi

χ
p Þ� (it can hardly be distinguished from the solid line

up to the border of the soliton).
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FIG. 9. Normalized halo radius ξh vs χ. For χ → 0, ξh → 3.63.
For χ → þ∞, ξh ∼ 2.47
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FIG. 10. Normalized halo mass Mh=ρ0r3h vs χ. It slightly
changes from the value 1.76 corresponding to the isothermal
profile (χ → 0) to the value 2.125 corresponding to the solitonic
profile (χ → þ∞).
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evolution with χ of the normalized temperature kBT=
Gmρ0r2h can be easily deduced from these curves.
The normalized density profile ρðrÞ=ρ0 and the normal-

ized circular velocity profile vðrÞ=vh are plotted as a
function of the normalized radial distance

r
rh

¼ ξ

ξh
ð68Þ

in Figs. 11 and 12.
A purely isothermal halo (as ¼ 0) corresponds to χ → 0.

In that limit, we recover the results of Sec. III C. We also
have (see Appendix D 2):

ξh → 3.63 ðχ → 0Þ: ð69Þ
A pure soliton (polytrope of index n ¼ 1 with T ¼ 0)

corresponds to χ → þ∞. In that limit, we recover the

results of Sec. III B 2. We must be careful that the definition
of ξ adopted in the present section differs from the one used
in Appendix D 3. It is easy to see that they are related to
each other by ξ ¼ ξ̃

ffiffiffi
χ

p
, where ξ̃ refers to the ξ used in

Appendix D 3. Since ξ̃h ¼ 2.4746 (see Appendix D 3), we
get

ξh ∼ 2.4746
ffiffiffi
χ

p ðχ → þ∞Þ: ð70Þ

V. SEMIANALYTICAL DESCRIPTION OF THE
CORE-HALO STRUCTURE

In the previous section, the differential equation (31) has
been solved numerically in the TF approximation. The
corresponding density and circular velocity profiles are
plotted in Figs. 11 and 12. They present a striking core-halo
structure with a solitonic core and an isothermal halo. The
presence of the core solves the cusp problem of the CDM
model. The presence of the isothermal atmosphere leads to
flat rotation curves in agreement with the observations. The
circular velocity profile shows a dip due to the presence of
the solitonic core.

A. A short history

Historically, this core-halo structure was first obtained in
models where DM is made of fermions. In that case, the core
corresponds to a fermion ball which is a completely degen-
erate nucleus at T ¼ 0 in which the gravitational attraction is
balanced by the quantum pressure arising from the Pauli
exclusion principle. In the nonrelativistic limit, the fermion
ball is equivalent to a polytrope of index n ¼ 3=2 and its
mass-radius relation is given byR ¼ 0.114h2=ðGm8=3M1=3Þ
[158]. The fermionball is surrounded by an isothermal halo in
which the gravitational attraction is balanced by thermal
pressure. An isothermal halo, with a true thermodynamic
temperature T th, corresponds to the statistical equilibrium
state of a gas of self-gravitating fermions resulting from a
collisional relaxation. However, the collisional relaxation
time is generally much larger than the age of the Universe.
This is a problem to justify the Fermi-Dirac distribution in a
cosmological context. However, a quasistationary state hav-
ing a core-halo structure made of an effective fermion ball
surrounded by an isothermal halo with an effective temper-
ature T may also be justified by the statistical mechanics of
violent relaxation [136] which takes place on a much shorter
timescale. This may be the correct justification of the Fermi-
Dirac distribution in a cosmological context as proposed in
[26,39,40] (see footnote 4).
The core-halo structure of the self-gravitating Fermi

gas at nonzero temperature, in the nonrelativistic and
relativistic regimes, was found by numerous authors.19
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FIG. 11. Normalized density profiles for different values of χ.
For χ → 0 we recover the purely isothermal profile of Fig. 5 (the
density profiles with χ ≤ χ� ¼ 0.1 are indistinguishable from the
isothermal profile). For χ → þ∞ we recover the purely solitonic
profile of Fig. 3. For intermediate values of χ, the density profiles
have a core-halo structure (see Sec. V).
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FIG. 12. Normalized circular velocity profiles for different
values of χ. For χ → 0 we recover the purely isothermal profile
of Fig. 6. For χ → þ∞ we recover the purely solitonic profile of
Fig. 4. For intermediate values of χ, the circular velocity profiles
present a dip due to the presence of the solitonic core (see Sec. V).

19We focus our review on papers that explicitly display density
profiles similar to those reported in Fig. 11. For a more general
bibliography, see Refs. [14–44].
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The density profiles of a partially degenerate gas of
self-gravitating fermions at nonzero temperature (like
electrons in white dwarfs, neutrons in neutron stars, or
massive neutrinos in DM halos) were first computed by
Wares [162], Margrave [163], Hertel and Thirring [164],
Bludman and Van Riper [165], Edwards and Merilan
[166], and Edwards [167] in the context of stellar
structure; by Ruffini and Stella [15], Chau et al. [17],
Ingrosso and Ruffini [19], Gao et al. [20], Merafina [21]
and Ingrosso et al. [22] in the context of DM made of
massive neutrinos; and by Chavanis and Sommeria [26]
in the context of Lynden-Bell’s theory of violent relax-
ation. Bilic et al. [30,31] considered a general relativistic
Fermi gas at nonzero temperature, obtained a core-halo
profile, and proposed that the fermion ball may mimic a
SMBH at the centers of the galaxies. This idea was taken
up again recently by Ruffini et al. [38] and further
developed by Argüelles et al. [42]. Chavanis et al. [40]
studied phase transitions in the fermionic King model and
obtained a core-halo profile similar to that of Fig. 11 with
a confinement due to tidal effects.
A similar core-halo profile was obtained by Slepian

and Goodman [168] in a model where DM is made of
bosons with a repulsive self-interaction (see also the
figures in [140,141]). In that case, the core corresponds
to a soliton which is the ground state of the self-
gravitating BEC at T ¼ 0. In the TF limit, it is equivalent
to a polytrope of index n ¼ 1 with a radius R ¼
πðasℏ2=Gm3Þ1=2 independent of its mass. The solitonic
core is surrounded by an isothermal halo.20 This core-
halo structure was also observed in the numerical
simulations of Schive et al. [96,97] for noninteracting
bosons. In that case, the halo is fitted by a NFW profile.
In the very recent works of Lin et al. [169] and Mocz

et al. [170], it is shown that the halo is relatively close to
an isothermal distribution or to a fermionic King dis-
tribution [40,138] in which the degeneracy is due to
Lynden-Bell’s type of exclusion principle, as suggested in
[140,141].
In the following subsections, we provide a semianalytic

description of the core-halo structure of self-gravitating
bosons at nonzero temperature by analogy with our
previous work on fermions [26]. We assume that χ ≫ 1
so that a clear separation exists between the core and the
halo marked by the presence of a plateau (see Sec. VII).

B. Properties of the density profile

We first consider the density profile. In the core, thermal
effects are negligible as compared to quantum effects (self-
interaction) so the system is equivalent to a pure soliton
with central density ρ0, radius Rc and massMc (see Sec. III
B 2). The soliton radius is given by

Rc ¼ π

�
asℏ2

Gm3

�
1=2

ð71Þ

and the soliton mass is given by

Mc ¼
4

π
ρ0R3

c: ð72Þ

At larger distances, quantum effects are negligible as
compared to thermal effects so the system presents an
isothermal halo with a density profile [see Eq. (22)]:

ρ ¼ Ae−βmΦ: ð73Þ

Close to the core, the gravitational potentialΦ is dominated
by the contribution of the central body (soliton) so that

Φ ∼ −
GMc

r
: ð74Þ

Therefore, the density profile can be approximated by

ρ ¼ Bρ0e
βGMcmð1r− 1

Rc
Þ; ð75Þ

where B is a dimensionless prefactor of order unity which
can be obtained numerically (see below).
When r → Rc, the foregoing equation reduces to

ρ ¼ Bρ0eβGMcmðRc−rÞ=R2
c : ð76Þ

Therefore, at the contact with the solitonic core, the density
decreases exponentially rapidly, and the system develops a
spike (see Fig. 7) on a typical length scale

l ¼ R2
c

βGMcm
: ð77Þ

20In the study of Slepian and Goodman [168] the isothermal
halo is justified by ordinary thermodynamics. This, however,
poses a timescale problem, related to the establishment of a
statistical equilibrium state by collisional relaxation on a relevant
timescale (shorter than the Hubble time) as discussed above in the
case of fermions. This also implies that the temperature in their
model is the true thermodynamic temperature T th. As a result, in
order to derive the equation of state of the boson gas, Slepian and
Goodman [168] must consider the case where the bosons are
condensed (ρ > ρc) or not (ρ < ρc). The resulting equation of
state (see their Fig. 1) presents a plateau after ρc for weakly
self-interacting bosons (θ ≪ 1) leading to an impossibility to
construct BECDM halos that match the observations (see
Appendix F). In our approach, the isothermal halo has a different
origin. We assume since the start that the true thermodynamic
temperature is rigorously equal to zero, or T th ≪ Tc (see
Appendix G), so the bosons are always condensed and the
fundamental equations are the GPP equations at T th ¼ 0. The
core-halo structure of the system (with a solitonic core and a
effective isothermal halo) is then an out-of-equilibrium virialized
structure justified by the process of gravitational cooling and
violent relaxation as explained in the Introduction. As a result, the
problems raised by Slepian and Goodman [168] do not arise in
our model since the two models are physically different.
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The spike extends up to Rs ¼ Rc þ l. From Eqs. (54), (71),
(72), and (77), we get

l
Rc

¼ 1

χ
: ð78Þ

We note that l → 0 when χ → þ∞ (pure soliton) so that
Rs ≃ Rc in that limit.
When r → þ∞, the density profile given by Eq. (75)

tends to a constant

ρc ¼ Bρ0e−βGMcm=Rc : ð79Þ

Therefore, when r > Rs, the density profile forms a plateau
(see Fig. 7) with a constant density ρc.

21 Using Eq. (77), this
density may be rewritten as

ρc ¼ Bρ0e−Rc=l: ð82Þ

From Eqs. (78) and (82) we get

ρc
ρ0

¼ Be−χ : ð83Þ

We have numerically computed the ratio ρc=ρ0 as a
function of χ and found an excellent agreement with the
theoretical prediction from Eq. (83). This numerical study
(not reported) allows us to obtain the value of the prefactor:

B ¼ 4.24 × 10−3: ð84Þ

Equation (83) is valid for χ ≫ 1. Actually, our numerical
study shows that Eq. (83) with B given by Eq. (84) is valid
in good approximation for χ ≳ 1. For χ ≲ 1 the separation
between a core and a halo is not clear cut (the plateau
disappears) so Eq. (83) does not really make sense. In order
to connect the result ρc ¼ ρ0 when χ ¼ 0 (no solitonic
core) to the result from Eq. (83) when χ ≫ 1, we introduce
a convenient interpolation formula of the form

ρc
ρ0

¼ BðχÞe−χ ð85Þ

with

BðχÞ ¼ 1þ ðB − 1Þ tanhðχÞ: ð86Þ

This interpolation formula is of course purely ad hoc but it
has the correct limiting behaviors and it will facilitate the
analysis of Sec. VII.
The plateau extends from Rs up to a distance Rp after

which it is not possible to neglect the self-gravity of the
halo as compared to the attraction of the core. Therefore,
Rp is determined by the condition

4

3
πρcðR3

p − R3
sÞ ≃Mc: ð87Þ

Making the approximation Rp ≫ Rs valid for χ ≫ 1,
we get

Rp ¼
�
3Mc

4πρc

�
1=3

: ð88Þ

From Eqs. (72), (83) and (88), we obtain

Rp

Rc
¼

�
3

BðχÞπ2
�
1=3

eχ=3: ð89Þ

When r ≫ Rp, we can neglect the gravitational attraction
of the solitonic core. In that case, the system is asymp-
totically equivalent to a purely isothermal halo with a
density profile decreasing as ρ ∼ kBT=ð2πGmr2Þ with
damped oscillations superimposed [158,171].
In conclusion, the density profile represented in Fig. 7

can be divided in four regions:
(i) a purely solitonic core of almost constant density,
(ii) a spike,
(iii) a plateau of constant density,
(iv) a purely isothermal halo where the density decreases

as r−2 with some oscillations.
This core-halo structure is similar to the one discussed in

the case of self-gravitating fermions [26] with the differ-
ence that the solitonic core replaces the degenerate fer-
mion ball.

C. Properties of the circular velocity profile

We now consider the circular velocity profile. In the
solitonic core, the density is approximately constant with
value ρ0. Therefore, the mass contained within the sphere
of radius r is MðrÞ ≃ ð4=3Þπρ0r3. This leads to a circular
velocity profile of the form

v2ðrÞ ∼ 4

3
πGρ0r2: ð90Þ

21We emphasize that ρc is different from the transition density

ρi ¼
kBTm2

2πasℏ2
ð80Þ

obtained by equating the pressure P¼2πasℏ2ρ2=m3 in the
solitonic core and the pressure P ¼ ρkBT=m in the isothermal
halo. When ρ ≫ ρi the thermal pressure can be neglected and
when ρ ≪ ρi the quantum pressure can be neglected (the tran-
sition temperature for a given density is kBTi ¼ 2πasℏ2ρ=m2).
This is similar to the Sommerfeld criterion for fermions. We note
that

ρi
ρ0

¼ 2

χ
: ð81Þ

We also note that ρi ¼ ðπ=4Þv2∞=GR2
c, where v2∞ ¼ 2kBT=m is

the constant circular velocity in an isothermal halo.

PREDICTIVE MODEL OF BEC DARK MATTER HALOS … PHYS. REV. D 100, 083022 (2019)

083022-17



The circular velocity increases linearly with the distance
(see Fig. 8).
In the spike and at the beginning of the plateau, the mass

almost does not change so that MðrÞ ≃Mc. This leads to a
circular velocity profile of the form

v2ðrÞ ∼GMc

r
: ð91Þ

The circular velocity has a Keplerian decay ∝ r−1=2

(see Fig. 8).
On the plateau, the density is constant with value ρc.

Therefore, at the end of the plateau where we can ignore the
contribution of the central mass Mc, the mass contained
within the sphere of radius r is MðrÞ ≃ ð4=3Þπρcr3. This
leads to a circular velocity profile of the form

v2ðrÞ ∼ 4

3
πGρcr2: ð92Þ

The circular velocity increases linearly with the distance as
in the core (see Fig. 8).
At large distances, the system is purely isothermal and

the mass increases as MðrÞ ∼ 2kBTr=Gm leading to flat
rotation curves:

v2ðrÞ → 2kBT
m

: ð93Þ

In conclusion, the circular velocity profile represented in
Fig. 8 can be divided in four regions:

(i) a region where v ∝ r associated with the purely
solitonic core,

(ii) a region where v ∝ r−1=2 associated with the spike,
(iii) a region where v ∝ r associated with the plateau,
(iv) a region where the velocity tends to a constant after

some oscillations associated with the purely iso-
thermal halo.

This profile reflects the core-halo structure of the system.
In particular, it presents a dip due to the presence of the
solitonic core.

VI. MASS-RADIUS RELATION OF DM
HALOS AND THEIR PHYSICAL
CHARACTERISTICS (MODEL I)

In this section, we express the previous results in terms
of physical variables appropriate to make a detailed
comparison with observations. We determine the mass-
radius relation of DM halos and discuss their physical
characteristics.

A. The constant surface density

It is an observational evidence that the surface density of
DM halos is independent of their mass and size and has a
universal value [172–174]:

Σ0 ¼ ρ0rh ¼ 141þ83
−52M⊙=pc2: ð94Þ

This result is valid for all the galaxies even if their sizes and
masses vary by several orders of magnitude (up to 14 orders
of magnitude in luminosity). The reason for this univer-
sality is not known but it is crucial to take this result into
account in any modeling of DM halos. Therefore, we shall
assume this relation as an empirical fact.

B. Ultracompact halos: Solitonic
profile (ground state)

Ultrasmall DM halos such as dwarf spheroidal galaxies
(dSphs) like Fornax (R ∼ 1 kpc andM ∼ 108 M⊙) are very
compact and do not have an atmosphere, or they have just a
tiny one. The BECDM model predicts that there exists a
minimum halo radius and a minimum halo mass corre-
sponding to a pure soliton without atmosphere (T ¼ 0).
This is the ground state of the GPP equations (1) and (2). In
the TF approximation, the soliton radius Rc where the
density vanishes is given by Eq. (71) and the soliton mass
Mc is given by Eq. (72). The halo radius rh and the halo
mass Mh are given by Eq. (44) where R ¼ Rc. The halo
radius is entirely determined by the physical properties of
the bosons through the ratio as=m3. The halo mass depends
on the central density ρ0. However, since the central density
is determined by the halo radius according to Eq. (94), we
find that the halo mass is determined by the ratio as=m3 and
by the universal value of Σ0. Therefore, in the BECDM
model, the minimum halo radius and the minimum halo
mass are given by

ðrhÞmin ¼ 0.788Rc; ðMhÞmin ¼ 1.32Σ0R2
c: ð95Þ

Using Eqs. (45) and (94), we find that the maximum central
density and the minimum halo circular velocity are

ðρ0Þmax ¼ 1.27
Σ0

Rc
; ðv2hÞmin ¼ 1.67GΣ0Rc: ð96Þ

They can be explicitly rewritten as

ðrhÞmin ¼ 2.47

�
asℏ2

Gm3

�
1=2

; ð97Þ

ðMhÞmin ¼ 13.0
asℏ2Σ0

Gm3
; ð98Þ

ðρ0Þmax ¼ 0.404

�
Gm3Σ2

0

asℏ2

�
1=2

; ð99Þ

ðv2hÞmin ¼ 5.25

�
asℏ2GΣ2

0

m3

�
1=2

: ð100Þ

If we know the parameters m and as of the DM particle,
we can determine the minimum halo radius ðrhÞmin and the
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minimum halo mass ðMhÞmin from the foregoing expres-
sions. However, we shall proceed the other way around. We
assume that the smallest halo that we know (say Fornax to
fix the ideas) represents the ground state of the GPP
equations (pure soliton without atmosphere) and we deter-
mine the characteristics of the DM particle from the
observed parameters of this halo. For convenience, we
adopt the following value for its radius22:

Rc ¼ 1 kpc: ð101Þ

Using Eqs. (94), (95), (96), and (101), we get

ðrhÞmin ¼ 788 pc; ðMhÞmin ¼ 1.86 × 108 M⊙; ð102Þ

ðρ0Þmax ¼ 0.179 M⊙=pc3; ðvhÞmin ¼ 31.9 km=s: ð103Þ

The ratio as=m3 characterizing the DM particle can then be
obtained from Eq. (71) yielding

as
fm

�
eV=c2

m

�
3

¼ 3.28 × 103: ð104Þ

Inversely, if we assume that DM halos are made of bosons
with a ratio as=m3 given by Eq. (104), we then find that the
minimum halo radius and the minimum halo mass (ground
state) are given by Eq. (102). These values are consistent
with the mass and size of dSphs like Fornax.23

Remark: If we use the same reasoning for noninteracting
bosons and for fermions we get m ¼ 2.92 × 10−22 eV=c2

andm ¼ 170 eV=c2 respectively (see Appendix D of [46]).
The order of magnitude of these values is consistent with
the values obtained by other authors using more precise
methods. We stress that, in this paper, we are more
interested in developing a general theory of DM halos
(and presenting basic ideas) rather than determining the
characteristics of the DM particle accurately. Therefore,
orders of magnitudes are sufficient for our purposes.

C. Large halos: Isothermal profile

For large halos like the medium spiral (R ∼ 10 kpc and
M ∼ 1011 M⊙), the mass of the solitonic core is negligible
(see below) and it is a good approximation to assume that
the halo is purely isothermal. In that case, using Eqs. (50),
(51), and (94), we get

Mh ¼ 1.76Σ0r2h;
kBT
m

¼ 0.954GΣ0rh; ð105Þ

v2h ¼ 1.76GΣ0rh; ρ0 ¼
Σ0

rh
: ð106Þ

We can rewrite these equations as

Mh

Σ0R2
c
¼ 1.76

�
rh
Rc

�
2

;
kBT

mGΣ0Rc
¼ 0.954

rh
Rc

; ð107Þ

v2h
GΣ0Rc

¼ 1.76
rh
Rc

;
ρ0

Σ0=Rc
¼ Rc

rh
: ð108Þ

The halo mass scales with the size as Mh ∝ r2h and the
temperature as kBT=m ∝ rh (basically, these scalings stem
from the universality of the surface density of DM halos
Mh=r2h ∼ Σ0 and from the virial theorem kBT=m ∼GMh=
rh ∼GΣ0rh). For a halo of mass Mh ¼ 1011 M⊙, we find
rh ¼ 20.1 kpc, ρ0 ¼ 7.02 × 10−3 M⊙=pc3, ðkBT=mÞ1=2 ¼
108 km=s, and vh ¼ ðGMh=rhÞ1=2 ¼ 146 km=s (we also
have v∞ ¼ 153 km=s). We stress that these results are
independent of the characteristics of the DM particle.
Remark: If we consider an ultralight boson of mass

m ∼ 10−22 eV=c2, we find that the temperature of large
halos such as the medium spiral is T ∼ 10−25 K. Such a
small temperature may not be physical. This strongly
suggests that T is not the true thermodynamic temperature.
It may rather represent an effective temperature as we have
argued in the Introduction.

D. Small halos: Core-halo profile

We now consider the general case where the DM halos
have a core-halo profile with a solitonic core (polytrope
n ¼ 1) and an isothermal halo. We shall determine rh, ρ0,
Mh, vh and ðkBT=mÞ1=2 as a function of χ (see Sec. IV). We
shall express these quantities in units of Rc, Σ0=Rc, Σ0R2

c

and ðGΣ0RcÞ1=2 in order to be general [recall that Rc can
itself be expressed in terms of as=m3 according to Eq. (71)].
However, for numerical applications we will use the values
of Σ0 and Rc given by Eqs. (94) and (101) yielding

Rc ¼ 1 kpc; Σ0=Rc ¼ 0.141 M⊙=pc3; ð109Þ

Σ0R2
c ¼ 1.41 × 108 M⊙; ðGΣ0RcÞ1=2 ¼ 24.6 km=s:

ð110Þ

22It is not clear whether Fornax really corresponds to the
ground state of the GPP equations (there may be a little
atmosphere due to quantum interferences of excited states).
Furthermore, its radius Rc is not exactly given by Eq. (101).
Therefore, the values of ðrhÞmin, ðMhÞmin, ðρ0Þmax, ðvhÞmin and of
as=m3 that we obtain in this paper are approximate. However, a
more accurate characterization of the ground state of DM halos
will not crucially affect our results, nor change our general
scenario.

23In the BECDM model, the order of magnitude of the
minimum halo mass ðMhÞmin and minimum halo radius
ðrhÞmin can be determined by a Jeans stability analysis as detailed
in Ref. [127]. This point is further discussed in [142,175]. On the
other hand, the maximum mass ðMhÞmax ∼ 1013 M⊙ of the DM
halos (superclusters) may be connected to the maximum Jeans
mass at the transition between the ultrarelativistic regime and the
nonrelativistic regime (see Appendix F. 7 of [127]).
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1. The thermal core radius

Using Eqs. (49), (54), and (71), the concentration
parameter χ can be rewritten as

χ ¼ 1

π2

�
Rc

r0

�
2

: ð111Þ

It can be seen as the ratio between the soliton radius Rc and
the thermal core radius r0. Therefore, the thermal core
radius is given in terms of χ by

r0
Rc

¼ 1

π
ffiffiffi
χ

p : ð112Þ

Since ξ ¼ r=r0, the normalized radial distance can be
expressed as

r
Rc

¼ ξ

π
ffiffiffi
χ

p : ð113Þ

2. The halo radius

Using Eq. (113), we find that the halo radius is given by

rh
Rc

¼ ξh
π

ffiffiffi
χ

p ; ð114Þ

where ξh is defined in Sec. IV. For χ → 0,

rh
Rc

∼
1.16ffiffiffi

χ
p ; ð115Þ

where we have used Eq. (69). For χ → þ∞,

rh
Rc

→ 0.788; ð116Þ

where we have used Eq. (70). The halo radius is represented
as a function of χ in Fig. 13. We see that large halos

correspond to small values of χ (i.e., they are isothermal)
and small halos correspond to large values of χ (i.e., they
are solitonic).

3. The central density

The central density can be obtained from Eqs. (94) and
(114) giving

ρ0Rc

Σ0

¼ π
ffiffiffi
χ

p
ξh

: ð117Þ

For χ → 0,

ρ0Rc

Σ0

¼ 0.865
ffiffiffi
χ

p
: ð118Þ

For χ → þ∞,

ρ0Rc

Σ0

→ 1.27: ð119Þ

The central density is represented as a function of χ in
Fig. 14. Large halos (small χ) have lower central densities
than small halos (large χ).

4. The halo mass

Using Eqs. (65), (94), and (114), the halo mass is
given by

Mh

Σ0R2
c
¼ 4ψ 0ðξhÞξh

πχ
½1þ χe−ψðξhÞ�: ð120Þ

For χ → 0,

Mh

Σ0R2
c
∼
2.34
χ

: ð121Þ

For χ → þ∞,
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FIG. 13. Halo radius as a function of χ. We note, parentheti-
cally, that rh ¼ Rc for χ ¼ 3.44.
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FIG. 14. Central density as a function of χ.
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Mh

Σ0R2
c
→ 1.32: ð122Þ

The halo mass is represented as a function of χ in Fig. 15.
Large halos (small χ) have a larger mass than small halos
(large χ).
From Eqs. (114) and (120) we can obtain the mass-radius

relation MhðrhÞ of the DM halos in parametric form (with
parameter χ). It is represented in Fig. 16. It starts from
ðrhÞmin ¼ 788 pc and ðMhÞmin ¼ 1.86 × 108 M⊙ (ground
state) and behaves as Mh ∼ 1.76Σ0r2h for rh → þ∞ (large
halos). Taking rh ¼ ðrhÞmin ¼ 788 pc and using the iso-
thermal mass-radius relation Mh ∼ 1.76Σ0r2h [see
Eq. (105)], we find Mh ¼ 1.54 × 108 M⊙ which is very
close to the value of the ground state ðMhÞmin ¼ 1.86 ×
108 M⊙ [see Eq. (102)]. Therefore, the difference between
the exact mass-radius relation and its asymptotic behavior
given by Eq. (105), corresponding to purely isothermal
halos, is imperceptible in a log-log plot. It is only close to
the ground state [ðrhÞmin; ðMhÞmin] that quantum effects
(producing a solitonic core) are appreciable. Actually, the

main effect of quantum mechanics is to provide an origin
(see the bullet in Fig. 16) to the mass-radius relation,
corresponding to a “minimum halo” (ground state). In
comparison, there is no minimum halo in the ΛCDM
model.

