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Electromagnetically neutral dark sector particles may directly couple to the photon through higher
dimensional effective operators. Considering the electric and magnetic dipole moment, anapole moment,
and charge radius interactions, we derive constraints from the stellar energy loss in the Sun, horizontal
branch and red giant stars, as well as from cooling of the proto-neutron star of SN1987A. We provide the
exact formula for in-medium photon-mediated pair production to leading order in the dark coupling and
compute the energy loss rates explicitly for the most important processes, including a careful discussion on
resonances and potential double counting between the processes. Stringent limits for dark states with
masses below 3 keV (40 MeV) arise from red giant stars (SN1987A), implying an effective lower mass-
scale of approximately 109 GeV (107 GeV) for mass-dimension five and 100 GeV (2.5 TeV) for mass-
dimension six operators as long as dark states stream freely; for the proto-neutron star, the trapping of dark
states is also evaluated. Together with direct limits previously derived by us in Chu et al. (2018), this
provides the first comprehensive overview of the viability of effective electromagnetic dark-state
interactions below the GeV mass-scale.
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I. INTRODUCTION

The prospect that new physics might be hiding under our
noses in the form of light dark states that have been in
kinematic reach for decades is most intriguing if not
seemingly preposterous. In fact, cases exist where new
interactions are of comparable strength to the ones encoun-
tered in the Standard Model (SM), while being compatible
with all to-date searches. The direct test of such physics,
i.e., new particles and interactions below the GeV-scale has
become a major field in recent years [1,2] and provides a
complementary direction to the beyond-SM searches at the
energy frontier.
Whereas the GeV-mass scale might comprise somewhat

of a “blind-spot” that allows for the existence of new
physics with appreciable interactions to the SM, once the
mass enters the keV-regime the landscape changes funda-
mentally. Astrophysical constraints on long-lived dark
states that are derived from stellar cooling arguments [3]
are typically so severe that the cases for laboratory

detection drastically diminish. Of course, the observable
signatures of dark states depend on the nature of the
coupling to the SM. For example, a new force can be
mediated by new scalar or vector particles. Benchmark
models are then derived based on minimality of the SM
extension and on the dimensionality of the interaction
operator, and within this framework the interplay between
cosmological and astrophysical implications and direct
tests is fleshed out.
A prominent example is the vector portal, where the

low-energy phenomenology is determined by the kinetic
mixing strength ϵ of the “dark photon” V with the SM
photon [4]. If the mass of V, mV , originates from a Higgs
mechanism, implying an additional scalar particle in the
vicinity of mV , stellar cooling constraints obliterate any
prospects of probing such a model below the keV-region,
as limits on millicharged particles apply. However, a
decoupling of stellar constraints as ϵ2m2

V [5] when mV
arises from a Stuckelbergmechanism, opens the opportunity
to explore a vast parameter region through direct, laboratory
searches, in particular if V is the dark matter (DM); see,
e.g., [6–11,11–20].
In this work we will consider—from the low-energy

effective theory point of view—an even more minimal
possibility than the dark photon, namely, that the SM
photon is the new physics mediator. Beyond carrying
a millicharge, DM may also interact directly with the
photon through a number of higher dimensional operators
that encapsulate magnetic or electric dipole moment
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interactions (MDM or EDM), an anapole moment (AM) or
a charge radius interaction (CR). These possibilities were
originally considered in [21–23] with further studies on the
phenomenology found in [24–29]. Motivated by the intense
efforts to search for sub-GeV dark sector states [1,2], the
topic of form-factor interactions was recently revisited in
detail by some of us [30].
In [30] we focused on the prospects of detecting

electromagnetic (EM) form factor interactions of a dark
sector Dirac particle χ with mass at or below the GeV-
scale. The direct production of pairs χχ̄ was constrained
with data from BABAR [31], NA64 [32] and mQ [33] and
future improvements in sensitivity were derived for
Belle-II [34], LDMX [35] and BDX [36]. The direct
sensitivity was then compared with indirect probes such as
electroweak precision tests, flavor physics constraints, as
well as with results from LEP and LHC. It was found
that, owing to the higher dimensionality of the operators,
high energy probes provide superior sensitivity. The
conclusions are independent of the lifetime of χ, as long
as its stability is guaranteed while traversing terrestrial
detectors.
In contrast, if χ is long-lived, additional constraints from

cosmology, astrophysics, and direct DM searches apply,
and in [30] we have considered the most important ones
that are crucial in the MeV-GeV mass bracket of χ.
However, once we allow the χ-mass to drop into the
keV-region, additional constraints from the production of
χχ̄-pairs in stars become important [3]. In this work we
complement our previous results derived in [30] with
astrophysical limits that apply once the dark state is
stable on a macroscopic time scale, without necessarily
demanding that sub-MeV χ particles make up the DM. We
derive the limits from stellar cooling that arise from red
giant (RG), horizontal branch (HB) stars, and the Sun, and
revisit our calculation of the supernova bound, taking into
account all major production channels.
Concretely, we are considering the following funda-

mental dark state emission processes, highlighting in
brackets the stellar system(s) for which the process is most
relevant,

Plasmon decay∶ γT;L → χχ̄ ðallÞ; ð1Þ

Annihilation∶ eþe− → χχ̄ ðSNÞ; ð2Þ

Bremsstrahlung∶ e−N → e−Nχχ̄ ðRG; HB; SunÞ;
NN → NNχχ̄ ðSNÞ; ð3Þ

Compton scattering∶ e−γT;L → e−χχ̄ ðallÞ: ð4Þ

The respective processes are decay of in-medium longi-
tudinal (L) and transverse (T) modes of thermal photons
γT;L which we will simply refer to as “plasmons”, electron-
positron annihilation, electron bremsstrahlung on protons
and nuclei, nucleon-nucleon bremsstrahlung and Compton
scattering with the emission of a χχ̄-pair. Exemplary
respective diagrams are shown in Fig. 1.
The paper is organized as follows: in Sec. II we first set

the stage by listing the effective operators that mediate χ-
photon interactions. Section III gives a brief account on
stellar energy loss arguments. Our calculations on χ particle
emission are presented in Sec. IV. The ensuing constraints
are then collected in Sec. V before concluding in Sec. VI.
Several Appendixes provide details on the calculations and
are referenced in the main text.

II. ELECTROMAGNETIC FORM
FACTOR INTERACTIONS

A Dirac fermion χ may have a number of interactions
with the photon gauge field Aμ or its field strength tensor
Fμν. At mass dimension-5 the interaction terms of the
Lagrangian are given by

Ldim -5
χ ¼ 1

2
μχχ̄σ

μνχFμν þ
i
2
dχ χ̄σμνγ5χFμν; ð5Þ

where μχ and dχ are the MDM and EDM coupling which
may be measured in units of the Bohr magneton, μB ≡
e=ð2meÞ ¼ 1.93 × 10−11 e cm; me is the mass of the
electron and σμν ¼ i

2
½γμ; γν�. At mass dimension-6 we have

(a) (b) (c) (d) (e)

FIG. 1. Shown are the pair production processes of χχ̄ that are calculated in this paper, namely, (a) plasmon decay, (b) eþe−
annihilation, (c) 2 → 3 Compton scattering, (d) electron bremsstrahlung and (e) nucleon bremsstrahlung; for (c)–(d) we only show one
of two relevant diagrams. The four momentum of the χχ̄-producing photon is denoted by k throughout the paper.
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Ldim-6
χ ¼ −aχ χ̄γμγ5χ∂νFμν þ bχ χ̄γμχ∂νFμν; ð6aÞ

where aχ and bχ are the AM and CR coefficients. All
coupling strengths in Eqs. (5) and (6) are real. At mass-
dimension-7 the interactions involve two photons at the
vertex and hence require a dedicated treatment. For this
reason we restrict our study to dim-5 and dim-6 operators.
The effective interactions in Eqs. (5) and (6) may, e.g.,

arise from the compositeness of χ [37–39] or perturbatively,
from a UV completion that contains electrically charged
states [40]. In the latter case, MDM and EDM moments are
e.g., generated by loop-induced axial or vector Yukawa
interactions yA;V of χ with additional scalars and fermions.
Parametrically, one expects μχ ∼QjyA;V j2=M and dχ ∼
QIm½yVy�A�=M where Q is the electric charge of the
mediator and M is some common mass-scale of these
new states. In turn, the strength of AM and CR interactions
may be expected as aχ , bχ ∼QjyA;V j2=M2. It should be
noted, however, that these estimates may be significantly
enhanced by the lightness and/or mass-degeneracy of the
spectrum of states [41]; a systematic study on EDMs
induced by CP violation from light dark sectors was
recently performed in [42]. In what follows, we treat the
interactions (5) and (6) independent of their embedding.
For the Feynman-diagrammatic computation, one

assembles the interactions into the matrix element of the
effective EM current of χ,

hχðpfÞjJμχð0ÞjχðpiÞi ¼ ūðpfÞΓμ
χðqÞuðpiÞ;

where pi;f and q ¼ pi − pf are four-momenta. For a
neutral particle χ the vertex functions reads

Γμ
χðqÞ ¼ iσμνqνðμχ þ idχγ5Þ þ ðq2γμ − qμqÞðbχ − aχγ5Þ:

Here we regard the various moments as being generated at
an energy scale well above the energies involved in the
stellar production; they are hence q-independent.

III. STELLAR OBSERVABLES

In this section we review the arguments on stellar energy
loss. Active stars such as RG, HB, or the Sun are systems of
negative heat capacity: if energy is lost, either through
photon emission or through new, anomalous processes, the
decrease of total energy causes the gravitational energy to
become more negative. By virtue of the virial theorem, the
average kinetic energy and thereby the photon temperature
increases. The system heats up leading to a faster con-
sumption of its nuclear fuel while the overall stellar
structure remains largely unchanged. In contrast, dead stars
such as white dwarfs or the proto-neutron star formed in
core-collapse SN are supported by degeneracy pressure
and stellar energy loss implies a cooling of the system.

Constraints are then derived based on an observationally
inferred cooling curve.

