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We study the generation of magnetic field seeds during a first-order electroweak phase transition, by
numerically evolving the classical equations of motion of the bosonic electroweak theory on the lattice.
The onset of the transition is implemented by the random nucleation of bubbles with an arbitrarily oriented
Higgs field in the broken phase. We find that about 10% of the latent heat is converted into magnetic energy,
with most of the magnetic fields being generated in the last stage of the phase transition when the Higgs
oscillates around the true vacuum. The energy spectrum of the magnetic field has a peak that shifts towards
larger length scales as the phase transition unfolds. By the end of our runs the peak wavelength is of the
order of the bubble percolation scale, or about a third of our lattice size.
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I. INTRODUCTION

Magnetic fields are pervasive in the Universe. Micro-
gauss fields coherent on scales up to ten kpc have been
detected in nearby spiral galaxies, such as the Milky Way
and in higher redshift galaxies (e.g., [1]). Similar stochastic
magnetic fields are found in clusters of galaxies. Such
fields are believed to result from the dynamo amplification
of weak magnetic field seeds, whose origin remains a
mystery (see e.g., [2–4]). Recent observational evidence
that even the intergalactic medium in voids is pervaded by a
weak (below femto-gauss strength) magnetic field [5–10],
points to a primordial origin of the field seed, since it is
difficult to account for a field that fills the volume in the
void regions by astrophysical processes in the late universe
[11,12] (but see [13,14]). Furthermore, the study of the
diffuse gamma-ray background provides clues for the
existence of a nonzero helical component in the interga-
lactic magnetic field [7,8,15]. Interestingly, while most
magnetic field generation mechanisms discussed so far
produce nonhelical fields, physical processes associated
with electroweak baryogenesis imply fields that are helical
[16,17]. This is important, since conservation of magnetic
helicity plays an important role in the evolution of
primordial fields and leads, via inverse cascade, to a larger
coherence scale than for nonhelical fields [18].

The production of helical fields is related to the viola-
tion of baryon plus lepton (Bþ L) number during the
electroweak phase transition (EWPT). To change Bþ L
requires a change in the Chern-Simons number of the
electroweak gauge fields, which proceeds through “spha-
leron” configurations. The decay of the sphaleron releases
helical magnetic fields, and this is borne out by both
numerical simulations [19] and analytical arguments [20].
Generically, helical magnetic fields are produced at the
electroweak phase transition if the Chern-Simons number
changes during the phase transition [21]. Inhomogeneities
in the Higgs field can also give rise to the generation of
helical magnetic fields as shown in [22,23] in the context of
low-scale electroweak hybrid inflation [24].
The study of the properties of cosmological magnetic

fields can, thus, open a window to the early universe and
very high energy particle interactions. To investigate the
epoch of magnetogenesis and identify the mechanism at the
origin of the primordial seeds we need to make full use of
the statistical properties of the magnetic fields matching
theoretical predictions with observations [25]. These are
encoded in the power spectrum which, for Gaussian
random fields, entirely describes the statistical properties
of the fields. In this respect, the helicity spectrum can be
recovered from observations of the diffuse gamma-ray
background [8].
On the theoretical front, it has been shown that a

measurement of the sign of the helicity can distinguish
fields produced during electroweak baryogenesis from
those generated at an earlier epoch associated with lepto-
genesis [26]. However, a detailed study of the statistical
properties of themagnetic fields is required to narrow the gap
between theoretical studies of the microscopic properties
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and the macroscopic properties that can be experimentally
observed (field strength and coherence scale), as was done
for the case of low-scale hybrid inflation in [22,23].
In this paper, we study the dynamics of a first-order

EWPT by numerically evolving the classical bosonic
electroweak theory, and we examine the properties of
the generated magnetic field. In the Standard Model
(SM), the EWPT is first order only if the mass of the
Higgs boson lies below mh ≲ 70 GeV [27,28]. Since the
experimentally observed mass violates this bound [29,30],
we work under the assumption that there is physics beyond
the SM that influences the character of the phase transition.
Although the details of the particular SM extension are not
important for our purpose, we have in mind models that
make electroweak baryogenesis viable (see e.g., [31–34]
for reviews). In that case, the properties of the cosmological
magnetic fields can be related to the observed baryon
asymmetry of the universe [17]. Furthermore, a cosmo-
logical first-order phase transition can also be a source of
gravitational waves (GWs) [35,36]. In this respect, large-
scale numerical simulations of a scalar field theory on the
lattice have recently become available to verify the pro-
duction of GW radiation during a first-order phase tran-
sition [37–39]. Our results bring another handle to probe
the universe at the time of the EWPT: the observation of
cosmological magnetic fields.
When the phase transition occurs, the Higgs field will

leave the symmetric phase and gradually settle down
around the true vacuum, jΦj ¼ η. In order to mimic this
behavior on the lattice, we introduce a phenomenological
damping term for the Higgs boson. The modified electro-
weak evolution equations preserve gauge invariance and
satisfy the Gauss constraints. They are reviewed in Sec. II,
where we also outline the calculation of the magnetic field
spectrum from our lattice simulations.
Magnetic fields are produced as a result of nonvanishing

gradients of the Higgs field [17]. In a first-order phase
transition, bubbles are randomly nucleated as a result of
quantum tunneling, and subsequently expand and collide
with each other, producing an out-of-equilibrium environ-
ment. Magnetic fields will be produced when bubbles
collide. We argue that the details of the short period of
bubble nucleation are not of major concern, and we can
safely mimic the quantum tunneling by a simple random
procedure, controlled by a parameter pB, the nucleation
probability. The specifics of our numerical implementation
are presented in Sec. III.
To gain intuition about the general features of the

