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The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe
and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention.
PBHs are generated by the enhancement of scalar perturbations which inevitably produce the induced
gravitational waves (GWs). We calculate the induced GWs up to the third-order correction which not only
enhances the amplitude of induced GWs, but also extends the cutoff frequency from 2k� to 3k�. Such
effects of the third-order correction lead to an around 10% increase of the signal-to-noise ratio (SNR) for
both LISA and pulsar timing array (PTA) observations, and significantly widen the mass range of PBHs
in the stellar mass window accompanying detectable induced GWs for PTA observations including
IPTA, FAST and SKA. On the other hand, the null detections of the induced GWs by LISA and PTA
experiments will exclude the possibility that all of the DM is comprised of PBHs and the GW events
detected by LIGO/Virgo are generated by PBHs.
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Various independent cosmological observations indi-
cate the existence of dark matter (DM) in our Universe.
The nature of DM remains highly elusive despite decades
of dedicated searches. However, cosmological observa-
tions are only sensitive to the macroscopic properties of
DM. Even though a new elementary particle is postulated
in standard DM scenarios, primordial black hole (PBH)
DM has attracted a lot of attention [1–4], ever since the
first direct detection of gravitational waves (GWs) from a
binary black hole (BBH) coalescence [5]. The primordial-
origin BBHs are appealing candidates of LIGO/Virgo
BBHs if the abundance of stellar mass PBHs in DM is a
few part in thousand [6–8]. There are various powerful
observational constraints in literature [8–27], but a sub-
stantial window remains open for PBHs as all of DM in
the approximate range ½10−16; 10−14� ∪ ½10−13; 10−12�M⊙.
See a recent summary in [8].
PBHs are supposed to form from the enhancement of the

scalar perturbations [28,29]. The process during which the
PBHs are formed would be inevitably accompanied by

GWs [30–37]. These so-called induced GWs are driven
by scalar perturbations during radiation-dominated (RD) era
and could leave detectable signal at present for testing the
hypothesis of PBH DM [4,38–46]. Recently, a semianalyt-
ical expression for the GWs induced by second-order scalar
perturbations hasbeenderived in [47,48], and thediscussions
have also been extended to detect the primordial non-
Gaussianity [49–52] through induced GWs and the bispec-
trum [47,53,54] of the induced GWs. PBHs could have been
produced during RD era when relatively large scalar pertur-
bations with amplitudes Oð0.01–0.1Þ reentered the Hubble
horizon [55–59]. The nonlinearity is an intrinsic property for
gravity in general relativity, and therefore the higher-order
corrections to the scalar induced GWs are expected to be
important. However, previous studies only focused on the
GWs induced by second-order scalar perturbations, and as
far as we know, no higher-order effects have been taken into
account in literature. In this paper, we give the first result of
the inducedGWsup to the third-order, and find that the third-
order correction would be detectable by some future GW
detectors, such as LISA [60], IPTA [61], FAST [62], and
SKA [63], and has significant observational implications.
The perturbed metric in the Friedmann-Robertson-

Walker spacetime with Newtonian gauge takes the
form, [37],
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ds2 ¼ a2
�
−ð1þ 2ϕÞdη2 þ

�
ð1 − 2ϕÞδij þ

hij
2

�
dxidxj

�
;

ð1Þ

where ϕ and hij are the scalar and tensor perturbations
respectively. The scalar perturbation in Fourier space has a
solution [4,38,48,64]

ϕkðηÞ≡ ϕkTðkηÞ; ð2Þ

where ϕk is the primordial perturbation and TðkηÞ is the
transfer function

TðkηÞ ¼ 9

ðkηÞ2
�
sinðkη= ffiffiffi

3
p Þ

kη=
ffiffiffi
3

p − cosðkη=
ffiffiffi
3

p
Þ
�
; ð3Þ

which oscillates and decays as ∼1=η2 in the RD era. In
order to extract the induced GWs up to the third-order, it is
necessary to expand Einstein equations up to the fourth-
order (perturbations are performed utilizing the xPand [65]
package). After a tedious but straightforward computation,
the evolution of the GWs up to the fourth-order is given by

h00ij þ 2Hh0ij −∇2hij ¼ −4T lm
ij Slm; ð4Þ

where the prime denotes the derivative with respect to the
conformal time η, H≡ a0=a is the conformal Hubble
parameter, and T lm

ij is the projection operator [66] onto
the transverse and traceless tensor. Although Eq. (4) has the
same form as the evolution of GWs at second-order (see,

e.g., [38,66]), the source term Sij ¼ Sð2Þij þ Sð3Þij þ Sð4Þij has
been calculated up to fourth-order as follows

Sð2Þij ¼ 4ϕ∂i∂jϕþ 2∂iϕ∂jϕ − ∂i

�
ϕþ ϕ0

H

�
∂j

�
ϕþ ϕ0

H

�
;

ð5Þ

Sð3Þij ¼ 1

H
ð12Hϕ − ϕ0Þ∂iϕ∂jϕ −

1

H3
ð4Hϕ − ϕ0Þ∂iϕ

0∂jϕ
0

þ 1

3H4
ð2∂2ϕ − 9Hϕ0Þ∂iðHϕþ ϕ0Þ∂jðHϕþ ϕ0Þ;

