
 

From Planck area to graph theory:
Topologically distinct black hole microstates
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We postulate a Planck scale horizon unit area, with no bits of information locally attached to it,
connected but otherwise of free form, and let n such geometric units compactly tile the black hole horizon.
Associated with each topologically distinct tiling configuration is then a simple, connected, undirected,
unlabeled, planar, chordal graph. The asymptotic enumeration of the corresponding integer sequence gives
rise to the Bekenstein-Hawking area entropy formula, automatically accompanied by a proper logarithmic
term, and fixes the size of the horizon unit area, thereby constituting a global realization of Wheeler’s “it
from bit” phrase. Invoking Polya’s theorem, an exact number theoretical entropy spectrum is offered for the
2þ 1-dimensional quantum black hole.
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I. INTRODUCTION

The semiclassical Bekenstein-Hawking black hole area
entropy formula [1]

SBH ¼ kB
ABH

4l2
P
; ð1Þ

governed by the horizon surface area ABH, measured in
Planck units l2

P ¼ Gℏ=c3, and factorized by the Boltzmann
constant kB, is still as mysterious as ever. We have no
compelling answer for what the physical degrees of free-
dom underlying the Schwarzschild black hole prototype
actually are, or for how to identify and count its elusive
quantum microstates. Various attempts to address this issue
have come from all corners of theoretical physics, way
beyond general relativity, including string theory [2],
loop quantum gravity [3], and AdS=CFT [4], each theory
contributing its inimitable insight. According to Maldacena
[5], “these microstates do not have an explicit calculable
description within the regime that gravity is a good
approximation.”
It was Bekenstein [6] who first realized that the black

hole surface area may serve as a classical adiabatic
invariant, and as such, it must exhibit a discrete ladder
spectrum of the form ABHðnÞ ¼ nA1. This has opened the
door for a variety of Bekenstein-Mukhanov [7] inspired
quantum black hole models [8], the majority of which
assume γ (a natural number) bits of information locally
encoded in each Planck area on the horizon. Such a local
realization of Wheeler’s “it from bit” phrase [9] gives rise to
a total of gðnÞ ¼ γn configurations. However, no compel-
ling clue was given as to what these bits actually stand for

or what physics is capable of hosting them on the event
horizon. Along these lines, it is worth recalling the ’t Hooft-
Susskind holographic principle [10] which asserts that all
of the information contained in some closed region of
space, saturated by Eq. (1), can in fact be represented as a
hologram on the boundary of that region.
While the general idea of a fundamental Planck scale

horizon unit area is not new, the role it plays in the present
model is novel. In fact, in contrast to almost all Bekenstein-
Mukhanov-type models, no bits of information are locally
attached to any single unit area. An individual Planck area
does not play any local role at all here. Alternatively,
our interest is focused on a collective mode of all Planck
units involved, with the various topologically distinguished
configurations highly resembling (and perhaps identified
as) the quantum black hole microstates. Their counting,
and the subsequent recovery of Eq. (1) in the semiclassical
limit, which is automatically accompanied by a proper
logarithmic term, is carried out by invoking graph theo-
retical enumeration. Triggered by graph theory, the black
hole discrete entropy spectrum is furthermore shown to
establish a serendipitous link with number theory (with the
focus on Polya’s theorem [11]).

II. HORIZON TILING

The main ingredient in our quantum black hole model is
a postulated Planck size horizon unit area

AP ¼ ηl2
P ð2Þ

where η is a dimensionless universal constant, which is
eventually fixed by means of graph theory. Equation (2)
may further serve as a geometric lower bound inspired by
the ’t Hooft-Susskind holographic principle [10], but this*davidson@bgu.ac.il; https://physics.bgu.ac.il/~davidson
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is beyond the scope of the present model. Based on self-
consistency grounds, the Planck unit area must exhibit a
locally connected structure but can otherwise take any free
form. Its boundary can thus undergo any arbitrary variation
as long as the size of the surrounding area is preserved in
accordance with Eq. (2).
We now attempt to compactly tile the black hole horizon