5. The circular velocity

Using Eqs. (66), (94), and (114), the halo velocity is
given by

v2h
GΣ0Rc

¼ 4ψ 0ðξhÞffiffiffi
χ

p ½1þ χe−ψðξhÞ�: ð123Þ

For χ → 0,

v2h
GΣ0Rc

∼
2.03ffiffiffi

χ
p : ð124Þ

For χ → þ∞,

v2h
GΣ0Rc

→ 1.67: ð125Þ

The halo velocity is represented as a function of χ in
Fig. 17. Large halos (small χ) have a larger velocity than
small halos (large χ).

6. The effective temperature

Using Eqs. (67), (94), and (114), the effective temper-
ature of the halos is given by

kBT
GmΣ0Rc

¼ 4

ξh
ffiffiffi
χ

p : ð126Þ

For χ → 0,

kBT
GmΣ0Rc

∼
1.10ffiffiffi

χ
p : ð127Þ
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FIG. 15. Halo mass as a function of χ.
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FIG. 16. Mass-radius relation of BECDM halos. Quantum
mechanics is important only close to the ground state (bullet)
where the halos have a solitonic core. Larger halos are purely
isothermal without a solitonic core.
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FIG. 17. Circular velocity as a function of χ.
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For χ → þ∞,

kBT
GmΣ0Rc

∼
1.62
χ

: ð128Þ

The effective temperature of the halo is represented as
a function of χ in Fig. 18. Large halos (small χ) have a
larger effective temperature than small halos (large χ).
Actually, the temperature tends to zero when χ → þ∞
(ground state).
From Eqs. (114) and (126) we can obtain the tem-

perature-radius relation TðrhÞ in parametric form (with
parameter χ). It is represented in Fig. 19. It starts from
ðrhÞmin ¼ 788 pc and Tmin ¼ 0 (ground state) and behaves
as kBT=m ∼ 0.954GΣ0rh for rh → þ∞ (large halos).

7. The soliton radius and the soliton mass

The size of the solitonic core Rc is given by Eq. (71). We
note that the solitonic core always has the same radius,
whatever the halo mass Mh, since it only depends on the
ratio as=m3 which is a property of the DM particle. The
soliton mass Mc is given by Eq. (72). The soliton mass
depends on the halo massMh since it is proportional to the

central density ρ0. From Eqs. (72) and (117), we find that
the soliton mass is given by

Mc

Σ0R2
c
¼ 4

ffiffiffi
χ

p
ξh

: ð129Þ

For χ → 0,

Mc

Σ0R2
c
∼ 1.10

ffiffiffi
χ

p
: ð130Þ

For χ → þ∞,

Mc

Σ0R2
c
→ 1.62: ð131Þ

The evolution of the soliton massMc as a function of χ can
be easily deduced from Fig. 14 sinceMc ∝ ρ0. Large halos
(small χ) have a less massive solitonic core than small halos
(large χ). For large halos, using Eqs. (121) and (130) we
find that

Mc

Σ0R2
c
∼ 1.68

ffiffiffiffiffiffiffiffiffiffi
Σ0R2

c

Mh

s
: ð132Þ

According to this relation, the soliton mass decreases as
Mc ∝ M−1=2

h with the halo mass. Actually, for χ ≲ 0.1,
there is no well-defined solitonic core (see below) so that
the relation from Eq. (132) is meaningless. Large DM halos
are purely isothermal, without a solitonic core. In that case,
Eq. (132) essentially gives the mass of the isothermal core
within a sphere of radius Rc.

8. The mass M300

It is an observational evidence that all dwarf spheroidal
galaxies of the Milky Way have the same total DM mass
contained within a radius ru ¼ 300 pc. From the observa-
tions, Strigari et al. [176] obtained logðM300=M⊙Þ ¼
7.0þ0.3

−0.4 . Let us see how this result compares with our model.
Using Eqs. (59), (94), (112) and the relation ξh ¼ rh=r0

we obtain

M300

Σ0R2
c
¼

�
ru
Rc

�
2 4π

ξh
ψ 0
�
ruπ

ffiffiffi
χ

p
Rc

�
½1þ χe−ψðruπ

ffiffi
χ

p
=RcÞ�:

ð133Þ

For χ → 0,

M300

Σ0R2
c
∼
4π2

3

�
ru
Rc

�
3

ffiffiffi
χ

p
ξh

∼ 0.0979
ffiffiffi
χ

p
: ð134Þ

For χ → þ∞,
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FIG. 18. Effective temperature as a function of χ.
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FIG. 19. Temperature-radius relation. A fit for rh → ðrhÞmin
gives kBT=GmΣ0Rc ∼ 1.42½ðrh − ðrhÞminÞ=Rc�0.888.

PIERRE-HENRI CHAVANIS PHYS. REV. D 100, 083022 (2019)

083022-22



M300

Σ0R2
c
→

4Rc

π2rh

�
sin

�
πru
Rc

�
−
πru
Rc

cos

�
πru
Rc

��
¼ 0.131:

ð135Þ

To obtain Eq. (134) we used ψ ∼ ξ2=6 when ξ → 0 [158]
and to obtain Eq. (135) we used Eqs. (42) and (94).
The evolution of the mass M300 as a function of χ

is represented in Fig. 20. We note that M300 decreases
as the halo size increases (χ decreases). For small
halos (χ→þ∞), we get ðM300Þmax¼0.131Σ0R2

c¼
0.0992ðMhÞmin¼1.85×107 M⊙. Therefore logððM300Þmax=
M⊙Þ ¼ 7.27 in good agreement with the upper bound of
the observational result of Strigari et al. [176] quoted
above.24 For large halos (χ → 0), using Eqs. (105), (121),
and (134) we find that

M300

Σ0R2
c
∼ 0.150

ffiffiffiffiffiffiffiffiffiffi
Σ0R2

c

Mh

s
∼ 0.114

Rc

rh
: ð136Þ

According to this relation, M300 decreases as M300 ∝
M−1=2

h ∝ r−1h with the halo mass and halo radius.
Remark: We note that, for large (isothermal) halos,

M300 ∼ 5.54
Σ3=2
0 r3u
M1=2

h

∼
4π

3

Σ0r3u
rh

: ð137Þ

The second equivalent can be obtained directly from the
relation M300 ∼ ð4π=3Þρ0r3u and Eq. (94).

9. Transition between small and large halos

In our model, a DM halo is entirely characterized by the
concentration parameter χ. Indeed, for a given value of χ,
we can obtain all the characteristics of the halo such as rh,

ρ0, Mh, vh and T.25 Small halos (that contain a solitonic
core) correspond to χ ≫ 1. Large halos (that are essentially
isothermal without a solitonic core) correspond to χ ≪ 1.
The transition between large and small halos (χt ¼ 1)
corresponds to

ðrhÞt ¼ 1.39Rc ¼ 1.39 kpc; ð138Þ

ðMhÞt ¼ 3.63Σ0R2
c ¼ 5.12 × 108 M⊙; ð139Þ

ðρ0Þt ¼ 0.716Σ0=Rc ¼ 0.101 M⊙=pc3; ð140Þ

ðvhÞt ¼ 1.61ðGΣ0RcÞ1=2 ¼ 39.7 km=s; ð141Þ

ðkBT=mÞ1=2t ¼ 0.955ðGΣ0RcÞ1=2 ¼ 23.5 km=s: ð142Þ
We see that the transition is very close to the ground
state ðrhÞmin ¼ 788 pc and ðMhÞmin ¼ 1.86 × 108 M⊙.
This means that most of the DM halos are purely iso-
thermal, except the dwarf halos that are very close to the
ground state. This is in agreement with our previous
observation (see Fig. 16).

10. Physical density profiles

Using the preceding results, the physical density and
circular velocity profiles of a BECDM halo characterized
by the concentration parameter χ can be written as

ρðrÞ
Σ0=Rc

¼ ρðξÞ
ρ0

π
ffiffiffi
χ

p
ξh

; ð143Þ

v2ðrÞ
GΣ0Rc

¼ v2ðξÞ
4πGρ0r20

4

ξh
ffiffiffi
χ

p ; ð144Þ

r
Rc

¼ ξ

π
ffiffiffi
χ

p ; ð145Þ

where ρðξÞ=ρ0, v2ðξÞ=4πGρ0r20, and ξhðχÞ are given by
Eqs. (53), (60) and (64).
These profiles are represented in Figs. 21 and 22 for

different values of χ. For χ → 0, we obtain a purely
isothermal halo without solitonic core. For χ → þ∞, we
obtain a pure soliton without isothermal halo (ground
state). For intermediate values of χ, the profile has a
core-halo structure with a solitonic core and an isothermal
halo. At each value of χ corresponds a halo whose
characteristics ðMh; rh…Þ can be determined from the
equations given in the previous sections. The transition
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FIG. 20. Mass within a sphere of radius 300 pc as a function
of χ.

24Our theoretical result is valid up to χ ∼ 1 corresponding to a
halo mass ðMhÞt ¼ 5.12 × 108 M⊙ (see below).

25Physically, we can choose to characterize a halo by its mass
Mh. The corresponding value of χ is then determined by
Eq. (120). From the knowledge of χ we can determine the other
characteristics of the halo. Therefore, a DM halo is entirely
characterized by its mass Mh. In this sense, there is no free
parameter in our model except for the value of the ratio as=m3

which determines the minimum halo radius from Eq. (97).
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between small and large halos corresponds to χt ¼ 1 (see
Sec. VI D 9). On the other hand, as indicated in the caption
of Fig. 11, large halos with χ ≤ χ� ¼ 0.1 are almost
indistinguishable from a purely isothermal profile without
a solitonic core. This corresponds to

ðrhÞ� ¼ 3.67Rc ¼ 3.67 kpc; ð146Þ

ðMhÞ� ¼ 23.4Σ0R2
c ¼ 3.30 × 109 M⊙; ð147Þ

ðρ0Þ� ¼ 0.2735Σ0=Rc ¼ 0.0386 M⊙=pc3; ð148Þ

ðvhÞ� ¼ 2.53ðGΣ0RcÞ1=2 ¼ 62.2 km=s; ð149Þ

ðkBT=mÞ1=2� ¼ 1.865ðGΣ0RcÞ1=2 ¼ 45.9 km=s: ð150Þ

E. The three types of DM halos in model I

In this section, we illustrate the previous results by
showing examples of BECDM halos with a purely solitonic
core (ultracompact halo), a core-halo structure (small halo),
and a purely isothermal halo (large halo). Their density and
circular velocity profiles are represented in Figs. 23 and 24.
Let us first consider a small DM halo with a concentra-

tion parameter χ ¼ 1. Its physical characteristics obtained
from our model are rh ¼ 1.39 kpc, Mh ¼ 5.12 × 108 M⊙,
ρ0 ¼ 0.101 M⊙=pc3, vh ¼ 39.7 km=s, and ðkBT=mÞ1=2 ¼
23.5 km=s. This DM halo has a core-halo structure with a
solitonic core and an isothermal atmosphere. The solitonic
core has a radius Rc ¼ 1 kpc and a mass Mc ¼ 1.29×
108 M⊙. We note that the velocity profile exhibits a small
dip due to the presence of the solitonic core. Nonmonotonic
velocity profiles (oscillations) are sometimes observed in
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FIG. 21. Density profiles of different halos characterized by the
concentration parameter χ. For χ ¼ 0.00333 (Mh ¼ 1011 M⊙)
and χ ¼ 0.1 (Mh ¼ 3.30 × 109 M⊙) the halo is essentially
isothermal without a solitonic core (large halos). For χ ¼ 1

(Mh ¼ 5.12 × 108 M⊙) and χ ¼ 5 (Mh ¼ 2.50 × 108 M⊙) the
density profiles present a core-halo structure (small halos). For
χ ¼ 10 (Mh ¼ 2.18 × 108 M⊙), χ ¼ 20 (Mh ¼ 2.02 × 108 M⊙),
and χ ¼ 100 (Mh ¼ 1.89 × 108 M⊙) the halo is dominated by the
solitonic core (ultracompact halos). The dashed line corresponds
to the pure soliton with χ → þ∞ (ðMhÞmin ¼ 1.86 × 108 M⊙)
representing the ground state of the BECDM model.
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FIG. 23. Density profiles of DM halos of different mass. We
have represented the purely solitonic profile (ground state of the
BEC model) which is similar to an ultracompact halo like Fornax
[ðMhÞmin ¼ 1.86 × 108 M⊙], the core-halo profile of a small halo
(Mh ¼ 5.12 × 108 M⊙), and the almost isothermal profile of a
large halo like the medium spiral (Mh ¼ 1011 M⊙). In each case,
we have indicated the halo radius rh (where the central density is
divided by 4) by an arrow. We have also plotted the Burkert
profile for comparison (dotted lines).
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real rotation curves of galaxies. We suggest that they could,
in certain cases, be the manifestation of a solitonic core.
For comparison, we have plotted the density and velocity

profiles of the DM halo with the minimum mass corre-
sponding to the ground state of the BECDM model. This
ultracompact DM halo (χ → þ∞) is a pure soliton, without
isothermal atmosphere (T ¼ 0). Its physical characteristics
obtained from our model are ðrhÞmin ¼ 788 pc, ðMhÞmin ¼
1.86 × 108 M⊙, ðρ0Þmax ¼ 0.179 M⊙=pc3, and ðvhÞmin ¼
31.9 km=s similar to the characteristics of dSphs like
Fornax. We note that the density profile of the soliton
has a larger central density than the profile of the DM halo
with a core-halo structure.
Finally, we have plotted the density and velocity profiles

corresponding to a large DM halo with a concentration
parameter χ ¼ 3.33 × 10−3. In that case, there is no
solitonic core and the profiles coincide with those of the
isothermal sphere. For large DM halos, the flat density
core (for r → 0) is due to the effective temperature, not
to the self-interaction of the bosons (see Appendix A).
The physical characteristics of this halo obtained from
our model are rh ¼ 2.01 × 104 pc, Mh ¼ 1011 M⊙, ρ0 ¼
7.02 × 10−3 M⊙=pc3, vh¼ðGMh=rhÞ1=2¼146 km=s, and
ðkBT=mÞ1=2 ¼ 108 km=s similar to the medium spiral. We
note that the density profile of the purely isothermal halo
has a smaller central density than the profile of the DM halo
with a core-halo structure.
Remark: As soon as Mh > ðMhÞmin (i.e., T > 0) the

soliton is surrounded by an extended isothermal halo whose
density decreases slowly as ρ ∝ r−2. This yields an infinite
mass if it is extended to infinity. In practice, the halo is
tidally truncated (see Appendix B).

F. Comparison with observations

In this section, we make a first comparison between the
results of our model and observations. A more detailed
comparison will be made in future works.

1. Preliminary remarks

Classical numerical simulations of CDM lead to DM
halos that are well fitted by the NFW profile [5]:

ρðrÞ ∝ 1
r
rs
ð1þ r

rs
Þ2 ; ð151Þ

where rs is a scale radius that varies from halo to halo. The
density decreases as r−3 for r → þ∞ and diverges as r−1

for r → 0. This singular behavior is not consistent with
observations that reveal that DM halos possess a core, not a
cusp. Observed DM halos are better fitted by the Burkert
profile [6]:

ρðrÞ ¼ ρ0
ð1þ r

rh
Þð1þ r2

r2h
Þ ; ð152Þ

where ρ0 is the central density and rh is the halo radius
defined by Eq. (D3). This density profile decreases as r−3

for r → þ∞, like the NFW profile, but displays a flat core
for r → 0 instead of a cusp. In the following, we shall
compare the theoretical profiles of BECDM halos obtained
from our model with the Burkert profile that fits a lot of
observations.
Some preliminary remarks can be made:
(i) The Burkert profile is empirical and does not rely on

a theory. It is therefore important to see if this profile
is consistent with a profile obtained from a theo-
retical model such as the one presented in this paper.

(ii) The profiles of DM halos are not expected to be
universal. Small halos, with a mass ∼108 M⊙, are
very compact. In the BECDM model, they corre-
spond to the solitonic solution of the GPP equations
(ground state). This solution is substantially differ-
ent from the Burkert profile (see below). However,
the solitonic profile may be closer to the observa-
tions of ultracompact DM halos than the Burkert
profile. The Burkert profile is expected to be valid
only for relatively large halos.

(iii) The DM halos of our model behave as the isothermal
sphere at large distances so their density profiles
decrease as r−2 for r → þ∞ while the Burkert
profile decreases as r−3 for r → þ∞. Therefore, if
we compare the halos of our model with the Burkert
profile at arbitrarily large distances, we will clearly
find a difference of slope. However, in practice, the
halos do not extend to infinity so that both the
isothermal profile and the Burkert profile cease to be
valid above a certain distance. Furthermore, obser-
vational data are only obtained within a limited
range of radial distances: 0 ≤ r ≤ rmax. Therefore,
we must take this constraint into account when
comparing the DM halos of our model with the
Burkert profile.

2. Large halos: Isothermal profile

We first consider large DM halos that are essentially
isothermal with a negligible solitonic core. As we have seen
in Sec. VI D 10, these halos have a mass Mh ≥ ðMhÞ� ¼
3.30 × 109 M⊙ corresponding to χ ≤ χ� ¼ 0.1. The intrin-
sic isothermal profile giving the density normalized by the
central density ρ=ρ0 as a function of the distance normal-
ized by the halo radius r=rh is represented in Fig. 5 together
with the intrinsic Burkert profile (and other profiles that we
do not consider here). The rotation curves of DM halos are
usually measured up to a typical distance rmax ¼ 100 kpc.
Therefore, for a large DM halo characterized by a con-
centration parameter χ ≤ χ� ¼ 0.1, we have to make the
comparison between the intrinsic isothermal profile and the
intrinsic Burkert profile up to a maximum normalized
distance rmax=rh ¼ 86.5

ffiffiffi
χ

p
, where we have used Eq. (115).

The smallest purely isothermal halo, corresponding to
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χ� ¼ 0.1, has a mass ðMhÞ� ¼ 3.30 × 109 M⊙. For this
halo, we have to make the comparison with the Burkert
profile up to ðrmax=rhÞ� ¼ 27.3. For larger halos, we have
to make the comparison up to a smaller normalized distance
rmax=rh ¼ 86.5

ffiffiffi
χ

p ≤ 27.3. This is why we have plotted the
intrinsic density profiles in Fig. 5 up to 30rh in order to
cover all possibilities. In Fig. 5, we see that the isothermal
profile is very close to the Burkert profile for r=rh ≤ 6 and
that it departs from it for r=rh ≥ 6. Therefore, for large DM
halos such that χ ≤ χc ¼ ð6=86.5Þ2 ¼ 0.00481, corre-
sponding to

ðrhÞc ¼ 16.7Rc ¼ 16.7 kpc; ð153Þ

ðMhÞc ¼ 486Σ0R2
c ¼ 6.86 × 1010 M⊙; ð154Þ

ðρ0Þc ¼ 0.0600Σ0=Rc ¼ 0.00846 M⊙=pc3; ð155Þ

ðvhÞc ¼ 5.41ðGΣ0RcÞ1=2 ¼ 133 km=s; ð156Þ

ðkBT=mÞ1=2c ¼ 3.98ðGΣ0RcÞ1=2 ¼ 98.0 km=s; ð157Þ

the isothermal profile is almost indistinguishable from the
Burkert profile up to the maximum distance of observation
rmax ¼ 100 kpc. By contrast, for smaller isothermal halos
with χc¼0.00481≤ χ≤ χ� ¼0.1, corresponding to a mass
range ðMhÞ� ¼ 3.30 × 109 M⊙ ≤ Mh ≤ ðMhÞc ¼ 6.86×
1010 M⊙, we can see a difference between the isothermal
profile and the Burkert profile at large distances. This
difference appears at r=rh > 6, corresponding to r >
6.96χ−1=2 kpc. Beyond this distance, the isothermal profile
decreases as r−2 while the Burkert profile descreases as
r−3.26 These results are illustrated in Fig. 25 where we have
represented the isothermal and Burkert density profiles in
physical scales for halos of different mass (see also Figs. 23
and 24).

3. Small halos: Core-halo profile

We now consider small halos with a core-halo profile. As
we have seen in Sec. VI D 10, they have a mass ðMhÞmin ¼
1.86 × 108 M⊙ < Mh ≤ ðMhÞ� ¼ 3.30 × 109 M⊙ corre-
sponding to χ� ¼ 0.1 ≤ χ < þ∞. In that case, the differ-
ence between the core-halo profile and the Burkert profile
is very significant at large distances as shown in Figs. 23
and 24 for χ ¼ 1 corresponding to Mh ¼ 5.12 × 108 M⊙.

However, for small DM halos, the BEC profile may be
more relevant than the Burkert profile.

4. Ultracompact halos: Ground state

Ultracompact halos close to the ground state ðMhÞmin ¼
1.86 × 108 M⊙, corresponding to χ → þ∞, have no
atmosphere (they are purely solitonic) so it is not relevant
to compare their density profile with the Burkert profile at
large distances (rmax ¼ 100 kpc) since the density drops to
zero at Rc ¼ 1 kpc. For these halos, the solitonic profile
should provide a better agreement with observations than
the Burkert profile. We note, however, that the two profiles
(soliton and Burkert) are relatively close to each other,
especially for what concerns the rotation curve, up to the
halo radius rh (see Figs. 3 and 4).27 At larger distances, the
density of the soliton drops to zero and the circular velocity
decreases according to the Kepler law, so it is no more
relevant to continue the comparison.

5. Conclusion

In conclusion, our results are qualitatively consistent
with the observations. Quantum mechanics explains why

0.1 1 10 100
r (kpc)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ρ 
(M

s/p
c3 )

χ = 0.1

χ = 0.00333

χ = 0.01

FIG. 25. Comparison between the purely isothermal profile
(solid lines) valid for Mh> ðMhÞ� ¼3.30×109 M⊙ (χ≤ χ� ¼0.1)
and the Burkert profile (dashed lines) in the range 0 ≤ r ≤
100 kpc corresponding to the observations. For a large halo
of mass Mh ¼ 1011 M⊙ (χ ¼ 0.00333 < χc ¼ 0.00481) corre-
sponding to the medium spiral, the two profiles are almost
indistinguishable. For a smaller halo of mass Mh ¼ 3.30×
1010 M⊙ (χ ¼ 0.01≳ χc ¼ 0.00481), a deviation starts to appear
close to the maximum distance of observation (in the present case
at r ¼ 69.6 kpc). For a halo of mass ðMhÞ� ¼ 3.30 × 109 M⊙
(χ� ¼ 0.1 > χc ¼ 0.00481), the difference becomes very pro-
nounced at large distances where we clearly see the two slopes
r−2 (isothermal) and r−3 (Burkert). The difference appears at r ¼
22.0 kpc (see the bullet). For smaller halos with a core-halo
profile, the disagreement is even more pronounced (see Fig. 23).
However, for small DM halos, the BEC profile may be more
relevant than the Burkert profile.

26This difference of slope may be explained by incomplete
violent relaxation, tidal effects and stochastic forcing, as dis-
cussed in Refs. [39,40] in the context of the King model (see also
Appendix B). In the present model, the logarithmic slope of the
density profile could be corrected heuristically by tuning the
external potential ω0 in the generalized GPP equations (3)
and (4). This may be a simple way to take into account tidal
effects and other nonideal effects. 27This is also true for the larger halos considered previously.
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there is a minimum halo mass ðMhÞmin ¼ 1.86 × 108 M⊙
and a minimum halo radius ðrhÞmin ¼ 788 pc (ground
state). On the other hand, the isothermal density profile
of large DM halos [Mh > ðMhÞc ¼ 6.86 × 1010 M⊙] is
indistinguishable from the empirical Burkert [6] profile up
to 100 kpc (see Figs. 23–25). Therefore, these profiles
quantitatively agree with the structure of the observed
halos, at least in an average sense (recall that the Burkert
profile is obtained by averaging over many rotation curves
of galaxies). One interest of our model is that there is no
arbitrary (free) parameter. For a given halo massMh, all the
parameters can be determined from our equations. It would
be therefore important to carry out a more detailed
comparison of our model with observations. This will be
considered in future works.

VII. ANOTHER FAMILY OF SOLUTIONS
WITH A PERSISTENT SOLITONIC CORE

AND A PLATEAU (MODEL II)

In the model developed in the previous section (model I),
we have seen that the solitonic core disappears progres-
sively as the halo mass increases so that large DM halos are
purely isothermal without a solitonic core. In the present
section, we develop another model (model II) in which
large DM halos present a persistent solitonic core and a
plateau.

A. A new definition of the halo radius

In Secs. IV–VI, we have defined the halo radius rh by
Eq. (D3). However, in the case where there is a strong
separation between a small solitonic core and a large
isothermal halo (χ ≫ 1), as in Fig. 7, it is more relevant
to define the halo radius rh by

ρðrhÞ
ρc

¼ 1

4
; ð158Þ

where ρc is the density of the plateau given by Eq. (85), not
the central density ρ0. Similarly, the (universal) surface
density of DM halos should be defined by

Σ0 ¼ ρcrh ¼ 141 M⊙=pc2 ð159Þ
instead of Eq. (94). Indeed, when the size of the soliton is
small with respect to the size of the halo, the soliton may
not be sufficiently well resolved in observations and what
we regard as being the “central” density is actually the
density of the plateau ρc, not the density of the soliton ρ0.
As we shall see, this change of definition leads to a new
family of solutions that appears above a critical mass
ðMhÞb ∼ 109 M⊙. Contrary to the family of solutions
constructed in Sec. VI this new family of solutions presents
a persistent solitonic core as the halo mass increases. In a
sense, it corresponds to a bifurcation from the branch of
solutions of model I. In Sec. VIII we shall interpret this

bifurcation in relation to phase transitions in a thermal self-
gravitating boson gas in a box.