magnetic fields generated from bubble collisions, we first
consider in Sec. IV a set of constrained simulations with a
regular array of bubbles so that we can control the size of
the colliding bubbles. In Sec. V we allow for bubbles to
nucleate at random locations in the unbroken phase and we
present the spectrum of the magnetic field induced during a
first-order EWPT. At the end of the bubble collision stage,

we find that the field strength is about 1023 gauss, with a
comoving correlation length of about 2 cm. If the fields are
nonhelical, the field strength will evolve to ∼10−15 gauss at
present [40]. Finally, we discuss and summarize our results
in Sec. VI.

II. THEORETICAL FORMULATION

A. Classical equations and Higgs damping

We consider the classical bosonic electroweak theory,
which includes the Higgs doublet Φ, the SU(2)-valued
gauge fields Wa

μ and the U(1) hypercharge field Bμ. The
Lagrangian is given by

L ¼ −
1

4
Wa

μνWaμν −
1

4
BμνBμν þ jDμΦj2 − λðjΦj2 − η2Þ2;

ð1Þ

where

Dμ ¼ ∂μ −
i
2
gσaWa

μ −
i
2
g0Bμ: ð2Þ

Sincewewill evolve the field equations using the standard
Wilsonian approach for lattice gauge fields [41–44], it is
advantageous to use the temporal gauge, Wa

0 ¼ B0 ¼ 0,
which allows a simple identification of the canonical
momentum. Our implementation of the lattice equations
can be found in [21,45],with the additionof aHiggs damping
term that we now discuss. The classical equations of motion
(EOMs) in the continuum are given by

∂2
0Φ ¼ DiDiΦ − 2λðjΦj2 − η2ÞΦ − γΦ∂0 ln jΦj; ð3Þ

∂2
0Bi ¼ −∂jBij þ g0Im½Φ†DiΦ�; ð4Þ

∂2
0W

a
i ¼ −∂kWa

ik − gϵabcWb
kW

c
ik þ gIm½Φ†σaDiΦ�: ð5Þ

The solutions are subject to the Gauss constraints:

∂0∂jBj − g0Im½Φ†∂0Φ� ¼ 0; ð6Þ

∂0∂jWa
j þ gϵabcWb

j∂0Wc
j − gIm½Φ†σa∂0Φ� ¼ 0: ð7Þ

The term proportional to γ in Eq. (3) gives rise to a linear
damping of the magnitude of the Higgs field. Its purpose is
to attenuate the radial oscillations of the Higgs field within
a reasonable simulation time. The term also simulates the
effects of energy losses due to Higgs decays into fermion-
antifermion pairs. In principle, one could include separate
damping terms for each component of the Higgs field
(e.g., to account for the decays of gauge bosons). However,
this is harder to implement since we want to respect gauge
invariance and the conservation of electric charge.
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The form of the damping term in Eq. (3) is motivated by
considering the analogy of a 2D simple harmonic oscillator
with linear damping in the radial direction. In polar
coordinates, the EOMs are

̈r − r_θ2 þ c_rþ r ¼ 0; ð8Þ

r2 _θ ¼ L; ð9Þ

where r ¼ jrj, r ¼ ðx; yÞ. The second equation is the
conservation of angular momentum and corresponds to
the conservation of charge in the field theory. If the two
equations are transformed into Cartesian coordinates, we
find

̈rþ cr
d
dt

ln rþ r ¼ 0; ð10Þ

which suggests the modification of Eq. (3).
To check that the damping term is not in conflict with the

Gauss constraints, let us write a general additional term for
the Higgs EOM,

∂2
0Φa ¼ DiDiΦa − 2λðjΦj2 − η2ÞΦa þ Ξa;

a ¼ 1; 2; 3; 4; ð11Þ

where Ξ ¼ ðΞ1 þ iΞ2;Ξ3 þ iΞ4ÞT is a doublet that causes
damping. The Gauss constraints should be satisfied
throughout the evolution assuming that they are initially
satisfied, which requires that the time derivatives of Eqs. (6)
and (7) should vanish. Differentiating the two equations,
and using the modified EOM Eq. (11) for the Higgs field,
together with Eqs. (4) and (5), to replace the second-order
time derivatives, we obtain

Im½Φ†Ξ� ¼ 0; ð12Þ

Im½Φ†σiΞ� ¼ 0: ð13Þ

The solution to these equations, which ensures the Gauss
constraints, is

Ξ ∝ Φ; ð14Þ

and this gives the damping term in Eq. (3).
To simulate a first-order electroweak phase transition we

also need to include the quantum nucleation of broken
phase bubbles, which we now discuss.