A. RG and HB stars

In globular clusters (GCs), the population of stars on the
red giant branch vs horizontal branch is directly related to
the lifetime of stars in the respective phases. Their
observationally inferred number ratio agrees with standard
predictions to within 10%. Anomalous energy losses
shorten the helium-burning lifetime in HB stars, creating
an imbalance in the number of HB vs RG stars. This
constrains the luminosity in non-standard channels to be
less than approximately 10% of the standard helium-
burning luminosity of the HB core [3],

Z
core

dV _Q < 10% × LHB ðHBÞ: ð7Þ

Following [3], LHB will be taken as 20 L⊙ for a 0.5 M⊙
core below. The values of the Solar mass and luminosity are
M⊙ ¼ 1.99 × 1033 g and L⊙ ¼ 3.83 × 1033 erg=s, respec-
tively. The computation of the anomalous energy loss rate
per unit volume and time, _Q, will be the subject of the next
section.
A constraint for RG stars may be derived from an

agreement between predicted and observationally inferred
core masses prior to helium ignition. Energy loss delays
the latter and the core mass keeps increasing as the
hydrogen burning “ashes” fall onto the degenerate He
core. Preventing an increase in core mass by no more than
5% yields the constraint [3],

_Q < 10 erg=g=s × ρ ðRGÞ: ð8Þ

Here, _Q is to be evaluated at an average density of ρ ¼
2 × 105 g=cm3 and a temperature of T ¼ 108 K ≃ 8.6 keV,
slightly higher than that of HB stars.
The criterion (8) on energy loss can be improved

utilizing high precision photometric observations of
GCs. For example, considering the brightness of the tip
of the RG branch, [43] has provided a detailed error budget,
and new limits on neutrino dipole moments from GC M5
were derived based on predictions of absolute brightness in
the presence of anomalous energy loss that are obtained
with dedicated stellar evolutionary codes. It was found,
however, that previously derived limits based on (8) remain
largely intact, as there appears to be a slight preference for
anomalous energy loss channels [43]. In the following, for
our purposes it will hence be entirely sufficient to employ
the simple condition (8) to arrive at constraints on the EM
form factors.
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B. Sun

Solar neutrino fluxes are a direct measure of the nuclear
fusion rates inside the Sun. For example, not only the 8B
neutrino flux is very well measured but also the sensitive
dependence of the responsible reaction on the temperature
provides an excellent handle for constraining anomalous
energy losses. The ensuing constraint is then phrased in
terms of the total Solar photon luminosity [44,45], asZ

Sun
dV _Q < 10% × L⊙ ðSunÞ: ð9Þ

It is important to note that (9) is basically insensitive to the
long-standing “solar opacity problem”: the measured 8B
neutrino flux is situated in the overlap region of the nominal
error ranges between the discrepant high- and low-
metallicity determinations of the Solar chemical composi-
tion [8]; see the respective Refs. [46,47]. Hence, (9) suffices
as a criterion, awaiting further developments on Solar
opacity determinations.

C. Supernova

New particles that are emitted from the proto-neutron
star and that stream freely may quench the electroweak
rates of neutrino emission during the cooling phase. The
involved processes and their dynamics are highly complex.
However, an approximate but very useful criterion to
constrain additional energy loss is the condition that the
total luminosity due to nonstandard processes should not
exceed the neutrino luminosity at one second after core
bounce [3],Z

core
dV _Q < Lν ¼ 3 × 1052 erg=s ðSNÞ: ð10Þ

The applicability of the bounds above are contingent on
that the SN1987Awas a neutrino-driven SN explosion1 and
that the produced particles are able to escape the dense
environment of the SN remnant, assumed to be a proto-
neutron star (PNS). Below, we will account for this so-
called “trapping-limit” in the case of SN. For all other
systems introduced above, trapping is either irrelevant or
happens in a parameter region that is excluded otherwise.

IV. PRODUCTION CROSS SECTIONS
AND ENERGY LOSS RATES

In this section we first provide the general formula for χχ̄
pair production in the thermal bath, before breaking it down
into the most relevant pieces that dominate the in-medium
production cross sections and, thereby, the stellar cool-
ing rates.

A. Exact formula for χ χ̄ pair production

In thermal field theory, the production rate of a
decoupled fermion per volume per time may be obtained
from its relation to the imaginary part of its self-energy in
medium [50] via

_Nχ ¼ −
Z

d3p⃗χ

ð2πÞ3
1

ðeEχ=T þ 1Þ
ImΠχðEχ ; p⃗χÞ

Eχ
; ð11Þ

where ImΠχðEχ ; p⃗χÞ ¼ ūðpχÞΣðEχ ; p⃗χÞuðpχÞ is the dis-
continuity of the thermal self-energy of χ, ΣðEχ ; p⃗χÞ;
uðpχÞ and ūðpχÞ are free particle spinors with four-
momentum pχ ¼ ðEχ ; p⃗χÞ. To lowest order in the dark
coupling, ΣðEχ ; p⃗χÞ is found from the one-loop diagram
with a dressed photon propagator attached to the χ fermion
line. A general exposition on calculating discontinuities in
the thermal plasma is found in [50,51].
Below, in Eq. (13), we are using a different formulation,

and the equivalence may be appreciated in the following
way: when cutting the self-energy diagram for χ, the optical
theorem implies that the production rate may also be
obtained by computing all graphs where a photon γ� of
four-momentum k ¼ pχ þ pχ̄ emerges from a SM current
and is being dotted into the dark current of the χχ̄ pair. The
SM-process that leads to the creation of γ� is in turn related
to the imaginary part of the photon self-energy in the
medium, ImΠμν, where

Πμρ ¼ ðϵμT;1ϵρT;1 þ ϵμT;2ϵ
ρ
T;2ÞΠT þ ϵμLϵ

ρ
LΠL: ð12Þ

Here ϵT;L are the transverse and longitudinal photon
polarization vectors and ΠL;TðkÞ is thermal photon self-
energy for the respective polarization; explicit expressions
are given in Appendix A. Identifying the leading contri-
butions to ImΠL;TðkÞ in various mediums then allows us to
account for the dominant χ pair production channels.
The exact differential production rate per volume of χχ̄

pairs via a photon of 4-momentum k ¼ ðω; k⃗Þ emerging
from any SM process to lowest order in the dark current can
be obtained by borrowing the results from dilepton pro-
duction in hot matter; see e.g., [52,53]. Adopted to our
purposes (see Appendix B) it reads

d _Nχ

dsχχ̄
¼ −

X
i¼T;L

gi

Z
d3k⃗
ð2πÞ3

1

ðeω=T − 1Þ
ImΠiðω; k⃗Þ

ω

×
fðsχχ̄Þ

16π2jsχχ̄ − Πij2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
; ð13Þ

where sχχ̄ ¼ k2 is the invariant mass of the χ-pair and the
internal degrees of freedom (d.o.f.) of two polarization
modes are gT ¼ 2, gL ¼ 1. The differences in the various
interaction possibilities are entirely captured in a factor that

1For an alternative explosion mechanism where the SN1987A
bounds would not apply, see [48,49].
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will repeatedly appear and that was obtained in our
preceding work [30],

MDM∶ fðsχχ̄Þ ¼
2

3
μ2χs2χχ̄

�
1þ 8m2

χ

sχχ̄

�
; ð14aÞ

EDM∶ fðsχχ̄Þ ¼
2

3
d2χs2χχ̄

�
1 −

4m2
χ

sχχ̄

�
; ð14bÞ

AM∶ fðsχχ̄Þ ¼
4

3
a2χs3χχ̄

�
1 −

4m2
χ

sχχ̄

�
; ð14cÞ

CR∶ fðsχχ̄Þ ¼
4

3
b2χs3χχ̄

�
1þ 2m2

χ

sχχ̄

�
: ð14dÞ

Equation (13) is the general expression of the weakly
coupled χ pair-production rate from the thermal medium;
details are found in Appendix B.
The contribution to χχ̄ production to leading order in α is

given by the pole in (13), i.e., for sχχ̄ ¼ ReΠL;T. When this
condition is met, (13) reduces to the decay rate of thermal
photons γL;T → χχ̄. Hence, resonant χχ̄ production is fully
accounted for by γL;T decay. The decay itself becomes
possible by virtue of the in-medium (squared) mass
of γL;T: it is given by ReΠL;TðωL;T; k⃗Þ, where ωL;T

denotes the solution of ωðjk⃗jÞ of the corresponding
longitudinal and transverse dispersion relations
ω2 − jk⃗j2 − ReΠL;Tðω; k⃗Þ ¼ 0. Plasmon decay is discussed
in the following subsection, and explicitly calculated in
(B7)–(B9) in Appendix B. The expressions for ReΠL;T

and finite-temperature dispersion relations are found in
(A5)–(A6).
Production off-the-pole to Eq. (13) can be elucidated by

studying the contributions to ImΠ using the optical
theorem, illustrated in Fig. 2. The left-hand side shows
the fully dressed vacuum polarization of an off shell photon
γ�, found by considering loop-diagrams of increasing order
in α illustrated in the first equality. When those loop

diagrams are cut, their imaginary parts are given by the
tree-level production processes for γ� shown in the last
equality. The leading α contribution to ImΠ is then given by
the electron one-loop diagram. Although it is well known
that on shell plasmon decay γL;T → eþe− remains forbid-
den at finite temperature [54], an electron loop still
contributes to ImΠ in the off shell case. The associated
process is then eþe− annihilation to χχ̄, i.e., process (2b).
The second and third diagrams in the last line of Fig. 2

are related to χχ̄ production in Compton scattering and
bremsstrahlung. Here, it is important to note that sχχ̄ ¼
ReΠL;T can also be met in the photon propagator that
produces the χ-pair with invariant squared mass sχχ̄ .
However, including such resonances would amount to
double-counting. As we have seen above, the pole con-
tributions are already captured by plasmon decay.2 In our
calculations, we explicitly avoid this situation by setting
ΠL;T → 0 in the propagator if the resonance is kinemati-
cally allowed for the photon that directly couples to the
dark current. We have numerically verified that our results
remain otherwise unaffected by neglecting the thermal shift
in the photon propagator.
Finally, there is also a potential double counting between

Compton scattering and bremsstrahlung processes, which
happens when in the bremsstrahlung process the photon
exchanged between two initial particles carries 4-momen-
tum q [see Fig. 1(d)] that satisfies the dispersion relation
q2 − ReΠLðq0; q⃗Þ ¼ 0, leading to the exchange of an on
shell longitudinal plasmon. The process then becomes
equivalent to Compton scattering e=NþγL→e=Nþχþχ̄.
This has been reported for axion production processes,
where the contribution of latter is mostly covered by that of
bremsstrahlung [57]. To avoid such double-counting, we
take the static approximation (q0 ¼ 0) for the thermal mass

FIG. 2. Optical theorem relating the imaginary part of the photon self energy to the sum of all SM processes that create an off shell
photon γ�. The first equality shows the leading individual contributions to the self-energy. When the latter loop-diagrams are cut, they
correspond to the scattering processes shown in the second line, where dΠi symbolizes the phase space integral of all external particles,
except γ�. When the scattering diagrams are deformed in a way such that two SM particles are in the initial state, the processes
correspond to annihilation, Compton scattering and bremsstrahlung (from left to right). Any diagrams with χ particles involved yield
contributions to the production rate (13) that are of higher order in the dark coupling.