B. Physical parameters: Exact expressions

We can easily generalize the results of Sec. VI with the
new definition of the halo radius from Eq. (158). The halo
radius rh is now given by

rh
Rc

¼ ξh
π

ffiffiffi
χ

p ; ð160Þ

where the function ξhðχÞ is determined by the equation

e−ψðξhÞ ¼ BðχÞe−χ
4

: ð161Þ

The density of the plateau is given by

ρcRc

Σ0

¼ π
ffiffiffi
χ

p
ξh

: ð162Þ

The halo mass is given by

Mh

Σ0R2
c
¼ 4ψ 0ðξhÞξheχ

BðχÞπχ ½1þ χe−ψðξhÞ�: ð163Þ

The halo velocity is given by

v2h
GΣ0Rc

¼ 4ψ 0ðξhÞeχ
BðχÞ ffiffiffi

χ
p ½1þ χe−ψðξhÞ�: ð164Þ

The effective temperature of the halo is given by

kBT
GmΣ0Rc

¼ 4eχ

BðχÞξh ffiffiffi
χ

p : ð165Þ

From Eqs. (85) and (162), we find that the central density is
given by

ρ0Rc

Σ0

¼ π
ffiffiffi
χ

p
BðχÞξh

eχ : ð166Þ

From Eq. (72), we find that the soliton mass is given by

Mc

Σ0R2
c
¼ 4

ffiffiffi
χ

p
BðχÞξh

eχ : ð167Þ

For a DM halo characterized by its concentration parameter
χ, all the halo parameters rh, ρc, Mh, vh, T, ρ0, and Mc are
determined by Eqs. (160)–(167).

C. Physical parameters: Approximate
analytical expressions

Actually, it is possible to obtain approximate analytical
expressions of these parameters. Indeed, for large halos, the
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solitonic core is small compared to the halo radius so that,
from the “outside,” everything happens as if the halo were
purely isothermal (i.e., we do not “see” the soliton). Said
differently, the solitonic core is not expected to affect the
properties of the halo at sufficiently large distances r ≫ Rc.
Therefore, the “external” halo parameters ρc,Mh, vh, and T
should be given in good approximation by the purely
isothermal expressions

Mh

Σ0R2
c
¼ 1.76

�
rh
Rc

�
2

;
kBT

mGΣ0Rc
¼ 0.954

rh
Rc

; ð168Þ

v2h
GΣ0Rc

¼ 1.76
rh
Rc

;
ρc

Σ0=Rc
¼ Rc

rh
; ð169Þ

as in the absence of the soliton (see Sec. VI C and note that
ρ0 has been replaced by ρc). In particular, the temperature
of the halo should not depend whether there is a solitonic
core or not. Identifying Eqs. (165) and (168), and using
Eq. (160), we obtain

ξh ¼
3.63ffiffiffiffiffiffiffiffiffiffi
BðχÞp eχ=2: ð170Þ

We then find that the halo radius is given by

rh
Rc

¼ 1.155ffiffiffiffiffiffiffiffiffiffi
BðχÞp eχ=2ffiffiffi

χ
p : ð171Þ

Using Eqs. (168), (169) and (171), we get

Mh

Σ0R2
c
¼ 2.35

BðχÞ
eχ

χ
; ð172Þ

v2h
GΣ0Rc

¼ 2.03ffiffiffiffiffiffiffiffiffiffi
BðχÞp eχ=2ffiffiffi

χ
p ; ð173Þ

kBT
GmΣ0Rc

¼ 1.10ffiffiffiffiffiffiffiffiffiffi
BðχÞp eχ=2ffiffiffi

χ
p ; ð174Þ

ρcRc

Σ0

¼ 0.866
ffiffiffiffiffiffiffiffiffiffi
BðχÞ

p ffiffiffi
χ

p
e−χ=2: ð175Þ

Finally, from Eqs. (166), (167), and (170), we find that

ρ0Rc

Σ0

¼ 0.866ffiffiffiffiffiffiffiffiffiffi
BðχÞp ffiffiffi

χ
p

eχ=2; ð176Þ

Mc

Σ0R2
c
¼ 1.10ffiffiffiffiffiffiffiffiffiffi

BðχÞp ffiffiffi
χ

p
eχ=2: ð177Þ

These functions are plotted in Figs. 26–32. We see that they
define two branches of solutions. For χ < 1, the system is
equivalent to a purely isothermal halo without solitonic
core. For χ > 1 the system has a core-halo structure with a

small solitonic core and an extended isothermal atmos-
phere. They are separated by a plateau. If we add the branch
of solutions obtained in Sec. VI (model I), we see that a sort
of bifurcation occurs at a typical mass28

ðMhÞb ∼ 109 M⊙: ð178Þ

When Mh ¼ ðMhÞmin the DM halo is a pure soliton
(ground state). When ðMhÞmin < Mh < ðMhÞb the DM halo
has the form of a soliton with a tenuous isothermal halo.
There is no plateau between them. WhenMh > ðMhÞb two
types of solutions are possible: a solution where the DM
halo is purely isothermal without central soliton (it corre-
sponds to the branch studied in Sec. VI and recovered in the
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FIG. 27. Plateau density ρc as a function of χ for models I and
II. When there is no plateau, ρc represents the central density ρ0.
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FIG. 26. Halo radius rh as a function of χ for model II. We have
also plotted the curve corresponding to model I.

28The precise value of ðMhÞb should not be given too much
importance since it partly relies on the (ad hoc) fitting procedure
used in Sec. V B to estimate BðχÞ for small χ. It is sufficient to say
that ðMhÞb is larger than ðMhÞmin by about one order of
magnitude, i.e., ðMhÞb=ðΣ0R2

cÞ ∼ 10. It is convenient to identify
ðMhÞb to ðMhÞ� so that the halo parameters at the bifurcation
point are given by Eqs. (146)–(150).
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present analysis for χ ≲ 1) and a solution where the DM
halo has a core-halo structure with a small solitonic core
and an extended isothermal atmosphere separated by a
plateau.
The DM halo parameters corresponding to the purely

isothermal branch [for Mh > ðMhÞb] are given analytically

in terms of rh by Eqs. (168) and (169) with ρc ¼ ρ0, i.e., by
Eqs. (107) and (108).
The DM halo parameters corresponding to the core-halo

branch [forMh > ðMhÞb] are given analytically in terms of
rh by Eqs. (168) and (169) for what concerns their external
structure (isothermal halo), and by

ρ0Rc

Σ0

¼ 1.50
rh
Rc

ln

�
rh
Rc

�
; ð179Þ

Mc

Σ0R2
c
¼ 1.90

rh
Rc

ln

�
rh
Rc

�
; ð180Þ

for what concerns their “internal” structure (soliton). These
latter equations, which determine the soliton density and
the soliton mass have been obtained by eliminating χ from
Eqs. (171), (176), and (177).29 It is interesting to note that,
apart from logarithmic corrections, these formulas are
independent of B. Therefore, we can consider that these
results have been obtained in a purely analytical manner
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FIG. 28. Halo mass Mh as a function of χ for models I and II.
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and II.
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29We have neglected sublogarithmic corrections and taken χ ∼
2 lnðrh=RcÞ at leading order.
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since we only used the numerics in Sec. V B to determine
the constant B and we do not need its value here.

D. The relation between the soliton mass
and the halo mass

From Eqs. (168) and (180), we can obtain the relation
between the soliton mass and the halo mass:

Mc

Σ0R2
c
¼ 0.719

�
Mh

Σ0R2
c

�
1=2

ln

�
Mh

Σ0R2
c

�
: ð181Þ

It is plotted in Fig. 33. Introducing the minimum halo mass
ðMhÞmin ¼ 1.32Σ0R2

c ¼ 1.86 × 108 M⊙, we can rewrite the
foregoing equation as

Mc

ðMhÞmin
¼ 0.626

�
Mh

ðMhÞmin

�
1=2

ln

�
Mh

ðMhÞmin

�
: ð182Þ

We also note that

Mc ¼ 0.719Rc

ffiffiffiffiffiffiffiffiffiffiffiffi
Σ0Mh

p
ln

�
Mh

Σ0R2
c

�
: ð183Þ

These relations are valid on the core-halo branch for Mh >
ðMhÞb and sublogarithmic corrections have been neglected.
At leading order, the core mass increases as Mc ∝ M1=2

h .
Logarithmic corrections may slightly change the apparent
scaling exponent.
The bifurcation is clearly visible in Fig. 33. When

ðMhÞmin < Mh < ðMhÞb there is only one solution which
corresponds to a solitonic core surrounded by a small
isothermal halo without plateau. ForMh > ðMhÞb there are
two solutions: a large isothermal halo without soliton and a
large isothermal halo with a solitonic core and a plateau.
Remark: In a recent work, Lin et al. [169] found that

“small” halos (Mh < 1010 M⊙) have a core-halo structure
without a plateau while “large halos” (Mh > 1010 M⊙)
have a core-halo structure exhibiting a plateau. This is

qualitatively similar to the bifurcation that we have inde-
pendently obtained in our study.

E. Astrophysical consequences: Formation
of a solitonic bulge

Let us study the astrophysical consequences of these
results. For a large DM halo of mass Mh ¼ 1012 M⊙,
considering the core-halo solution, we find that χ ¼ 4.54.
Then, we get rh ¼ 61.9 kpc, vh ¼ 263 km=s,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼
246 km=s, ρc¼2.27×10−3 M⊙=pc3, ρ0 ¼ 50.2 M⊙=pc3,
and Mc ¼ 6.39 × 1010 M⊙.

30 Considering now a purely
isothermal DM halo (χ ¼ 0) with the same mass and
using Eqs. (107) and (108), we find that rh ¼ 63.5 kpc,
vh ¼ 260 km=s,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 191 km=s, and ρc¼2.22×
10−3M⊙=pc3 (the differences between the external param-
eters rh, vh, T=m, and ρc in the two cases are due to the fact
that χ is relatively small). The density and velocity profiles
are represented in Figs. 34 and 35.
Our model II predicts that a large DM halo of mass

Mh ¼ 1012 M⊙, such as the one surrounding our Galaxy,
should possess a solitonic core of radius Rc ¼ 1 kpc,
mass Mc ¼ 6.39 × 1010 M⊙, and central density ρ0 ¼
50.2 M⊙=pc3 (see Fig. 34). In the solitonic core, the
circular velocity is much larger than for a purely isothermal
distribution (see Fig. 35). Let us consider different impli-
cations of this prediction.
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The concentration parameter χ ¼ 4.54 is not very large. As a
result, the plateau is not very clear cut and the definition of the
“plateau density” ρc is a bit ambiguous. It approximately
corresponds to the inflexion point of the core-halo profile. The
dashed line corresponds to the purely isothermal solution without
soliton. We see that the two profiles approximately match each
other for r ≳ 10 kpc.

30To determine these values, we have used the exact expres-
sions from Eqs. (160)–(167), not the approximate analytical
expressions from Eqs. (171)–(177) because χ is not large enough
to fully justify their validity.
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In the most favorable scenario, the solitonic core is
physical. This scenario is supported by the numerical
simulations of Schive et al. [96,97] that reveal the presence
of an extended solitonic core at the centres of DM halos.31

For real galaxies, this solitonic core may still exist now or
may have existed only in the past and has disappeared since
then (see below). Because of its deep gravitational poten-
tial, the solitonic core could have acted as a “seed” for the
formation of early spheroids and quasars. It could have
helped forming a stellar bulge or a galactic nucleus.32

Indeed, the gravitational force created by the soliton can
quickly attract a large amount of gas into a small central
region, thereby creating an ultradense gas favorable for
major starbursts and for the formation of SMBHs [96,97].
We shall show in the following section that this core-halo
solution is thermodynamically unstable in the canonical
ensemble. Therefore, the solitonic core may have formed
only temporarily in the past, but long enough to constitute
a stellar bulge (possibly triggering the formation of a
black hole and a quasar), before disappearing on a longer
timescale.33

In the most defavorable scenario, the solitonic core is not
physical. Indeed, the solitonic core should produce a clear
signature on the velocity curves marked by the presence of
a dip (see Fig. 35). Apparently, this dip has not been clearly
observed as argued by Slepian and Goodman [168] (see,
however, the Remark at the end of this section). Assuming
that this is not a problem of measurement (or that the dip/

soliton has not disappeared during the evolution of the
halo), this raises the following possibilities:

(i) The first possibility is that the BECDM model
with a repulsive self-interaction is ruled out.
This is essentially the conclusion of Slepian and
Goodman [168].

(ii) There is, however, another possibility. The core-halo
solution forms just one possible solution of the self-
gravitating BEC model. Another solution exists in
which the DM halo is purely isothermal without
solitonic core. It is possible that this purely iso-
thermal solution is selected instead of the core-halo
one. We shall show in the following section that the
purely isothermal solution is stable (minimum of
free energy at fixed mass) while the core-halo
solution is thermodynamically unstable in the
canonical ensemble (saddle point of free energy).
From these thermodynamical considerations, the
purely isothermal solution with no soliton is more
probable than the core-halo one (assuming that the
canonical ensemble rather than the microcanonical
ensemble applies to our problem).

Clearly, the confirmation of the presence or the absence
of a “solitonic” bulge of mass Mc ¼ 6.39 × 1010 M⊙ and
size Rc ¼ 1 kpc at the center of DM halos of mass Mh ¼
1012 M⊙ and size rh ¼ 61.9 kpc would be of considerable
interest. This is a challenge for astrophysical observations.
Remark: During the redaction of our manuscript, we

came across the recent paper of DeMartino et al. [177] who
show that the central motion of bulge stars in the
Milky Way implies the presence of a DM core of mass
≃109 M⊙ and radius ≃100 pc that they interpret as a
soliton. Their result is based on the measures of dispersion
velocity by Zoccali et al. [178] and Portail et al. [179] who
construct a fully dynamical model of the bulge and find the
need for a compact mass of ≃2 × 109 M⊙. These results are
qualitatively consistent with our model which predicts a
large solitonic core of radius Rc ¼ 1 kpc and mass Mc ¼
6.39 × 1010 M⊙ in a DM halo of mass Mh ¼ 1012 M⊙.
The values of Mc and Rc are different from De Martino
et al. [177] because our model is different: we are
considering self-interacting bosons in the TF limit while
De Martino et al. [177] consider noninteracting bosons.
Furthermore, our DM halo of massMh ¼ 1012 M⊙ is more
massive than the DM halo of the Milky Way implying a
larger soliton mass. Neverthless, this qualitative agreement
is encouraging and shows that a solitonic core can really be
present, even now, at the centers of the galaxies (from a
thermodynamical point of view this would imply that the
microcanonical ensemble is more relevant than the canoni-
cal one, see footnote 33). It will be important to extend our
model to the case of noninteracting bosons [142] to see if
the agreement with De Martino et al. [177] improves. This
may help discriminating between different types of bosons,
i.e., noninteracting bosons versus self-interacting bosons.
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FIG. 35. Same as Fig. 34 for the circular velocity.

31These simulations apply to a noninteracting BEC but similar
results should be obtained for a self-interacting BEC.

32In this respect, we note that the mass Mc ¼ 6.39 × 1010 M⊙
and the size Rc ¼ 1 kpc of the soliton are compatible with the
mass and size of stellar bulges and galactic nuclei.

33Note that the core-halo solution is dynamically stable so that
it is relatively persistent. It is also thermodynamically stable in the
microcanonical ensemble (see Secs. VIII D 5 and IX). This may
increase its lifetime if the microcanonical ensemble is the correct
ensemble to consider in our problem. Therefore, it is very likely
that the core-halo solution is physically relevant (see the Remark
at the end of this section).
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F. Can the soliton mimic a SMBH?

There is strong observational evidence that very massive
objects reside at the centers of galaxies. These objects are
usually considered to be SMBHs. For example, Sagittarius
A* (Sgr A*), a bright and very compact astronomical radio
source that resides at the center of our Galaxy is thought to
be the location of a SMBH of massM ¼ 4.2 × 106 M⊙ and
Schwarzschild radius RS ¼ 4.02 × 10−7 pc. Whatever the
object may be, it must be enclosed within a radius RP ¼
6 × 10−4 pc (RP ¼ 1492RS), the S2 star pericenter [180].

34

Similar objects are expected to reside at the centers of most
spiral and elliptical galaxies, in active galactic nuclei.
Although it is commonly believed that these objects are
SMBHs [180–183], this is not yet established on a firm
observational basis in all cases. As an alternative to the
black hole hypothesis, it has been proposed that such
objects could be fermion balls [24,27,30,31,38,42] or
boson stars [184,185] that could mimic a black hole. Let
us consider this possibility in the framework of the present
model. More precisely, let us investigate if a solitonic core
can mimic a SMBH at the center of the Milky Way.
To be specific, let us consider a DM halo of mass Mh ¼

1011 M⊙ similar to the one that surrounds the Milky Way.
Using the results of Sec. VII C, we find that this halo should
contain a solitonic core of massMc ¼ 1.77 × 1010 M⊙ and
radius Rc ¼ 1 kpc. Clearly, the soliton is too extended to
mimic a black hole. As discussed in Sec. VII E the solitonic
core is more likely to represent a bulge which is either
present now or which, in the past, may have triggered the
formation of a black hole.
Nevertheless, let us try to push our model to its limits by

relaxing certain assumptions. We relax the value of Rc ¼
1 kpc that was fixed by the size of ultracompact DM halos
(see Sec. VI B) and we impose that Mh ¼ 1011 M⊙ and
Mc ¼ 4.2 × 106 M⊙. Using the relation Mh=Mc ¼ ð2.14=ffiffiffiffiffiffiffiffiffiffi
BðχÞp Þeχ=2=χ3=2 obtained from Eqs. (172) and (177) we

obtain χ ¼ 22.5. Then, we find from Eq. (172) that
Rc ¼ 0.652

ffiffiffiffiffiffiffiffiffiffiffiffi
BðχÞχp

e−χ=2ðMh=Σ0Þ1=2, giving Rc ¼ 6.98×
10−2 pc.35 Finally, Eqs. (171), (173), (174), (175), and
(176) imply rh ¼ 2.00 × 104 pc, ρc¼7.03×10−3M⊙=pc3,
ðkBT=mÞ1=2¼108km=s, vh ¼ ðGMh=rhÞ1=2 ¼ 146 km=s,
and ρ0 ¼ 9.80 × 109 M⊙=pc3. The values of the external
parameters exactly match the values of a purely isothermal
halo (see Sec. VI C). This is because χ ≫ 1 making our
approximate analytical expressions accurate. As a result,
we obtain a core-halo profile (see Figs. 36 and 37) that is
consistent with the observations from the outside, and that

contains a solitonic core of mass Mc ¼ 4.2 × 106 M⊙
similar to the mass of the compact object at the center
of the Galaxy. Unfortunately, the radius of the soliton,
Rc ¼ 6.98 × 10−2 pc, is 100 times larger than the maxi-
mum size of this object, RP ¼ 6 × 10−4 pc, deduced from
the observations.36 More generally, we show in
Appendix H that the solitonic core is never relativistic
so it can never mimic a SMBH.
In addition to being unable to mimic a central black hole,

there is another problem with the profile constructed
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FIG. 37. Same as Fig. 36 for the circular velocity.

34The radius of the compact object must satisfy R� ≤ RP from
the observations. This implies R�=RS ≤ 1492. This object is not
necessarily a black hole unless its radius is much smaller than
RP ¼ 6 × 10−4 pc, namely R� ∼ RS ¼ 4.02 × 10−7 pc.

35This corresponds to a ratio as=m3¼1.60×10−5 fm=ðeV=c2Þ3
of the DM particle parameters [see Eq. (71)].

36Instead of imposing the core mass, we could impose the core
radius Rc ¼ 6 × 10−4 pc. From Eq. (172) with Mh=ðΣ0R2

cÞ ¼
1.97 × 1015, we obtain χ ¼ 32.4. Then, Eq. (171) and Eqs. (173)–
(177) give rh ¼ 2.02 × 104 pc, ρc ¼ 6.95 × 10−3 M⊙=pc3,
ðkBT=mÞ1=2 ¼ 108 km=s, vh¼ðGMh=rhÞ1=2¼147 km=s, ρ0 ¼
1.93 × 1014 M⊙=pc3, and Mc ¼ 5.30 × 104 M⊙. This time, the
core mass Mc ¼ 5.30 × 104 M⊙ is about 100 times smaller than
the mass of the central objectM ¼ 4.2 × 106 M⊙ estimated from
the observations.
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previously. Since we have changed the value of Rc ¼
6.98 × 10−2 pc with respect to its original value Rc ¼
1 kpc in order to impose a core mass Mc ¼ 4.2 × 106 M⊙,
the ground state of the self-gravitating BECmodel has been
changed accordingly. For Rc ¼ 6.98 × 10−2 pc, the ground
state now corresponds to ðrhÞmin ¼ 5.50 × 10−2 pc and
ðMhÞmin ¼ 0.906 M⊙ [see Eq. (95)]. The minimum halo
radius and the minimum halo mass are much smaller than
the radius and the mass of typical dSphs like Fornax. Such
small halos are not observed, suggesting that the ground
state of DM halos is at a much larger scale, of the order of
1 kpc, as we have initially assumed (see Sec. VI B). If we
ignore this difficulty and nevertheless apply the model with
Rc ¼ 6.98 × 10−2 pc to a halo of mass Mh ¼ 1.86 ×
108 M⊙ (such as Fornax) we find from Eq. (172) that
χ ¼ 15.9. We then obtain from Eq. (171) and Eqs. (173)–
(177) that rh¼880 pc, ρc¼0.160M⊙=pc3, ðkBT=mÞ1=2 ¼
22.5 km=s, vh ¼ ðGMh=rhÞ1=2 ¼ 30.6 km=s, ρ0 ¼ 3.04×
108 M⊙=pc3, andMc ¼ 1.31 × 105 M⊙. This DM halo has
a core-halo structure with a very small nucleus of mass
Mc ¼ 1.31 × 105 M⊙ and radius Rc ¼ 6.98 × 10−2 pc,
and an extended isothermal halo (see Figs. 38 and 39).
This is very different from the structure that we have
considered in Sec. VI B consisting of a pure soliton of mass
Mh ¼ 1.86 × 108 M⊙ and radius rh ¼ 788 pc (see the pure
soliton in Figs. 23 and 24).
The previous arguments (and the results of Appendix H)

lead to the conclusion that the solitonic core of model II
cannot mimic a SMBH. The solitonic core is more likely to
represent a large central bulge or a galactic nucleus (see
Sec. VII E). This conclusion is important in view of the
different attempts that have been made in the past to
describe the compact object that resides at the center of

our Galaxy, presumably a SMBH [180–183], by an object
of another nature like a fermion ball [24,27,30,31,38,42] or
a boson star [184,185].37 In future works [142], we shall
adapt our model to the case of noninteracting bosons and
self-gravitating fermions to see whether we reach the same
conclusion. We will then decide whether the boson star or
fermion ball scenario (as a SMBHmimicker) is ruled out or
if we need to modify our model. Any definite conclusion is
premature for the moment.
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FIG. 39. Same as Fig. 38 for the circular velocity.
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FIG. 38. Core-halo density profile in the framework of model II
corresponding to a DM halo of massMh ¼ 1.86 × 108 M⊙ (such
as Fornax) and concentration parameter χ ¼ 15.9 when the
condition Rc ¼ 1 kpc is (arbitrarily) relaxed. As explained in
the text, this profile has to be rejected in favor of the pure soliton
(dashed line) corresponding to the ground state of the BECDM
model.

37Bilic et al. [31] developed a model of fermionic DM (with a
fermion mass m ¼ 15 keV=c2) that describes both the center and
the halo of the Galaxy. They found a (nonrelativistic) fermion ball
of mass M ¼ 2.27 × 106 M⊙ and radius R ¼ 18 mpc. Unfortu-
nately, its radius is larger by a factor 100 than the bound RP ¼
6 × 10−4 pc set by later observations [180]. The same problem
was encountered by Ruffini et al. [38] who developed a similar
model with a fermion mass m ∼ 10 keV=c2. Very recently,
Argüelles et al. [42] considered the fermionic King model
[40] (accounting for a tidal confinement) with a fermion mass
m ¼ 48 keV=c2 and found a core-halo solution with a (non-
relativistic) fermion ball of mass M ¼ 4.2 × 106 M⊙ and radius
R ¼ RP ¼ 6 × 10−4 pc consistent with the observations. This
core-halo state is dynamically (Vlasov) stable. Therefore, if we
“prepare” the system in this state, it will remain in this state for a
very long time. However, we have argued in [40,186] (see also
Sec. VIII D 5) that this core-halo solution is thermodynamically
unstable in all statistical ensembles. As a result, it is very unlikely
to appear spontaneously in a thermodynamical sense. The
fermion ball of the core-halo state corresponds to a sort of
“critical droplet” or “critical nucleus” (saddle point of entropy) in
the language of phase transitions and nucleation which has a very
low probability of occurrence. Furthermore, the model of
Argüelles et al. [42] faces the “ground state problem” reported
in the fourth paragraph of this section. Assuming that Fornax is
the ground state of the self-gravitating Fermi gas imposes that
m ¼ 170 eV=c2 (see the Remark at the end of Sec. VI B). This
mass is much smaller than the mass m ¼ 48 keV=c2 taken in
Ref. [42]. If we object that Fornax may not be the ground state of
the self-gravitating Fermi gas this would imply that (i) much
smaller halos should exist, (ii) Fornax should have a core-halo
structure with a small central fermion ball (possibly mimicking a
SMBH). To our knowledge, these two features have not been
observed.
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VIII. PHASE TRANSITIONS OF A
THERMAL SELF-GRAVITATING

BOSON GAS IN A BOX

In this section, we study the nature of phase transitions in
a self-gravitating BEC described by the equation of state
(14). This system generically has a core-halo structure with
a solitonic core and an isothermal halo. Since the halo is
isothermal, the density decreases at large distances as r−2.
This implies that the total mass of the system is infinite.
A solution to avoid the infinite mass problem is to confine
the system within a spherical box of radius R. This box
model will allow us to recover the bifurcation between the
purely isothermal state and the core-halo state obtained in
the preceding section and to interpret this bifurcation in
terms of a phase transition related to the existence of a
canonical critical point. It will also allow us to show that
purely isothermal configurations are thermodynamically
stable (minima of free energy) while core-halo configura-
tions are thermodynamically unstable in the canonical
ensemble (saddle points of free energy). We will also
discuss their microcanonical stability and the notion of
ensembles inequivalence [33,154,187].