surface area ABH by exactly

n ¼ ABH

AP
ð3Þ

elementary Planck unit areas. It makes no sense, and
actually there is no option, to perform this uniformly.
The reason is quite obvious: While Planck unit areas are all
topologically equivalent, they may still differ from each
other by acquiring arbitrary, albeit connected, shapes. For
any given integer number n of Planck unit areas, the
relevant question is then, how many topologically distinct
tiling configurations gðnÞ actually exist?
Counting configurations calls for graph theory enumer-

ation. The first step is to show, by construction, that
associated with each topologically distinct tiling configu-
ration is a certain mathematical graph, defined as a set
of vertices connected by edges. There are four simple
instructions:

(i) Assign a graph vertex to each Planck unit area and
locate this vertex at some point on that unit (this is
always possible due to the local connectedness).

(ii) Connect any two such vertices by a graph edge if
and only if the two corresponding Planck unit areas
touch each other.

(iii) Draw the graph on the horizon itself, and take into
account the fact that from the topological point of
view, as a 2-dimensional spherical surface S2 with
no handles, the Schwarzschild horizon is of genus 0.
This is guaranteed by Hawking theorem [12], which
holds for asymptotically flat 4-dimensional black

holes obeying the dominant energy condition. Genus
dependence will be briefly discussed later.

(iv) By choosing one graph face and puncturing a hole in
it, one may further, via a stereographic projection,
reliably transform the graph from the sphere onto a
plane. The punctured face on the sphere becomes the
exterior face on the plane.

The translation from the black hole horizon tiling to
graph theory is demonstrated in Fig. 1 for n ¼ 4 vertices.

III. GRAPH THEORY

Prior to performing enumeration, we must accurately
specify what kind of graphs we are actually dealing with.
By construction, mostly on geometric or physical grounds,
these graphs must be as follows:

(i) Simple.—The graph cannot contain loops and/or
multiple edges. A Planck area unit does not touch
itself, and it is clear whether or not two Planck areas
share a common border.

(ii) Connected.—There must be a path from any vertex to
any other vertex of the graph. Allowing for a
disconnected graph, an isolated Planck area unit
for example, would mean leaving a region of the
horizon exposed, and thus it makes no physical sense.

(iii) Undirected.—No flow is described in the model. In
turn, no arrows need to be attached to the graph edges.

(iv) Unlabeled.—Reflecting the fact that individual
Planck areas have no distinct identifications except
through their interconnectivity, the graph vertices do
not carry any serial numbers. As we shall see, this is
the strongest requirement on our list. On the prac-
tical side, it is much harder to enumerate unlabeled
than labeled graphs.

(v) Planar.—A graph is planar if it can be drawn in a
plane, or on a handle-free sphere like the horizon,
without graph edges crossing. Be aware that (i) fake
edge crossings can be removed by replacing straight
lines by Jordan arcs, and (ii) there may be several
representations of the same planar graph. For any
given number n of nodes, the number of labeled
planar graphs turns out to be much larger than the
number of unlabeled planar graphs since almost all
planar graphs have a large automorphism group.

(vi) Chordal.—A chordal graph, also called a triangu-
lated graph, is a simple graph in which every cycle of
more than three vertices has a chord (¼ an edge that
is not part of the cycle but connects two vertices of
the cycle). Beware that chordality is sometimes
visually hidden. To see why this is relevant for
our case, let four Planck areas meet at some point on
the horizon. However, such a configuration turns out
to be topologically unstable with respect to small
variations in the shapes of the Planck areas involved.
Roughly speaking, a 4-meeting point easily bifur-
cates into two 3-meeting neighboring points, which

FIG. 1. Translating horizon tiling into graph theory language.
The demonstration is carried out for n ¼ 4 deformable Planck
unit areas (separated by black borders), resulting in gð4Þ ¼ 5
topologically distinct configurations. Associated with each such
configuration is a simple, connected, undirected, unlabeled,
planar, chordal graph (plotted in red).
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is translated into graph theory as adding a chord. The
corresponding disqualification of the square graph is
illustrated for n ¼ 4 in Fig. 2. To sharpen the genus
dependence, note that when plotted on a torus
(genus 1), rather than on a sphere (genus 0), the
square graph becomes stable and thus permissible.