2A heuristic argument on such double counting was also given
in the context of neutrino pair emission in Sec. 2.5 of [55]. It
furthermore appears to us, that double counting may have
occurred in [56] where a potentially resonant bremsstrahlung
process was added to the plasmon decay contribution.
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of the photon exchanged in bremsstrahlung processes,
which is a valid limit as the nucleon mass is large. As
q2 < 0 and ΠLðq0 ¼ 0; q⃗Þ is always positive, the
exchanged photon can not become on shell in bremsstrah-
lung processes, thus double counting is avoided (see
Sec. IV D for more details).

B. γT;L decay

The on shell process of photon decay to χχ̄ [Fig. 1(a)]
becomes possible in the medium and has an important
analogy in the literature, the plasmon decay to neutrinos.
Since the dispersion relation for transverse and longitudinal
thermal photons are distinct, it is again helpful to separate
the two polarizations in the calculation. Explicitly, we
obtain for the decay rate per d.o.f.,

ΓT;L ¼ 1

16π
ZT;L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

ω2
T;L − jk⃗j2

s
fðω2

T;L − jk⃗j2Þ
ωT;L

; ð15Þ

where ωT;L ¼ ωT;Lðjk⃗jÞ for each polarization mode, as
defined above. Details on the definition of the wave
function renormalization factors ZT;L and the calculation
are again given in Appendix B. In the limit of mχ → 0, the
decay widths for MDM agree with the well-known for-
mulas for plasmon decay to a neutrino pair [3].
For the plasmon decay processes, the energy loss rate can

be expressed as [3]

_Qdecay;T ¼ 2

2π2

Z
∞

0

djk⃗j jk⃗j
2ΓTωT

eωT=T − 1
Θðω2

T − jk⃗j2 − 4m2
χÞ;

_Qdecay;L ¼ 1

2π2

Z
kmax

0

djk⃗j jk⃗j
2ΓLωL

eωL=T − 1
Θðω2

L − jk⃗j2 − 4m2
χÞ:

ð16Þ
The expression for kmax is given in Eq. (A7). For a
nonrelativistic medium (HB, RG, Sun), the dispersion
relation crosses the light cone at jk⃗j ¼ kmax, signaling
the damping of longitudinal modes (i:e., Landau damping);
for a relativistic plasma (SN) kmax → ∞. The relative factor
of 2 between the expressions reflects the counting of
polarization d.o.f. Finally, the last factor is a kinematic
restriction on the phase space, ω2

T;L − jk⃗j2 ≥ 4m2
χ . For

transverse mode thermal photons, the integral becomes
bounded from below since ω2

T − jk⃗j2 increases as jk⃗j
increases according to the dispersion relation. For the
longitudinal case, the integral is additionally bounded from
above since the trend in ω2

L − jk⃗j2 with respect to jk⃗j is
reversed.

C. e+ e − annihilation

The degenerate plasma of the PNS core with temperature
T ≫ me contains a population of eþ, allowing for dark state

pair-production through eþe− annihilation [Fig. 1(b)]. The
calculation for the pair production cross section is detailed
in Appendix B.
In terms of the invariant s ¼ ðp1 þ p2Þ2 and the sum/

difference of incoming e∓ energies E1;2 in the frame of the
thermal bath, i.e., E� ≡ E1 � E2, the corresponding cross
section mediated by the transverse polarization part of the
propagator reads

σT ¼ α½sE2
− þ ð4m2

e þ sÞðE2þ − sÞ�
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p

ðE2þ − sÞðs − ΠTÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

s

s
fðsÞ:

ð17Þ
For the longitudinal part we obtain

σL ¼ α½sðE2þ − E2
− − sÞ�

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p

ðE2þ − sÞðs − ΠLÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

s

s
fðsÞ:

ð18Þ

Note that there is no interference term between the two.
Furthermore, the sum of both cross sections, σT þ σL,
becomes Lorentz invariant in the limit of ΠT;L → 0.3

Before using (17) and (18) in the calculation of the
energy loss rate, a comment on the analytic structure is in
order. Although it appears that the process may be
significantly enhanced when s ¼ ReΠT;L, this condition
is never met: for the same reason that the decay of thermal
photons into an electron-positron pair (γT;L → eþe−) is
forbidden [54], the finite-temperature corrections to me
prevent the process (2) from going on shell. It is for this
reason that we have explicitly evaluated the thermal
electron mass for the employed radial profile of the
PNS; see Appendix A. In other words, we use a thermal
electron mass in SN, and use the zero-temperature electron
mass in HB, RG and Sun, where eþe− annihilation is of
little relevance. The values of chemical potential μe are self-
consistently adjusted to match the numerical PNS profiles
from the literature (see below).
The energy loss rate of eþe− annihilation is found by

weighing the emission process by the total radiated final
state energy E3 þ E4 ¼ E1 þ E2 and by the probability of
finding the initial states with the respective energies E1

and E2,

_Qann ¼
Z

dΠi¼1;2;3;4ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ

× ge−geþfe−feþ
1

4

X
spins

jMannj2ðE1 þ E2Þ: ð19Þ

3We use a definition of the cross section for which the Møller
velocity instead of the relative velocity jv⃗1 − v⃗2j appears. At zero
temperature, this makes the cross section a Lorentz invariant
quantity; see the discussion in [58].
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Here, fe� are the phase-space distributions of e�, with
internal d.o.f. ge� ¼ 2, and jMannj2 is the squared matrix
element for eþe− annihilation into the dark state pair.
In (19) a Pauli-blocking factor induced by χ and χ̄ is
neglected; we have verified that this does not affect the
derived constraints. Finally, dΠi ¼

Q
i d

3p⃗ið2πÞ−3ð2EiÞ−1
is the Lorentz invariant phase space element.
The energy loss rate can be written in terms of the cross

sections σT;L. Borrowing from the discussion on phase
space in [59], we find explicitly

_Qann ¼
Z

∞

4m2
th

ds
Z

∞ffiffi
s

p dEþ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−4m2

e=sÞðE2
þ−sÞ

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−4m2

e=sÞðE2
þ−sÞ

p dE−

×
1

64π4
ge−geþfe−feþEþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
q

σT;L: ð20Þ

The distribution functions fe− and feþ read

fe∓ ¼ 1

eðEþ�E−∓2μeÞ=2T þ 1
: ð21Þ

Here, μe is the chemical potential of electrons and T is
the temperature. The threshold mass mth is equal to
maxfme;mχg.

D. Compton scattering

For 2 → 3 Compton scattering (e−=N þ γT;L → e−=
N þ χ þ χ̄) with an initial γT;L [Fig. 1(c)], we calculate
the differential cross section via

dσ2→3

dsχχ̄
¼ σ2→2ðsχχ̄Þ

fðsχχ̄Þ
16π2s2χχ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
: ð22Þ

Here, σ2→2ðsχχ̄Þ is the cross section of the two-body
Compton scattering with the final-state photon having a
mass ffiffiffiffiffiffisχχ̄

p . We are only required to consider the process on
electrons, e− þ γT;L → e− þ χ þ χ̄, as Compton scattering
on protons is strongly suppressed. Following the treatment
in [55] and our discussion above, we neglect the thermal
mass of the final state photon in σ2→2 to avoid any potential
double counting with γT;L decay. For the initial state photon
in the integration of energy loss rate, Eq. (23) below, the
thermal mass is properly taken in account through the
dispersion relation (A6).
Furthermore, note that there is no double counting

between the Compton process and bremsstrahlung either
in our treatment. A double counting would appear if the
t-channel photon exchange in bremsstrahlung, with
4-momentum q [see Fig. 1(d)], goes on resonance.
This is in principle possible for the longitudinal mode,
since ΠL in the propagator could become negative once
the dispersion relation of γL crosses the light cone.
Nevertheless, in the electron bremsstrahlung process dis-
cussed below—most relevant for RG, HB and the Sun—the

proton recoil and hence the energy exchange are extremely
small. Therefore, the propagator can be taken in the static
limit (energy exchange q0 → 0). This limit amounts to
Debye screening, characterized by ΠLðq0 → 0; jq⃗jÞ. Since
the screening scale is always positive, a resonance is
never met. Therefore, we include the contribution from
e− þ γL → e− þ χ þ χ̄ to capture the t-channel resonance
contribution of electron bremsstrahlung, although it is less
important than plasmon decay.
The energy loss rate from Compton scattering is calcu-

lated in a similar way as (19), but here Eloss is given by the
energy carried by the virtual photon in the medium frame,

_QCompton ¼
Z

dΠi¼1;24E1E2σ
T;L
2→3vMge−gT;Lf1f2

× ð1 − f3ÞEloss; ð23Þ
where f1;2;3 are the distribution functions of the incoming
electron, γT;L and outgoing electron, respectively, with
ge− ¼ gT ¼ 2 and gL ¼ 1 the internal d.o.f. for the incom-
ing electron and γT;L. Pauli blocking is accounted for by
including the factor (1−f3). The energy loss Eloss¼Eχ̄þEχ

can be expressed in terms of variables defined in the
medium frame. Moreover, for RG, HB and the Sun, the
relativistic corrections induced by transforming from
the center-of-mass (CM) frame to the medium frame are
very small and are neglected for simplicity.