A. Basic equations

The equilibrium states of a self-gravitating BEC
described by the equation of state (14) are determined
by the generalized Emden equation (56). Let us denote by α
the value of ξ at the box radius R. According to Eqs. (49)
and (53), the normalized box radius α is given by

α ¼ ð4πGρ0βmÞ1=2R: ð184Þ

We then have r ¼ ξR=α. The total mass enclosed within
the box is M ¼ MðRÞ. From Eq. (59) we find that the
normalized inverse temperature

η ¼ βGMm
R

ð185Þ

is given by

η ¼ α½1þ χe−ψðαÞ�ψ 0ðαÞ: ð186Þ

Let us introduce the control parameter38

μ ¼ Gm3R2

asℏ2
: ð187Þ

Using Eq. (71), it can be written as

μ ¼ π2
�
R
Rc

�
2

: ð188Þ

It measures the size of the system (represented by R) as
compared to the size Rc of the solitonic core. We note that
the condition R > Rc corresponds to μ > μmin ¼ π2 ¼
9.87. From Eqs. (54) and (184), we find that

μ ¼ α2

χ
: ð189Þ

On the other hand, combining Eqs. (184), (185) and
(189), we find that the normalized central density is
given by

4πρ0R3

M
¼ α2

η
¼ μχ

η
: ð190Þ

Then, combining Eqs. (72), (188) and (190), we find that
the mass of the solitonic core is given by

Mc

M
¼ πχ

η
ffiffiffi
μ

p : ð191Þ

Finally, the density profile from Eq. (53) can be written as

4πR3

M
ρ ¼ α2

η
e−ψðαr=RÞ: ð192Þ

B. Series of equilibria

Let us prescribe a value of μ. For a given value of χ we
can solve the generalized Emden equation (56) up to the
normalized box radius α ¼ ffiffiffiffiffi

μχ
p

[see Eq. (189)]. The
corresponding normalized inverse temperature η is then
given by Eq. (186). By varying the value of χ from 0 to
þ∞, we can obtain the series of equilibria ηðχÞ for a fixed
value of μ. Examples of such curves are given in Fig. 40.
For a given value of the inverse temperature η there may
exist one or several solutions with different values of the
concentration parameter χ. This multiplicity of solutions
leads to bifurcations and phase transitions. Among all
possible solutions, we must select the stable ones, i.e., those
that correspond to (local) minima of free energy.39

Similarly to the case of self-gravitating fermions [33],
we find the existence of a canonical critical point (see
Fig. 40):

μCCP ≃ 130 ð193Þ

above which phase transitions appear in the canonical
ensemble. As we shall see, this canonical critical point is38This parameter is the counterpart of the degeneracy param-

eter μ¼η0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512π4G3MR3

p
with η0 ¼ gm4=h3 (where g ¼ 2sþ 1

is the spin multiplicity of the quantum states) introduced in the
study of self-gravitating fermions [33].

39In this section, we work in the canonical ensemble. The
microcanonical ensemble is considered in Sec. VIII D 5.

PIERRE-HENRI CHAVANIS PHYS. REV. D 100, 083022 (2019)

083022-34



connected to the bifurcation observed in Sec. VII. Below,
we provide a preliminary study of phase transitions in the
thermal self-gravitating boson gas, limiting ourselves to the
canonical ensemble (fixed T). A more detailed study will be
the object of a future paper.

1. μ < μCCP
When μ < μCCP ≃ 130 there is only one equilibrium state

for each temperature (see Fig. 41). It corresponds to a pure
soliton surrounded by a tiny isothermal atmosphere (quan-
tum phase Q). This structure is thermodynamically stable.
There is no phase transition.

2. μ > μCCP
When μ > μCCP ≃ 130 there is a canonical phase tran-

sition associated with a multiplicity of equilibrium states
with the same temperature. Let us first consider the case

where μ is not too large. We take μ ¼ 39797 (see Fig. 42).
This value of μ corresponds to a DM halo of mass M ¼
1012 M⊙ and size R ¼ 63.5 kpc similar to the DM halo that
surrounds the Milky Way (see Sec. VII E and Sec. VIII D 1
below). For the inverse temperature η ¼ 1.17 (the choice of
this value is explained in Sec. VIII D 1 below) there are
three solutions with different concentration parameters χ.
Their density profiles are represented in Fig. 43. For each of
these solutions, the core mass Mc can be determined
by Eq. (191).
The first solution (G) with χðGÞ ¼ 1.37 × 10−4 and

MðGÞ
c =M ¼ 1.84 × 10−6 ≪ 1 corresponds to an isothermal

halo having a negligible solitonic core. This is the gas-
eous phase.
The third solution (C) with χðCÞ ¼ 69.8 and MðCÞ

c =M ¼
0.939 corresponds to a very compact halo (pure solitonic
core) having a negligible atmosphere. This is the con-
densed phase.
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FIG. 40. Series of equilibria ηðχÞ for different values of μ (we
have taken μ ¼ 100, 130, 140, 150, 200, 500, 1000, 2000—top to
bottom—for illustration). We find the existence of a canonical
critical point μCCP ≃ 130 above which bifurcations and phase
transitions appear. They are associated with a multiplicity of
solutions for the same value of the inverse temperature η.
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FIG. 41. Series of equilibria ηðχÞ for μ < μCCP ≃ 130
(here μ ¼ 100). There is only one equilibrium state for each
temperature.
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FIG. 42. Series of equilibria ηðχÞ for μ > μCCP ≃ 130 not too
large (here μ ¼ 39797). For η ¼ 1.17 and η ¼ 1.84 there are three
equilibrium states: (G) is the stable gaseous phase, (C) is the
stable condensed phase, and (CH) is the unstable core-halo phase.
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FIG. 43. Density profiles of the three solutions correspon-
ding to the inverse temperature η ¼ 1.17 for μ ¼ 39797.
They correspond to a DM halo of mass M ¼ 1012 M⊙ and size
R ¼ 63.5 kpc.
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Finally, the second solution (CH) with χðCHÞ ¼ 4.54 and

MðCHÞ
c =M ¼ 0.0611 has a core-halo structure with a rela-

tively massive solitonic core and a large isothermal
atmosphere. This is the core-halo phase.
Using the Poincaré turning point criterion [188,189],40

we can deduce from Fig. 42 that, in the canonical ensemble,
the solutions (G) and (C) are thermodynamically stable
(minima of free energy at fixed mass) while the solution
(CH) is thermodynamically unstable (saddle point of free
energy at fixed mass). It represents a critical droplet or a
critical nucleus creating a barrier of free energy that the
systemmust cross in order to trigger a phase transition from
the gaseous phase (G) to the condensed phase (C).
We note that the multiplicity of the solutions depends on

the temperature. When η < η� there is only one solution:
the gaseous phase (G). When η > ηc there is only one
solution: the condensed phase (C). When η� < η < ηc there
are three solutions: the gaseous phase (G), the core-halo
phase (CH) and the condensed phase (C).
There exists a transition temperature ηt (not represented)

such that when η < ηt the gaseous state is fully stable
(global minimum of free energy) and the condensed phase
is metastable (local minimum of free energy). When η > ηt
the situation is reversed (see [33] for a detailed discussion
of phase transitions in the case of self-gravitating fer-
mions). However, for systems with long-range interactions
such as self-gravitating systems, the metastable states have
a very long lifetime scaling as eN where N is the number of
particles (this is because the probability to spontaneously
create a critical nucleus in order to trigger the phase
transition is a very low—rare event—scaling as e−N).
This lifetime is generally much larger than the age of
the Universe so that metastable states can be as much, or
even more, relevant than fully stable states [190].
Therefore, the first order phase transition at ηt does not
take place in practice. As a result, we shall not distinguish
between fully stable and metastable states. The selection of
the gaseous or condensed phase depends on the initial
conditions and on a notion of basin of attraction [33].

3. μ ≫ μCCP
For very large values of μ, new equilibrium states may

appear in a certain range of temperatures. For example,
when μ ¼ 105, we have five solutions at η ¼ 1.84 (see
Fig. 44). Using the Poincaré turning point criterion, we can
show that (G) is stable, (CH”) has one mode of instability,
(CH’) has two modes of instability, (CH) has one mode of
instability, and (C) is stable.
As before, the multiplicity of the solutions depends on

the value of η. When η < η�, there is only one solution: the
gaseous phase (G). When η > ηc there is only one solution:

the condensed phase (C). When η� < η < η2 there are three
solutions: the gaseous phase (G), the core-halo phase (CH),
and the condensed phase (C). When η2 < η < ηc there are
three or more solutions.

C. Caloric curves

We can also visualize the multiplicity of the solutions by
plotting the caloric curves ηðΛÞ giving the inverse temper-
ature η ¼ βGMm=R as a function of the opposite of the
energy Λ ¼ −ER=GM2. The caloric curves of a thermal
self-gravitating BEC will be given in a forthcoming paper
but they are similar to those obtained in the case of self-
gravitating fermions [33].
When μ < μCCP, the caloric curve is monotonic (see

Fig. 14 of [33]) leading to the results of Sec. VIII B 1.
When μ > μCCP is not too large, the caloric curve has an

N-shape structure (see Fig. 31 of [33]) leading to the results
of Sec. VIII B 2.
When μ ≫ μCCP, the caloric curve has a more compli-

cated structure, corresponding to a thick spiral (see Fig. 22
of [33]). We call it “thick” because it is made of two
branches that almost superimpose: a direct spiral and an
inverse spiral. This leads to the results of Sec. VIII B 3. For
η ≃ 2, corresponding to the center of the spiral (see below),
the number of solutions increases (up to an infinity) as μ
increases.
When μ → þ∞, we recover the classical spiral (see Fig. 8

of [33]).41 In that case, the direct and inverse branches
exactly superimpose. We get η� → 0, ηc → 2.52 (maximum
of the classical isothermal spiral), η2 → 1.84 (minimum of
the classical isothermal spiral), and ηs → 2 (center of the
spiral).
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FIG. 44. Series of equilibria ηðχÞ for μ ≫ μCCP (here μ ¼ 105).
For η ¼ 1.84 there are five intersections: (G) is the gaseous phase,
(C) is the condensed phase, and (CH), (CH’), and (CH”) are
unstable phases with a core-halo structure. (CH) is the less unstable
of them. For η ¼ 1.17 there are only three solutions as before.

40See [33] for an application of the Poincaré turning point
criterion in the case of self-gravitating fermions.

41The quantum caloric curves with a finite value of μ described
previously correspond to the unwiding of the classical spiral (see
Fig. 14 of [33]).
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D. Application to real DM halos

In this section, we apply the box model to real DM halos.
We shall recover from the box model the bifurcation
obtained in Sec. VII C and the relation between the core
mass Mc and the halo mass Mh obtained in Sec. VII D.

1. Connection to astrophysical parameters

In order to apply the box model to real DM halos, we
identify the box radius R with the halo radius rh and the
mass M with the halo mass Mh. For a given DM halo, we
can compute the parameter μ given by Eq. (188).42 We have
previously seen that large DM halos appear “from the
outside” as being essentially isothermal (the solitonic
core—if there is any—does not affect their external
structure). As a result, the halo mass is related to the halo
radius by the relation

Mh ¼ 1.76Σ0r2h: ð194Þ

As in Sec. VII E, we consider a halo of massM ¼ 1012 M⊙
and radius R ¼ 63.5 kpc similar to the DM halo that
surrounds the Milky Way. For such a halo we get
μ ¼ 39797. The corresponding series of equilibria ηðχÞ
is represented in Fig. 42.
Using Eqs. (D21) and (D23), we find that the normalized

inverse temperature of the halo is43

βGMhm
rh

¼ ξhψ
0
h ¼ 1.84: ð195Þ

Therefore, if we want to make the connection between the
box model and real DM halos, we should consider a value
of η equal to 1.84. The intersection between the series of
equilibria ηðχÞ and the line level η ¼ 1.84 determines the
possible equilibrium states. It is reassuring to note that
η ¼ 1.84 is smaller than ηc ≃ 2.52 (corresponding to the
maximum of the classical isothermal spiral) implying that
there always exists a gaseous equilibrium state (G).
Actually, we should not give too much importance on
the precise value of η. It is sufficient to consider that η is of
the order of 1–2. This is essentially a consequence of the
virial theorem. Considering Fig. 42, we see that the gaseous
solution (G) and the condensed solution (C) do not strongly
depend on η in the interval η ∼ 1–2 while the core-halo
solution (CH) is more sensitive to its precise value. This is
even more true for the case considered in Fig. 44, with a
larger value of μ, where several core-halo solutions (CH),
(CH’), (CH”) may exist at the same temperature. In order to
always clearly identify the less unstable core-halo solution

(corresponding to the last but one intersection), we find it
convenient to select a value of η smaller than η2. In this
manner, we are guaranteed to have at most three solutions:
a gaseous solution (G), a core-halo solution (CH), and a
condensed solution (C). To be specific, and guided by the
results obtained in Sec. VII E, we choose η ¼ 1.17. In that
case, the core-halo solution for μ ¼ 39797 has χðCHÞ ¼
4.54 (see Fig. 42) as in Sec. VII E.

2. The critical mass ðMhÞCCP for the onset
of the bifurcation

We have seen in Sec. VIII B that phase transitions
(associated with the multiplicity of the solutions for a
given temperature) appear for μ > μCCP ≃ 130. If we
identify R with rh in Eq. (188), we get

rh
Rc

¼
ffiffiffi
μ

p
π

: ð196Þ

Combining Eqs. (194) and (196), we obtain

Mh ¼ 1.76Σ0

μ

π2
R2
c: ð197Þ

Therefore, the halo mass corresponding to the canonical
critical point is

ðMhÞCCP
Σ0R2

c
¼ 1.76

μCCP
π2

≃ 23.2: ð198Þ

Using Eq. (110), we obtain

ðMhÞCCP ¼ 3.27 × 109 M⊙: ð199Þ

When Mh < ðMhÞCCP there is only one equilibrium state
corresponding to a solitonic core surrounded by a tiny
isothermal atmosphere (quantum phase Q). When Mh >
ðMhÞCCP there are generically three equilibrium states with
the same temperature: a purely isothermal halo (gaseous
phase G), an almost purely solitonic halo (condensed phase
C), and an isothermal halo containing a small but relatively
massive solitonic core (core-halo phase CH). Eliminating
the almost purely solitonic solution which is not consistent
with the observations of large DM halos, it remains the
gaseous solution (G) and the core-halo solution (CH).
Therefore, the box model predicts a bifurcation similar to
the one predicted in Sec. VII C from different arguments.
We note that the critical mass ðMhÞCCP ¼ 3.27 × 109 M⊙
obtained in the present section is relatively close to the
critical mass ðMhÞb ∼ 109 obtained in Sec. VII C indicating
that the two approaches are consistent. The critical mass
ðMhÞCCP ¼ 3.27 × 109 M⊙ is also extremely close to
ðMhÞ� ¼ 3.30 × 109 M⊙. Therefore, it is convenient to
identify ðMhÞ�, ðMhÞb, and ðMhÞCCP. As a result, the halo
parameters at the bifurcation are given by Eqs. (146)–(150).

42We note that for the model of BECDM considered in
this paper μ depends only on R, not on M.

43Remarkably, this value turns out to be very close to the value
η2 ¼ 1.84 corresponding to the minimum inverse temperature of
the classical isothermal spiral (see Sec. VIII C).
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Remark: Using Eq. (197), we note that the halo mass
associated with μmin ¼ π2 ¼ 9.87 is Mh ¼ 1.76Σ0R2

c ¼
2.48 × 108 M⊙ which can be identified with the minimum
halo mass ðMhÞmin¼1.32Σ0R2

c¼1.86×108M⊙ obtained
in Sec. VI B.

3. The Mc −Mh relation

The Mc −Mh relation can be obtained from the box
model as follows. For η ¼ 1.17 and for a given value of μ,
we can determine the concentration parameter χðCHÞ of
the core-halo solution by the intersections illustrated in
Fig. 42. Then, we can obtain the solitonic core mass
normalized by the total mass Mc=M from Eq. (191). We
can repeat this procedure for different values of μ and
obtain the curve Mc=M as a function of μ. In Fig. 45, we
plot ðMc=MÞη ffiffiffi

μ
p

=π ¼ χðCHÞðμÞ as a function of ln μ. In the
dominant approximation, we numerically find that44

Mc

M
∼
π

η

ln μ

μ1=2
: ð200Þ

We have repeated the same procedure with η ¼ 1.84 being
careful to define χðCHÞ as being the last but one intersection
in Fig. 44. Although the results differ for small values of μ
(showing the sensibility of the core-halo solution with η
mentioned previously), we find essentially the same scaling
for large values of μ. From this scaling law, identifying M

with the halo mass and using Eqs. (188) and (194), we find
that

Mc

Σ0R2
c
¼ 1.33

η
ln

�
Mh

Σ0R2
c

��
Mh

Σ0R2
c

�
1=2

; ð201Þ

with η ∼ 1–2. This returns the scaling Mc ∝ M1=2
h

obtained in Sec. VII D from a different method. The
prefactor is also consistent with the one obtained from
Eq. (181), displaying a logarithmic correction. Since
the core mass increases with the halo mass, the solitonic
core is persistant in the core-halo phase of large
DM halos.
Performing the same study with the concentration para-

meter χðGÞ of the gaseous phase, we numerically find that

Mc

M
∼
14.7

μ3=2
; ð202Þ

leading to

Mc

Σ0R2
c
∼ 1.11

ffiffiffiffiffiffiffiffiffiffi
Σ0R2

c

Mh

s
; ð203Þ

in qualitative agreement with Eq. (132) of model I. Since
the core mass decreases with the halo mass, there is no
solitonic core in the gaseous phase of large DM halos.
Finally, performing the same study with the concen-

tration parameter χðCÞ of the condensed phase, we numeri-
cally find that

Mc

M
≃ 1 ð204Þ

meaning that all the mass is in the solitonic core. As
previously mentioned this solution is not in agreement with
the observed structure of large DM halos and must be
rejected.

4. Simple analytical model

In Appendix I we develop a simple analytical model of
self-gravitating BECs with an isothermal atmosphere in a
box. In that model, the mass of the solitonic core Mc is
obtained by extremizing the free energy FðMcÞ for a
given value of T, M, and R. We find that, above a
canonical critical point μCCP, the free energy FðMcÞ has
generically three extrema in agreement with the results of
Sec. VIII B:

(i) A minimum at Mc ¼ 0 corresponding to an iso-
thermal halo without solitonic core (gaseous phase
G). This solution is thermodynamically stable.

(ii) A minimum at some Mc ≃M corresponding to a
soliton without halo (condensed phase C). This
solution is thermodynamically stable.
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FIG. 45. Relation between the solitonic core mass normalized
by the total mass,Mc=M, and the size of the system measured by
the dimensionless parameter μ ¼ π2ðR=RcÞ2 for two different
values of the dimensionless temperature η in the framework of the
box model. This curve shows that the concentration parameter
χðCHÞ of the core-halo phase behaves as ln μ. This leads to the
scaling given by Eq. (200).

44This scaling law can be understood analytically as follows.
We have found in Sec. VII that χ ∼ 2 lnðrh=RcÞ (see footnote 29).
From Eq. (188), we have μ ¼ π2ðrh=RcÞ2. Combining these two
relations, we get χ ∼ ln μ. Substituting this result into Eq. (191)
yields Eq. (200).
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(iii) A maximum at some Mc satisfying

Mc

M
∝

1

μ1=2
; ð205Þ

corresponding to a solitonic core surrounded by a
large isothermal halo (core-halo phase CH). This
solution is thermodynamically unstable in the
canonical ensemble. We note that the scaling law
from Eq. (205) is consistent with the numerical
result from Eq. (200) up to logarithmic corrections
offering therefore an alternative derivation of this
result. The analytical study of Appendix I also
confirms that the core-halo solution is thermody-
namically unstable in the canonical ensemble in
agreement with the result obtained in Sec. VIII B
from the Poincaré turning point criterion.

5. Ensembles inequivalence

In the previous sections, we have worked in the canonical
ensemble. This is the statistical ensemble associated with the
generalized (coarse-grained) GPP equations (3) and (4)
where the temperature T is fixed. However, the micro-
canonical ensemble, where the energy E is fixed, may also
be relevant. Actually, it may even be more relevant than the
canonical ensemble since the total energy should be con-
served as in the original (fine-grained) GP equations (1) and
(2). As explained in Appendix I of [140], the GPP
equations (3) and (4) could be modified in order to conserve
the energy. In that case, the statistical ensemble associated to
these equations would be the microcanonical one.
The equilibrium states in the microcanonical ensemble

are the same as in the canonical ensemble (an extremum of
entropy at fixed mass and energy is also an extremum of
free energy at fixed mass) [191]. However, their stability
may be different in the canonical and in the microcanonical
ensembles. An equilibrium state that is canonically stable
is always microcanonically stable, but the converse is
wrong (a minimum of free energy at fixed mass is always
a maximum of entropy at fixed mass and energy but a
maximum of entropy at fixed mass and energy is not
necessarily a minimum of free energy at fixed mass) [191].
This corresponds to the concept of ensembles inequiva-
lence for systems with long-range interaction [33,154,187].
In particular, the core-halo states (CH) that we have found
previously are always unstable in the canonical ensemble
but they may be stable in the microcanonical ensemble.
This is the case in particular if there is no turning point of
energy in the caloric curve, or if the core-halo state stands
before the first turning point of energy. In that case, the
core-halo state has a negative specific heat C < 0. This is
forbidden in the canonical ensemble but this is allowed in
the microcanonical ensemble [33,154,187].
There exists a microcanonical critical point

μMCP ∼ 105 ð206Þ

above which the caloric curve presents at least one turning
point of energy.45 Using Eq. (197) it corresponds to a halo
mass

ðMhÞMCP

Σ0R2
c

¼ 1.76
μMCP

π2
∼ 2 × 104: ð207Þ

Using Eq. (110), we obtain

ðMhÞMCP ∼ 2 × 1012 M⊙: ð208Þ

When μ < μMCP, the caloric curve ηðΛÞ is univalued. All
the equilibrium states are stable in the microcanonical
ensemble, even the core-halo states that are unstable in the
canonical ensemble. This is the case in particular for the
value μ ¼ 39797 corresponding to a DM halo of massM ¼
1012 M⊙ (see Sec. VIII D 1). Therefore, the solitonic core
of mass Mc ¼ 6.39 × 1010 M⊙ (bulge) that this halo may
harbor (see Sec. VII E) is part of a core-halo structure that is
stable in the microcanonical ensemble while being unstable
in the canonical ensemble. When μ > μMCP, the caloric
curve has a Z-shape structure (see Fig. 21 of [33]). Only the
equilibrium states before the first turning point of energy
and after the last turning point of energy are stable in the
microcanonical ensemble (see [33] for details). Using these
arguments, we can show that the core-halo configurations
with a large value of χ (high central density) constructed in
Sec. VII F are unstable both in the canonical and in the
microcanonical ensembles46 (see the similar discussion for
fermions in Secs. VI–VIII of [40]). Therefore, not only the
solitonic core cannot mimic a black hole (see the arguments
given in Sec. VII F) but the core-halo configuration to
which it belongs is unstable in all thermodynamical
ensembles.

E. Core-halo solution: Critical droplet or true
equilibrium state

Among the possible equilibrium states discussed pre-
viously, the core-halo solution (CH) with a quantum
core surrounded by an isothermal atmosphere is the most
important one. It appears for Mh > ðMhÞCCP. Its stability

45For bosonic DM, we have not computed the microcanonical
critical point μMCP precisely but its value should be close to the
situation where the caloric curve presents three turning points of
temperature. Therefore, according to Figs. 42 and 44 we have
39797 < μMCP < 105. To be specific, we shall take μMCP ∼ 105.

46For a halo of massMh ¼ 1011 M⊙ and radius rh ¼ 20.1 kpc,
taking Rc ¼ 6.98 × 10−2 pc as in Sec. VII F we get
μ ¼ 8.18 × 1011 ≫ μMCP. Taking Rc ¼ 6 × 10−4 pc as in foot-
note 36, we get μ ¼ 1.11 × 1016 ≫ μMCP. Since μ is large in the
two cases, the caloric curve has a complex structure (see Fig. 44
of [40]) and the core-halo configurations with a large value of χ
considered in Sec. VII F are located between the first and the last
turning points of energy. As a result, they are thermodynamically
unstable in all ensembles.
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depends on the statistical ensemble. In the canonical
ensemble, the core-halo solution (CH) is always unstable
(saddle point of free energy at fixed mass). It represents a
critical droplet or a critical nucleus creating a barrier of free
energy that the system must cross in order to trigger a phase
transition from the gaseous phase (G) to the condensed
phase (C). This is a very rare event. In the microcanonical
ensemble, the core-halo solution (CH) is stable (maximum
of entropy at fixed mass and energy) if Mh < ðMhÞMCP. It
may describe DM halos with a quantum core (representing
a large bulge) and an isothermal atmosphere. However, it is
unstable (saddle point of entropy at fixed mass and energy)
if M > MMCP. In that case, it is replaced by a SMBH as
discussed in the following section.

IX. ASTROPHYSICAL APPLICATIONS

We now discuss several potential scenarios that are
suggested by the previous results.

A. Small DM halos with ðMhÞmin < Mh < ðMhÞCCP:
Solitonic core + tenuous isothermal

atmosphere (quantum solution)

We consider a small DM halo with ðMhÞmin ¼
1.86× 108 M⊙ <Mh < ðMhÞCCP ¼ 3.27× 109 M⊙. Since
μmin < μ < μCCP the caloric curve is monotonic (see
Fig. 46).47 The DM halo is made of a solitonic core
surrounded by a tenuous isothermal atmosphere. This
quantum solution (Q) is thermodynamically stable.

B. Large DM halos with ðMhÞCCP < Mh < ðMhÞMCP

We consider a large DM halo with ðMhÞCCP¼3.27×
109M⊙<Mh< ðMhÞMCP∼2×1012M⊙. Specifically, we
consider a DM halo of mass M ¼ 1012 M⊙ and size R ¼
63.5 kpc similar to the one that surrounds our Galaxy.
Since μCCP < μ < μMCP the caloric curve has an N-shape
structure (see Fig. 47).