B. Bubble profile

As mentioned above, the SM does not admit a first-order
electroweak phase transition. However, we expect that
for our purposes the Higgs potential as given in Eq. (1)
captures the dynamics of the phase transition in an
extension of the SM that allows for a viable electroweak

baryogenesis. The equations of motion, with the initial
condition Φ ¼ _Φ ¼ 0, are then supplemented by bubble
nucleation events that occur randomly in regions where the
symmetry is unbroken.
In numerical simulations, we use a simple method for

randomly nucleating bubbles of the broken phase to mimic
the tunneling effect. The sites of the lattice can be numbered
as a sequence S from 1 to N3. At each time step of the
simulation, we first randomly shuffle this sequence, and
then we select sites from this shuffled sequence Srand, with
probability pB that controls the rate of nucleation on the
lattice. The selected sites are stored Sselect, which contains
∼pBN3 elements. We scan each site si in Sselect and if the
Higgs field in all lattice sites within a radius r0 from si is
still in the symmetric phase, then a new bubble centered at si
is nucleated at this time step; otherwise, the site si is skipped.
The random shuffle procedure of all sites guarantees that the
nucleation procedure is unbiased in any direction.
At every nucleation event we set up a bubble with a

spherically symmetric profile jΦj ¼ fðrÞ, determined by
demanding that the nucleation process conserves energy.
This requires that the energy change due to bubble
nucleation should vanish. Therefore,

0 ¼ 4π

Z
∞

0

r2dr½ð∂rfÞ2 − 2λη2f2 þ λf4�: ð15Þ

This equation can be satisfied by choosing

∂rf ¼ −
ffiffiffi
λ

p
ð2η2 − f2Þ1=2f: ð16Þ

Rescaling ρ ¼ ffiffiffiffiffi
2λ

p
ηr and F ¼ f=ð ffiffiffi

2
p

ηÞ gives

∂ρF ¼ −ð1 − F2Þ1=2F ð17Þ

and the solution is

FðρÞ ¼ 2Ce−ρ

1þ C2e−2ρ
: ð18Þ

The integration constant, C, is fixed by requiring that the
center of the bubble be in the true vacuum, so fð0Þ ¼ η

(Fð0Þ ¼ 1=
ffiffiffi
2

p
). This leads to C ¼ ffiffiffi

2
p � 1, and we choose

the smaller value so as to have a gentler bubble profile. The
final solution for the bubble profile is

fðrÞ ¼ η
½1þ ð ffiffiffi

2
p

− 1Þ2�e−mHr=
ffiffi
2

p

1þ ð ffiffiffi
2

p
− 1Þ2e−

ffiffi
2

p
mHr

; ð19Þ

where mH ¼ 2
ffiffiffi
λ

p
η is the Higgs mass.1

1One issue with this bubble profile function is that it has a kink
at r ¼ 0. For example, along the x axis and close to the origin it
behaves as expð−jxjÞ. This is not a problem numerically as finite
differences will not resolve the kink.

MAGNETIC FIELD PRODUCTION AT A FIRST-ORDER … PHYS. REV. D 100, 083006 (2019)

083006-3



In this way we have fixed the bubble profile using the
(stronger) requirement that bubble nucleation conserve
energy locally. The direction of the Higgs within the
bubble is assumed to be uniform. Since the vacuum
manifold—zeros of the Higgs potential—defines a three
sphere, the direction of the Higgs is chosen by randomly
selecting a point with a uniform distribution on the three
sphere. Different bubbles will have different Higgs field
orientations.

C. Definition of electromagnetic field

Once the Higgs field leaves the symmetric phase
(Φ ¼ 0), we can define the electromagnetic field as
follows:

Aμ ¼ sin θwnaWa
μ þ cos θwBμ; ð20Þ

where

na ≡ −
Φ†σaΦ

η2
ð21Þ

indicates the direction of the Higgs field, and θw is the weak
mixing angle. The corresponding field strength is con-
structed as [46,47]

Aμν ¼ sin θwnaWa
μν þ cos θwBμν

− i
2

gη2
sin θw½ðDμΦÞ†ðDνΦÞ − ðDνΦÞ†ðDμΦÞ�:

ð22Þ
D. Magnetic energy spectrum

We assume that the magnetic field after production is
a statistically homogeneous and isotropic, Gaussian-
distributed vector field. The field can then be described
in terms of the equal time correlation function, which we
write, following the conventions in [48,49], as

hB�
i ðk; tÞBjðk0; tÞi ¼ ð2πÞ3δð3Þðk − k0ÞFijðk; tÞ; ð23Þ

where Biðk; tÞ is the Fourier transform of Biðx; tÞ with the
convention

Biðk; tÞ ¼
Z

d3xBiðx; tÞeþik·x; ð24Þ

Biðx; tÞ ¼
Z

d3k
ð2πÞ3 Biðk; tÞe−ik·x: ð25Þ

The spectrum, Fijðk; tÞ, can be divided into a symmetric
(nonhelical) part and an antisymmetric (helical) part,

Fijðk; tÞ
ð2πÞ3 ¼ ðδij − k̂ik̂jÞ

EMðk; tÞ
4πk2

þ iϵijlkl
HMðk; tÞ
8πk2

: ð26Þ

The mean magnetic energy density can be written as

ρBðtÞ ¼
1

2
hB2ðx; tÞi ¼

Z
∞

0

EMðk; tÞdk: ð27Þ

The average wave number,

kmeanðtÞ ¼
R∞
0 kEMðk; tÞdkR∞
0 EMðk; tÞdk

; ð28Þ

provides a characteristic of the energy distribution in a
given field configuration.
We implement discretized versions of the expressions

above on a three-dimensional lattice containing N nodes
separated a distance Δx along each spatial dimension
of length L ¼ NΔx. Every lattice point is labeled by a
triplet of integers, X, each ranging from 0 to N − 1:
Xi ∈ f0; 1;…; N − 1g, for i ¼ 1, 2, 3. The corresponding
Fourier space is also described by triplets of integers, Ki,
of the same form. The largest wavelength along a particular
direction, corresponding to the smallest momentum, is of
order L, while the smallest wavelength that can be
effectively described is determined by the spacing Δx.
Allowing for modes traveling in the positive and negative
directions, a given physical wave number corresponds to a
triplet K0

i:

ki ¼ 2πK0
i=L; ð29Þ

where

K0
i ¼

�
Ki Ki ≤ N=2

Ki − N Ki > N=2:

For the physical wavelength associated to a momentum
with magnitude k we have

λk ¼ 2π=k ¼ NΔx=K0;

where the magnitude, K0 ¼ jK0j, ranges from 0 to
ffiffiffi
3

p
N=2

on a cubic lattice. We divide this range into bins of size
ΔK0, each with center value K0

c.
Then Eq. (27) can be approximated by

ρBðtÞ ¼
X
K0

c

EMðK0
c; tÞΔK0; ð30Þ

where

EMðK0
c; tÞ≡ 1

2ΔK0

�
1

L

�
6X
cthbin

B�
i ðK0; tÞBiðK0; tÞ: ð31Þ
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Also, the discrete Fourier transform is given by

BiðKÞ ¼ ðΔxÞ3
XN−1

X¼0

BiðXÞ exp
�
þ2πi

K · X
N

�
ð32Þ

BiðXÞ ¼
1

L3

XN−1

K¼0

BiðKÞ exp
�
−2πi

K · X
N

�
: ð33Þ

III. NUMERICAL SIMULATION

As mentioned above, we follow the strategy in [21,45] to
evolve the electroweak EOMs on the lattice. Our code is
based on the LATFIELD2

2 library [50], and the linear algebra
operations are performed with the help of the EIGEN

3 library
[51]. Our simulations use periodic boundary conditions
and the dimensionless constants entering the EOMs are
fixed to their physical values: g ¼ 0.65, sin2 θw ¼ 0.22,
g0 ¼ g tan θw and λ ¼ 0.129. The spatial and time spacing
are chosen to be Δx ¼ 0.25, Δt ¼ Δx=4 ¼ 0.0625, respec-
tively. The dimensionful vacuum expectation value of the
Higgs, denoted by η, is 174.13 GeV. In our numerical code
we set η ¼ 1, so that ηΔx ¼ 0.25, and then mHΔx ¼
2

ffiffiffi
λ

p
ηΔx ¼ 0.18, where mH is the mass of the Higgs.

This choice of lattice spacing gives us enough resolution to
ensure that we capture all the dynamics. For instance, since
mHΔx ¼ 0.18, momenta of order mH are well resolved.
The bulk of our simulations is performed on a lattice with
size N ¼ 256, although we use a larger lattice for several
runs in Sec. IV. We denote by T the (integer) time step
number, and the physical time t is t ¼ TΔt.
The bubble profile function, Eq. (19), does not have any

free parameters and its tail has infinite extent, which we
truncate on the lattice as follows. We define the symmetric
phase to correspond to locations where jΦj ≤ 0.01η. With
this prescription, the “size”, r0, of the bubble turns out to be
ηr0 ¼ 9.0 (mHr0 ≈ 6.5), since the profile in Eq. (19) falls
below 0.01η for r > r0. With our lattice parameters, this
gives r0 to be 36Δx. We use this value to prevent the
nucleation of new bubbles within existing ones: a bubble
can only be nucleated at a particular site if all lattice points
within a distance r0 are still in the symmetric phase
(jΦj ≤ 0.01η). Once a bubble is nucleated, it will expand
and collide with other bubbles if there are any in the vicinity.
The expansion of a single bubble is shown in Fig. 1, while
Fig. 2 shows the evolution and collision of several randomly
generated bubbles.
Two additional inputs required for our runs are the Higgs

damping γ, defined in Eq. (3), and the nucleation probability
pB, which determines the probability of bubble nucleation
per lattice site per time step. These two parameters cannot be

determinedwithin themodelwe are considering, and thuswe
will compare the results by varying the two parameters. We
consider several values in the range 0 ≤ γ ≤ 0.01, including
the experimentally measured decay width of Higgs boson,
γ ∼ ΓHiggs ∼ 4.07 × 10−3 GeV [52], which corresponds to
γ ∼ 2.34 × 10−5 in our lattice units. pB is chosen to be in the
range 10−8 ≤ pB ≤ 10−3 in our simulations.
Since we are concerned with the generation of magnetic

fields during the electroweak phase transition, we need a
criterion to determinewhen thephase transition is completed.
Our strategy is to compute the minimum jΦj2 among all the
lattice sites at each time step. To avoid spurious fluctuations,
weworkwith the ten-stepmoving average of jΦj2min, denoted
as jΦj2MA10, and we stop the simulation at the first time step
Tstop when jΦj2MA10 > 0.25η2. In this manner, we ensure that
the Higgs field is away from the symmetric phase.
One caveat of our formalism is that our field equations

donot include the effects of other chargedparticles thatmight
be present or generated at the time of the phase transition.

IV. TEST RUNS WITH NONRANDOM BUBBLE
DISTRIBUTIONS

A single expanding bubble in our analysis does not
generate magnetic fields. This can be verified from the field
equations since the gauge field currents [right-hand sides of

FIG. 1. Two-dimensional slice showing the evolution of
jΦj2=η2 for one bubble at time step T ¼ 0 (left) and T ¼ 140
(right). Blue-colored regions correspond to jΦj ≪ η, red indicates
jΦj ≫ η, and jΦj ≈ η in the white regions.