E. e −N bremsstrahlung

In this subsection we consider dark state pair production
from bremsstrahlung of electrons on protons or other nuclei
[Fig. 1(d)]. Similar to the Compton scattering above, we
also relate the 2 → 4 cross section to a 2 → 3 process of
eN → eN þ γ�T;L in which the emitted photon, γ�T;L, has an
invariant mass ffiffiffiffiffiffisχχ̄

p ,

dσ2→4

dsχχ̄
¼ σ2→3ðsχχ̄Þ

fðsχχ̄Þ
16π2s2χχ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
: ð24Þ

In the following we shall only consider photon-emission
from electrons, as the emission from the nuclear leg is
suppressed by a factor of ðZme=mNÞ2 ≪ 1 where Z andmN
are the charge andmass of the nucleon/nucleus. Furthermore,
ordinary electron-electron bremsstrahlung is a quadrupole
emission process and correspondingly smaller in practice.
We therefore also neglect such production channel.
The eN process is sensitive to the details of in-medium

corrections. To this end, recall that the t-channel photon
exchange in Fig. 1(d) has a well-known Coulomb diver-
gence in the limit of vanishing momentum-transfer. This
issue is mitigated by two factors: first, the divergence is not
met kinematically as long as mχ ≠ 0 since a minimum
momentum transfer is necessary to create the final state
pair. Second, the medium itself regulates the process
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through the Debye screening of bare charges characterized
by a momentum scale kD. The latter appears as the static
limit of ΠLðq0 → 0; q⃗Þ and for a classical plasma reads

k2D ¼ 4παne
T

þ ion-contributions: ð25Þ

For the numerical results, we have calculated σ2→3 in
(24) using the propagator (A4), neglecting, for simplicity,
ion contributions. We separate the squared amplitude into
transverse and longitudinal parts and include the static
limits of ΠT;L in the respective propagators. For the
longitudinal part, the zero-temperature propagator q−2 is
replaced by ðq2 − k2DÞ−1. In contrast, there is no magnetic
screening in the static limit [ΠTðq0 → 0; jq⃗jÞ ¼ 0]; hence
there is no thermal screening for the propagator of the
transverse mode. We find that in the nonrelativistic limit the
contribution of the longitudinal mode dominates.
To avoid any double counting between this process and

the γT;L decay, we need to subtract the contribution when
the virtual photon that directly couples to χ goes on
shell. As stated above, this is achieved by setting ΠT;L

in the corresponding propagator to zero. Since this should
overestimate the production rate at sχχ̄ ≤ ΠT;L, we have
also tested an opposite option of choosing ΠT;L→
−ΠT;LðEχþEχ̄Þ to avoid the singularity, which under-
estimates the production rate. We find that both prescrip-
tions lead to same results at the percent level, which
justifies our simplification of taking ΠT;L ≡ 0 for the
photon that directly couples to χ.
For dark state pair production in e− bremsstrahlung on

protons and nuclei, the energy loss rate is expressed as

_Qbrem ¼
Z

dΠi¼1;24E1E2σ2→4vMg1g2f1f2ð1 − f3ÞEloss;

ð26Þ

where f1;2;3 are the distribution functions of the incoming
electron, proton/nucleus and outgoing electron, with g1;2
the internal d.o.f. for the incoming particles. We have
neglected the Pauli blocking factor for final-state protons/
nuclei as it plays little role. The Møller velocity vM ¼
F=ðE1E2Þ is given in terms of the flux factor F found in
(B19). The energy carried-away by the dark states is
Eloss ¼ Eχ̄ þ Eχ and its expression in the medium frame
is introduced in Appendix B.
Making the approximation that protons and other nuclei

are at rest, their phase-space integral gives
R
dΠ2f2 ¼

nN=ð2mNg2Þ, where nN is the number density of the
protons/nuclei. Hence we arrive at

_Qbrem¼
Z

∞

meþ2mχ

dE1

2nNE1E2vM
ð2πÞ2mN

jp⃗1jg1f1σ2→4ð1−f3ÞEloss;

ð27Þ

with jp⃗1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

e

p
and where σ2→4 is obtained

from integrating (24) over appropriate boundaries (see
Appendix B 5). Generically, bremsstrahlung is less effec-
tive when pair annihilation or plasmon decay are open
as production channels, but it can be dominant at low
temperatures where the latter processes are kinematically
suppressed.
Before ending this subsection, it is worth commenting on

the so-called soft photon approximation, which states that
in the limit that the emitted photon energy is small
compared to the available kinetic energy (i.e., ω ≪ Ekin),
the process of eN → eN þ γ�T;L factorizes into a product of
elastic scattering times a factor describing the additional
emission of γ�T;L. While this approximation works well for
the emission of a massless photon, it breaks down if the off
shell photon’s effective mass is large, ffiffiffiffiffiffisχχ̄

p ∼ Ekin. Overall,
we find that the soft photon approximation describes the
2 → 4 process well for small mχ in the nonrelativistic limit.
However, for 2mχ ∼ Ekin or for relativistic initial states the
approximation fails, and it is ultimately related to the UV-
sensitivity of the cross section (see Appendix C for details).
Even though calculations simplify considerably in the soft
photon limit, it cannot be applied for the wholemχ-range in
electron bremsstrahlung, and we therefore calculate σ2→4

exactly, relegating details of the calculation to Appendix B.
However, we will use the soft photon approximation in its
region of validity to estimate the energy loss from nucleon
bremsstrahlung in the next subsection.

F. Nucleon bremsstrahlung

Proton and nuclear bremsstrahlungs are strongly sup-
pressed in low-temperature environments due to the negli-
gible thermal velocities of the initial states. However, in the
interior of a PNS, the typical nucleon velocity is v ≲ 1=3 and
NN-bremsstrahlung contributes to the total energy loss.
The photon that pair-creates the dark states is emitted

from the proton-leg in proton-proton (pp) and neutron-
proton (np) scattering. Radiating off the neutron-leg
through the neutron magnetic dipole moment is suppressed.
In addition, since pp-scattering is associated with quadru-
pole radiation, it is suppressed with respect np scattering by
a factor v2 [60]. Therefore, we only consider np-scattering
in the following. The interaction of protons and neutrons is
mostly mediated by pions whose mass is of the order of the
average momentum transfer in elastic collisions in PNS,
allowing for a separation of the phase space into an elastic
and an emission piece (see Appendix C for details). The
energy loss rate in the nonrelativistic, nondegenerate limit4

is then given by [60]

4The corrections to Eq. (28) due to matter degeneracy in PNS
are estimated in Ref. [60] to be small (≈30%) compared to the
corrections neglected in the soft-photon approximation, which
are up to a factor of 3 as mentioned in Appendix C.
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_Qnp ¼ nnnpffiffiffi
π

p ðmnTÞ3=2
Z

∞

2mχ

dEkinE2
kine

−Ekin
T

Z
E2
kin

4m2
χ

dsχχ̄

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
fðsχχ̄Þ
16π2s2χχ̄

σTnpðEkinÞIωðsχχ̄Þ; ð28Þ

where nn and np are the neutron and proton number
densities, mn is the average nucleon mass and Ekin the
available kinetic center of mass energy. For the elastic np-
scattering transport cross section σTnp we use the numerical
data from Fig. 3 in Ref. [60] for Ekin ≳ 1 MeV and Fig. 2 in
Ref. [61] for smaller energies; the emission piece Iω is
given by Eq. (C8).
The energy loss rates from nucleon bremsstrahlung are

comparable with the rates from plasmon decay and are
depicted for mχ ¼ 1 MeV as a function of the PNS radius
in Fig. 4.

V. CONSTRAINTS ON THE
EFFECTIVE COUPLING

After calculating the energy loss rates induced by those
relevant processes in each stellar environment (e.g., see
Figs. 3–4), we apply the luminosity criteria introduced in
Sec. III to obtain the upper bounds on the EM form-factors
of light dark states.

A. Limits from RG, HB, and the Sun

In this subsection, we derive the constraints coming from
HB and RG stars utilizing the above calculated anomalous

energy loss rates. For HB, we consider a representative
star of 0.8 M⊙ and utilize the stellar profiles for density,
temperature and chemical partition between hydrogen and
helium from [3,62], reproduced in Fig. 7 in Appendix A.
The luminosity of its helium-burning core is LHB ¼ 20 L⊙
to which (7) is then applied. For RG we use the prescrip-
tion detailed below (8): a 0.5 M⊙ helium core with a
constant density of ρ ¼ 2 × 105 g=cm3 and a temperature
T ¼ 108 K.
For the Sun, we use the standard Solar model BP05(OP)

[63] to calculate the total power radiated into χχ̄ which in
turn is constrained from (9). For bremsstrahlung we take
the contribution of electron scattering on H, 4He and other
less abundant nuclei (3He, C, N, and O). For simplicity, we
assume all targets are in a fully ionized state. We find
numerically that the contribution from the second class of
elements contribute 10% of the total energy loss rate from
bremsstrahlung, as the coherent enhancement from atomic
charge number Z somewhat compensates for their scarcity
in number.
The energy loss rates as a function of fractional stellar

radius for HB (Sun) for all operators considered in (5) and (6)
are shown in the left (right) panel of Fig. 3 for mχ ¼ 10 eV
and μχð or dχÞ ¼ 10−6 μB and aχð or bχÞ ¼ 0.1 GeV−2.
MDM and EDM as well as AM and CR lines essentially
yield identical results. This is owed to the fact that production
proceeds in the kinematically unsuppressed region T ≫ mχ

for which the energy loss rates match; the γ5 factor
discriminating the interactions of samemass-dimension only
plays a role when χ particles become nonrelativistic, hence

FIG. 3. Left: Energy loss rates as a function of fractional stellar radius from γT;L decay (dotted lines), Compton production (dashed
lines) and electron bremsstrahlung (dash-dotted lines) for mχ ¼ 0.01 keV and μχðor dχÞ ¼ 10−6 μB and aχð or bχÞ ¼ 0.1=GeV2 in the
representative HB star we consider. The sum of all processes is shown by the thick gray line, which for MDM/EDM interactions
practically coincides with plasmon decay. Right: The same processes as in the left panel but for the Sun.
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close to kinematic end points. As can be seen, for dimension-
5 operators the decay process (dotted lines) dominates over
bremsstrahlung (dash-dotted lines) and Compton scattering
(dashed lines) processes in both HB and the Sun.
For dimension-6 operators, the contribution of Compton
scattering is comparable to that of decay processes in HB
while in the Sun all three processes are of comparable
importance.
Applying the criteria for the maximum allowable energy

loss of Sec. III, we obtain the excluded shaded regions in
Figs. 5 and 6 as labeled. The strongest limits are provided
by RG stars. They have a higher core temperature,
T ¼ 8.6 keV, compared to HB stars or the Sun, favoring
an emission process that is UV-biased because of the
considered higher-dimensional operators. In the low mass
region, for 2mχ < ωp, the limits are governed by γT;L
decays, and become independent of χ mass quickly. Once
the decay process is kinematically forbidden, the limits
become determined by the bremsstrahlung and Compton
scattering processes. As can be seen, the critical values of
mχ where this happens for RG, HB, and the Sun are
reflective of the differing core-plasma frequencies (A3) of
the respective systems. Furthermore, the mass-dimension 5
constraints on MDM and EDM are practically identical;
differences only appear in the kinematic endpoint region.