1. Isothermal halo + solitonic bulge possibly triggering
the formation of a SMBH (core-halo solution)

We first assume that the DM halo is in the core-halo
(CH) phase (see Fig. 47).48 It is therefore made of a
solitonic core of mass Mc ¼ 6.39 × 1010 M⊙ and size
Rc ¼ 1 kpc surrounded by an isothermal halo (see
Sec. VII E). We have shown in Secs. VIII B and VIII D 4
that this core-halo solution is thermodynamically unstable in

the canonical ensemble in the sense that it is a saddle point of
free energy, not a (local) minimum of free energy. However,
the timescale for the development of the instability may be
very large (possibly larger than the age of the Universe) so
that this core-halo structure may be long-lived.49 Actually,
these core-halo structures are observed in the numerical
simulations of Schive et al. [96,97] so they appear to be
robust and physical. In the case of real galaxies, the solitonic
core may have existed in the past as a temporary state, or
may still possibly exist. We have mentioned in Secs. VII E
and VII F that the solitonic core cannot mimic a SMBH.
However, it can represent a large bulge providing a favorable
environment for triggering the formation of a SMBH.50 The
final outcome of this scenario would be an isothermal halo
containing either a solitonic bulge or a SMBH that would be
the remnant of the original solitonic bulge.

2. Isothermal halo without solitonic
core (gaseous solution)

We now assume that the DM halo is in the gaseous (G)
phase (see Fig. 47). In that case, it has the form of a purely
isothermal halo without solitonic core. This gaseous
solution is thermodynamically stable. In this sense, this
is the most probable state in the canonical ensemble. A first
possibility is that the DM halo remains in this phase. This is
not inconsistent with the observations since we have shown
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FIG. 46. For ðMhÞmin < Mh < ðMhÞCCP, the caloric curve is
monotonic. The quantum solutions (Q) are stable.

47In this section, the series of equilibria are indicative. They
have been taken from our previous work [33] related to self-
gravitating fermions but similar curves would be obtained for
self-gravitating bosons in the framework of the present model
[142].

48The system may reach this core-halo phase directly from a
process of collisionless violent relaxation or, more slowly, from a
collisional evolution as discussed in Sec. IX B 4 and in the
caption of Fig. 47.

49A saddle point of free energy can persist for a long time as
long as the fluctuations (or the environment) have not generated
the dangerous perturbations that destabilize it (see an explicit
illustration of this process in Ref. [192] in the context of two-
dimensional turbulence). Moreover, as discussed in Sec. VIII D 5,
this core-halo solution (with a negative specific heat) is stable
in the microcanonical ensemble while being unstable in the
canonical ensemble. Therefore, it is fully stable with respect to
perturbations that conserve the energy.

50In that context, the solitonic core would be a sort of critical
droplet (in the canonical ensemble) allowing for the transition to a
more compact structure, e.g., a SMBH.
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in Sec. VI F that, in many cases, an isothermal halo is almost
indistinguishable from the observational Burkert profile,
especially if we account for tidal effects (see Appendix B
and [39,40]). However, this scenario does not account for the
presence of a compact object, such as a SMBH, at the centers
of the galaxies. Of course, we can always add “by hands” a
primordial SMBH at the center of our isothermal halo but
this is almost assuming the result. In order to explain the
presence of the black hole we consider another possibility.
Following our previous works [39,40], we assume that the
DM halo evolves dynamically due to collisions between DM
particles. These collisions are not two-body gravitational
encounters because the relaxation time would be too long,
but they can have another origin.51 Because of this dynami-
cal evolution, the central density of the halo increases until it
(possibly) reaches a critical value at which the halo becomes
thermodynamically unstable and undergoes a gravitational
collapse. Since the statistical ensembles are inequivalent for
self-gravitating systems we have to consider two possibilities
(canonical and microcanonical) as detailed in the following
sections.

3. Canonical evolution: Isothermal collapse from the
gaseous phase to the condensed phase

In the canonical ensemble, the control parameter is the
temperature. Because of collisions and evaporation the
central density increases and the temperature decreases.
The series of equilibria becomes unstable at the turning
point of temperature Tc (see Fig. 47). At that point, the halo
undergoes an isothermal collapse [194] which is eventually
halted by quantum mechanics (in the present model by the
repulsive self-interaction of the bosons). This takes the
system from the gaseous phase (G) to the condensed phase
(C) in which almost all the mass of the halo forms a

compact soliton (see the analogous discussion for fermions
in [33]). The final outcome of this scenario is therefore a
pure soliton of radius Rc ¼ 1 kpc and massMc ∼ 1012 M⊙
without atmosphere. Such a structure, which is reminiscent
of an hypernova, is not observed [a pure soliton is expected
to have a much smaller mass ðMhÞmin ¼ 1.86 × 108 M⊙
corresponding to the ground state of the BECDMmodel] so
this scenario should be rejected. A possible reason for the
failure of this scenario is that the canonical ensemble is not
relevant for our model (see Sec. VIII D 5). Therefore, the
microcanonical evolution discussed in the next section may
be more relevant.
Remark: This scenario (isothermal collapse) could be

valid in a different context in order to explain the formation
of a supermassive boson star from the gravitational collapse
of a dilute gaseous cloud of bosons (see Appendices J and
K). The boson star could mimic a SMBH (without DM halo)
of mass ∼109 M⊙ at the center of an elliptical galaxy. In that
case, we have to change the values of the model parameters
(i.e., the characteristics of the DM particle) and take general
relativity into account. The possibility of this scenario
presupposes that DM may be made of different types of
bosons which is not impossible. A similar scenario can also
be developed for fermions as discussed in Refs. [33,186].

4. Microcanonical evolution: From the gaseous solution
to the core-halo solution

In the microcanonical ensemble, the control parameter is
the energy. Because of collisions and evaporation the
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FIG. 47. For ðMhÞCCP < Mh < ðMhÞMCP, the caloric curve has
an N-shape structure. In the canonical ensemble, the gaseous
phase (G) and the condensed phase (C) are stable while the core-
halo phase (CH) is unstable. The system can evolve collisionally
in the gaseous phase (G) up to the turning point of temperature Tc
and collapse in the condensed phase (C). This corresponds to an
isothermal collapse (dotted arrow). As explained in the text, this
canonical scenario does not seem to be realistic for large DM
halos. In the microcanonical ensemble, all the equilibrium states
are stable. The system can evolve collisionally (solid arrows)
from the gaseous solution (G) to the core-halo solution (CH). It
can also directly reach the (CH) phase through a process of
collisionless violent relaxation (Jeans instability or free fall).

51In the context of BECDM this collisional evolution may be
due to the formation of “granules” or “quasiparticles” (arising
from the wave nature of the system [96,97]) which can lead to a
collisonal relaxation as suggested by Hui et al. [122]. This
scenario has been developed very recently by Bar-Or et al. [193]
who showed that the DM halos behave similarly to classical N-
body systems like globular clusters. We note that these results
give further support to our study in which we model the halo as an
isothermal gas following [140,141]. We argued that this iso-
thermal halo arises from a process of violent collisionless
relaxation but it can also be due to (or maintained by) “collisions”
of quasiparticles. The process of violent collisionless relaxation
(or gravitational cooling) may explain the rapid formation of a
core-halo (CH) structure with a solitonic core (bulge) and an
isothermal halo, or simply the formation of an isothermal halo
(G). The process of collisional relaxation may justify why the
halo evolves slowly along a series of equilibria because of
collisions among pseudoparticles and evaporation (tidal effects),
possibly leading to the formation of a solitonic core (see Sec. IX
B 4). Finally, we note that the self-interaction of the bosons
(as > 0) may also be responsible for a collisional evolution of the
system and justify a (quasi-)isothermal distribution (see foot-
note 52).
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central density increases and the energy decreases. The
temperature first decreases in the region of positive specific
heat (C ¼ dE=dT > 0) then increases as the system enters
in the region of negative specific heat (C ¼ dE=dT < 0).
The whole series of equilibria represented in Fig. 47 is
stable. Therefore, if the system evolves microcanonically
under the effect of collisions, the DM halo can go smoothly
from the gaseous phase (G) to the core-halo phase (CH).
This may be a mechanism which explains how the system
reaches the core-halo phase (CH). The core-halo phase
contains a solitonic core which may represent a bulge. This
bulge is stable and persistent (in the microcanonical
ensemble) and can be present at the centers of galaxies
(see also the Remark at the end of Sec. VII E).

C. Very large DM halos with Mh > ðMhÞMCP

We consider a very large DM halo with Mh >
ðMhÞMCP ∼ 2 × 1012 M⊙. Since μ > μMCP the caloric curve
has a Z-shape structure (see Fig. 48). We restrict ourselves
to the microcanonical ensemble since the discussion in
the canonical ensemble is the same as before. Again, we
assume that the system evolves collisionally along the
series of equilibria.

1. Gravothermal catastrophe and
expulsion of an envelope

In the microcanonical ensemble, the system first evolves
slowly from the gaseous phase (G) to the core-halo phase
(CH) as before. Then, the series of equilibria becomes
unstable at the turning point of energy Ec (see Fig. 48). At
that point, the DM halo undergoes a gravothermal catas-
trophe [195] which is eventually halted by quantum
mechanics (here, the repulsive self-interaction of the
bosons). This takes the system from the core-halo (CH)
phase to the condensed phase (C) in which only a fraction
(∼1=4) of the mass of the DM halo forms a compact
solitonic core while the rest of the mass forms a hot halo
(see the analogous discussion for fermions in [33,186]). In
the box model, the halo is held by the walls of the box.
In more realistic models where the box is absent (see [40] in
the case of fermionic DM), the halo is expelled at very large
distances and forms a very extended atmosphere (see
Fig 41 of [40]). The final outcome of this scenario is
therefore a pure soliton of radius Rc ¼ 1 kpc and mass
Mc ≲ 1012 M⊙ with the ejection of a hot atmosphere of
mass M −Mc. This core-halo structure is reminiscent
of red-giant structure and supernovae in the context of
compact stars (white dwarfs and neutron stars). However,
this extreme core-halo structure is not observed in the
case of DM halos (see the discussion in [40]) so this
scenario should be rejected. A possible reason for the
failure of this scenario is that the microcanonical evolution
(gravothermal catastrophe) leads to another outcome as
detailed below.

Remark: This scenario (gravothermal catastrophe) could
be valid in a different context in order to explain the
formation of a supermassive boson star from the gravita-
tional collapse of a dilute gaseous cloud of bosons (see
Appendices J and K). The comments made at the end of
Sec. IX B 3) also apply to the present situation.

2. Gravothermal catastrophe and black hole formation
leaving the isothermal envelope undisturbed

As in the previous section we assume that the halo
undergoes a gravothermal catastrophe at Ec but we con-
sider another evolution in which the system is not affected
by quantum mechanics (the validity of this hypothesis is
considered in the following section). This scenario (already
advocated in [39,40]) is based on the self-interacting DM
model of Balberg et al. [196] who developed the idea of
“avalanche-type contraction” towards a SMBH initially
suggested by Zeldovich and Podurets [197], improved by
Fackerell et al. [198], and confirmed numerically by
Shapiro and Teukolsky [199–201]. The initial stage of
the gravothermal catastrophe is well-known. The core
collapses and reaches high densities and high temperatures
while the halo is not sensibly affected by the collapse of the
core and maintains its initial structure. Now, Balberg et al.
[196] argue that during the gravothermal catastrophe, when
the central density and the temperature increase above a
critical value, the system undergoes a dynamical instability
of general relativistic origin leading to the formation of a
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FIG. 48. For Mh > ðMhÞMCP, the caloric curve has a Z-shape
structure (dinosaur’s neck) [33]. In the microcanonical ensemble,
the gaseous phase (G) and the condensed phase (C) are stable.
The core-halo phase (CH) before the first turning point of energy
is also stable while the core-halo phase (CH) between the first and
last turning points of energy is unstable. The system can evolve
collisionally in the gaseous (G) and core-halo (CH) phases up to
the turning point of energy Ec and collapse in the condensed
phase (C). This corresponds to the gravothermal catastrophe
(dotted arrow) [195]. As explained in the text, this scenario does
not seem realistic. Another possibility is that the gravothermal
catastophe triggers a dynamical instability of general relativistic
origin leading to the formation of a SMBH [196].
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SMBH on a dynamical time scale. Only the central region
of the DM halo (not its outer part) is affected by this process
so the final outcome of this scenario is an isothermal halo
containing a central SMBH. The halo may have a critical
King profile [39,40] as discussed in Appendix B.52

Remark: For large DM halos withMh > ðMhÞMCP ∼ 2 ×
1012 M⊙ the core-halo solutions with a large value of
concentration χ (similar to those considered in Sec. VII F)
are thermodynamically unstable so they cannot be reached
by the system during a natural evolution (they lie well after
the critical point of energy in the series of equilibria). On
the other hand, the core-halo solutions with a small value of
concentration χ (similar to those considered in Sec. VII E)
lying before the critical point of energy in the series of
equilibria are thermodynamically stable. Therefore, they
can be reached by the system on a short timescale.
However, on a long timescale, the system may evolve
collisionally up to the critical point of energy Ec and
collapse towards a SMBH. In conclusion, the core-halo

phase (CH) is ultimately unstable in all statistical ensem-
bles. Therefore, large DM halos with Mh > ðMhÞMCP ∼
2 × 1012 M⊙ should not contain a solitonic core (bulge), or
only temporarily. They should rather contain a SMBH
resulting from the process of Balberg et al. [196] described
previously.

D. Criterion for the possible existence of a black
hole at the center of a galaxy

The scenario discussed in Sec. IX C 2 can lead to a black
hole at the center of a galaxy only if the gravothermal
catastrophe can take place and only if it is sufficiently
efficient to allow the core of the system to develop high
values of the density and of the temperature required to
trigger a relativistic dynamical instability. However, quan-
tum mechanics can prevent gravitational collapse and stop
the gravothermal catastrophe. Therefore, the previous
scenario can lead to a black hole only if the parameter μ
is sufficiently larger than the microcanonical critical point
μMCP ∼ 105 at which the gravothermal catastrophe sets
in. Using Eqs. (207) and (208), we conclude that only
sufficiently large galaxies with Mh > ðMhÞMCP ∼ 2 ×
1012 M⊙ can contain a SMBH resulting from the process
of Sec. IX C 2. Smaller halos may not contain black holes
(by this process) because they do not experience the
gravothermal catastrophe. Indeed, the gravothermal catas-
trophe is inhibited by quantum mechanics. In that case, the
halos can be either in the gaseous phase (G) or in the core-
halo phase (CH) that are both thermodynamically stable in
the microcanonical ensemble. This result—the fact that
black holes can form only in sufficiently large galaxies—is
consistent with the conclusion reached by Ferrarese [209]
on the basis of observations. Furthermore, the order of
magnitude of the critical mass that we find in Eq. (208) is
consistent with her estimate of ∼5 × 1011 M⊙. This quali-
tative agreement is encouraging in view of the crudeness of
our theoretical model.
Remark: In the case of fermionic DM, the equivalent

criterion μ > μMCP for the possible existence of a black
hole at the centers of the galaxies (see Appendix H
of [40]) is

ðMhÞFMCP ¼ 0.0106

�
μ4MCPh

12Σ3
0

m16G6

�
1=5

: ð209Þ

If we take a fermion mass m ¼ 1.23 keV=c2 as in [40], we
get ðMhÞFMCP ¼ 1.74 × 107 M⊙. If we take the more
relevant value m ¼ 170 eV=c2 obtained in Appendix D
of [46], we obtain ðMhÞFMCP ¼ 9.78 × 109 M⊙ in qualita-
tive agreement with the estimate of Ferrarese [209].

E. Summary

The main results of our study are summarized in the
phase diagram of Fig. 49.

52The gravothermal catastrophe has been studied in detail in
the case of globular clusters evolving via two-body gravitational
encounters. The dynamical evolution of the system is due to the
gradient of temperature (velocity dispersion) between the core
and the halo and the fact that the core has a negative specific heat.
The core loses heat to the profit of the halo, becomes hotter, and
contracts. If the temperature increases more rapidly in the core
than in the halo there is no possible equilibrium and we get a
runaway: this is the gravothermal catastrophe [195]. The collapse
of the core is self-similar and leads to a singularity in which the
central density and the temperature become infinite in a finite
time (core collapse) [202,203]. However, the mass contained in
the core tends to zero at the collapse time. The evolution may
continue in a postcollapse regime with the formation of a binary
star [204]. The energy released by the binary can stop the collapse
and induce a reexpansion of the system. Then, a series of
gravothermal oscillations should follow [205,206]. It has to be
noted that, for globular clusters, this process is very long, taking
place on a collisional relaxation timescale (of the order of the age
of the Universe) since it is due to two-body gravitational
encounters. In the model of Balberg et al. [196], the dynamical
evolution of the system is due to the self-interaction of the DM
particles. In that case, a typical halo has sufficient time to
thermalize and acquire a gravothermal profile consisting of a
flat core surrounded by an extended halo. The same idea may
apply to our bosonic model (and also to the fermionic model of
Refs. [39,40]) where the self-interaction of the bosons as > 0
could be responsible for the collisional evolution of the system.
Using Eq. (104) and considering a cross section per unit of mass
σ=m ¼ 1.25 cm2=g which corresponds to the constraint set by
the Bullet Cluster [207] and which is consistent with the estimate
of Davé et al. [208] used by Balberg et al. [196], we obtain a
boson mass m ¼ 1.10 × 10−3 eV=c2 and a scattering length
as ¼ 4.41 × 10−6 fm. Balberg et al. [196] show that, during
the gravothermal catastrophe, the core of the self-interacting DM
halos passes from a long mean free path (LMFP) limit to a short
mean free path (SMFP) limit. In the LMFP limit, the system
displays a self-similar collapse analogous to that of globular
clusters in which the core mass decreases rapidly. In the SMFP
limit, the core mass decreases more slowly (and almost saturates)
so that a relatively large mass can ultimately collapse into a
SMBH.
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ForMh ¼ ðMhÞmin ¼ 1.86 × 108 M⊙ (ground state), the
DM halo is a pure soliton without atmosphere. This is a
purely quantum object. Quantum mechanics (here, the
repulsive self-interaction of the bosons) fixes the mini-
mum mass and the minimum radius of BECDM halos.
This situation may describe ultracompact dSphs like
Fornax.
For ðMhÞmin¼1.86×108M⊙<Mh< ðMhÞCCP¼3.27×

109M⊙, the DM halo has a solitonic core surrounded by a
tenuous isothermal atmosphere.53 This is essentially a
quantum (Q) object. The caloric curve is monotonic
(μ < μCCP; see Fig. 46). There is only one solution for
any value of the temperature and of the energy. This
equilibrium state is stable in the microcanonical and
canonical ensembles. Even if the system evolves along
the series of equilibria because of collisions, there is no
collapse, hence no black hole formation. This situation may
describe dSphs. Therefore, small halos like dSphs should
not contain a SMBH.
For ðMhÞCCP ¼ 3.27 × 109 M⊙ < Mh < ðMhÞMCP ∼

2 × 1012 M⊙, there are two solutions: a gaseous solution
(G) corresponding to a purely isothermal halo without
solitonic core and a core-halo (CH) solution with a solitonic

core surrounded by a massive atmosphere. The soliton may
mimic a bulge, not a black hole (see Sec. VII E). The
caloric curve has an N-shape structure (μCCP < μ < μMCP;
see Fig. 47). The gaseous solution is stable in both
ensembles. The core-halo solution is unstable in the
canonical ensemble but is stable in the microcanonical
ensemble. It has a negative specific heat. If the system
evolves microcanonically along the series of equilibria
because of collisions, it can pass from the gaseous phase
to the core-halo phase without collapsing. There is no
gravothermal catastrophe, hence no black hole formation.
This situation may describe small spiral galaxies. In this
sense, small spiral galaxies should not contain a SMBH (at
least according to the scenario of Sec. IXC 2). Small spiral
galaxies in the core-halo phase should rather contain a
solitonic bulge. We note, however, that this bulge may
itself induce the formation of a SMBH on a long timescale
(see Sec. VII E).
For Mh > ðMhÞMCP ∼ 2 × 1012 M⊙, there are two

solutions as before. However, the caloric curve now has a
Z-shape structure (μ > μMCP; see Fig. 48) and the core-halo
solutions (CH) that lie after the turning point of energy are
unstable in all ensembles. If the system evolves micro-
canonically along the series of equilibria because of colli-
sions, it can undergo a gravothermal catastrophe leading to
the formation of a SMBH by the mechanism described in
Sec. IXC 2. This situation may apply to large spiral galaxies
and elliptical galaxies. Therefore, large spiral galaxies and
elliptical galaxies are expected to contain a SMBH, not a
solitonic core.
The canonical critical point ðMhÞCCP ¼ 3.27 × 109 M⊙

determines the bifurcation between gaseous (G) solutions
(without soliton) having a positive specific heat and core-
halo (CH) solutions (possessing a soliton) having a negative
specific heat. The microcanonical critical point ðMhÞMCP ∼
2 × 1012 M⊙ determines the transition between DM halos
possessing a solitonic bulge and DM halos harboring a
SMBH resulting from a gravothermal catastrophe followed
by a general relativistic dynamical instability.
Remark: We note that quantum mechanics is very

important for small halos on the (Q) branch (μ < μCCP;
dSphs). In particular, it determines the minimum mass
ðMhÞmin and the minimum radius ðrhÞmin of BECDM halos
(μ ¼ μmin; ground state). Quantum mechanics is also
important in the core of large halos on the (CH) branch
(soliton). By contrast, quantum mechanics is negligible for
large halos on the (G) branch (no soliton). However, if these
halos evolve collisionally along the series of equilibria,
quantum mechanics determines whether they pass smoothly
from the gaseous (G) branch without soliton to the core-halo
(CH) branch with a soliton (μCCP < μ < μMCP; small spiral
galaxies; quantummechanics important) or if they undergo a
gravothermal catastrophe and form a SMBH (μ > μMCP;
large spiral galaxies and elliptical galaxies; quantum
mechanics unimportant).
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FIG. 49. Phase diagram summarizing our main results. It
displays the ground state ðMhÞmin ¼ 1.86 × 108 M⊙ where the
DM halo is a pure soliton without isothermal atmosphere. It also
displays the canonical critical point ðMhÞCCP ¼ 3.27 × 109 M⊙
at which a bifurcation occurs between the gaseous branch (G)
where the DM halos are purely isothermal without central soliton
and the core-halo branch (CH) where the DM halos are made of a
solitonic core (bulge) surrounded by a large isothermal halo.
Finally, it displays the microcanonical critical point ðMhÞMCP ∼
2 × 1012 M⊙ above which the core-halo branch (CH) becomes
unstable. In that case, the DM halos may undergo a gravothermal
catastrophe leading to the formation of a central SMBH.

53We note that the presence of an isothermal atmosphere, even
tenuous, allows us to satisfy the observed mass-radius relation of
DM halos corresponding to a constant surface density Σ0 ¼
ρ0rh ¼ 141 M⊙=pc2 [172–174]. This important point is devel-
oped in Appendix L.
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X. CONCLUSION

In this paper, we have developed the model of BECDM
halos with a solitonic core and an isothermal atmosphere
introduced in Ref. [140]. Following previous works, we
have assumed that the thermodynamical temperature T th is
equal to zero, or is much smaller than the condensation
temperature Tc, so that the bosons form a pure BEC.
Therefore, the system is basically described by the GPP
equations (1) and (2). These equations develop a compli-
cated process of gravitational cooling [132] and violent
relaxation [136] leading to a quasiequilibrium state with a
core-halo structure [96,97]. The core is a soliton, corre-
sponding to a stationary solution of GPP equations (ground
state), and the halo arises from quantum interferences of
excited states. Numerical simulations [169,170] show that
the halo is relatively close to an isothermal halo (or a more
refined fermionic King model [39,40]) which is predicted
from the theory of violent relaxation of collisionless self-
gravitating systems [136,138]. In any case, an isothermal
halo is a good working hypothesis to start with.
We have proposed to parametrize the complicated

processes of gravitational cooling and violent relaxation
on the coarse-grained scale by the generalized GPP
equations (3) and (4). Through the Madelung transforma-
tion, these equations are equivalent to the fluid equa-
tions (8)–(15). They generalize the hydrodynamic
equations of the CDM model by accounting for a quantum
force arising from the Heisenberg uncertainty principle, a
pressure force arising from the self-interaction of the
bosons (scattering), a temperature, and a friction. These
terms are due to quantum mechanics (ℏ and as) and violent
relaxation (T and ξ). The friction term accounts for the
relaxation of the system towards an equilibrium state in
which the gravitational attraction is balanced by the
quantum pressure and by the thermal pressure.54 This leads
to the formation of virialized DM halos at small cosmo-
logical scales (i.e., at galactic scales) that do not suffer the
problems of the CDMmodel. At large cosmological scales,
quantum mechanics and violent relaxation are negligible
(and coarse-graining is not necessary) so we recover the
hydrodynamic equations of the CDM model that prove to
be very relevant to explain the large-scale structure of the
Universe. This amounts to taking ℏ ¼ as ¼ T ¼ ξ ¼ 0 in
the generalized hydrodynamic equations (8)–(15).
Therefore, quantum mechanics is potentially able to solve
the problems of the CDM model at small scales without
affecting the virtues of this model at large scales.