FIG. 2. Two-dimensional slice showing the evolution of
jΦj2=η2 for randomly nucleated bubbles. The left panel is
at time step T ¼ 140 and the right panel at T ¼ 2000. Blue
colored regions correspond to jΦj ≪ η, red indicates jΦj ≫ η,
and jΦj ≈ η in the white regions.

2http://github.com/daverio/LATfield2
3http://eigen.tuxfamily.org
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Eqs. (4) and (5)] vanish for a spherically symmetric
expanding bubble. Hence, the simplest setup where we
can observe the generation of electromagnetic fields
involves the collision of two bubbles.
Accordingly, we nucleate two bubbles along the z axis at

T ¼ 0 and let them expand and collide. The initial radius r0
of each bubble is fixed, r0 ¼ 36Δx, but the initial ori-
entations of the Higgs field inside the bubbles are random.
As shown in Fig. 3, the two bubbles initially expand freely
before they collide. Once the collision occurs, the process
of magnetic field generation can start. Specifically, as we
can see from the bottom panel in Fig. 3, the magnetic field
is generated at the intersection of the two bubbles. For this
two-bubble configuration, a ring-shaped magnetic field will
be produced, at least initially. Let us also emphasize that,
since we are using periodic boundary conditions, the two
bubbles actually collide twice along the z axis during the
expansion as can be seen in Fig. 3.
To better understand the general features of the magnetic

field resulting from multiple bubble collisions, we start
with a constrained simulation in which we control the
initial separation of the colliding bubbles. To this effect, we
consider a regular array of bubbles with centers separated
by a fixed distance rs, which are all simultaneously
nucleated at T ¼ 0. No additional bubbles are nucleated
at T > 0. In this case, the percolation size rp of the bubbles

can be estimated by rp ≈ rs. We consider different values
for the initial separation, rs=Δx ¼ 80, 96, 112, 128, and
two lattice sizes, N ¼ 256, 400. The magnetic field is
calculated using Eq. (22), and then Fourier transformed to
obtain the power spectrum. We show the time evolution, in
units of mHt, of the mean wave number, kmeanΔx=2π,
in Fig. 4, and the peak of the spectrum, kpeakΔx=2π, is
displayed in Fig. 5. To smooth out abrupt jumps of the peak
location, a ten-step moving average is taken for the latter.
In both cases, we adjust the starting time in the plot to
coincide with the instant when the bubbles first collide,
allowing for a meaningful comparison between runs with
different parameters. Assuming that the bubble is expand-
ing at roughly the speed of light, the starting time of bubble
collision can be estimated as t ¼ ðrs − 2r0Þ=2.
From Fig. 5, we observe that the peak of the spectrum is

located around kΔx=2π ≈ 0.02 independently of the initial

FIG. 4. Evolution of kmeanΔx=2π for several nonrandom bubble
distributions. The solid lines were computed on a lattice of size
N ¼ 256, while for the dashed lines N ¼ 400.

FIG. 3. (Top) 2D slice with x ¼ 0 snapshot of two-bubble
collision at T ¼ 0. The top-left plot shows the distribution of
jΦj2=η2 and the top-right plot shows magnetic energy density on
a log-scale. The two bubbles are still in free expansion, thus no
magnetic field is generated. (Bottom) Same as the top plots but at
T ¼ 240. A ring-shaped magnetic field is generated at the
location of the bubble intersection. The magnetic field at the
upper and lower boundaries appears because of the second
collision of the two bubbles due to periodic boundary conditions
on the lattice. The size of the lattice is N ¼ 256. The energy
density of the magnetic field is measured in units of m4

H .

FIG. 5. Evolution of kpeakΔx=2π for several nonrandom bubble
distributions. The data points show the ten-step moving average,
and the horizontal gray dotted lines correspond to the central
values of the bins. The solid lines were computed on a lattice of
size N ¼ 256, while for the dashed lines N ¼ 400.
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bubble separation rs and of the lattice size N. This value
corresponds to a wavelength of λk ≈ 50Δx, or mHλk ≈ 9.
On the other hand, the mean wave number of the spectrum
does not show a clear dependence on either the initial
bubble separation rs or the lattice size N. Nevertheless,
curves with larger rs in Fig. 4 show relatively larger
fluctuations. This is because for a given lattice size, larger
values of rs lead to a fewer number of bubbles. For
instance, for N ¼ 256 and rs ¼ 128 there are only four
bubbles in the lattice, which might result in significant
statistical fluctuations.

V. RANDOM BUBBLE NUCLEATION

Having gained an intuition for the magnetic field
resulting from multiple bubble collisions, we are now in
a position to model accurately a first-order EWPT by
allowing for bubbles to nucleate at random locations in the
unbroken phase. We perform 30 simulations on a lattice of
size N ¼ 256, varying the nucleation probability over six
different values, pB ¼ 10−3; 10−4; 10−5; 10−6; 10−7; 10−8,
and considering also five different values for the Higgs
damping, γ ¼ 0; 2.34 × 10−5; 10−4; 10−3; 10−2, where the
second one is equal to the experimentally measured decay
width. As can be seen from our results (Fig. 6), for pB ≳
10−4 the total number of bubbles reaches the maximum
number of bubbles that the lattice can accommodate almost
instantaneously and the percolation size does not depend on
pB. Conversely, for pB ≲ 1=2N4 ≈ 10−10, the nucleation
probability is so small that only one bubble may be
generated before the phase transition is completed in our
lattice. In practice, already for pB ¼ 10−8 the results show a
large variance because our lattice contains too few bubbles.
To explore configurations with smaller pB would require a
larger lattice. In the rest of the paper, we shall focus on
configurations with 10−7 ≤ pB ≤ 10−4.