B. Limits from SN1987A

Limits on χ-photon interactions from SN1987A have
previously been estimated in our earlier paper [30], largely
following the approach of [56], and considering eþe−

annihilation but with plasmon decay neglected. Here we
revisit these constraints in light of a more detailed calcu-
lation. Dark state pairs with mass mχ ≲ 400 MeV can be
efficiently produced inside PNS, predominantly through
eþe− annihilation as positrons are thermally supported.
Nevertheless, we will consider all processes in Fig. 1 except
for electron bremsstrahlung as it is significantly weaker than
the others; see Fig. 4 for one example with mχ ¼ 1 MeV.
When the particles stream freely after production and are

hence able to escape from the PNS core, the limit (10)
applies. We set the size of the PNS core to be rcore ¼ 15 km
and model the PNS from which χχ̄ pairs are emitted using
the simulation results of a 18 M⊙ progenitor in [64] (see
Fig. 7 in Appendix A). Notice that such simulation results
are based on an artificial neutrino-driven explosion method
and should be taken with a grain of salt. We adopt the total
energy density ρðrÞ, temperature TðrÞ and electron abun-
dance YeðrÞ profiles at 1s after the core bounce. The number
density of baryons can be computed asnbðrÞ ≃ ρðrÞ=mp and
the number density of electrons can be written as
neðrÞ ≃ nbðrÞYeðrÞ. Other quantities such as chemical
potential of electrons μeðrÞ, plasma frequency ωpðrÞ and
effective electron mass meff

e ðrÞ are derived from neðrÞ and
TðrÞ. meff

e ðrÞ is recursively solved at each radius using
Eq. (A20); see Appendix A for details. In the calculations
that relate to the anomalous emission, me is understood to
be meff

e .
The result is shown by the lower boundary of the region

labeled SN1987A in Figs. 5 and 6. Compared to our
previous result in [30] where only eþe− annihilation was

FIG. 4. Left: Energy loss rates inside PNS for MDM/EDM interactions with μχðor dχÞ ¼ 10−6 μB and mχ ¼ 1 MeV are shown for all
computed processes, namely, eþe− annihilation (thin solid line), γT;L photon decay (dotted line), Compton production (dashed line) and
np bremsstrahlung (dash-dotted line). The sum of all contributions is the thick solid line. Right: The same processes as in the left panel
but for AM/CR interactions with aχð or bχÞ ¼ 0.1=GeV2.
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taken into account, the constraint for MDM and EDM is
improved. This is traced back to the fact that the energy loss
rate of γT;L, nucleon-bremsstrahlung and Compton scatter-
ing for MDM and EDM are comparable to eþe− annihi-
lation into a χχ̄ pair. For AM and CR, however, the results
from [30] remain largely unchanged, as γT;L decay,
nucleon-bremsstrahlung and Compton scattering are less
efficient.

Once the effective coupling becomes large enough, the
produced χ particles will eventually come into thermal
equilibrium with SM particles. Here we follow [65,66]
to divide the radial region into an inner “energy sphere”
of radius rES, within which light dark particles are thermal-
ized, and an outer diffusion zone, where the χ luminosity
gets attenuated by a transmission coefficient SES. Both
quantities are obtained from the energy-exchange and

FIG. 6. Summary of constraints on the EM form factors for dim-6 operators, i.e., AM (left) and CR (right); labels are the same as in
Fig. 5.

FIG. 5. Summary of constraints on the EM form factors for dim-5 operators, i.e., EDM (left) and MDM (right). Colored exclusions are
derived in this work. Direct detection (only applying to dark matter) and LEP bounds are taken from our previous work [30]. On the
solid black line the thermal freeze-out abundance matches the DM density.
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momentum-exchange mean-free-paths, i.e., λEðrÞ and
λMðrÞ, of the χ particle in the medium [65],

Z
rinf

rES

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λEðrÞλMðrÞ

p ¼ 2

3
; ð29Þ

and

SES ¼
1

1þ 3
4

R
rinf
rES

dr
λMðrÞ

; ð30Þ

where rinf is set to be 35 km, beyond which χ particles
free-stream.
In the PNS environment of interest here, the energy-

exchange mean-free-path is mostly governed by e-χ elastic
scattering. We estimate it at each radius r through

λEðrÞ ¼
hnχvχi

hnenχ
R
d cos θ dσeχ

d cos θ vM
jΔEj
T i

: ð31Þ

Here, h…i denotes a thermal average over all participating
particles; ne and nχ are the number densities of electrons
and χ particles which are all assumed to be in equilibrium.
dσeχ=d cos θ is the differential cross section of e-χ elastic
scattering. The energy-exchange in the scattering, jΔEj, is a
function of the scattering angle θ in the rest frame of the
medium. Although not explicitly written in the expression,
we take the Pauli blocking factor for the final state electron
into account.
Meanwhile, the momentum-exchange mean-free-path

λMðrÞ turns out to be dominated by χ-nucleon scattering,

λMðrÞ¼
hnχvχiP

i¼n;phninχ
R
dcosθ dσiχ

dcosθvMð1− cosθÞi
; ð32Þ

where ni is the number density of neutrons (n) and protons
(p), provided by the PNS model [64]. The differential
scattering cross section with χ is denoted as dσiχ=d cos θ.
In obtaining our numerical results, we have neglected the
nucleon velocities in the medium frame for simplicity.
As we assume that χ stay in chemical equilibrium at rES,

its blackbody luminosity LχðrESÞ is described by

LχðrESÞ ¼
gχr2ES
2π

Z
djp⃗χ j

jp⃗χ j3
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗χ j2þm2

χ

p
=TðrESÞ þ 1

; ð33Þ

where gχ ¼ 4. These χ particles are emitted towards the
exterior from the energy sphere, but they continue to scatter
elastically with the medium inside the diffusion zone. The χ
flux-attenuation during its propagation from rES to rinf can
be estimated via

Linf ¼ LχðrESÞSES ð34Þ

in the diffusion limit [65]. That is, such attenuation only
relies on the momentum-transfer cross section. Requiring
Linf ≤ Lν then leads to upper boundaries of SN exclusion
limits shown in Figs. 5 and 6. We note in passing, that the
location of the upper boundaries is still conservative, as
additional “freeze-in” χ-production for r > rES has been
neglected. With respect to our previous work [30], where

FIG. 7. Reproduced profiles of a representative 0.8 M⊙ HB star [62] (left) and of a PNS of a 18 M⊙ progenitor [64] (right) that are
adopted in our work. In each panel, the left vertical axis corresponds to the values of temperature and plasma frequency (solid lines) at
each radius, in units of keV(HB) or MeV(PNS), and the right vertical axis gives the number densities (dashed lines) of each particle
species, in keV3ðHBÞ or MeV3ðPNSÞ. For SN, the effective electron mass meff

e is also displayed.
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the transmission ratio SES was in practice taken as a simple
unit-step function, the upper limits are improved by up to a
factor of 2.

C. Related works

Stellar bounds on the EM properties of light dark states
have been studied in the literature, mostly in the context of
EM properties of eV-scale (SM) neutrinos; see [67,68] and
references therein. In these studies, the mass of neutrino is
essentially zero. Therefore, in the limit mχ → 0 our results
can be compared with previously derived constraints on
neutrino EM interactions.
For instance, based on similar energy loss arguments,

bounds on the neutrino MDM have been obtained by
calculating the plasmon decay process, from RG as μν ≤
ð2 − 4Þ × 10−12 μB [69–71], from HB as μν ≤ ð1 − 3Þ ×
10−11 μB [72,73], from the Sun as μν ≤ 4 × 10−10 μB [74].
Indeed, all these bounds are in essential agreements with
our newly derived ones once the limit mχ → 0 is taken.
For higher-dimensional operators, [75] estimated the

anomalous energy loss rate in PNS through electron pair
annihilation into light right-handed neutrinos, limiting
its charge radius to be below 3.7 × 10−34 cm2, that is
9.5 × 10−7 GeV−2, about 7 times weaker than the one
presented above. This is partially due to the fact that [75]
assumed an 1 order of magnitude larger luminosity as the
maximum permissible energy loss.

D. Cosmological constraints

Light dark states may lead to extra radiation in the early
Universe, and thus its coupling to the SM bath is con-
strained by both the predictions from big bang nucleosyn-
thesis (BBN) and the observed cosmic microwave
background (CMB). On the one hand, for the mass region
considered here the CMB bounds depend on how it
annihilates/decays. On the other hand, primordial abun-
dance measurements of D and 4He suggest that extra
relativistic d.o.f. need to be less than that of one chiral
fermion during the nucleosynthesis (see e.g., [76–78]).
Thus here we require that the Dirac fermion χ is thermally
diminished at T ∼ 100 keV, either due to a feeble EM form-
factor coupling or by a Boltzmann-suppression induced by
its mass.
The relevant bounds are also given in Figs. 5 and 6. They

only constrain the parameter region with mχ ≪ 1 MeV. In
the same figures, we also show the line which corresponds
to the thermal freeze-out scenario which generates the
observed dark matter abundance, although such scenario
has been excluded by various constraints for this model; see
our previous work [30]. The dominant annihilation channel
is into two photons at mχ < me and into a pair of electrons

at mχ ≥ me, which explains the sharp decrease of the relic
density curve at mχ ∼me seen in Fig. 5.