If we neglect the quantum pressure (TF approximation),
as we have done in this paper, the DM halos are described
by an equation of state of the form

P ¼ 2πasℏ2ρ2

m3
þ ρ

kBT
m

: ð210Þ

This equation of state, which is at the basis of our study, is
interesting in its own right and could have been introduced
at the start without reference to the generalized GPP
equations (8)–(15). It leads to DM halos presenting a
core-halo structure with a solitonic core and an isothermal
halo. The polytropic equation of state P ¼ 2πasℏ2ρ2=m3

dominates in the core where the density is high and the
isothermal equation of state P ¼ ρkBT=m dominates in the
halo where the density is low (the transition occurs at
ρi ∼ kBTm2=2πasℏ2). As a result, the equilibrium state is
made of a compact core (BEC/soliton) with an equation of
state P ¼ 2πasℏ2ρ2=m3, which is a stable stationary
solution of the GPP equations (1) and (2) at T ¼ 0 (ground
state), surrounded by an isothermal atmosphere with an
equation of state P ¼ ρkBT=m mimicking a halo of scalar
radiation (quantum interferences) at an effective temper-
ature T. The solitonic core is stabilized against gravitational
collapse by quantum mechanics (here the repulsive self-
interaction of the bosons) and has a smooth density profile
replacing the r−1 cusp of CDM. On the other hand, the
temperature term accounts for the almost isothermal
atmosphere of DM halos, where the density approximately
decreases as r−2, leading to flat rotation curves. Therefore,
the solitonic core solves the cusp problem and the iso-
thermal halo leads to flat rotation curves.
We have constrained our model by imposing the uni-

versal value Σ0 ¼ 141 M⊙=pc2 of the surface density
of DM halos. On the other hand, we have determined
the ratio as=m3 ¼ 3.28 × 103 fm=ðeV=c2Þ3 of the DM
particle by identifying the ground state of the GPP
equations with the most compact halo that has been
observed (we took the dSph Fornax as a reference but
this choice could be improved if necessary). As a result,
there is no free (arbitrary) parameter in our model.
We have first studied a model (model I) which is

particularly well-adapted to small DM halos. This model
predicts three types of DM halos depending on their mass:

(i) Dwarf DM halos with a mass ðMhÞmin ¼ 1.86 ×
108 M⊙ are ultracompact objects that are completely
condensed without atmosphere. They represent the
ground state of the GPP equations (1) and (2) where
the halo is a pure soliton. Therefore, their size
ðrhÞmin ¼ 788 pc is equal to the size of the BEC/
soliton.

(ii) Larger, but still small, DM halos with a mass
ðMhÞmin ¼ 1.86× 108 M⊙ < Mh < ðMhÞ� ¼ 3.30×
109 M⊙ are extended objects with a core-halo
structure. They have a condensed core (BEC/soliton)

54The generalized GPP equations are able to account for the
damped oscillations of a system of bosons experiencing gravi-
tational cooling [132–134]. In particular, the damping term
heuristically explains how a system of self-gravitating bosons
rapidly reaches an equilibrium state by dissipating some free
energy. This relaxation towards an equilibrium state is encapsu-
lated in the H-theorem of Eq. (19).
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surrounded by a tenuous atmosphere made of scalar
radiation (quantum interferences) with an approx-
imately isothermal density profile decaying as r−2 at
large distances (or, more realistically, with a NFWor
Burkert profile decaying as r−3). It is the atmosphere
that determines their proper size while the soliton
creates a central core that solves the cusp problem.
There is no plateau between the core and the halo.
The atmosphere can be much larger than the size of
the soliton. The presence of the halo of scalar
radiation explains why the size of the DM halos
increases with their mass contrary to what is pre-
dicted from the ground state of the GPP equations
according to which the size of DM halos has a
constant value Rc ¼ 1 kpc in the TF limit (see
Appendix L).

(iii) Large DM halos with a massMh > ðMhÞ� ¼ 3.30 ×
109 M⊙ are purely isothermal without solitonic
core. In that case, the central core is due to effective
thermal effects, not to quantum mechanics. The size
of the halos increases with their mass according to
the law Mh ¼ 1.76Σ0r2h.

In conclusion, model I predicts that DM halos are
essentially classical isothermal spheres except close to
the ground state where quantum effects become important.
In other words, quantummechanics is essential to provide a
ground state corresponding to a minimum halo mass
ðMhÞmin ¼ 1.86 × 108 M⊙ and a minimum halo radius
ðrhÞmin ¼ 788 pc. But as soon as Mh > ðMhÞmin ¼ 1.86 ×
108 M⊙ quantum mechanics becomes negligible (the
solitonic core disappears) and the halo is purely isothermal.
This leads to the mass-radius relation reported in Fig. 16.
We have then studied another model (model II) which

is particularly well adapted to large DM halos. By redefin-
ing the notion of “central density” we have found a
new branch of solutions. A bifurcation from the branch
of model I appears at a critical mass ðMhÞb ∼ ðMhÞ� ¼
3.30 × 109 M⊙. Above that mass, the system may be
purely isothermal without solitonic core (as in model I)
or have a well-developed core-halo structure with a
solitonic core and an isothermal envelope. The core mass
scales with the halo as Mc ∝ M1=2

h [see Eq. (181)]. The
density profile presents a plateau between the core and the
halo while the rotation curve presents a dip. This core-halo
solution is similar to the one found by numerous authors
[15,17,19–22,26,30,31,38,40,42,162–167] in the case of
fermionic DM. However, we have found that the solitonic
core cannot mimic a SMBH at the centers of the galaxies
because it is too big. It may rather represent a bulge that may
be present now (see the Remark at the end of Sec. VII E) or
that, in the past, may have triggered the collapse of the
surrounding gas, leading to a SMBH and a quasar.
Finally, we have been able to recover the bifurcation at

ðMhÞb from a box model of self-gravitating bosons,
establishing an interesting connection between the

statistical mechanics of self-gravitating bosons in a box
and real DM halos. In this connection, the bifurcation point
ðMhÞb ∼ ðMhÞ� ¼ 3.30 × 109 M⊙ corresponds to a canoni-
cal critical point ðMhÞCCP ¼ 3.27 × 109 M⊙ where the
caloric curve takes an N-shape structure leading to a region
of negative specific heats associated with a canonical phase
transition and a situation of ensembles inequivalence. We
have shown that the core-halo solution is unstable in the
canonical ensemble while it is stable in the microcanonical
ensemble. In that last case (microcanonical ensemble), if
the DM halos evolve collisionally, they can slowly pass
from the gaseous phase (without soliton) to the core-halo
phase (with a soliton). The core-halo phase may also be
directly formed by a process of violent collisionless
relaxation. We have identified another critical mass
ðMhÞMCP ¼ 2 × 1012 M⊙ corresponding to a microcanon-
ical critical point where the caloric curve takes a Z-shape
structure leading to a microcanonical phase transition. In
that case, the core-halo phase becomes unstable. If the DM
halos evolve collisionally, they can undergo a slow grav-
othermal catastrophe ultimately leading to the formation of
a SMBH on a dynamical timescale [196]. Our model
therefore predicts that black holes can form (by this
process) only in sufficiently large halos with a mass
Mh > ðMhÞMCP ¼ 2 × 1012 M⊙. Interestingly, this typical
mass is qualitatively consistent with the results of Ferrarese
[209] obtained from observations and leading to a critical
mass ∼5 × 1011 M⊙.
In our model, the atmosphere is assumed to be iso-

thermal in agreement with very general thermodynamical
arguments. This is the “most probable” or “most natural”
profile. However, the isothermal density profile decreases
as r−2. Therefore, a purely isothermal atmosphere is clearly
an idealization since it has an infinite mass. Furthermore,
the isothermal profile (ρ ∝ r−2) is apparently different from
the observational Burkert profile (ρ ∝ r−3). We have shown
that for large halos Mh > ðMhÞc ¼ 6.86 × 1010 M⊙, the
two profiles are indistinguishable on the scale of observa-
tions (rh < 100 kpc). For smaller halos, ðMhÞ� ¼ 3.30×
109 M⊙ < Mh < ðMhÞc ¼ 6.86 × 1010 M⊙, the two pro-
files show differences in slope. We have suggested,
following our previous works [39,40], that the deviation
from the (most probable) isothermal law may be explained
by incomplete violent relaxation, tidal effects, or stochastic
forcing (see Appendix B). More precisely, we have argued
that large halos, instead of being described by the iso-
thermal profile, should be described by the King profile at
the point of marginal microcanonical stability. At criticality,
the King profile almost coincides with the modified Hubble
profile which decreases as ρ ∝ r−3 like the Burkert profile.
For rh ∼ 100 kpc the modified Hubble profile is much
closer to the Burkert profile than the isothermal profile.
This may explain the confinement of DM halos and the
observed logarithmic slope −3 of their density profile
instead of the ideal slope −2.

PIERRE-HENRI CHAVANIS PHYS. REV. D 100, 083022 (2019)

083022-46



In a forthcoming paper [142], we shall adapt our model
to the case of bosons without self-interaction, to the case of
bosons with an attractive self-interaction, and to fermions.
Preliminary results, which are in good agreement with the
results of Schive et al. [96,97] for noninteracting bosons
and to the results of Ruffini et al. [38] for fermions, are
presented at the end of Appendix I. They provide a
thermodynamical justification of their core mass/halo mass
relations.

APPENDIX A: EFFECTIVE THERMAL EFFECTS
VERSUS QUANTUM MECHANICS

In model I of our paper (see Sec. VI), there is an
important distinction to make between small DM halos and
large DM halos:

(i) Small DM halos have a core-halo structure with a
solitonic core and an envelope. The core is due to
quantum mechanics. The envelope is expected to be
identical to that of a classical (nonquantum) colli-
sionless self-gravitating system described by the
Vlasov equation.55 It may be described by an
isothermal or (fermionic) King profile. Such profiles
are consistent with the Burkert and NFW profiles at
large distances (see Sec. VI F and Appendix B).

(ii) Large DM halos have no solitonic core. There are
not quantum objects. Still they have a core with a
finite density (instead of a cusp) that is due to
effective thermal effects. They are well described by
an isothermal or King profile. Such profiles are
consistent with the Burkert profile at all distances
(including the core) or with the NFW profile at large
distances (the cusp being regularized by thermal
effects).

Therefore, the small DM halos of model I are similar to
those found by Schive et al. [96,97] but the large DM halos,
being purely classical without a solitonic core, are different.
In the case of small DM halos, the core is due to quantum
mechanics, not to thermal effects. In the case of large DM
halos, the core is due to effective thermal pressure, not to
quantum mechanics. Quantum mechanics is negligible at
large scales while it provides a ground state at small scales
(see Sec. VI B).
In model II of our paper (see Sec. VII), both small and

large DM halos have a core-halo structure with a solitonic
core due to quantum mechanics and an essentially classical
isothermal atmosphere. In that case, quantum mechanics
(leading to the soliton) is important in the core of all types

of DM halos (small and large). The DM halos of model II
are similar to those found by Schive et al. [96,97].

APPENDIX B: SOME REASONS FOR THE
DIFFERENCE BETWEEN THE ISOTHERMAL

PROFILE AND THE OBSERVATIONAL
BURKERT PROFILE

We have seen in Sec. VI F that the isothermal DM halos
of our model with a mass ðMhÞ� ¼ 3.30 × 109 M⊙ <
Mh < ðMhÞc ¼ 6.86 × 1010 M⊙ exhibit a pronounced dif-
ference with the observational Burkert profile in the sense
that their density profiles decrease at large distances as r−2

(isothermal) instead of r−3 (Burkert). Our point of view is
that the isothermal profile is the “ideal” profile that a self-
gravitating BEC is expected to reach through violent
relaxation, gravitational cooling, or through successive
mergings with other halos (in a process of hierarchical
clustering). Indeed, the isothermal distribution is predicted
from general thermodynamical considerations, whatever
the origin of the relaxation (collisional, collisionless,
stochastic, etc.) [33,154]. It corresponds to the “most
probable state,” i.e., to the maximum entropy state. In this
sense, our isothermal model is ideal. However, in practice,
there are many “nonideal” effects that prevent the system
from reaching the isothermal distribution.56 Let us briefly
discuss some of these effects.

1. Incomplete violent relaxation

In the Introduction, we have developed a parallel
between the process of gravitational cooling [132] for
self-gravitating bosons and the process of violent relaxation
[136] for collisionless stellar systems (or collisionless
DM halos). Indeed, it is reasonable to consider that the
formation of the atmosphere that results from gravitational
cooling or hierarchical clustering is similar to the process of
violent relaxation in stellar dynamics. Far from the core,
quantum mechanics effects are negligible and the system
behaves as a classical collisionless gas. Complete violent
relaxation leads to the Lynden-Bell distribution that is
similar to the Fermi-Dirac distribution (for a reason differ-
ent from quantum mechanics). It leads to configurations
with a core-halo structure made of a fermionic core
(fermion ball) surrounded by an isothermal halo. At large
distances, the density should decrease as r−2 [136].

55In the context of the GPP equations the envelope arises from
quantum interferences of interaction-free excited states. It is
expected to match the classical envelope arising from a process of
collisionless violent relaxation based on the Vlasov-Poisson
equations [169,170]. The interesting correspondence between
the Schrödinger-Poisson and Vlasov-Poisson equations is dis-
cussed in [170].

56This is actually obvious for self-gravitating systems since the
isothermal profile, decreasing at large distances as r−2, has an
infinite mass [135]. In other words, there is no maximum entropy
state for self-gravitating systems in an unbounded domain
[33,154]. In reality, the density of the halos is steeper than what
is predicted by statistical mechanics. We note in this respect that
the exponent α ¼ 3 (NFW/Burkert) of the density profile ρ ∼ r−α
of observed DM halos is the closest exponent to the ideal
exponent α ¼ 2 (isothermal) that yields a halo with a (marginal)
finite mass. This rough argument may explain why the exponent
α ¼ 3 is selected.
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However, in practice, this isothermal profile (that would
have an infinite mass) is not reached because of incomplete
relaxation. Direct numerical simulations of collisionless
stellar systems [210–213] and theoretical models of incom-
plete relaxation [214–216] lead to a density profile that
decreases as r−4 at large distances. These configurations are
relatively close to Hénon’s isochrone profile [217]. This r−4

profile is steeper than the Burkert profile. Therefore, other
reasons must be advocated to explain the observed r−3

profile.

2. Stochastic forcing

In practice, a DM halo is never completely isolated from
the surrounding but is permanently subjected to perturba-
tions caused by its environment (infall, accretion, merger,
bars, tidal fields, resonances, etc.). These perturbations can
be modeled by a stochastic forcing that can alter the density
profiles of the halos. We suggest that the observational
Burkert profile may be (partly) justified by this stochastic
forcing resulting from the interaction of the system with its
environment.

3. Tidal effects: King and Hubble profiles

DM halos may experience tidal interactions from other
halos and galaxies. Tidal effects have been extensively
studied in astrophysics in the context of globular clusters
[135]. It was shown that, because of tidal interactions, the
isothermal distribution is replaced by the King distribution
[218]. The same ideas can be exported to the case of DM
halos.57 In Refs. [39,40], we have given arguments accord-
ing to which large DM halos should be described by the
King profile at the point of marginal stability in the
microcanonical ensemble.58 We call it below the “critical
King profile.” We have shown that the critical King
profile is well fitted by the modified Hubble profile (see
Appendix D 6) on the range 0 ≤ r ≤ 30rh. The modified
Hubble profile decreases at large distances as r−3 like the
Burkert profile. Therefore, tidal interactions can produce a
r−3 density profile. The isothermal profile, the critical King
profile, the modified Hubble profile and the Burkert profile
are plotted in Fig. 50. For r=rh ≤ 6, they are very close to
each other. By contrast, in the range 6 ≤ r=rh ≤ 30, the

critical King profile and the modified Hubble profile are
closer to the Burkert profile than the isothermal profile
because they display a slope −3 instead of a slope −2. We
argue that large DM halos are described by the King profile
at the point of marginal microcanonical stability. The
critical King profile turns out to be relatively close to
the empirical modified Hubble profile and to the observa-
tional Burket profile. Therefore, tidal effects may explain
why the DM halos are more confined than the isothermal
profile and, consequently, why they are well fitted by the
Burkert profile. As argued in [39,40], the critical King
profile may provide a justification of the observed loga-
rithmic slope α ¼ 3 of the density profile of DM halos from
physical, instead of empirical (fit), arguments. This is
confirmed by the recent paper of Argüelles et al. [42]
who consider the fermionic King model [39,40] and show
that tidal effects are important to match observational data.

APPENDIX C: COMPLEX HYDRODYNAMIC
REPRESENTATION OF THE GENERALIZED

SCHRÖDINGER EQUATION

In this appendix, we show that the generalized
Schrödinger equation

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ 2kBT ln jψ jψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
�
ln

�
ψ

ψ�

���
ψ ðC1Þ
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FIG. 50. Normalized density profiles up to 30rh. We have
plotted the isothermal profile (upper solid line), the critical King
profile (lower solid line), the modified Hubble profile (dotted
line), and the Burkert profile (dashed line). At large distances, the
critical King profile, the modified Hubble profile and the Burkert
profile decrease as r−3 while the isothermal profile decreases as
r−2. Among these profiles, only the King profile is physical and
relies on a rigorous theoretical modeling taking tidal effects into
account (it improves upon the ideal isothermal profile that has an
infinite mass). The modified Hubble profile and the Burkert
profile are empirical profiles that provide a good fit of DM halos
but do not have a physical justification.

57Globular clusters evolve through collisional relaxation
driven by two-body gravitational encounters. By contrast, DM
halos are essentially collisionless for what concerns gravitational
encounters (the Chandrasekhar time exceeds the age of the
Universe by several orders of magnitudes). However, there can
be other sources of evolution (e.g., strong collisions due to the
self-interaction of the particles in the core of the system [196] or
collisions between quasiparticles [122,193]) that can justify
a King—or close to King—distribution for DM halos [39,40].

58In the present model they correspond to DM halos of mass
Mh > ðMhÞMCP ∼ 2 × 1012 M⊙. The point of marginal micro-
canonical stability in the King model is analogous to the point Λc
in Fig. 48.
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can be written as an hydrodynamic equation involving a
complex velocity field and an imaginary viscosity. We then
briefly mention the connection between this equation and
the theory of scale relativity developed by Nottale [148]
and with the stochastic interpretation of quantum mechan-
ics developed by Nelson [219]. A more detailed discus-
sion is given in a separate paper [220] where we adopt
the opposite presentation, i.e., we derive the generalized
Schrödinger equation from a complex hydrodynamic
equation.

1. Complex Burgers equation

It is easy to check that the generalized Schrödinger
equation (C1) can be rewritten as

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
Δψ þmΦψ þ Vψ þ ℏImðγ lnψÞψ ; ðC2Þ

where

VðtÞ ¼ i
ℏ
2
ReðγÞ

�
ln

�
ψ

ψ�

��
ðC3Þ

is a real function of time and

γ ¼ ξþ i
2kBT
ℏ

ðC4Þ

is a complex friction coefficient. If we make the WKB
transformation

ψ ¼ eiS=ℏ; ðC5Þ

where S is a complex action, we obtain the complex
Hamilton-Jacobi equation

∂S
∂t þ

1

2m
ð∇SÞ2 − i

ℏ
2m

ΔS þmΦþ VðtÞ þ ReðγSÞ ¼ 0:

ðC6Þ

When ℏ ¼ γ ¼ 0 we recover the classical Hamilton-Jacobi
equation (in that case S is real). If we introduce the
complex velocity

U ¼ ∇S
m

; ðC7Þ

and take the gradient of Eq. (C6), we obtain

∂U
∂t þ ðU ·∇ÞU ¼ i

ℏ
2m

ΔU −∇Φ − ReðγUÞ: ðC8Þ

This equation can be interpreted as a damped viscous
Burgers equation (no pressure term) involving a complex
velocity field and an imaginary viscosity

ν ¼ iℏ
2m

ðC9Þ

proportional to the Planck constant and inversely propor-
tional to the mass of the particle.

2. Relation to the work of Nottale

The complex hydrodynamic equation (C8) can be
written as

DU
Dt

¼ −∇Φ − ReðγUÞ; ðC10Þ

where

DU
Dt

¼ ∂U
∂t þ ðU ·∇ÞU − iDΔU ðC11Þ

is a scale covariant derivative and

D ¼ ℏ
2m

ðC12Þ

is a quantum diffusion coefficient. When γ ¼ 0, Eq. (C10)
can be interpreted as a scale covariant equation of dyna-
mics (Newton’s law). Nottale [148] has shown that a
particle that has a nondifferentiable trajectory is described
by an equation of that form. He considered the conservative
case γ ¼ 0 where Eq. (C10) leads to the ordinary
Schrödinger equation. If we take into account dissipative
effects (γ ≠ 0) in Eq. (C10), we obtain the generalized
Schrödinger equation (C1) involving an effective temper-
ature term (T) and a friction term (ξ).59 In this formulation,
the temperature and the dissipation are two manifestations
of the same phenomenon, i.e., they represent the real and
the imaginary parts of the complex friction coefficient γ
[see Eq. (C4)].
Remark: We note that, in Nottale’s theory, D may be

different from ℏ=2m. In other words, the (generalized)
Schrödinger Eq. (C1) may be valid in a more general
context than quantum mechanics. Indeed, it may apply to
particles that have nondifferentiable trajectories due to their
chaotic motion or due to the fractal structure of spacetime
itself at large (cosmological) scales. This opens new
perspectives for the interpretation of the Schrödinger-
Poisson and GPP equations for DM as discussed in [141].

3. Relation to the work of Nelson

If we write U ¼ u − iuQ where [see Eqs. (7), (C5),
and (C7)]

59The fact that T and ξ in Eq. (C1) can be interpreted as a
temperature and a friction coefficient is explained in Sec. II using
the Madelung transformation (see also [140,220]).
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u ¼ ∇S
m

and uQ ¼ ℏ
2m

∇ ln ρ ðC13Þ

are the classical and quantum velocities, and take the real
and imaginary parts of the generalized complex viscous
Burgers equation (C8), we obtain the two real coupled
equations

∂u
∂t þ ðu ·∇Þu − ðuQ · ∇ÞuQ ¼ ℏ

2m
ΔuQ −∇Φ

− ReðγÞu − ImðγÞuQ; ðC14Þ
∂uQ

∂t þ ðuQ ·∇Þuþ ðu · ∇ÞuQ ¼ −
ℏ
2m

Δu: ðC15Þ

When γ ¼ 0 these equations coincide with those introduced
by Nelson [219] in his stochastic interpretation of quantum
mechanics.60 In that case, uQ is called the osmotic velocity
(see footnote 41 in [220]). Nelson derived these equations
from Newton’s law and showed their equivalence with the
ordinary Schrödinger equation. Equations (C14) and (C15)
can therefore be viewed as a generalization of Nelson’s
equations taking dissipative effects into account.

4. Generalized Einstein relation

It is interesting to note that the complex nature of the
friction coefficient γ ¼ γR þ γI [see Eq. (C4)] leads to a
generalized Schrödinger equation (C1) exhibiting simulta-
neously a friction term and an effective temperature term.
They correspond to the real and imaginary parts of γ. This
may be viewed as a new form of fluctuation-dissipation
theorem. In this respect, we note that the relation

D ¼ kBT
mγI

ðC16Þ

resulting from Eqs. (C4) and (C12) is similar to the Einstein
relation of Brownian motion [221].
On the other hand, if we assume that γR ¼ γI (see the

argument given in Appendix D of [141]), we obtain the
relation

D ¼ kBT
mξ

: ðC17Þ

Explicitly,

ℏ
2m

¼ kBT
mξ

or
ℏ
2
¼ kBT

ξ
: ðC18Þ

Again, this can be viewed as a sort of generalized Einstein
relation expressing a form of fluctuation-dissipation

theorem. Here, the diffusion coefficient has a quantum
origin.

APPENDIX D: PARTICULAR PROFILES
OF SELF-GRAVITATION SYSTEMS

In this appendix, we consider particular profiles of self-
gravitating systems that are useful in our study to interpret
the structure of DM halos.

1. Basic equations and definitions

The condition of hydrostatic equilibrium of a self-
gravitating system described by a barotropic equation of
state PðρÞ is

∇Pþ ρ∇Φ ¼ 0: ðD1Þ
Dividing this equation by ρ, taking its divergence and using
the Poisson equation (10), we obtain the fundamental
differential equation [158]:

∇ ·

�
1

ρ
∇P

�
¼ −4πGρ: ðD2Þ

Depending on the equation of state this equation can be
solved analytically or numerically to obtain the density
profile ρðrÞ.
The halo radius rh is defined as the distance at which the

central density ρ0 is divided by 4,

ρðrhÞ
ρ0

¼ 1

4
: ðD3Þ

The mass MðrÞ contained within a sphere of radius r is
given by

MðrÞ ¼
Z

r

0

ρðr0Þ4πr02dr0: ðD4Þ

The halo mass is

Mh ¼ MðrhÞ: ðD5Þ
The circular velocity is defined by

v2ðrÞ ¼ GMðrÞ
r

: ðD6Þ

The circular velocity at the halo radius is

v2h ¼ v2ðrhÞ ¼
GMh

rh
: ðD7Þ

We note the identity

v2h
Gρ0r2h

¼ Mh

ρ0r3h
: ðD8Þ

60We note that Eqs. (C14) and (C15) are equivalent to the
Madelung hydrodynamic equations (8) and (9); see [220] for
more details.
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2. Isothermal profile

We consider the isothermal equation of state [158]:

P ¼ ρ
kBT
m

; ðD9Þ

where T is the temperature. The fundamental equation of
hydrostatic equilibrium (D2) can be rewritten as

kBT
m

Δ ln ρ ¼ −4πGρ: ðD10Þ

Writing

ρ ¼ ρ0e−ψ ; ðD11Þ

where ρ0 is the central density, introducing the normalized
radial distance

ξ ¼ r=r0; r0 ¼
�

kBT
4πGρ0m

�
1=2

; ðD12Þ

where r0 is the thermal core radius, and assuming spherical
symmetry, we obtain the Emden equation [158]:

1

ξ2
d
dξ

�
ξ2

dψ
dξ

�
¼ e−ψ ; ðD13Þ

ψð0Þ ¼ ψ 0ð0Þ ¼ 0: ðD14Þ

Using Eqs. (D4), (D11), (D12), and (D13), the mass
contained within the sphere of radius r is given by

MðrÞ ¼ 4πρ0r30ξ
2ψ 0ðξÞ: ðD15Þ

According to Eqs. (D6), (D12) and (D15), the circular
velocity is

v2ðrÞ ¼ 4πGρ0r20ξψ
0ðξÞ: ðD16Þ

Using Eq. (D12), we find that the temperature satisfies the
relation

kBT
m

¼ 4πGρ0r20: ðD17Þ

Therefore, we can rewrite Eq. (D16) as

mv2ðrÞ
kBT

¼ ξψ 0ðξÞ: ðD18Þ

The halo radius defined by Eq. (D3) is given by rh ¼ ξhr0,
where ξh is determined by the equation

e−ψðξhÞ ¼ 1

4
: ðD19Þ

Solving the Emden equation (D13) numerically, we find

ξh ¼ 3.63; ψ 0ðξhÞ ¼ 0.507: ðD20Þ

The normalized halo mass is

Mh

ρ0r3h
¼ 4π

ψ 0ðξhÞ
ξh

¼ 1.76: ðD21Þ

The normalized circular velocity at the halo radius is

v2h
4πGρ0r2h

¼ ψ 0ðξhÞ
ξh

¼ 0.140: ðD22Þ

The normalized temperature is

kBT
Gmρ0r2h

¼ 4π

ξ2h
¼ 0.954: ðD23Þ

3. Polytropic profiles

We consider the polytropic equation of state [158]:

P ¼ Kργ; γ ¼ 1þ 1

n
; ðD24Þ

where K is the polytropic constant and γ (or n) is the
polytropic index. The fundamental equation of hydrostatic
equilibrium (D2) can be rewritten as

Kðnþ 1ÞΔρ1=n ¼ −4πGρ: ðD25Þ

Writing

ρ ¼ ρ0θ
n; ðD26Þ

where ρ0 is the central density, introducing the normalized
radial distance

ξ ¼ r=r0; r0 ¼
�
Kðnþ 1Þ
4πGρ1−1=n0

�
1=2

; ðD27Þ

where r0 is the polytropic core radius, and assuming
spherical symmetry, we obtain the Lane-Emden equation
[158]:

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn; ðD28Þ

θð0Þ ¼ 1; θ0ð0Þ ¼ 0: ðD29Þ

Using Eqs. (D4), (D26), (D27), and (D28), the mass
contained within the sphere of radius r is given by
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MðrÞ ¼ −4πρ0r30ξ2θ0ðξÞ: ðD30Þ

According to Eqs. (D6), (D27) and (D30), the circular
velocity is

v2ðrÞ ¼ −4πGρ0r20ξθ0ðξÞ: ðD31Þ

The halo radius defined by Eq. (D3) is given by rh ¼ ξhr0,
where ξh is determined by the equation

θðξhÞn ¼
1

4
: ðD32Þ

The value of ξh can be obtained by solving the Lane-Emden
equation (D28) for a given value of n. The normalized halo
mass is

Mh

ρ0r3h
¼ −4π

θ0ðξhÞ
ξh

: ðD33Þ

The normalized circular velocity at the halo radius is

v2h
4πGρ0r2h

¼ −
θ0ðξhÞ
ξh

: ðD34Þ

When n < 5, the polytropes are self-confined (their
density has a compact support). We denote by ξ1 the
normalized radius at which the density vanishes: θ1 ¼ 0.
Their total mass M and their radius R are given by

M ¼ −4πρ0r30ξ21θ01; R ¼ ξ1r0: ðD35Þ

Eliminating the central density between these two equa-
tions, we obtain the mass-radius relation [158]:

Mðn−1Þ=nRð3−nÞ=n ¼ Kðnþ 1Þ
Gð4πÞ1=n ω

ðn−1Þ=n
n ; ðD36Þ

where ωn ¼ −ξðnþ1Þ=ðn−1Þ
1 θ01.