To better understand the results of the simulations, we
divide the evolution into three stages:
(1) Free expansion (FE stage): the time before the

nucleated bubbles collide with each other. During
this stage no magnetic field is generated.

(2) Bubble collision (BC stage): this stage starts when the
bubbles collide with each other, and the generation of
magnetic field starts. At this point, the broken phase
does not yet extend to the whole lattice.

(3) Higgs oscillation (HO stage): the Higgs field has
completely left the symmetric phase but is still
oscillating, and the generation of magnetic fields
continues.

Although we cannot draw clear lines between the three
stages, the shift from stage 1 (FE stage) to stage 2 (BC stage)
is signaled by the onset of magnetic field generation. This
typically occurs when mHt≲ 20 in the simulations consid-
ered here, although, it can generically depend on the value of
pB. The boundary between stage 2 (BC stage) and stage 3
(HO stage) is roughly given byTstop, which determines when
theHiggs field at each lattice site has left the symmetric phase.
This transition occurs when mHt ∼ 200 with some slight
dependence on pB for the range of values that we consider.
We have carried out a set of “bubble-collision stage”

simulations that focus on the magnetic field generation
during the phase transition. These simulations cover the first
two stages, and the magnetic fields generated up to Tstop are
analyzed. In addition, we have also performed “Higgs-
oscillation stage” simulations that are run until well into
stage 3, when the Higgs has completely left the symmetric
phase but is still oscillating and producing magnetic fields.
We discuss them in turn.

A. Bubble-collision stage simulation

In this section the results of the 30 parameter combina-
tions defined at the beginning of Sec. V will be compared
during stages 1 and 2 of the phase transition, i.e., for
T ≤ Tstop. As mentioned above, the stopping point Tstop of
the simulations is chosen to be when jΦj2MA10 ¼ 0.25η2.
In Fig. 7, various contributions to the energy density, as

well as the energy density of the generated magnetic field,
are shown as a function of time. Two different parameter
combinations—γ ¼ 2.34 × 10−5, pB ¼ 10−4 and γ ¼ 0.01,
pB ¼ 10−6—are displayed. The total energy is not con-
served due to the presence of the Higgs damping term.
Among the different contributions to the energy density, it
is the Higgs potential energy that shows a significant and
sustained decrease. This is in agreement with the expect-
ation that the Higgs damping term is working properly only
on the Higgs radial degree of freedom. The simulations
start with vanishing gauge fields. However, once bubbles
are nucleated and start to collide with each other, energy is
transferred to the gauge fields, and magnetic fields are
generated as well. Although, in the period considered here,
the energy in the magnetic field is only a few percent of the

FIG. 6. Percolation size rp in units of L and in units of 1=mH as
a function of pB. The percolation size is almost independent of γ.
Different colors (and markers) in this plot indicate different
values of the Higgs damping γ: red “+”, γ ¼ 0; green “o”,
γ ¼ 2.34 × 10−5; blue “▽”, γ ¼ 10−4; orange “△”, γ ¼ 10−3;
cyan “x”, γ ¼ 10−2.
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total energy, it does not stop increasing by the end of these
runs as can be observed in Fig. 8, where we plot the
magnetic energy versus time for a selection of pB and γ
values. Figure 8(a) shows that increasing the damping
reduces the magnetic field. This is so because the condition
jΦj2MA10 ≥ 0.25η2 is met earlier due to the faster attenuation
of the Higgs field, and the duration of stages 1 and 2 is
decreased. Also, for larger damping, a larger proportion of
the total energy gets dissipated, thus reducing the energy
available for magnetic field generation. This is clearly seen
for γ ≳ 10−4; while for γ ≲ 10−4, we found the effects of
Higgs damping become negligible. Figure 8(b) shows that
increasing pB increases both the magnitude and the rate
dρBðtÞ=dt of magnetic energy density generated.
Furthermore, we notice that for smaller pB, the onset of
magnetic field generation (i.e., the beginning of bubble
collision) occurs later. For pB ≳ 10−4, bubble nucleation, as
well as magnetic field generation, is saturated on the lattice,
and the corresponding curves that fall in this range are
similar to each other.
The dependence of the magnetic energy with the Higgs

damping γ is shown in Fig. 9 for different values of pB.

When the damping falls below γ ≲ 10−4, magnetic field
production reaches “saturation” and there is no dependence
on γ. Indeed, choosing the damping equal to the SM Higgs
width makes almost no difference compared to the case
with no damping at all.
Also from Fig. 9, we deduce that the ratio ρB=ρtotal of the

magnetic energy to the total energy at the end of the BC
stage, i.e., at T ¼ Tstop, turns out to be ≈2%–4%. More
specifically, for γ ≲ 10−4, this ratio saturates to the value
∼3.3%, while for γ ≳ 10−4 it decreases with increasing
Higgs damping, approaching ∼2.3% when γ ¼ 0.01. These
results are summarized in Table I.
A more detailed picture of the generated magnetic field

can be obtained from Fig. 10, which shows the field
spectrum EMðkÞ, defined in Eq. (31), for various values
of γ at fixed pB ¼ 10−4. The dependence on spectrum
with pB, for fixed γ ¼ 2.34 × 10−5, is displayed in Fig. 11.
In both cases, the spectrum is shown as a function of the
physical wave number kΔx=2π ¼ K0=N, defined in
Eq. (29). The width of each bin is ΔkΔx=2π ¼ ΔK0=N.
The spectrum is normalized in such a way that the area