Altogether, the above list of graphic features homes in on
a particular integer sequence classified as OEIS A243787.
To be more explicit, the first terms of the series (so far, only
the first 14 terms have been calculated [13]) are given by

gðnÞ ¼ 1; 1; 2; 5; 14; 52; 228; 1209;…: ð4Þ

(See Fig. 3 for the graphs associated with the first terms.)
It starts like the Catalan series but then grows faster. For
comparison, had we given up the chordality requirement,
we would end up with a much larger set,

guðnÞ ¼ 1; 1; 2; 6; 20; 99; 646; 5974;…; ð5Þ

of unlabeled connected planar graphs. Clearly, the former
Eq. (4) is a subsequence of the latter Eq. (5).
Treating all topologically distinct configurations on

equal footing, with each individual configuration serving
as a distinct quantum mechanical microstate, the statistical
black hole entropy is given by the Boltzmann formula

SBH ¼ kB log gðnÞ: ð6Þ
As anticipated, the lightest Schwarzschild black hole,
carrying mass m1 ¼ mP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η=16π

p
, comes with a vanishing

entropy S1 ¼ 0. The nontrivial microstate degeneracy starts
at n ¼ 3. An exact analytic formula for gðnÞ is still
unknown, but some efficient enumeration algorithms do
exist. However, at this stage, this is not what really matters.
Bearing in mind that the fate of our model primarily
depends on making contact with Eq. (1) at the large-n
semiclassical limit, we content ourselves with an asymp-
totic enumeration formula.

IV. ASYMPTOTIC ENUMERATION

Counting labeled planar graphs appears to be much
easier than counting planar unlabeled graphs. The asymp-
totic number glðnÞ of labeled planar graphs has been
shown, following a superadditivity argument [14], to obey
the limit

lim
n→∞

ðglðnÞ=n!Þ1=n → γl: ð7Þ
Upper as well as lower bounds on the constant γl were
numerically derived, but the final word was given analyti-
cally by Gimenez and Noy [15]. To be more specific, they
calculated

glðnÞ ≃ αln−
7
2γnl n!; ð8Þ

where αl ≃ 0.4310−5 and γl ≃ 27.23. As far as the unla-
beled planar graphs are concerned, owing to their large
exponential number of automorphisms, the limit on the
corresponding asymptotic number guðnÞ of configurations
is conceptually different. In fact, it has been shown [16] that

lim
n→∞

guðnÞ1=n → γu; ð9Þ

thereby consistently defining γu as the unlabeled planar
graph growth constant. Notice that, in comparison with
Eq. (7), the n! factor is gone. In turn, with Eq. (6) in mind,
the leading linear n behavior of log guðnÞ ≃ n log γu is
crucial for our model, to be contrasted with the problematic
(for our needs) leading behavior of log glðnÞ ≃ n log n.
Apart from the n! factor, the asymptotic enumeration of
unlabeled planar graphs cannot be too different analytically
from that of labeled planer graphs. Thus, it comes as no
surprise that, in analogy with Eq. (8), Gimenez and Noy
have derived

FIG. 2. The 4-edge square graph, representing a truncated
(cutoff poles) beach ball, is excluded. The 4-meeting point on the
ball is unstable against small shape variations of the horizon unit
areas, bifurcating into two 3-meeting points. This is translated
into graph theory as adding a chord. On a torus, as a counter-
example, the square graph is permissible.