VI. CONCLUSIONS

In this paper we explore the sensitivity of stellar systems
to neutral dark states that share higher-dimensional inter-
actions with the SM photon. To this end we choose a Dirac
fermion χ that is coupled to mass dimension 5 MDM and
EDM operators with respective dimensionful coefficients
μχ and dχ and mass dimension 6 AM and CR operators with
respective coefficients aχ and bχ . We consider anomalous
energy losses from the interior of RG and HB stars, of the
Sun, and of the PNS core of SN1987A. Together with
previously derived direct, indirect, and cosmological limits
by us in [30], this work adds astrophysical constraints to
draw a first comprehensive overview of light dark states
with masses (well) below the GeV-scale and EM moment
interactions.
The thermal environments of stellar interiors signifi-

cantly affect (or enable) production processes of χχ̄ pairs.
Before breaking it down to individual contributions, we
establish the exact formula, Eq. (13), for the pair-produc-
tion rate in leading order of the dark coupling. The
expression factorizes into a piece that represents the
probability to produce an off shell photon γ� from a SM
current, and a piece that describes the production of the χχ̄
pair from that photon. The former is proportional to the
imaginary parts of the longitudinal and transverse thermal
photon self energies ImΠL;T. The latter are model-
dependent but otherwise universal factors that represent
the choice of interaction, Eq. (14). The optical theorem then
allows us to identify all major production processes by
studying the contributions to ImΠL;T. The approach also
allows us to clarify the role of thermal resonances in these
processes, i.e., the kinematic situation when the pair-
producing photon goes on shell, k2 ¼ ReΠL;T. We find
that resonant production is entirely captured by the
decay of transverse and longitudinal thermal photons or
“plasmons”, γT;L → χχ̄.
We compute the rates of χ-pair production and its

ensuing energy loss from plasmon decay and Compton
production for all systems. In addition, we evaluate eN
bremsstrahlung for RG, HB and the Sun, and eþe−
annihilation and NN bremsstrahlung for SN1978A. For
MDM and EDM interactions, plasmon decay dominates in
HB and RG stars and in the Sun. For the interactions of
increased mass dimension, AM and CR, the Compton
(bremsstrahlung) production dominates in HB and RG
(Sun). In PNS core, eþe− annihilation dominates the
anomalous energy loss for r≳ 7 km. In the most inner
region the population of positrons becomes extremely
Boltzmann suppressed by a decrease in temperature, and
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plasmon decay and np bremsstrahlung take over as the
most important production channels. For all processes we
have taken into account all important finite-temperature
effects. Furthermore, in the evaluation of rates, we explic-
itly avoid any double counting between plasmon decay and
an on shell emitted photon in bremsstrahlung and between
Compton production and an on shell exchanged t-channel
photon in bremsstrahlung.
The rates when integrated over stellar radius then

become subject to the observationally inferred limits on
anomalous energy loss. The resulting restrictions on the
parameter space are found in Figs. 5 and 6. In the
kinematically unrestricted regime mχ ≲ 1 keV, the stellar
limits are dominated by RG with μχ , dχ ≤ 2 × 10−12 μB
and aχ , bχ ≤ 6 × 10−5 GeV−2. All interactions are addi-
tionally constrained from SN1987A, in the windows
10−10 μB ≤ μχ , dχ ≤ 10−8 μB and 10−7 GeV−2 ≤ aχ , bχ ≤
10−3 GeV−2 for mχ ≲ 10 MeV. The SN constraining
region is bounded from above by the trapping of χ particles,
which we evaluate in some detail. The presented astro-
physical constraints add to a program that we have started
in [30] and that aims at charting out the experimental and
observational sensitivity to effective dark state-photon
interactions. The stellar constraints on anomalous energy
loss derived in this work yield the most important limits on
the existence of effective dark sector-photon interactions
for χ-particles below the MeV-scale.
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APPENDIX A: PHOTONS IN
A THERMAL MEDIUM

The processes depicted in Fig. 1 are fundamentally
affected (or enabled) by the in-medium modified photon
dispersion. Here we collect the central results that go into
the computation of the energy loss rates (our convention
largely follows [3]). The central quantity measuring the
strength of the medium-effect is the plasma frequency ωp,
obtained through

ω2
p ¼ 4α

π

Z
∞

0

dp
p2

E

�
1 −

1

3
v2
�
ðfe− þ feþÞ; ðA1Þ

where v ¼ p=E is the velocity of electrons or positrons,
and fe− and feþ are their respective Fermi-Dirac distribu-
tions, fe� ¼ ½eðE�μeÞ=T þ 1�−1.
Equation (A1) takes on the following analytic forms in

the classical, degenerate and relativistic limit respectively:

ω2
p ≃

8>>><
>>>:

4παne
me

ð1 − 5
2

T
me
Þ classical

4παne
EF

¼ 4α
3π p

2
FvF degenerate

4α
3π ðμ2e þ 1

3
π2T2Þ relativistic

; ðA2Þ

where α is the fine-structure constant, ne is the number
density of electrons, pF ¼ ð3π2neÞ1=3 is the Fermi momen-
tum,EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p2
F

p
is the Fermi energy andvF ¼ pF=EF

is the Fermi velocity. Here “classical” refers to a non-
relativistic (T ≪ me) and nondegenerate (T ≫ μe −me)
plasma.
The PNS core of a SN is both in a relativistic and

degenerate regime, and we find that the relativistic limit
above yields a better fit to the general form of ωp in (A1)
than the degenerate limit; the latter exhibits a 10%
deviation. The core of a RG star is nonrelativistic but
degenerate whereas HB stars and the Sun are well described
by the classical limit. In our numerical calculations, we
adopt ωp computed from Eq. (A1), avoiding any ambi-
guities of taking limiting cases. Representative values ofωp

at the cores of all stellar objects are summarized as

ωp ∼

8>>>>><
>>>>>:

0.3 keV Sun’s core

2.6 keV HB’s core

8.6 keV RG’s core

17.6 MeV SN’s core

: ðA3Þ

The computation of most of the processes requires the in-
medium photon propagator. Picking Coulomb gauge, for a
photon carrying 4-momentum k ¼ ðω; k⃗Þ, the latter divides
into longitudinal (L) and transverse (T) parts [81],

D00 ¼
k2

jk⃗j2ðk2 − ΠLÞ
g00;

Dij ¼
1

k2 − ΠT

�
δij −

kikj

jk⃗j2
�
; ðA4Þ

where ki is the Cartesian component of the photon three-
momentum (magnitude jk⃗j). Using [81] and adopting the
conventions of [3,5], the real part of the polarization
functions ΠT;L in the rest frame of the (isotropic) thermal
bath reads

ReΠT¼
3ω2

2v2�jk⃗j2
ω2
p

�
1−

ω2−v2�jk⃗j2
2ωv�jk⃗j

ln
ωþv�jk⃗j
ω−v�jk⃗j

�
;

ReΠL¼ 3ω2
p

�
ω2− jk⃗j2
v2�jk⃗j2

��
ω

2v�jk⃗j
ln
ωþv�jk⃗j
ω−v�jk⃗j

−1

�
: ðA5Þ

The full expressions for the dispersion relations k2−ΠL;T¼0

then relate the energies of an on shell photon, ωT;L, to its

momentum k⃗ to order α [81], via
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ω2
T ¼ jk⃗j2 þ ω2

p
3ω2

T

2v2�jk⃗j2
�
1 −

ω2
T − v2�jk⃗j2
2ωTv�jk⃗j

ln
ωT þ v�jk⃗j
ωT − v�jk⃗j

�
;

ω2
L ¼ ω2

p
3ω2

L

v2�jk⃗j2
�

ωL

2v�jk⃗j
ln
ωL þ v�jk⃗j
ωL − v�jk⃗j

− 1

�
: ðA6Þ

Equations (A6) are also valid to order jk⃗j2 at small jk⃗j for all
temperatures and electron number densities. Throughout the
paper, we always use ωT;L, as functions of jk⃗j, to denote the
energy of an on shell thermal photon, which satisfies
Eqs. (A6), and use ω for off shell photons.
Longitudinal photons are populated up to a wave number

kmax, beyond which the longitudinal dispersion relation
crosses the light cone and L-modes become damped, with

kmax ¼
�
3

v2�

�
1

2v�
ln
1þ v�
1 − v�

− 1

��
1=2

ωp; ðA7Þ

and in the relativistic limit kmax → ∞. In these equations,
the mobility of charges is captured by the typical velocity of
electrons, v� ≡ ω1=ωp, where

ω2
1 ¼

4α

π

Z
∞

0

dp
p2

E

�
5

3
v2 − v4

�
ðfe− þ feþÞ: ðA8Þ

In the three limits mentioned previously, v� can be
approximated as

v� ≃

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5T=me

p
classical

vF degenerate

1 relativistic

: ðA9Þ

Finally, as alluded to in the main text, the processes we
consider are nonresonant in the photon exchange and
ImΠT;L can be neglected throughout.
In turn, the computation of in-medium photon decay, i.e.,

the process (1a), requires the description of external in-
medium photon states. For propagation in the z-direction,
i.e., kx ¼ ky ¼ 0, the transverse and longitudinal polariza-
tion vectors are given by

ϵμT¼ð0;1ð0Þ;0ð1Þ;0Þ; ϵμL ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
L− jk⃗j2

q ðjk⃗j;0;0;ωLÞ:

ðA10aÞ

In all cases ϵμϵμ ¼ −1 and ϵμkμ ¼ 0.
Furthermore, the in-medium coupling of the photon to

the EM current is modified by the vertex renormalization
constants ZT;L ≡ ð1 − ∂ΠT;L=∂ω2

T;LÞ−1. For the convention
adopted here, they are equivalent to the ones given in [3]

ZT ¼
2ω2

Tðω2
T−v2�jk⃗j2Þ

3ω2
pω

2
Tþðω2

Tþjk⃗j2Þðω2
T−v2�jk⃗j2Þ−2ω2

Tðω2
T− jk⃗j2Þ

;

ZL ¼
2ðω2

L−v2�jk⃗j2Þ
3ω2

p− ðω2
L−v2�jk⃗j2Þ

ω2
L

ω2
L− jk⃗j2

: ðA11Þ

These factors are attached to each zero-temperature vertex
factor involving an external photon state. For internal
photons, this effect is already accounted for in the
momentum-dependent self-energy ΠT;Lðω; k⃗Þ.
For thermal corrections to the electron mass which is

relevant for PNS, we closely follow [82]. For an electron
with a general 4-momentum p ¼ ðE; p⃗Þ in a neutral
medium where the positron number density is negligible,
we first introduce the four functions below,

Ae ¼
−α
4πjp⃗j

Z
∞

0

dq
qfe−ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p ½4jp⃗jq − ðp2 þm2
eÞL2�;

ðA12Þ

Ce ¼
αme

πjp⃗j
Z

∞

0

dq
qfe−ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p ð−L2Þ; ðA13Þ

Aγ ¼
−α
4πjp⃗j

Z
∞

0

dqfγðqÞ½8jp⃗jqþ ðp2 þm2
eÞðL3 − L4Þ�;

ðA14Þ

Cγ ¼
αme

πjp⃗j
Z

∞

0

dqfγðqÞðL3 − L4Þ; ðA15Þ

where q here is the absolute value of the 3-momentum of
medium particles (electron, photon) that is integrated over
and L1;2;3;4 are functions of q in terms of

L1ðqÞ ¼ ln

�
2ðE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p
þ jp⃗jqÞ − p2 −m2

e

2ðE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p
− jp⃗jqÞ − p2 −m2

e

�
; ðA16Þ

L2ðqÞ ¼ ln

�
2ðE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p
þ jp⃗jqÞ þ p2 þm2

e

2ðE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

e

p
− jp⃗jqÞ þ p2 þm2

e

�
; ðA17Þ

L3ðqÞ ¼ ln

�
2ðEqþ jp⃗jqÞ þ p2 −m2

e

2ðEq − jp⃗jqÞ þ p2 −m2
e

�
; ðA18Þ

L4ðqÞ ¼ ln

�
2ðEqþ jp⃗jqÞ − p2 þm2

e

2ðEq − jp⃗jqÞ − p2 þm2
e

�
: ðA19Þ

Here me is the zero-temperature mass of electron,
0.511 MeV, while fγðpÞ and fe−ðpÞ give the thermal
momentum distribution functions of photon and electron
(per d.o.f.). We have set feþðpÞ ¼ 0 in the above equations.
In the end, we take the approximation made in [83] to
obtain that
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meff
e ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e − 2ðAγ þ AeÞ − 2meðCγ þ CeÞ
q

: ðA20Þ

We have neglected thermal corrections to χ states. In the
phenomenologically relevant regime, their coupling to the
thermal bath is very weak.
Finally, we have reproduced the profiles of the HBmodel

from [62], and PNS model from [64], adopted in this work,
as shown in Fig. 7, where neutrality and μe− þ μeþ ¼ 0 at
each radius have been taken for granted for the PNS profile.