FIG. 7. Log-scale plots of magnetic energy, total energy, Higgs
potential energy and energy in gauge sector (sum of EUð1Þ and
ESUð2Þ), for two different configurations: (Top) γ ¼ 2.34 × 10−5,
pB ¼ 10−4. (Bottom) γ ¼ 0.01, pB ¼ 10−6. FIG. 8. Plots of magnetic energy density as a function of t,

ρBðtÞ, for different values of pB and γ, respectively.
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under the curve is equal to the magnetic energy density.
One caveat is that the nonspherical geometry of the lattice
may lead to the underestimation of the spectrum for
kΔx=2π ≳ 0.5. The vanishing tail for large k shows
numerical artifacts from k ∼ 1=Δx are well controlled. It
is clear from Figs. 10 and 11 that certain features of the
spectrum are largely independent of pB and γ. Specifically,
the peak of the spectra lies at kΔx=2π ¼ 0.018. Thus, the
dominant wavelength is λk ¼ 2π=k ¼ Δx=0.018 ≈ 56Δx,
or mHλk ≈ 56mHΔx ≈ 10 (λk ≈ 10−15 cm).

B. Higgs-oscillation stage simulations

At HO stage, the Higgs field has left the symmetric phase
but it is still oscillating around the minimum of the
potential. As a result, magnetic fields can continue to be
generated and this is what we set out to study in this
section.
To this effect we select a representative subset of the

configurations considered before with the following set of
parameters:

(i) γ ¼ 2.34 × 10−5, pB ¼ 10−4

(ii) γ ¼ 2.34 × 10−5, pB ¼ 10−6

(iii) γ ¼ 2.34 × 10−5, pB ¼ 10−7

(iv) γ ¼ 1.00 × 10−2, pB ¼ 10−6.
The evolution is followed for 100,000 time steps,
mHt ≈ 4500, and a snapshot of the configuration is saved

every 200 time steps. The outcome of this calculation is
shown in Fig. 12. The upper-left plot displays kmeanðtÞΔx=
2π. The upper-right plot shows kpeakðtÞΔx=2π, the mode of
the spectrum, where, as before, the ten-step average is used.
Finally, the lower plot depicts the magnetic energy den-
sity, ρBðtÞ=m4

H.
First, we notice that the magnetic energy density keeps

increasing within the time range of the simulations. For
example, for the configuration with pB ¼ 10−4 and γ ¼
2.34 × 10−5 (red curve), before mHt ∼ 1000, the magnetic
energy density ρB grows roughly linearlywith time; although
the rate slows down after that, ρB keeps on increasing
throughout the simulation time range. Keeping in mind that
mHtstop ∼ 150 for this configuration, it is clear that magnetic
energy is indeed generated in the HO stage. In fact, the
magnetic energy density at mHt ∼ 150 is ρB=m4

H ∼ 0.016,

FIG. 9. Magnetic energy conversion ratio ρB=ρtotal as a function
of γ at T ¼ Tstop. Different colors correspond to different
pB (10−7 ≤ pB ≤ 10−4).

TABLE I. The magnetic energy density measured in units of
m4

H and the conversion rate ρB=ρtotal for pB ¼ 10−4.

γ ρB=m4
H ρB=ρtotal

0.00 0.0160 0.0331
2.34 × 10−5 0.0162 0.0335
1.00 × 10−4 0.0160 0.0332
1.00 × 10−3 0.0139 0.0301
1.00 × 10−2 0.00842 0.0233

FIG. 10. Magnetic energy spectra for different values of γ at
T ¼ Tstop. pB ¼ 10−4. The range of kΔx=2π is divided into 120
bins (thus ΔK0=N ¼ 0.0072). For γ ¼ 0, the spectrum peaks at
the position kΔx=2π ¼ 0.025 (fourth bin); for the other cases, the
spectra peaks at the position kΔx=2π ¼ 0.018 (third bin).

FIG. 11. Magnetic energy spectra for different values of pB at
T ¼ Tstop: γ ¼ 2.34 × 10−5. For all the shown cases, the spectra
peaks at the position kΔx=2π ¼ 0.018 (third bin).
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and it grows by a factor of∼4 to reach ρB=m4
H ∼ 0.062 at the

end of our simulation (see Table II). Hence, the generation of
magnetic fields in the HO stage dominates over that in the
BC stage.
The plot of kmean and kpeak in Fig. 12 shows that the

magnetic energy has power on length scales that are
much larger than the particle physics scale m−1

H ≈ 6Δx.
For example, when γ ¼ 2.34 × 10−5, independent of pB,
kmeanΔx=2π converges to ∼0.04, equivalent to a wave-
length of mHλk ≈ 4.2. The power spectrum of the magnetic
field peaks at even larger length scales. From the plot of
kpeak we see that the peak moves to larger length scales
with time and at the end of our run, kpeakΔx=2π ≈ 0.011 for
all parameters. (The plot is jagged because of binning
effects.) This corresponds to a wavelength of λk ¼ 2π=k ¼
Δx=0.011 ≈ 91Δx (mHλk ¼ 15.2).