For the polytrope n ¼ 1 the Lane-Emden equation (D28)
can be solved analytically. The solution is [158]

ρðrÞ
ρ0

¼ θ ¼ sinðξÞ
ξ

: ðD37Þ

The normalized radial distance is ξ ¼ r=r0 where r0 ¼
ðK=2πGÞ1=2 is independent of the central density. The
density vanishes at ξ1 ¼ π. This corresponds to a radius

R ¼ π

�
K

2πG

�
1=2

: ðD38Þ

We can then write ξ ¼ πr=R. The central density is related
to the total mass by

ρ0 ¼
πM
4R3

¼ M
4π2

�
2πG
K

�
3=2

: ðD39Þ

The halo radius is rh ¼ ξhR=π where ξh is the smallest root
of sinðξhÞ=ξh ¼ 1=4. We find

ξh ¼ 2.4746; θ0ðξhÞ ¼ −0.41853: ðD40Þ

The mass profile and the circular velocity profile can be
written as

MðrÞ ¼ 4πρ0r3h
ξ3h

½sinðξÞ − ξ cosðξÞ�; ðD41Þ

v2ðrÞ ¼ 4πGρ0r2h
ξ2h

�
sinðξÞ
ξ

− cosðξÞ
�
: ðD42Þ

The normalized halo mass and the normalized circular
velocity at the halo radius are

Mh

ρ0r3h
¼ 2.12534;

v2h
4πGρ0r2h

¼ 0.169129: ðD43Þ

4. Burkert profile

The Burkert profile [6] is given by the empirical law

ρðrÞ
ρ0

¼ 1

ð1þ xÞð1þ x2Þ ; x ¼ r
rh

: ðD44Þ

The corresponding rotation curve is

v2ðrÞ ¼ 2πG
ρ0r2h
x

�
lnð1þ xÞ − arctan xþ 1

2
lnð1þ x2Þ

�
:

ðD45Þ

The normalized halo mass and the normalized circular
velocity at the halo radius are

Mh

ρ0r3h
¼ 1.60;

v2h
4πGρ0r2h

¼ 0.127: ðD46Þ

5. Pseudo-isothermal profile

The pseudo-isothermal profile is given by

ρðrÞ
ρ0

¼ 1

1þ 3x2
; x ¼ r

rh
: ðD47Þ

The corresponding rotation curve is

v2ðrÞ ¼ 4πGρ0r2h
3

�
1 −

arctanð ffiffiffi
3

p
xÞffiffiffi

3
p

x

�
: ðD48Þ
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The normalized halo mass and the normalized circular
velocity at the halo radius are

Mh

ρ0r3h
¼ 1.66;

v2h
4πGρ0r2h

¼ 0.132: ðD49Þ

6. Modified Hubble profile

The modified Hubble model [135] is given by

ρðrÞ
ρ0

¼ 1

ð1þ ax2Þ3=2 ; x ¼ r
rh

; ðD50Þ

where a ¼ 42=3 − 1 ¼ 1.52. The corresponding rotation
curve is

v2ðrÞ ¼ 4πG
ρ0r2h
x

�
sinh−1ð ffiffiffi

a
p

xÞ
a3=2

−
x

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax2

p
�
: ðD51Þ

The normalized halo mass and the normalized circular
velocity at the halo radius are

Mh

ρ0r3h
¼ 1.75;

v2h
4πGρ0r2h

¼ 0.139: ðD52Þ

7. Natarajan and Lynden-Bell profile

The Natarajan and Lynden-Bell profile [161] is given by

ρ

ρ0
¼ A

a2 þ ξ2
−

B
b2 þ ξ2

; ðD53Þ

where ξ is defined by Eq. (D12). The corresponding
rotation curve is

v2ðrÞ ¼ 4πGρ0r20
ξ

	
Aa

�
ξ

a
− tanh−1

�
ξ

a

��

− Bb

�
ξ

b
− tanh−1

�
ξ

b

��

: ðD54Þ

The halo radius defined by Eq. (D3) is given by rh ¼ ξhr0,
where ξh is determined by the second degree equation
(for ξ2h):

ξ4h þ ða2 þ b2 þ 4B − 4AÞξ2h þ a2b2 − 4Ab2 þ 4Ba2 ¼ 0:

ðD55Þ

A good approximation of the isothermal profile is obtained
by taking A ¼ 50, a2 ¼ 10, B ¼ 48, and b2 ¼ 12 [161].
This gives ξh ¼ 3.64. The normalized halo mass and the
normalized circular velocity at the halo radius are then
given by

Mh

ρ0r3h
¼ 1.75;

v2h
4πGρ0r2h

¼ 0.139; ðD56Þ

in very good agreement with the exact results from
Appendix D 2.

APPENDIX E: FUNDAMENTAL DIFFERENTIAL
EQUATION OF OUR MODEL

In our model [140,141], the density of the DM halos is
determined by the fundamental differential equation

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−

Kγ

γ − 1
Δργ−1 −

kBT
m

Δ ln ρ

¼ 4πGρþ 3ω2
0: ðE1Þ

If we define

ρ ¼ ρ0e−ψ ; ξ ¼
�
4πGρ0m
kBT

�
1=2

r; ðE2Þ

χ ¼ Kγmργ−10

kBT
; ϵ ¼ 2πGρ0ℏ2

ðkBTÞ2
; Ω2 ¼ 3ω2

0

4πGρ0
; ðE3Þ

we find that Eq. (E1) takes the form of a generalized Emden
equation

ϵΔðeψ=2Δe−ψ=2Þ þ Δψ þ χ∇ · ½e−ðγ−1Þψ∇ψ � ¼ e−ψ þΩ2:

ðE4Þ

The ordinary Emden equation (D13) is recovered for
ϵ ¼ χ ¼ Ω ¼ 0. Alternatively, if we define

ρ ¼ ρ0θ
n; ξ ¼

�
4πG

Kðnþ 1Þρ1=n−10

�
1=2

r; ðE5Þ

we find that Eq. (E1) takes the form of a generalized Lane-
Emden equation

−
ϵ

n2χ2
Δ
�
Δθn=2

θn=2

�
þ 1

χ
Δ ln θ þ Δθ ¼ −θn −Ω2: ðE6Þ

The ordinary Lane-Emden equation (D28) is recovered
for ϵ ¼ 1=χ ¼ Ω ¼ 0.

APPENDIX F: COMPARISON WITH THE
MODEL OF SLEPIAN AND GOODMAN

Our model of BECDM halos shows analogies with the
model of Slepian and Goodman [168] but is fundamentally
different, thereby escaping the problems mentioned by
these authors to construct BECDM halos consistent with
the observations.
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Slepian and Goodman [168] consider a self-gravitating
boson gas at finite temperature, corresponding to a true
statistical equilibrium state of bosons resulting from a
collisional relaxation. They take into account the repulsive
self-interaction of the bosons and the possibility that the
bosons form a BEC above a critical density ρc. They derive
the equation of state of this system and show that it behaves
as P ∼ ρkBT th=m (isothermal) at low densities and as
P ∼ 2πasℏ2ρ2=m3 (condensate) at high densities. The
normalized equation of state depends on a dimensionless
parameter θ ∼ as=ΛdB where ΛdB ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT th

p
is the

thermal de Broglie wavelength. Importantly, it displays a
plateau after ρc when θ ≪ 1. Slepian and Goodman [168]
numerically determine the density and circular velocity
profiles corresponding to this equation of state. They find
that the circular velocity profile presents a dip which
increases as θ decreases and argue that, in order to match
the observations (which do not exhibit a strong dip), we
must have θ ≥ 10−4.61 This implies that m ≥ 10 eV=c2

(assuming v∞ ¼ 100 km=s and Rc ¼ 1 kpc). However,
this constraint is not consistent with the constraint m <
10−3 eV=c2 implied by the Bullet Cluster (see Appendix D
of [46]). They conclude therefore that the thermal BECDM
model is ruled out.
Their model is physically different from ours because it

describes the true statistical equilibrium state of self-
gravitating bosons at finite temperature while our model
is an heuristic parametrization of the GPP equations at
T th ¼ 0 (or T th ≪ Tc) taking into account violent relaxa-
tion and gravitational cooling. In their model, T th represents
the true thermodynamic temperature while in our model T
is an effective out-of-equilibrium temperature (like in
Lynden-Bell’s theory of violent relaxation). In the same
way, their equation of state aims at representing the true
equation of state of a self-interacting boson gas at statistical
equilibrium while our equation of state (14) is a heuristic
equation of state of an out-of-equilibrium self-interacting
boson gas (again like in Lynden-Bell’s theory of violent
relaxation). Therefore, their equation of state is different,
and more complex, than ours (although they both have the
same asymptotic behaviors). In particular, it display a
plateau between the condensed phase and the uncondensed
phase which is responsible for the problems that they
encounter to constuct a DM halo satisfying all the obser-
vational constraints. In our out-of-equilibrium equation of
state there is no such plateau so there is no problem to
obtain solutions satisfying the observational constraints.
Slepian and Goodman [168] were careful to

mention that their conclusions only apply to self-gravitating
bosons at statistical equilibrium. Since we consider

out-of-equilibrium (but still virialized) self-gravitating
bosons described by a different equation of state their
critics do not apply to our model.

APPENDIX G: CONDENSATION TEMPERATURE

We have seen that large DM halos have an isothermal, or
almost isothermal, atmosphere which is responsible for the
flat, or almost flat, rotation curves of the galaxies. The
temperature T is related to the circular velocity at infinity
v∞ by the relation

kBT
m

¼ v2∞
2

: ðG1Þ

For the medium spiral, v∞ ¼ 153 km=s (see Sec. VI C).
For bosons with a repulsive self-interaction, the boson mass
must be in the range 2.92 × 10−22 eV=c2 < m < 1.10 ×
10−3 eV=c2 in order to account for the mass and size of
ultracompact dwarf halos at T ¼ 0 such as Fornax as well
as the constraint set by the bullet cluster (see Appendix D of
Ref. [46]). In that case, we find from Eq. (G1) that the
temperature of large halos such as the medium spiral is
4.41 × 10−25 K < T < 1.66 × 10−6 K. Such a small tem-
perature may not be physical. This strongly suggests that T
is not the true thermodynamic temperature. It may rather
represent an effective temperature as we have suggested in
the present paper. In that case, T has not a real physical
meaning. Only the quantity kBT=m has a physical meaning.
The condensation temperature of a boson gas is given by

Tc ¼
2πℏ2ρ2=3

m5=3kBζð3=2Þ2=3
; ðG2Þ

where ζð3=2Þ ¼ 2.6124…. The bosons are uncondensed
for T th > Tc while they form a BEC for T th < Tc.
Evaluated at the center of large DM halos such as the
medium spiral where ρ0 ¼ 7.02 × 10−3 M⊙=pc3 (see
Sec. VI C), we get 5.29 × 105 K < Tc < 4.82 × 1036 K.
This value of the condensation temperature is considerably
larger than the thermodynamic temperature of radiation
T th ∼ 3 K, than the effective temperature of the DM halos
4.41 × 10−25 K < T < 1.66 × 10−6 K and than any rea-
sonable temperature. This indicates that the bosons are
completely condensed and that we can consider that
T th ¼ 0. This justifies our starting hypothesis.
Of course, in a given halo, the condensation temperature

decreases as the density decreases. For a given temperature,
we can define a critical density

ρc ¼
ζð3=2Þ
ð2πÞ3=2

ðkBT thÞ3=2m5=2

ℏ3
ðG3Þ

above which the bosons form a BEC. Taking T th ∼ 3 K
(thermodynamic temperature of radiation), we get

61We note that Slepian and Goodman [168] impose θν̂ð0Þ ¼ 1
which corresponds to χ ∼ 1 in our notations. According to
Eq. (111) this is equivalent to the equality between the soliton
radius and the thermal core radius: r0 ∼ Rc.
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3.44 × 10−57 M⊙=pc3 < ρc < 9.48 × 10−11 M⊙=pc3. This
is much smaller than the typical densities represented in
Fig. 23 indicating that the bosons are always completely
condensed. Therefore, in all relevant cases, we can assume
that T th ¼ 0.
Remark: If we assume that DM halos are made of

fermions, like sterile neutrinos, then the fermion mass must
bem ∼ 170 eV=c2 in order to account for the mass and size
of ultracompact dwarf halos at T ¼ 0 such as Fornax (see
Appendix D of [46]). In that case, we find from Eq. (G1)
that the temperature of large halos such as the medium
spiral is T ∼ 0.257 K. This temperature is more physical
suggesting that, if DM is made of fermions, T may repre-
sent the true thermodynamic temperature. There remains,
however, the timescale problem to reach a statistical
equilibrium state, as discussed in the Introduction.

APPENDIX H: PROOF THAT THE SOLITONIC
CORE IN OUR MODEL IS ALWAYS

NONRELATIVISTIC

The soliton of mass Mc and radius Rc studied in
Sec. VII F would be strongly relativistic, and could
mimic a SMBH, if its radius were of the order of the
Schwarzschild radius:

Rc ∼ RS ¼
2GMc

c2
: ðH1Þ

Using Eq. (181), we find that

Rc

RS
¼ Rcc2

2GMc
¼ 0.695

c2

G
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ0Mh

p 1

lnð Mh
Σ0R2

c
Þ : ðH2Þ

Interestingly, in our model, the compactness Rc=RS of
the soliton is independent of the properties of the DM
particle (as and m), except for a logarithmic correction
(the logarithmic factor depends on Rc, hence on as=m3).
For a halo of mass Mh ¼ 1011 M⊙, similar to the one that
surrounds our Galaxy, we get Rc=RS ¼ 5.89 × 105 ≫ 1.
Therefore, the soliton is not a black hole, not even a
relativistic object. We find that Rc=RS becomes of order
unity for a halo mass

ðMhÞcrit ¼ 0.121
c4

Σ0G2

1

ln2ð c2
GΣ0Rc

Þ : ðH3Þ

When Mh ≪ ðMhÞcrit the soliton is nonrelativistic. When
Mh approaches ðMhÞcrit the soliton becomes strongly
relativistic and may mimic a black hole (in that case, a
general relativistic treatment becomes mandatory). Using
Eqs. (94) and (101), we obtain

ðMhÞcrit ∼ 1021 M⊙: ðH4Þ

This value is independent of the properties of the DM
particle. This critical mass is much larger than any relevant
mass of DM halos in the Universe. We therefore conclude
that the solitonic core in our model is always nonrelativistic
and cannot mimic a black hole. This justifies a posteriori
our Newtonian approach.
Another, sensibly equivalent, argument can be given as

follows. When general relativity is taken into account, we
know that a self-interacting boson star in the TF regime is
stable only below a maximum mass [159,222,223]:

ðMcÞmax ¼ 0.307
ℏc2

ffiffiffiffiffi
as

p
ðGmÞ3=2 ¼ 9.78 × 10−2

c2Rc

G
: ðH5Þ

Using Eq. (101), we get

ðMcÞmax ¼ 2.04 × 1015 M⊙: ðH6Þ

When Mc ∼ ðMcÞmax, the boson star is strongly relativistic
and when Mc > ðMcÞmax it collapses into a black hole.
Inversely, when Mc ≪ ðMcÞmax, the boson star is non-
relativistic. For a halo of massMh ¼ 1011 M⊙, the mass of
the soliton isMc ¼ 1.77 × 1010 M⊙ (see Sec. VII F). Since
Mc ≪ ðMcÞmax, the soliton is nonrelativistic. The soliton
would collapse into a black hole if its mass satisfied
Mc > ðMcÞmax. From Eqs. (181) and (H5) we find that

Mc

ðMcÞmax
¼ 7.35

G
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ0Mh

p
c2

ln
�

Mh

Σ0R2
c

�
: ðH7Þ

Therefore, Mc would be larger that ðMcÞmax in a halo
of mass Mh > ðMhÞ0crit where ðMhÞ0crit [obtained from
Eq. (H7)] is essentially the same mass as in Eqs. (H3)
and (H4). Therefore, we conclude that the soliton is always
nonrelativistic (for all the halos in the Universe) and that it
cannot collapse into a black hole. This does not prevent,
however, the possibility that the solitonic bulge attracts
the gas around it and creates a situation favorable to the
formation of a SMBH and a quasar as discussed in
Sec. VII E.
Remark: We can similarly compute the maximum

soliton mass in the case of noninteracting bosons. Using
ðMcÞmax ¼ 0.633ℏc=Gm [156,224] and m ¼ 2.92 ×
10−22 eV=c2 (see Sec. VI B), we obtain ðMcÞmax ¼
2.90 × 1011 M⊙. On the other hand, the maximum mass
of the fermion ball ðMcÞmax ¼ 0.384ðℏc=GÞ3=2=m2 [225]
in the case of fermions of mass m ¼ 170 eV=c2 (see
Sec. VI B) is ðMcÞmax ¼ 2.16 × 1013 M⊙. These maximum
masses are much larger than the core masses of DM halos
[Mc ≪ ðMcÞmax] so the cores of DM halos are generally
nonrelativistic. We note that Ruffini et al. [38] reach a
different conclusion because they take a much larger mass
of the fermionic particle, m ¼ 48 keV=c2, which is not
consistent with the arguments given in Sec. VI B.
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APPENDIX I: ANALYTICAL MODEL OF A
SELF-GRAVITATING BEC WITH AN

ISOTHERMAL ATMOSPHERE IN A BOX

In this appendix, we develop an analytical model of a
self-gravitating BEC with an isothermal atmosphere
enclosed within a box of radius R.62 This model returns
the gaseous (G), core-halo (CH), and condensed (C) phases
obtained in Sec. VIII. It allows us to analytically obtain the
relation McðMhÞ between the core mass and the halo mass
by extremizing the free energy FðMcÞ with respect to Mc.
Furthermore, it shows that the gaseous and condensed
solutions are thermodynamically stable (minima of free
energy) while the core-halo solution is thermodynamically
unstable in the canonical ensemble (maximum of free
energy).63

We modelize the core by a pure soliton of mass Mc and
radius Rc as in Sec. III B 2. For a self-interacting BEC in
the TF approximation, we recall that the soliton radius Rc
has a unique value given by Eq. (71). On the other hand, the
internal energy and the gravitational energy of the soliton
are given by [78]

Uc ¼
GM2

c

4Rc
; Wc ¼ −

3GM2
c

4Rc
: ðI1Þ

We modelize the halo by an isothermal atmosphere of
uniform density and mass M −Mc contained between the
spheres of radius Rc and R. The internal energy of the
atmosphere is given by

Uh ¼
kBT
m

ðM −McÞ½lnðM −McÞ − lnV − 1�; ðI2Þ

and its gravitational energy (in the presence of the solitonic
core) by

Wh ¼ −
3GMcðM −McÞ

2R
−
3GðM −McÞ2

5R
: ðI3Þ

To obtain these results, we have assumed that Rc ≪ R [28].
The free energy of the system is therefore

F ¼ −
GM2

c

2Rc
þ kBT

m
ðM −McÞ½lnðM −McÞ − lnV − 1�

−
3GMcðM −McÞ

2R
−
3GðM −McÞ2

5R
: ðI4Þ

This is a function FðMcÞ of the core mass for a given value
ofM, R, and T. The extrema of this function determine the

possible equilibrium states of the system. More precisely,

they determine the possible equilibrium core masses MðiÞ
c

as a function of M, R, and T. This is valid both in
the canonical and microcanonical ensembles [28] (see
Sec. VIII D 5). In the canonical ensemble, a minimum of
FðMcÞ corresponds to a stable equilibrium state (most
probable state) while a maximum of FðMcÞ corresponds to
an unstable equilibrium state (less probable state).
It is convenient to introduce the dimensionless quantities

x ¼ Mc

M
; η ¼ βGMm

R
; ðI5Þ

μ ¼ π2
�
R
Rc

�
2

; fðxÞ ¼ FðMcÞR
GM2

; ðI6Þ

so that Eq. (I4) can be rewritten as

fðxÞ ¼ −
ffiffiffi
μ

p
2π

x2 þ 1

η
ð1 − xÞ

�
ln

�
M
V

�
þ lnð1 − xÞ − 1

�

−
3

2
xð1 − xÞ − 3

5
ð1 − xÞ2; ðI7Þ

with 0 ≤ x ≤ 1.
The equilibrium states, corresponding to f0ðxÞ ¼ 0, are

the solutions of the equation

lnð1 − xÞ þ
� ffiffiffi

μ
p
π

−
9

5

�
xηþ 3

10
ηþ ln

�
M
V

�
¼ 0: ðI8Þ

This equation determines the core mass x ¼ Mc=M as a
function of η, μ and M=V. For x ¼ 0 (purely gaseous
phase) we find ηð0Þ ¼ −ð10=3Þ lnðM=VÞ and, for reasons
that will become clear below, we shall identify this value
with ηc ¼ 2.52, the minimum temperature of a classical
self-gravitating isothermal gas [194]. Therefore, we set

ln

�
M
V

�
¼ −

3

10
ηc: ðI9Þ

We can then rewrite Eq. (I8) as

lnð1 − xÞ þ
� ffiffiffi

μ
p
π

−
9

5

�
xηþ 3

10
ðη − ηcÞ ¼ 0: ðI10Þ

The solutions of this equation can be easily found by
studying the inverse function

ηðxÞ ¼ ηc − 10
3
lnð1 − xÞ

1þ 10
3
ð
ffiffi
μ

p
π − 9

5
Þx

ðI11Þ

for a given value of μ (see Fig 51). For x → 0, we get

62This model is directly inspired by the analytical model
developed in Refs. [26,28,186] for self-gravitating fermions.