APPENDIX B: DECAY RATE AND CROSS
SECTION CALCULATIONS

In this Appendix we collect some further details that
enter the calculation of the χχ̄ production cross sections
found in Sec. IV.

1. Full expression of χ -pair production rate

For any process that produces a χχ̄ pair through a photon
propagator of 4-momentum k ¼ ðω; k⃗Þ, its spin-summed
squared matrix element can be written in terms ofX

spins

jMj2 ¼ DμνðkÞD�
ρσðkÞT μρ

SMT
νσ
χ ; ðB1Þ

where the in-medium photon propagator Dμν is given by
(A4), while T μρ

SM and T νσ
χ represent the corresponding

squared matrix elements of the SM current, i.e.,
SM → γ�ðkÞðþSM0Þ, and the dark current, i.e.,
γ�ðkÞ → χðpχÞ þ χ̄ðpχ̄Þ, of which the latter is given by

T νσ
χ ¼ Tr½ðpχ þmχÞΓνðkÞðpχ̄ −mχÞΓσð−kÞ�: ðB2Þ

The vertex factors ΓνðkÞ are derived from the Lagrangians
(5) and (6) through the usual prescription of obtaining
Feynman rules; see [30] for the explicit expressions.
Generalizing Eq. (5.156) of [53] yields an expression for
the exact χχ̄ differential production rate per volume,

d _Nχ

d4k
¼ 1

ð2πÞ4DμνðkÞD�
ρσðkÞ

�
2ImΠμρðkÞ
eω=T − 1

�
Iνσχ ; ðB3Þ

where ImΠμρ is the imaginary part of the thermal photon
self-energy induced by all possible SM currents. In the
medium it is decomposed into longitudinal and transverse
components, ImΠL;T , as shown in Eq. (12) in the main text.
The factor Iνσ is the 2-body final state integrated over its
phase space,

Iνσχ ¼
Z

dΠi¼χ;χ̄ð2πÞ4δ4ðk − pχ − pχ̄ÞT νσ
χ ; ðB4Þ

where dΠi ¼
Q

i d
3p⃗ið2πÞ−3ð2EiÞ−1, as mentioned in the

main text. The integration can be executed in an arbitrary

frame, and in particular in the rest frame of the thermal bath
by adopting Lenard’s formula [84], generalized to massive
final states. We find

Z
dΠi¼χ;χ̄ð2πÞ4δ4ðk − pχ − pχ̄Þpμ

χpν
χ̄

¼ 1

96π
ðAk2gμν þ 2BkμkνÞ; ðB5Þ

where the coefficients A and B are given by

A ¼
�
1 −

4m2
χ

sχχ̄

�
3=2

; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s �
1þ 2m2

χ

sχχ̄

�
;

with sχχ̄ ¼ k2. In terms of the functions fðsχχ̄Þ defined in
(14), the factor Iνσ is then explicitly given by

Iνσ ¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
fðsχχ̄Þ

�
−gνσ þ kνkσ

sχχ̄

�
: ðB6Þ

Putting all of the above together, we obtain the differ-
ential production rate per volume (13) found in the main
text which we repeat here for convenience,

d _Nχ

d4k
¼ 1

64π5

�
−

ImΠLðkÞ
jsχχ̄ − ΠLj2

−
2ImΠTðkÞ
jsχχ̄ − ΠTj2

�

× fBðωÞfðsχχ̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
; ðB7Þ

where fBðωÞ ¼ ðeω=T − 1Þ−1 is the Bose-Einstein momen-
tum distribution of thermal bosons. During the derivation
we have used that

−gνσ þ kνkσ

sχχ̄
¼ ϵνT;1ϵ

σ
T;1 þ ϵνT;2ϵ

σ
T;2 þ ϵνLϵ

σ
L:

2. Leading contributions to ImΠT;L

We now demonstrate that (13) or, equivalently, (B3)
contain the leading production mechanisms considered in
this paper. In particular we clarify the role of resonances,
and that they are accounted for by the process γT;L → χχ̄.
To this end, we isolate the pole contribution to the total
production rate, i.e., the case sχχ̄ ¼ ReΠL;T. To this end, we
adopt the narrow width approximation,

lim
ImΠL;T→0

−ImΠL;TðkÞ
πjsχχ̄ − ΠL;Tj2

¼ δðsχχ̄ − ReΠL;TÞ; ðB8Þ

where ImΠL;T < 0. Then noting that ReΠL;T is also a

function of sχχ̄ and writing d4k ¼ d3k⃗dsχχ̄=ð2ωÞ yield
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_NT;L
χ ¼ gT;L

Z
d3k⃗
ð2πÞ3 fBðωT;LÞ

×

"
ZT;LfðReΠT;LÞ

16πωT;L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

ReΠT;L

s #
; ðB9Þ

where gT ¼ 2 and gL ¼ 1, counting the d.o.f. of the photon
modes. Now both ωT;L and ReΠL;T need to satisfy the

photon dispersion relation with a 3-momentum k⃗ due to the
δ-function above. As will be calculated below and given
explicitly in (15), the term in the parentheses is exactly the
decay rate of γL;T into χ pairs.
In a next step we further verify that the contribution of

the one electron loop (OEL) to ImΠμρ induces the pro-
duction rate of χ from electron pair annihilation,5 the
process (2b). In this case, it is easier to start with (B3),
where according to the in-medium optical theorem (see
Fig. 2) we may write

2ImΠμρjOEL ¼
Z

dΠi¼1;2T
μρ
e ð1 − fe− − feþÞ

× ð2πÞ4δ4ðk − p1 − p2Þ; ðB10Þ

where T μρ
e ¼ Mμ

γ�→eþe−M
ρ
eþe−→γ� , and fe∓ gives the

momentum distribution function of e−ðp1Þ, eþðp2Þ per
d.o.f. as defined above. Moreover, terms that are kinetically
forbidden for k2 > 0 have been neglected [50]. The
presence of (1 − fe− − feþ) is due to quantum statistics,
and would disappear for classical particles. Substituting
this expression into (B3) gives

d _Nχ

d4k

����
OEL

¼
Z

dΠi¼1;2;χ;χ̄ jMannj2ð1−fe− −feþÞfBðωÞ

× ð2πÞ4δ4ðk−p1−p2Þδ4ðk−pχ −pχ̄Þ: ðB11Þ

Then for the Fermi-Dirac distribution function fe� and the
Bose-Einstein distribution fBðωÞ with the energy conser-
vation E1 þ E2 ¼ ω, there exists the relation

�
fe−

1 − fe−

��
feþ

1 − feþ

�
¼ fBðωÞ

1þ fBðωÞ
ðB12Þ

allowing us to rewrite the number production rate per
volume above as

_Nχ jOEL ¼
Z

dΠi¼1;2;χ;χ̄ jMannj2fe−feþ

× ð2πÞ4δ4ðp1 þ p2 − pχ − pχ̄Þ; ðB13Þ

after integrating over d4k on both sides. The last expression
transforms precisely to the corresponding energy loss rate
(19), once both the energy-loss factor (E1 þ E2) and
fermionic d.o.f. fe� are taken in account.

3. γT;L decay to dark states

In the following Appendixes we calculate the leading
processes in the usual Feynman-diagrammatic approach
using tree-level perturbation theory augmented by the
thermal corrections outlined in Appendix A. The decay
of a transverse or longitudinal photon of 4-momentum k to
a pair of dark states χ̄ðpχ̄Þ þ χðpχÞ is described by the spin-
summed squared matrix element,X

spins

jMT;Lj2 ¼ ZT;LϵμðkÞϵ�νðkÞT μν
χ ; ðB14Þ

where ZT;L is the vertex renormalization factor in (A11), ϵμ
is the photon polarization vector and T μν

χ is given in (B2).
The decay rate is given by the phase-space integral,

ΓT;L ¼
Z

dΠi¼χ;χ̄ð2πÞ4δ4ðk − pχ − pχ̄Þ
1

2ωT;L

X
spins

jMT;Lj2;

ðB15Þ

where ωT;L is the energy of the external transverse or
longitudinal photon. It is useful to employ (B5). In terms of
Iνσ defined in (B6), we can write the decay rate as

ΓT;L ¼ 1

2ωT;L
ZT;LϵμðkÞϵ�νðkÞIμν: ðB16Þ

The explicit expression, given by (15) in the main text, is
then found by using the expressions (A10) for the polari-
zation vectors when the initial state propagates in positive
z-direction, i.e., for kμ ¼ ðω; 0; 0; kÞ; note that the term
proportional to kμkν in Iμν does not contribute due to the
Ward identity.

4. e + e− annihilation to dark states

Here we consider the process e−ðp1Þ þ eþðp2Þ →
χðpχÞ þ χ̄ðpχ̄Þ. By setting pi ¼ ðEi; p⃗iÞ and k ¼ p1 þ p2,
one can define the cross sections6 in terms of the squared
matrix element for annihilation jMannj2,

σ ¼
Z

dΠi¼χ;χ̄

4E1E2vM
ð2πÞ4δ4ðk − pχ − pχ̄Þ

1

4

X
spins

jMannj2

¼ πα

4E1E2vM
DμνD�

ρσT
μρ
e Iνσχ ; ðB17Þ

5The contribution of the two and three electron loops to
ImΠμρ correspond to Compton scattering and bremsstrahlung,
respectively.