FIG. 3. The integer sequence OEIS A243787: Simple, con-
nected, undirected, unlabeled, planar, chordal graphs with n
nodes. The inner structure of these graphs is solely composed of
triangles and trees. In our model, each graph represents a
topologically distinct black hole microstate.
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guðnÞ ≃ αun−
7
2γnu; ð10Þ

for some αu, γu. At this stage, while the exact value of γu is
still unknown, Bonichon et al. [17] have closed the range
to 27.23 < γu < 30.06.
For the sake of enumeration, it is useful to probe the inner

structure of the graphs involved. In our case, one starts from
a subset of so-called maximal planar graphs, which are
nothing but triangulations. For a given number n of vertices,
they exhibit (3n − 6) edges and (2n − 4) faces. The corre-
sponding integer sequence OEIS A000109 is given by
g△ðnÞ ¼ 0; 0; 1; 1; 1; 2; 5; 14; 50;…. No new edges can
be added without violating planarity. All the other graph
members in our list, for the same given n, can now be
manually constructed by removing edges, one by one.
In doing so, however, one has to be careful (i) to maintain
graph connectedness and (ii) to create no holes, in the
chordal sense explained earlier. The edge removal process
divides the various n graphs into fn; kg subcategories for
k ¼ 0; 1;…; 2n − 5, with

P
k gðn; kÞ ¼ gðnÞ. For example,

gð5; kÞ ¼ 1, 1, 3, 3, 3, 3 for k ¼ 0; 1;…; 5, respectively,
with

P
k gð5; kÞ ¼ 14. The number of edges and faces in the

fn; kg level is e ¼ 3n − 6 − k and f ¼ 2n − 4 − k, respec-
tively. Thus, the physically allowed graphs will have only
triangles and trees as their inner building blocks, an
important observation for enumeration purposes.
As anticipated, the asymptotic enumeration of our

simple, connected, undirected, unlabeled, planar, chordal
graphs is of the generic form

gðnÞ ≃ αn−
5
2γn: ð11Þ

The exact value of the graph growth constant γ has not been
calculated yet. However, strict bounds on γ do exist, an
upper bound as well as a lower bound (see below). The
factor n−5=2 deserves special attention. It is notably differ-
ent from the analogous factor of n−7=2 [see Eqs. (8) and
(10)], which characterizes planar but not necessarily
chordal graph enumeration, to be regarded [18] as a direct
consequence of the triangle or tree composition of the
graphs involved. For comparison, had we dealt with rooted
tree graphs, we would have obtained n−3=2. Note in passing
that graph enumeration is genus dependent. Had the
horizon been genus g, the counting function gðnÞ would
have been slightly modified [19],

gðnÞ ≃ αn
5ðg−1Þ

2 γn: ð12Þ

The situation gets even trickier if the topology includes an
S1 factor whose chirality (clockwise and anticlockwise
directions) opens the door for directed graphs.

V. BLACK HOLE ENTROPY

Altogether, the semiclassical large-n asymptotic expan-
sion of the corresponding Boltzmann entropy, Eq. (6), is
then given by

SBHðnÞ ¼ kB

�
n log γ −

5

2
log nþ � � �

�
: ð13Þ

Appreciating the linear-n behavior of the leading term, the
connection with the Bekenstein-Hawking formula Eq. (1)
can finally be established, provided one identifies

η ¼ 4 log γ: ð14Þ

Note in passing that in our case, unlike in the Bekenstein-
Mukhanov model, there is a priori no need for γ to be an
integer. It is by no means trivial that the exact size of the
horizon unit area, considered to be a purely (quantum
gravitational) geometrical feature, gets fixed by means of
graph theory. In the present model, the latter conclusion
is rooted in the assumption that the fundamental horizon
unit areas are locally indistinguishable from each other,
an assumption which is translated into unlabeled rather
than labeled graphs. This is a critical point. Had we dealt
with labeled graphs, we would have faced the disastrous
behavior log glðnÞ ≃ n log n and never recover the
Bekenstein-Hawking limit.
At this stage, the exact value of the graph growth

constant γ, crucial for fixing the Planck area unit in
Eq. (2), is only known to lie in the range