In Fig. 13 we show the energy spectrum of the magnetic
fields at the end of our simulation for γ ¼ 2.34 × 10−5 and
pB ¼ 10−6. A peak is clearly seen in Fig. 13 and its location
is largely independent of the parameters we varied in this
paper. We conducted several runs on large lattices to test
if the peak is due to finite lattice size and always found
the peak indicating the same wavelength, independent of
the lattice size. Further study is needed to determine what
parameters control the location and height of this peak.

FIG. 12. Plots of the results from Higgs-oscillation stage (HO stage) simulations. (Top left) kmeanΔx=2π as a function of time mHt.
(Top right) kpeakΔx=2π as a function of timemHt. (Bottom) Energy density of magnetic field, ρB, as a function of timemHt. The legends
are the same for the three plots, and are only shown on the bottom plot.

FIG. 13. Spectrum of the magnetic field at T ¼ 100000 for a
configuration with γ ¼ 2.34 × 10−5, pB ¼ 10−6.

TABLE II. Magnetic energy density at t ∼ Tstop and at the end
of our simulation.

γ pB ρB;BC=m4
H ρB;HO�=m4

H

2.34 × 10−5 10−4 0.016 0.062
2.34 × 10−5 10−6 0.016 0.060
2.34 × 10−5 10−7 0.015 0.060
1.00 × 10−2 10−6 0.0075 0.037
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VI. DISCUSSION AND CONCLUSION

We have simulated the classical dynamics of the bosonic
electroweak theory to study the generation ofmagnetic fields
during the EWPT, assuming that physics beyond the SM
yields a first-order transition. Bubbles with the Higgs in the
broken phase are randomly nucleated in regions where the
Higgs is still in the symmetric phase, with the nucleation
rate controlled by a parameter pB that we vary over a range.
To account for the energy damped into fermions due toHiggs
decays that will be present in the full theory we add a
damping term to the scalar EOM that acts on the magnitude,
jΦj, in a gauge invariant way.
We found it useful to divide the phase transition into three

stages: free expansion stage (FE), bubble collision stage
(BC), and Higgs oscillation stage (HO). During the FE stage
broken phase bubbles are nucleated and expand in the
symmetric phase, but bubble collisions have not started
yet and no magnetic fields are generated. Once bubbles start
crossing, the energy density in magnetic fields grows to
∼3%, or B ∼ 1023 gauss, for γ equal to the observed Higgs
decay width. Assuming the fields are nonhelical, the field
strength will evolve to ∼10−15 gauss at present times [40].
At this point the spectrum of the magnetic field has a peak
at kΔx=2π ¼ 0.018, or equivalently, the peak wavelength is
mHλk ¼ 10 (or λk ≈ 2 cm in comoving scale). This is larger
than the initial size of the nucleated bubbles (mHr0 ¼ 6.5)
but not by much. We do not see a clear dependence of the
peak location on either γ or pB. These findings are consistent
with the results obtained in similar simulations (e.g., [23,53]).
Similar behavior was found in [22,23], where the gen-

eration of magnetic fields in low-scale electroweak hybrid
inflation was studied on the lattice. In this context, electro-
weak symmetry breaking also occurs via the nucleation and
growth of Higgs bubbles and the system eventually enters a
regimewheremagnetic fieldswith energy density ρB=ρtotal ∼
0.01were found. Furthermore, as in our scenario (see Fig. 8),
ρB was also observed to grow linearly with time. Let us
emphasize however, that we consider initial conditions
appropriate for a first-order phase transition with random
bubble nucleation. Unlike the scenario in [22,23], our
magnetic field is initially zero and is entirely dynamically
generated.
A detailed characterization of the magnetic helicity is

left for future work. Nevertheless, let us point out that our
equations of motion do not include an explicit CP-violating

term so we expect the average helicity to vanish.
Nevertheless, as observed in [22,23], the dispersion is
expected to be nonzero leading to nonvanishing helical
magnetic susceptibility.
After the BC stage, the evolution enters the HO stage in

which the Higgs oscillates around its true vacuum for a very
long time. Magnetic energy is seen to continuously increase
during the HO stage, even at the end of our simulation runs.
Due to limitations in computation power, we are not able
to see the asymptotic value of magnetic energy density
from our simulations. However, it is clear that most of the
final energy in the magnetic field is produced during the
HO stage, exceeding that produced in the BC stage by a
factor of ∼4 (for typical values of γ and pB) and still
growing at the end of our runs. When decomposing the
magnetic energy in Fourier space, we find the spectrum to
peak at kpeakΔx=2π ¼ 0.011, or λk ¼ 91Δx, comparable
to the bubble size at percolation which is approximately
0.33 of the lattice size (see Fig. 6). Our simulations suggest
that the peak location is not sensitive to the damping γ nor
the bubble nucleation probability pB. This is consistent
with Fig. 6 in which we see that the percolation size is not
sensitive to these parameters, in the range that we have
considered.
To summarize, using numerical simulations we find that

a first-order EWPT generates a significant amount of
magnetic fields. While magnetic field generation has not
stopped by the end of our simulations, we find that ∼10%
of the electroweak false vacuum energy is converted into
magnetic fields. The energy spectrum of the magnetic field
has a peak that shifts towards larger length scales. By the
end of the BC stage, the peak wavelength is of the order of
the bubble percolation scale, and it shifts to a longer
wavelength in the HO stage.
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