63It is possible to generalize this model in the microcanonical
ensemble [157]. In that case, it can be shown that the core-halo
phase may be microcanonically stable in agreement with the
discussion of Sec. VIII D 5.
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ηðxÞ ¼ ηc þ
10

3

�
1 −

� ffiffiffi
μ

p
π

−
9

5

�
ηc

�
xþ…: ðI12Þ

Close to x ¼ 0, the curve ηðxÞ is increasing when μ < μapp:CCP
and decreasing when μ > μapp:CCP, where

μapp:CCP ¼ π2
�
1

ηc
þ 9

5

�
2

¼ 47.6: ðI13Þ

This value can be identified with the canonical critical
point. For x → 1, we get

η ∼
− lnð1 − xÞffiffi

μ
p
π − 3

2

→ þ∞; ðI14Þ

where we have assumed μ > ð3π=2Þ2 ¼ 22.2 to avoid
unphysical results due to the invalidity of our model for
small values of μ.
For μ > μapp:CCP, the minimum of the curve ηðxÞ, denoted

ðx�; η�Þ, is determined by the equations

lnð1 − x�Þ þ
x�

1 − x�
þ 3

10ð
ffiffi
μ

p
π − 9

5
Þð1 − x�Þ

−
3

10
ηc ¼ 0

ðI15Þ

and

η� ¼
1

ð
ffiffi
μ

p
π − 9

5
Þð1 − x�Þ

: ðI16Þ

Instead of solving Eq. (I15) for x� as a function of μ, it is
simpler to study the inverse function

μðx�Þ ¼
"
9π

5
þ

3π
10ð1−x�Þ

3
10
ηc − lnð1 − x�Þ − x�

1−x�

#
2

: ðI17Þ

The values of x� and η� characterizing the minimum of the
curve ηðxÞ as a function of μ are plotted in Figs. 52 and 53.
For μ → μapp:CCP ¼ 47.6, we find that x� → 0 and η� → ηc.
For μ → þ∞, we find that x� → xc�, where xc� is the solution
of the equation

lnð1 − x�Þ þ
x�

1 − x�
−

3

10
ηc ¼ 0: ðI18Þ

We numerically obtain xc� ≃ 0.640. We then find that

η� ∼
πffiffiffi

μ
p ð1 − x�Þ

∼
8.73ffiffiffi

μ
p → 0: ðI19Þ

Let us now consider more specifically the function fðxÞ
giving the free energy as a function of the core mass x for a
given value of μ and η (see Fig. 54). Using Eq. (I9), we can
rewrite Eq. (I7) as

fðxÞ ¼ −
ffiffiffi
μ

p
2π

x2 þ 1

η
ð1 − xÞ

�
−

3

10
ηc þ lnð1 − xÞ − 1

�

−
3

2
xð1 − xÞ − 3

5
ð1 − xÞ2: ðI20Þ
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FIG. 51. The function ηðxÞ for μ < μappCCP ¼ 47.6 (specifically
μ ¼ 30) and for μ > μappCCP (specifically μ ¼ 100). We have
represented the gaseous phase (G), the condensed phase (C),
and the core-halo phase (CH).
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FIG. 52. The function μðx�Þ. By inversion, it gives the value of
x� as a function of μ.
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Its first derivative is

f0ðxÞ ¼ −
ffiffiffi
μ

p
π

xþ 3

10

ηc
η
−
1

η
lnð1 − xÞ − 3

10
þ 9

5
x: ðI21Þ

The condition f0ðxÞ ¼ 0 determines the equilibrium states
as we have just seen. The stability of these equilibrium
states in the canonical ensemble is then determined by the
sign of the second derivative of the free energy:

f00ðxÞ ¼ −
ffiffiffi
μ

p
π

þ 1

ηð1 − xÞ þ
9

5
: ðI22Þ

An equilibrium state is stable when f00ðxÞ > 0, correspond-
ing to a minimum of free energy, and unstable when
f00ðxÞ < 0, corresponding to a maximum of free energy.
Coming back to the function fðxÞ, its values at x ¼ 0 and
x ¼ 1 are

fð0Þ ¼ −
1

η

�
3

10
ηc þ 1

�
−
3

5
ðI23Þ

and

fð1Þ ¼ −
ffiffiffi
μ

p
2π

: ðI24Þ

For x → 0, we find that

fðxÞ ¼ fð0Þ þ 3

10

�
ηc
η
− 1

�
xþ…: ðI25Þ

The term in parentheses is positive when η < ηc and
negative when η > ηc. Since the function fðxÞ is defined
for x ≥ 0, the solution x ¼ 0 (purely gaseous phase) is a
local minimum of fðxÞ for η < ηc even though f0ð0Þ ≠ 0.
We shall therefore consider that this solution is a stable
equilibrium state.

We are now ready to perform the complete analysis of
the equilibrium states of our simple analytical model. We
note that the function ηðxÞ defined by Eq. (I11) is the
counterpart of the function ηðχÞ defined in Sec. VIII.
For μ < μappCCP, the curve ηðxÞ is made of a vertical branch

at x ¼ 0 up to η ¼ ηc, then it increases monotonically up to
infinity (see Fig. 51). This is similar to Figs. 41 and 46. For
η < ηc there is a unique equilibrium state with x ¼ 0
corresponding to the gaseous phase (G). For η > ηc there
is a unique equilibrium state with x > 0 corresponding to
the condensed phase (C). They are both stable (minima of
free energy). There is no phase transition in the present
situation. Here, ηc just separates the gaseous configurations
from the condensed configurations.
For μ > μappCCP, the curve ηðxÞ is made of a vertical

branch at x ¼ 0 up to η ¼ ηc, then it decreases up to η�
and finally it increases up to infinity (see Fig. 51). This is
similar to Figs. 42 and 47. When η < η�, there is a
unique equilibrium state with x ¼ 0. It corresponds to the
gaseous phase (G). When η > ηc, there is a unique
equilibrium state with x ≃ 1. It corresponds to the
condensed phase (C). They are both stable (minima of
free energy). When η� < η < ηc there are three equilib-
rium states (see Fig. 54): (i) a gaseous phase (G) with
x ¼ 0, (ii) a core-halo phase (CH) with x ≪ 1, (iii) a
condensed phase (C) with x ≃ 1. Let us analyze these
solutions in more detail in the limit μ → þ∞:

(i) The gaseous solution (G) corresponds to a purely
isothermal halo without soliton. The core mass is
equal to zero: x1 ¼ 0. This solution is stable, being a
minimum of free energy, although the derivative of
fðxÞ is not defined at x ¼ 0 (as explained above).

(ii) The core-halo solution (CH) corresponds to an
isothermal halo harboring a central soliton with a
small mass. From Eq. (I10), we find that the core
mass scales as

x2 ∝
1ffiffiffi
μ

p ; ðI26Þ

leading to the results of Sec. VIII D 4. Substituting
Eq. (I26) into Eq. (I22) we find that f00ðx2Þ ¼
− ffiffiffi

μ
p

=π < 0. Therefore, the core-halo solution is
unstable in the canonical ensemble. It may, however,
be stable in the microcanonical ensemble (see
Sec. VIII D 5).

(iii) The condensed solution (C) corresponds to a soli-
tonic core surrounded by a tenuous atmosphere.
From Eq. (I10), we find that the core mass scales as

1 − x3 ∝ e−
ffiffi
μ

p
η=π; ðI27Þ

showing that the soliton contains almost all the
mass. Substituting Eq. (I27) into Eq. (I22) we find
that f00ðx3Þ ∼ ð1=ηÞeη ffiffi

μ
p

=π → þ∞. Therefore, the
condensed solution is stable.
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FIG. 54. The function fðxÞ for μ > μappCCP and η� < η < ηc
(specifically μ ¼ 100 and η ¼ 1.8) where three equilibrium states
exist.

PIERRE-HENRI CHAVANIS PHYS. REV. D 100, 083022 (2019)

083022-58



We now show that the result (I26) can be obtained from
the “velocity dispersion tracing” relation

v2c ∼ v2h ðI28Þ
stating that the velocity dispersion in the core v2c ∼
GMc=Rc is of the same order as the velocity dispersion
in the halo v2h ∼GMh=rh. This condition gives

Mc ∝
Rc

rh
Mh: ðI29Þ

Using μ ∝ ðrh=RcÞ2 it can be rewritten as Eq. (I26).
Therefore, Eq. (I26) is fully consistent with the velocity
dispersion tracing relation (I28) which, in the noninter-
acting case (as ¼ 0), leads to the core mass/halo mass
relation found by Schive et al. [97] (see the discussion in
Mocz et al. [226]). In the present case (self-interacting
bosons), since Rc is independent of Mc and since
Mh ∝ Σ0r2h, we get

Mc ∝ Rc

ffiffiffiffiffiffiffiffiffiffiffiffi
Σ0Mh

p
∝
�
asℏ2Σ0Mh

Gm3

�
1=2

∝ M1=2
h ðI30Þ

in agreement with Eqs. (183) and (201) obtained by two
different methods (in total, we have presented four
independent arguments leading to this relation).
We conclude this appendix by presenting preliminary

results obtained for noninteracting bosons and fermions
(they will be developed in a specific paper [157]).
As we have seen previously for self-interacting bosons,

the relation McðMhÞ can be obtained either by extremizing
the free energy with respect to Mc [157] or, more directly,
by assuming the velocity dispersion tracing relation (I28)
or (I29).64 In the case of noninteracting bosons, using the
mass-radius relation McRc ¼ 9.95ℏ2=Gm2 [50,78,79], we
obtain

Mc ∝
�
ℏ2Mh

Gm2rh

�
1=2

∝
�
ℏ4Σ0Mh

G2m4

�
1=4

∝ M1=4
h : ðI31Þ

In the case of fermions, using the mass-radius relation
McR3

c ¼ 1.49 × 10−3h6=G3m8 [158], we get

Mc ∝
ℏ3=2

m2

�
Mh

Grh

�
3=4

∝
�
ℏ3

m4

�
1=2

�
MhΣ0

G2

�
3=8

∝ M3=8
h :

ðI32Þ
We now note that the mass-radius relationMh ∝ r2h used in
the present paper (based on the observation that the surface
density of DM halos is constant [172–174]) is different

from the mass-radius relationMv ∝ r3v used by Schive et al.
[97]. This suggests that the halo mass Mv considered by
these authors is different from the halo massMh considered
here. Using the relationGMh=rh∼GMv=rv (consistent with
the velocity dispersion tracing relation), we get Mh ∝ M4=3

v .
Using this relation65 together with the McðMhÞ relations
obtained previously, we obtain for self-interacting bosons

Mc ∝ M2=3
v ; ðI33Þ

for noninteracting bosons

Mc ∝ M1=3
v ; ðI34Þ

and for fermions

Mc ∝ M1=2
v : ðI35Þ

The scaling of Eq. (I34) is consistent with the numerical
results of Schive et al. [97]. The scaling of Eq. (I35),
previously given in the form of Eq. (I32) in Appendix H of
[40], is consistent with the scaling of Ruffini et al. [38] who
find 0.52 instead of 1=2. We have shown in [157] that
our procedure of extremizing the free energy is always
equivalent to the velocity dispersion tracing relation (I28).
Therefore, our approach provides a justification of the results
of Schive et al. [97] and Ruffini et al. [38] from thermo-
dynamical arguments. The prefactor in Eqs. (I33)–(I35) can
be obtained from our approach [like in Eq. (183) for self-
interacting bosons] but this requires additional calculations
that will be presented in future works [142,157].
Remark: It is interesting to study how the mass Mc, the

radius Rc, the velocity dispersion GMc=Rc and the energy
GM2

c=Rc in the core behave in the classical limit ℏ → 0.
For self-interacting bosons, using Eq. (I30), we find Mc ∼
Rc ∼ GM2

c=Rc ∼ ℏ → 0 and GMc=Rc ∼ 1. For noninteract-
ing bosons, using Eq. (I31), we findMc ∼ Rc ∼ GM2

c=Rc ∼
ℏ → 0 and GMc=Rc ∼ 1. For fermions, using Eq. (I32), we
find Mc ∼ Rc ∼GM2

c=Rc ∼ ℏ3=2 → 0 and GMc=Rc ∼ 1.

APPENDIX J: PHASE TRANSITIONS LEADING
TO A BOSON OR FERMION BALL MIMICKING

A SMBH AT THE CENTERS OF
ELLIPTICAL GALAXIES

In this Appendix, we consider the possibility that the
SMBHs of mass M ∼ 109 M⊙ that reside at the centers of
elliptical galaxies are actually boson or fermion balls cor-
responding to a purely condensed phase (C) without halo.
Let us consider a dilute gas of bosons or fermions with

a mass M ∼ 109 M⊙ and a sufficiently large radius R so

64We note that this relation is not obvious a priori and that
other relations are possible such as the “energy tracing” relation
[226]. The fact that relation (I28) can be justified from a free
energy extremization principle [157] provides a physical basis
for it.

65From Mh ∝ r2h and v2h ¼ GMh=rh ∝ rh, we get vh ∝ M1=4
h

which is the Tully-Fisher relation [227,228]. UsingMh ∝ M4=3
v we

get vh ∝ M1=3
v which is consistent with the scaling reported in

[209,229]. This gives some confidence to the relationMh ∝ M4=3
v .
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that a canonical phase transition can take place (this
requires that μ > μCCP so that the caloric curve has the
shape of Figs. 47 and 48). In that case, below the critical
temperature Tc (corresponding to ηc ≃ 2.52), the gas
undergoes a gravitational collapse (isothermal collapse)
and forms a compact object (completely condensed boson
or fermion star) of about the same mass M ∼ 109 M⊙ but
with a much smaller radius R� ≪ R. This corresponds to a
zeroth order phase transition from a gaseous phase (G) to
a condensed phase (C). The condensed solution (C)
represents a pure boson or fermion star without DM halo.
The boson or fermion star (compact object) may

mimic a SMBH of mass M ∼ 109 M⊙ at the center of
an elliptical galaxy if its maximum mass Mmax is close to
M ∼ 109 M⊙. In that case, the boson or fermion star is very
relativistic and general relativity must be taken into
account.
Using the results of Appendix F of [119] we can estimate

the characteristics of the corresponding DM particle.66

For noninteracting bosons, using Mmax ¼ 0.633ℏc=Gm
and R� ¼ 9.53GMmax=c2 [156,224] we find that Mmax ¼
109 M⊙ (with R� ¼ 4.56 × 10−4 pc) provided that m ¼
8.46 × 10−20 eV=c2. For self-interacting bosons in the
TF limit, using Mmax ¼ 0.307ℏc2

ffiffiffiffiffi
as

p
=ðGmÞ3=2 and R� ¼

6.25GMmax=c2 [222,223] we find that Mmax ¼ 109 M⊙
(with R� ¼ 2.99 × 10−4 pc) provided that as=m3 ¼ 7.86×
10−10 fm=ðeV=c2Þ3. For fermions, using Mmax ¼
0.384ðℏc=GÞ3=2=m2 and R� ¼ 8.73GMmax=c2 [225], we
find that Mmax ¼ 109 M⊙ (with R� ¼ 4.18 × 10−4 pc)
provided that m ¼ 25.0 keV=c2.
The results are essentially the same in the microcanonical

ensemble but the existence of a microcanonical phase tran-
sition requires an initially larger system size (μ>μMCP) so
that the caloric curve has the shape of Fig. 48. On the other
hand, the compact object resulting from the gravitational
collapse (gravothermal catastrophe) at Ec (corresponding to
Λc ≃ 0.335) contains a fraction (∼1=4) of the initial mass
[33,186]. The formation of the compact object (implosion) is
accompanied by the expulsion of a hot envelope (explosion).
This core-halo structure is reminiscent to the onset of red-
giant structure and to the supernova phenomenon in the
context of compact stars (white dwarfs and neutron stars).
To study these phase transitions in detail we have to use

general relativity. This has been done in the case of fermions
in Refs. [27,186]. Numerical applications have been made
for fermionic particles of mass m ¼ 17.2 keV=c2. It is
shown that they can form fermion balls of mass M ∼
109 M⊙ similar to the mass of the presumed black holes
that reside at the centers of elliptical galaxies.

Remark: It is important to note that, in the present
appendix, we are considering the purely condensed solution
(C), not the core-halo solution (CH). Since we are not
trying to construct a self-consistent “coreþ halo” solution
we do not face the difficulties encountered in Sec. VII F.
Furthermore, the solution (C) is canonically stable while the
solution (CH) is canonically unstable. Therefore, the results
of this appendix suggest that large galaxies may contain a
DM compact object (boson or fermion star) mimicking a
SMBH but that this object is not surrounded by a DM halo. If
this scenario is correct, large galaxies should not contain a
DM halo, just a DM compact object. Note that other
scenarios are possible such as those considered in Sec. IX
in which large galaxies contain a bulge (soliton), or a central
black hole, surrounded by a DM halo.

APPENDIX K: PROBLEMS WITH THE
BOSON OR FERMION BALL SCENARIO

TO MIMIC A SMBH

In this appendix, we show the impossibility for a
noninteracting boson or fermion ball to simultaneously
mimic a SMBH of mass M ∼ 109 M⊙ at the centers of
elliptical galaxies (see Appendix J) and a compact object
(Sgr A�) of massM ¼ 4.2 × 106 M⊙ and sufficiently small
radius R < RP ¼ 6 × 10−4 pc at the center of our Galaxy
(see Sec. VII F).67 Our discussion confirms and extends the
arguments given in Ref. [183].
In Appendix J, we have determined the characteristics

that the DM particle must have so that the maximum mass
of the associated boson or fermion ball isMmax ¼ 109 M⊙.
Below, we show that the associated boson or fermion ball
of mass M ¼ 4.2 × 106 M⊙ has a radius R > RP ¼ 6 ×
10−4 pc so that it cannot account for the compact object
(Sgr A�) at the center of our Galaxy.
For noninteracting bosons, using the mass-radius rela-

tionMR ¼ 9.95ℏ2=Gm2 [50,78,79] and takingm ¼ 8.46 ×
10−20 eV=c2 (see Appendix J) we find R ¼ 0.283 pc > RP.
Inversely, the constraint R < RP implies m > 1.84×
10−18 eV=c2. However, in this case, the boson star cannot
mimic a SMBH of mass Mmax ∼ 109 M⊙ at the centers of
elliptical galaxies since this requires m¼8.46×
10−20 eV=c2. Indeed, if we take m>1.84×10−18 eV=c2

we find Mmax ¼ 4.60 × 107 M⊙ < 109 M⊙.

66Similar numerical applications have been made in Appen-
dix F of [119] to model the compact object Sgr A� of mass M ¼
4.2 × 106 M⊙ at the center of our Galaxy (purported to be a
SMBH) by a general relativistic boson or fermion star.

67If a boson or fermion ball can mimic a BH of mass M ∼
109 M⊙ this means that Mmax ∼ 109 M⊙. In that case, it cannot
mimic a BH of smaller mass, M ∼ 106–109, because it would be
nonrelativistic (M ≪ Mmax) and it cannot mimic a BH of larger
mass because it would be unstable (M > Mmax). However, the
compact object of mass M ¼ 4.2 × 106 M⊙ ≪ Mmax ∼ 109 M⊙
that resides at the center of our Galaxy is not necessarily a black
hole, not even a relativistic object. We just require that it has a
radius R < RP ¼ 6 × 10−4 pc ¼ 1492RS in order to be consistent
with the observations. Therefore, we can use the nonrelativistic
mass-radius relation of a boson or fermion ball to describe this
object.
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For fermions, using the mass-radius relation MR3 ¼
1.49 × 10−3h6=G3m8 [158] and taking m ¼ 25.0 keV=c2

(see Appendix J) we find R ¼ 4.81 × 10−3 pc > RP.
Inversely, the constraint R<RP implies m>54.5 keV=c2.
However, in this case, the fermion star cannot mimic a
SMBH of mass Mmax ∼ 109 M⊙ at the centers of elliptical
galaxies since this requires m ¼ 25.0 keV=c2. Indeed,
if we take m > 54.5 keV=c2 we find Mmax ¼ 2.11×
108 M⊙ < 109 M⊙.

68

Interestingly, it turns out that self-interacting boson stars
can simultaneously mimic a SMBH of mass M ∼ 109 M⊙
and a compact object like Sgr A�. To our knowledge, this
result has not been pointed out previously. For self-
interacting bosons in the TF limit, using the fact that
their radius is R ¼ πðasℏ2=Gm3Þ1=2 [53,60,67,69,78,
159,160] and taking as=m3 ¼ 7.86 × 10−10 fm=ðeV=c2Þ3
(see Appendix J) we find R ¼ 4.90 × 10−4 pc < RP.
Inversely, the constraint R < RP implies as=m3 <
1.18 × 10−9 fm=ðeV=c2Þ3. In that case, the bosonic particle
can mimic a SMBH of massMmax ∼ 109 M⊙ at the centers
of elliptical galaxies since this requires as=m3 ¼
7.86 × 10−10 fm=ðeV=c2Þ3. Indeed, if we take as=m3 ≲
1.18 × 10−9 fm=ðeV=c2Þ3 we find Mmax ¼ 1.22 ×
109 M⊙ ≳ 109 M⊙.
However, there are important problems with the boson or

fermion ball model that also concern the case of self-
interacting bosons. In particular, the characteristics of the
DM particle that we find in Appendix J and in this appendix
are not consistent with the characteristics of the DM
particle obtained from the minimum halo model of
Sec. VI B. Indeed, we have argued that the most compact
halos (dSphs like Fornax) should correspond to the ground
state of the self-gravitating boson or fermion gas. This
immediately fixes the characteristics of the DM particle.
Comparing the results found in Sec. VI B with the results
found above, we see that they are not consistent. As a result,
if we determine the characteristics of the DM particle from
the minimum halo model (see Sec. VI B), then the boson or
fermion ball corresponding to the self-consistent core-halo
(CH) solution that we obtain for a DM halo similar to the
Milky Way has the form of a large bulge (see Sec. VII E),
not the form of a small compact object like a BH (see
Sec. VII F). In addition, even if we relax the constraint from
the minimum halo model we cannot get a self-consistent
core-halo solution mimicking a BH as shown in Sec. VII F.
Remark: It is not excluded (actually it is even very likely)

that DM is made of different types of particles (bosons and

fermions) with different characteristics. Some of these
particles (like bosons) could form a solitonic bulge and
other particles (like fermions) could form a fermion ball
mimicking SMBHs. However, accounting for several
species obviously introduces arbitrariness in the models
and limits therefore their predictive power. This is why, in
this paper, we have just considered one type of DM particle.

APPENDIX L: SOLUTION OF AN APPARENT
PARADOX RELATED TO THE MASS-RADIUS

RELATION OF DM HALOS

We have seen that the ground state of the GPP equa-
tions (1) and (2) corresponds to a soliton. For noninteract-
ing bosons, the mass-radius relation of the soliton is given
by [50,78,79]

R ¼ 9.95
ℏ2

GMm2
; ðL1Þ

implying that the radius decreases as the mass increases.
For self-interacting bosons, in the TF approximation, the
soliton has a unique radius

R ¼ π

�
asℏ2

Gm3

�
1=2

ðL2Þ

which is independent of its mass [53,60,67,69,78,159,160].
Clearly, these results are in contradiction with the univer-
sality of the surface density of DM halos [see Eq. (94)]
implying that the radius increases with the mass as
rh ∝ M1=2

h .
This apparent paradox was pointed out in Appendix F of

Ref. [40] and in the Introduction of Ref. [140]. This
difficulty was rediscussed later by Deng et al. [231]
who concluded that ultralight DM may not be able to
solve the cusp problem. Alternatively, we had suggested in
our previous works [40,140] that the above-mentioned
apparent paradox could be solved by accounting for the
presence of an (isothermal) atmosphere surrounding the
solitonic core of large DM halos.
More precisely, we argued that a pure soliton describes

only the ground state of the GPP equations (1) and (2)
corresponding to ultracompact halos such as Fornax (see
Sec. VI B). The mass-radius relations (L1) and (L2) apply
only to these ultracompact halos. Larger halos contain a
solitonic core plus an atmosphere resulting from quantum
interferences related to the complicated processes of
gravitational cooling [132–134] and violent relaxation
[136]. The atmosphere is approximately isothermal. It is
the atmosphere that determines the size of large DM halos.
As a result, we cannot apply the mass-radius relations (L1)
and (L2) to large DM halos, but just to their solitonic core.
It is the atmosphere that fixes the size of large DM halos
and yields the relation rh ∝ M1=2

h . In this sense, there is no

68In relation to this fundamental incompatibility, we note that
Argüelles and Ruffini [230] consider a fermion of mass
10 keV=c2 to mimic a SMBH of mass 109 M⊙ at the centers
of elliptical galaxies while Argüelles et al. [42] consider another
fermion of larger mass, 48 keV=c2, to mimic the compact object
at the center of our Galaxy.
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paradox anymore and ultralight DM may be able to solve
the cusp problem.
The ideas sketched in Refs. [40,140] have been con-

firmed in the present paper. As soon as there is an
(isothermal) atmosphere surrounding the solitonic core it
is possible to satisfy the constraint from Eq. (94). The
BECDM halos that we have constructed in this paper all
satisfy this contraint. We thus find that the mass-radius
relation of large DM halos is given by Eq. (105) in
agreement with the observations [172–174].
In the present paper, the universality of Σ0 is imposed to

our model as an observational constraint (see Sec. VI A).
This implies that the temperature T of the atmosphere of
our DM halos must change precisely in order to satisfy this
constraint (see Fig. 19). This leads to the relations of
Sec. VI D 6.
However, in Ref. [232] we have shown that it is possible

to predict the universal value of Σ0 from a cosmological
model based on a logotropic equation of state. This model
can be derived from a generalized GP equation similar to
Eq. (3) but involving a nonlinearity of the form −Am=jψ j2
instead of 2kBT ln jψ j (see Eq. (C.56) of [232]). In that case,
we can theoretically predict that [175,232]

Σth
0 ¼

�
B
32

�
1=2 ξh

π

ffiffiffiffi
Λ

p
c

G
≃ 133 M⊙=pc2; ðL3Þ

where Λ ¼ 1.00 × 10−35 s−2 is the effective cosmo-
logical constant of the model while ξh ¼ 5.8458… and
B ¼ 3.53 × 10−3 are coefficients derived from the theory

(the consequences of this relation are further discussed in
[175]). The theoretical value (L3) is in good agreement
with the observational value (94) up to error bars. This
suggests replacing the isothermal atmosphere of the present
paper by a logotropic atmosphere. In that case, our model
will be characterized by a universal constant Λ instead of
being characterized by a temperature T changing from halo
to halo. This logotropic model will be considered in a future
contribution [142]. For the present, we think that it is better
to develop our model with a more conventional isothermal
atmosphere as done in this paper.
Remark: The same arguments apply to the fermionic DM

model. The mass-radius relation of a self-gravitating Fermi
gas at T ¼ 0 (ground state) [158]

R ¼ 0.114
h2

Gm8=3M1=3 ðL4Þ

implies that the radius decreases as the mass increases in
contradiction with the observational DM halo mass-radius
relation rh ∝ M1=2

h . This paradox is solved by assuming
that the fermionic DM halos have a core-halo structure with
a fermion ball (core) and an isothermal atmosphere (halo)
[40,140]. The mass-radius relation (L4) is only valid for
ultracompact DM halos and in the core of large DM halos.
It is the atmosphere that fixes the size of the DM halos
and yields the relation rh ∝ M1=2

h . Again, the T-changing
isothermal atmosphere could be replaced by a logotropic
atmosphere characterized by a universal constant Λ.
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[210] M. Hénon, Ann. Astrophys. 27, 83 (1964).
[211] T. S. van Albada, Mon. Not. R. Astron. Soc. 201, 939

(1982).
[212] F. Roy and J. Perez, Mon. Not. R. Astron. Soc. 348, 62

(2004).
[213] M. Joyce, B. Marcos, and F. Sylos Labini, Mon. Not. R.

Astron. Soc. 397, 775 (2009).
[214] G. Bertin and M. Stiavelli, Astron. Astrophys. 137, 26

(1984).
[215] M. Stiavelli and G. Bertin, Mon. Not. R. Astron. Soc. 229,

61 (1987).
[216] J. Hjorth and J. Madsen, Mon. Not. R. Astron. Soc. 253,

703 (1991).
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