9.48 < γ < 30.06 ⇒ 8.98 < η < 13.61: ð15Þ

It is an order of magnitude larger than the popular values of
γ ¼ 2, 3, 4 which we see in Bekenstein-Mukhanov-inspired
models. The lower bound [20] reflects the fact that our
graphs contain all unlabeled triangulations as a subset.
Smaller subsets include the pure trees (γ ¼ 2.96),
triangulated outer-planar (γ ¼ 4), and Apollonian graphs
(γ ¼ 6.75). The recently updated upper bound [17] comes
from counting unlabeled planar graphs.
The emergence of the logarithmic term in the entropy

expression Eq. (13) is an integral part of our model. Its
coefficient β ¼ − 5

2
is not only γ independent, but most

importantly, it is negative. It automatically carries the vital
minus sign, which allows us to make contact with a variety
of field theoretical calculations. With the Cardy formula
[21] serving as a light to guide the way, first-order
corrections to the Bekenstein-Hawking entropy have been
calculated [22–24]. Despite very different physical assump-
tions, these corrections seem to predominantly lead to
β ¼ − 3

2
. Interestingly, the latter value would emerge had

our graphs been rooted trees (but they are not).
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VI. EXACT SOLUTION (2 + 1 DIMENSIONS)

By construction, our model has been exclusively
designed for a 3þ 1-dimensional spacetime, for which
the black hole horizon is 2 dimensional and has genus 0.
Once an extra dimension is introduced, and the horizon
becomes a 3-dimensional surface (S3 or S2 ⊗ S1), tetra-
hedra replace the triangles, the planarity of the graphs is
gone, and their chordality, at least in the way defined, calls
for a nontrivial generalization.
On the other side, our model would naively and wrongly

suggest gðnÞ ¼ 1 for a 2þ 1-dimensional black hole [25],
corresponding to tiling the now circular horizon with n
equal-length, unlabeled, undirected arcs. The flexible shape
unit areas previously introduced have been replaced by firm
unit arcs. We are thus after a missing global ingredient,
characteristic of the S1 topology, but that does not have an
S2 analogue and would similarly allow for topologically
distinct black hole microstates. Indeed, the topology of a
circle naturally allows for clockwise (L) and anticlockwise
(R) directions, a tenable feature that can be straightfor-
wardly translated into equal-length unlabeled yet directed
(arrow carrying) Planck unit arcs. From the combinatorial
point of view, we are then dealing with a necklace of length
n ¼ nL þ nR, composed of two types of colored beads, L
beads¼ ∘ and R beads¼ • (beads of the same color are not
labeled differently), respectively. Consistent with our topo-
logical approach, one cannot locally determine L from R
(chiralities, unlike colors, do interchange once a necklace is
flipped over). In other words, a discrete L ↔ R symmetry
applies (for example, LLLR ¼ RRRL should not be
counted twice), as manifested in Fig. 4.
We count the number gðnÞ of topologically distinct

necklaces by using Polya’s generating function method

[11]. The main technical point is to prevent overcounting of
topologically equivalent configurations. Hence, a central
role in the calculation is played by the discrete symmetries
(its elements can be represented by permutations) of the n
polygon. Owing to these symmetries, the total number gðnÞ
of necklaces, that is,

gðnÞ ¼ 1; 2; 2; 4; 4; 8; 9; 18; 23; 44;…; ð16Þ

specified by the integer sequence OEIS A000011, must be
a function of all νðnÞ divisors di of n. While the basic
formula for c colors (c ¼ 2 in our case) is available [26],

NnðcÞ ¼
1

2n

XνðnÞ
i¼1

ϕðdiÞc
n
di þ

(
1
2
c
nþ1
2 n odd

1
4
ð1þ cÞcn

2 n even;
ð17Þ

it has to be nontrivially adjusted to accommodate the
L ↔ R symmetry imposed. Equation (17) splits between
n-odd and n-even terms and introduces Euler’s totient
function ϕðnÞ [27] (the number of integers ≤ n that are
relatively primes to n).
The special case n ¼ odd prime, whose highlights we

now discuss in detail, is the simplest (no need to calculate
for each prime number individually), most pedagogical
case. The associated point symmetry is the dihedral group
Dn. It consists of 2n elements: ϕð1Þ ¼ 1 unity, ϕðnÞ ¼
ðn − 1Þ rotations, and n reflections. These numbers
f1; ðn − 1Þ; ng, whose sum 2n matches the order of the
group, then enter as coefficients into the cycle index of the
group Dn, namely,