6We emphasize that this leads to a Lorentz-invariant total cross
section up to the thermal mass of photons, which is convenient for
the phase space integral.
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where T μρ
e reads

T μρ
e ¼ −2ðsgμρ − 2pμ

1p
ρ
2 − 2pρ

1p
μ
2Þ; ðB18Þ

and Iνσχ is given in (B6); here s ¼ k2. Furthermore, vM is the
Møller velocity defined as vM ¼ F=ðE1E2Þ and the flux
factor F is given by

F ¼ ½ðp1 · p2Þ2 −m4
e�1=2 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
q

: ðB19Þ

Contracting the Lorentz indices then yields

σ ¼ σT þ σL; ðB20Þ

where the interference term vanishes in the Coulomb gauge,
as can also be seen from (13), and the cross section for each
polarization mode is given as Eqs. (17) and (18) in the
main text.

5. e−N bremsstrahlung production of dark states

The 2 → 3 amplitude squared jM2→3j2 can be split into
three parts as

X
spins

jM2→3j2
ð4παÞ2g1g2

¼ DρβðqÞDσγ�ðqÞWρσL
μν
βγϵ

�
μðkÞϵνðkÞ;

ðB21Þ

where q ¼ p2 − p4 is the momentum transfer between
the initial states, Lμν

βγ stands for the leptonic part,Wρσ is the
hadronic tensor and ϵνðkÞ is the polarization vector of the
emitted photon of virtual mass sχχ̄ ¼ k2. Detailed forms for
Lμν
βγ and Wρσ are given in the Appendix A of our previous

work [30].
The 2 → 3 cross section reads

σ2→3 ¼
1

4g1g2E1E2vM

Z
dΠi¼3;4;k

X
spins

jM2→3j2; ðB22Þ

where vM is the Møller velocity, as defined in the main text.
The phase space integrations, when written in terms of
Lorentz invariants reads

σ2→3 ¼
1

32ð2πÞ4E1E2vM

Z
ds4

Z
dt1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs4;m2

p; t1Þ
q

×
Z

dt2

Z
dp1k

����∂ϕR4k
4

∂p1k

���� 1

g1g2

X
spins

jM2→3j2: ðB23Þ

Here, s¼ðp1þp2Þ2, t1≡ðp1−p3Þ2, t2 ≡ ðp2 − p4Þ2 ¼ q2,
s4 ≡ ðp4 þ kÞ2, p1k ¼ p1 · k and ϕR4k

4 is the azimuthal
angle between p4 and k in their center of mass

frame; λða2; b2; c2Þ is the Källén function. The Jacobian
j∂ϕR4k

4 =∂p1kj transforms the variable ϕR4k
4 to the Lorentz

invariant variable p1k.
The integration boundary of s4 is given by

ðmN þ ffiffiffiffiffiffi
sχχ̄

p Þ2 ≤ s4 ≤ ð ffiffiffi
s

p
−meÞ2; ðB24Þ

and the boundaries of t1 and t2 are given by

t�1 ¼ 2m2
e −

1

2s
½ðsþm2

e −m2
NÞðsþm2

e − s4Þ
∓ λðs;m2

e; m2
NÞ1=2λðs;m2

e; s4Þ1=2�;

t�2 ¼ 2m2
N −

1

2s4
½ðs4 þm2

N − t1Þðs4 þm2
N − sχχ̄Þ

∓ λðs4; m2
N; t1Þ1=2λðs4; m2

N; sχχ̄Þ1=2�: ðB25Þ

The physical region for p1k is expressed by n × n asym-
metric and symmetric Gram determinants, Gn and Δn. It
reads

p�
1k ¼

ðp1 · p2ÞG2ðp2;
ffiffiffiffi
t1

p
;

ffiffiffiffi
t1

p
; kÞ

−Δ2ðp2;
ffiffiffiffi
t1

p Þ

−
ð ffiffiffiffi

t1
p

· p1ÞG2ðp2;
ffiffiffiffi
t1

p
;p2; kÞ

−Δ2ðp2;
ffiffiffiffi
t1

p Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ3ðp2;

ffiffiffiffi
t1

p
; p1ÞΔ3ðp2;

ffiffiffiffi
t1

p
; kÞp

−Δ2ðp2;
ffiffiffiffi
t1

p Þ ; ðB26Þ

and the Jacobian j∂ϕR4k
4 =∂p1kj reads���� ∂ϕR4k

4

∂p1k

���� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ2ðp2;

ffiffiffiffi
t1

p Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ4ðp2;

ffiffiffiffi
t1

p
; p1; kÞ

p : ðB27Þ

Putting everything together, the full 2 → 4 cross section
is given by

σ2→4 ¼
Z

dsχχ̄σ2→3ðsχχ̄Þ
fðsχχ̄Þ
16π2s2χχ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s
: ðB28Þ

The integration boundaries of sχχ̄ are given by

4m2
χ ≤ sχχ̄ ≤ ð ffiffiffi

s
p

−me −mNÞ2: ðB29Þ

APPENDIX C: SOFT-PHOTON APPROXIMATION
FOR BREMSSTRAHLUNG

Here we discuss the soft-photon approximation for
bremsstrahlung, its regime of validity and explain where
it fails in calculating the 2 → 4 cross section. In the soft
limit, that is, if the emitted photon energy is small
compared to the available kinetic energy ω ≪ Ekin, the
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2 → 3 cross section can be factorized into an elastic
scattering and an emission part,7

dσsoft2→3 ¼ dσ2→2

Z
d3k

ð2πÞ32ω 4πα

����p3 · ϵ�

p3 · k
−
p1 · ϵ�

p1 · k

����2; ðC1Þ

where ω2 ¼ jk⃗j2 þ sχχ̄ and ϵμ is the polarization vector of
the emitted photon. In this approximation, a simple form of
the differential 2 → 3 cross section can be obtained in the
nonrelativistic and ultrarelativistic limit respectively [85],

ω
dσsoft2→3

dω
¼

8>><
>>:

16
3

α3

μ2v2 ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω=Ekin

p
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω=Ekin

p
�

4α3

μ2
E0
E

�
E
E0 þ E0

E − 2
3

	�
ln E2E0

μ2ω
− 1

2

	
;

ðC2Þ

where μ is the reduced mass, v is the relative velocity and
E (E0) is the initial (final) total CM energy of the colliding
particles. Even though in deriving the expression in
Eq. (C2) we have assumed ffiffiffiffiffiffisχχ̄

p ≪ Ekin and ω ≪ Ekin,
integrating (C2) over ω in the region,

ffiffiffiffiffiffi
sχχ̄

p
< ω < Ekin ðC3Þ

still gives a very good approximation to the full cross section.
Obviously, the approximation breaks down if ffiffiffiffiffiffisχχ̄

p ∼ Ekin

where the integration region of ω gets very small and the
integral is dominated by large emission energies.
To obtain the 2 → 4 cross section from the 2 → 3 cross

section in Eq. (24), σsoft2→3 gets multiplied by the factors in
Eq. (14) corresponding to the EM form factor interactions.
This leads to the following parametric dependence on sχχ̄ :

dσsoft2→4 ∝

8>><
>>:

dσsoft2→3dsχχ̄=sχχ̄ ðdim-4Þ;
dσsoft2→3dsχχ̄ ðdim-5Þ;
dσsoft2→3dsχχ̄sχχ̄ ðdim-6Þ;

ðC4Þ

that is, for dim-4 operators, like millicharged states, the
2 → 4 cross section is dominated by small sχχ̄ , whereas for
higher dimensional operators, the expression is UV biased.
Hence, the main contribution to the integral comes from
sχχ̄-values for which the soft approximation breaks down as
one probes the kinematic end point region. It turns out that

in the nonrelativistic regime and formχ þmχ̄ ≪ Ekin, using
Eq. (C2) reproduces the exact 2 → 4 cross section up to a
factor 2 or 3. However, for relativistic particles, the error atffiffiffiffiffiffisχχ̄
p ∼ Ekin gets larger. Due to the sχχ̄-dependence in
Eq. (C4), this still results in a decent description of
millicharged χχ̄ emission, but produces errors of several
orders of magnitude in the relativistic regime for the EM
form factors considered in this paper.
Equation (C1) can be further simplified by separating the

phase space. This is possible, if the elastic scattering cross
section is insensitive to an angular cutoff in the forward or
backward direction, e.g., if the interaction is mediated by a
massive particle such as the pion in np scattering.8 Then,

σsoft2→3 ¼ σT2→2Iðsχχ̄Þ; ðC5Þ
where σT2→2 is the transport cross section,

σT2→2 ¼
Z

1

−1
d cos θ

dσ2→2

d cos θ
ð1 − cos θÞ; ðC6Þ

and the emission piece Iðsχχ̄Þ is obtained by executing the
integral in Eq. (C1),

Iðsχχ̄Þ ¼
1

1 − cos θ

Z
d3k

ð2πÞ32ω 4πα

����p3 · ϵ�

p3 · k
−
p1 · ϵ�

p1 · k

����2

¼ α

3π

Z
Ekinffiffiffiffiffi
sχχ̄

p dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − sχχ̄

q
ðsχχ̄=2þ ω2Þ
ω4

: ðC7Þ

In the first line, we have divided by (1 − cos θ) to cancel the
θ-dependent part in the emission piece, which we have
absorbed into the elastic cross section. In Sec. IV F we
make use of this factorization in calculating the energy loss
rate for neutron-proton scattering in PNS. For that, the
integral in Eq. (C7) is weighted with ω to obtain

Iωðsχχ̄Þ ¼
α

3π

Z
Ekinffiffiffiffiffi
sχχ̄

p dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − sχχ̄

q
ðsχχ̄=2þ ω2Þ
ω3

¼ αEkin

3π
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð4 − x2Þ − 3x arccosðxÞ� ðC8Þ

with x ¼ ffiffiffiffiffiffisχχ̄
p =Ekin, which is in agreement with the

findings of Ref. [60].

7The emission part here describes the emission off one of the
particles. If both particles can emit photons, the emission part has
to be adjusted correspondingly.

8For ep scattering, on the other hand, the phase space
separation is not possible, since the elastic cross section is
forward divergent. In these cases, 3-body kinematics is required.
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