Z½Dn� ¼
1

2n

�
1fn1 þ ðn − 1Þf1n þ nf11f

n−1
2

2

�
: ð18Þ

Following Polya, we now substitute fpðL; RÞ ¼ Lp þ Rp

to arrive at the correct generating function PnðL;RÞ. The
coefficient of the LpRn−p term (p ¼ 0; 1;…; n) in the
polynomial expansion is identified as the number of
necklaces consisting of p L beads and (n − p) R beads.
From here, the way to gðnÞ is already paved; to be specific,
gðnÞ ¼ 1

2
Pnð1; 1Þ ¼ 1

2
Nnð2Þ, with the factor 12 reflecting the

underlying L ↔ R symmetry. Altogether, we derive an
exact entropy formula for a quantum black hole in 2þ 1
dimensions whose circular horizon is tiled by an odd prime
number n of directed Planck unit arcs,

SBHðnÞ ¼ kB log
�
1

2n
ð2n−1 þ n2

n−1
2 þ n − 1Þ

�
: ð19Þ

The generalization, for an arbitrary integer n, reads

SBHðnÞ ¼ kB log

�
1

4n

XνðnÞ
i¼1

ϕð2diÞ2
n
di þ 2½n−22 �

�
ð20Þ

with [x] denoting the floor function. At the semiclassical
(large n) limit, we once again recover Eq. (1), with the

FIG. 4. The integer sequence OEIS A000011: In 2þ 1 dimen-
sions, graphs representing topologically distinct black hole
microstates are free necklaces subject to a discrete ∘ ↔ •
symmetry, where ∘ ¼ L beads and • ¼ R beads. Each bead
stands for a directed Planck unit arc.

FROM PLANCK AREA TO GRAPH THEORY: TOPOLOGICALLY … PHYS. REV. D 100, 081502 (2019)

081502-5



bonus being the original Bekenstein-Mukhanov coefficient.
Typical of our model, it is automatically accompanied by a
logarithmic term, characterized in this case by the −1
coefficient,

SBHðnÞ ≃ kBðn log 2 − log n − 2 log 2þ � � �Þ: ð21Þ

The asymptotic behavior holds for every integer n, not just
for primes, because the leading contribution to PnðL; RÞ
always comes from the 1

2n f
n
1 term (associated with the

largest divisor n).
It is interesting to further study the deviation from the

Bekenstein-Hawking limit, in particular, for small n, by
plotting ΔSn ¼ Snþ1 − Sn, the amount of entropy added by
increasing the number of Planck arcs by one unit. The plot,
see Fig. 5, splits into two branches, even-n and odd-n
branches, respectively. As n increases, the two branches
merge to share a common asymptotic behavior, Eq. (21).

VII. CONCLUSION

Identifying and counting the elusive black hole micro-
states is an open challenge in theoretical physics.
Counterintuitively, while invoking the familiar ingredient
of a fundamental Planck unit area, none of the individual
units plays any local role in our model. In fact, all Planck
areas tiling the horizon are collectively involved in what
can be described as a global realization of the “it from bit"
phrase, with the topologically distinct configurations
resembling or even identified as the black hole microstates.
This opens the door for graph theory and number theory
to enter black hole physics under the auspices of the
would be quantum gravity and/or the universal complex
network [28].
If Eq. (3) is not applicable to start with, our model needs

to be supplemented by field theoretic ingredients or to be
generalized graph theoretically. The first step would be to
deal with Taub-NUT S3 topology. Regarding black hole
phase transitions (topology change or otherwise), our
model cannot shed light on this aspect at this stage.
Even the n → n − 1 quantum black hole transition is not
any clearer here than that given in the standard spectral
treatment of Bekenstein and Mukhanov. The fate of the
“lost” Planck horizon unit area in the process is under
investigation and may hold the key to future developments.
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