ð6Þ

Sð4Þij ¼ 16ϕ3∂i∂jϕþ 1

3H3
½2ϕ0∂2ϕ − 9Hϕ02 − 8Hϕ∂2ϕþ 18H2ϕϕ0 þ 96H3ϕ2�∂iϕ∂jϕ

þ 2

3H5
½−ϕ0∂2ϕþ 3Hϕ02 þ 4Hϕ∂2ϕþ 3H2ϕϕ0 − 12H3ϕ2�∂iϕ

0∂jϕ
0

þ 1

36H6
½−16ð∂2ϕÞ2 − 3∂kϕ

0∂kϕ0 þ 120Hϕ0∂2ϕ − 6H∂kϕ∂kϕ0 þ 144H2ϕ∂2ϕ − 180H2ϕ02

þ 33H2∂kϕ∂kϕ − 504H3ϕϕ0 − 144H4ϕ2�∂iðHϕþ ϕ0Þ∂jðHϕþ ϕ0Þ: ð7Þ

After solving Eq. (4) in Fourier space by Green’s
function, we can use the two-point correlation of the
GWs to calculate their power spectrum, namely

hhðk; ηÞhðk0; ηÞi≡ 2π2

k3
Phðk; ηÞδðkþ k0Þ: ð8Þ

The angle brackets stand for ensemble average which can
be calculated using timing average instead. The GWenergy
density, ρGW ¼ R

ρGWðk; ηÞd ln k, can be evaluated as [67]

ρGW ¼ M2
p

16a2
h∂khij∂khiji; ð9Þ

where the overline stands for the average of the oscillating
effect of the time-varying phase andMp is the Planck mass.
The dimensionless GW energy density parameter ΩGW is
defined as the energy density of GWs per logarithmic
frequency normalized by the critical density ρcr,

ΩGWðη; kÞ≡ ρGWðk; ηÞ
ρcr

¼ 1

12

�
k
H

�
2

Phðk; ηÞ; ð10Þ

where we have summed over the two polarization modes of
þ and ×. Solving Eq. (4) by the Green’s function method,
one obtains [38]

hðk; ηÞ ¼ 1

kaðηÞ
Z

dη̃ sinðkη − kη̃Þaðη̃ÞSkðη̃Þ; ð11Þ

where SkðηÞ≡ −4eijðkÞS̃ijðk; ηÞ with S̃ijðk; ηÞ being the
source term transformed into Fourier space. The polariza-
tion tensors eijðkÞ are defined as ðeiej − ēiējÞ=

ffiffiffi
2

p
and

ðeiēj þ ēiejÞ=
ffiffiffi
2

p
for þ and × polarizations, respectively,

where eiðkÞ and ēiðkÞ are two independent unit vectors
orthogonal to k. Since ϕ is related to the comoving
curvature perturbation ζ by ϕ ¼ ð2=3Þζ on superhorizon
scales, ΩGWðη; kÞ can be calculated using the power
spectrum of the comoving curvature perturbation, PζðkÞ,
defined by

hζkζk0 i≡ 2π2

k3
PζðkÞδðkþ k0Þ: ð12Þ
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From now on we will be dedicated to the following
monochromatic power spectrum

PζðkÞ ¼ Ak�δðk − k�Þ; ð13Þ
to illustrate the effects of third-order correction. Here A is
an overall normalization coefficient and k� is the wave
number at which the power spectrum has a δ-function
peak. Note that it is robust to neglect the contribution of
the long wavelength modes on the CMB scales, because
not only the time delay effect of the long wavelength will
not affect the GWs power spectrum [54], but also the long
wavelength mode is well outside the horizon during the
formation of PBHs and thus should not affect any local
physical processes. On the other hand, the δ-spectrum
also corresponds to a monochromatic PBH formation.
The formation of PBHs is a threshold process where the
comoving curvature perturbation ζðxÞ exceeds a threshold
value ζc and causes an overdensed region. The possibility
of forming a PBH can be evaluated statistically by
integrating the probability density function over the
threshold region [68]

β ¼
Z þ∞

ζc

dζffiffiffiffiffiffi
2π

p
σ
e−ζ

2=2σ2 ¼ 1

2
erfc

�
ζcffiffiffiffiffiffi
2A

p
�
; ð14Þ

where ζc ≃ 1 is the threshold value [69–72] to form a PBH
and σ2 ≡ hζ2i ¼ R

PζðkÞd ln k ¼ A is the variance of the
curvature perturbation. For monochromatic PBHs, the
possibility to form a single PBH, β, is equivalent to
the abundance of PBHs which is related to the fraction
of PBHs by [73]

fpbh ≃ 2.5 × 108β

�
gform�
10.75

�−1
4

�
mpbh

M⊙

�
−1
2

; ð15Þ

where gform� is the effective degrees of freedom when PBHs
are formed, and the mass of the PBH roughly equals to the
horizon mass, namely

mpbh

M⊙
≈ 2.3 × 1018

�
3.91
gform�

�
1=6

�
H0

f�

�
2

; ð16Þ

where we have used k� ¼ aH� ¼ 2πf� and H0 is the
Hubble constant at present.
For the δ-spectrum in Eq. (13), the source terms in

Fourier space are given by

Sð2Þ
k ðηÞ≡

Z
d3p

ð2πÞ3=2 eðp; pÞf2ðk�ηÞζpζk−p; ð17Þ

Sð3Þ
k ðηÞ≡

Z
d3pd3q
ð2πÞ3 eðp; qÞf3ðk�ηÞζpζqζk−p−q; ð18Þ

Sð4Þ
k ðηÞ≡

Z
d3pd3qd3l

ð2πÞ9=2 ½eðl; lÞ þ eðp; qÞ�f4ðk�ηÞ

× ζpζqζlζk−p−q−l; ð19Þ

where we have defined eðp; qÞ≡ eijðkÞpiqj, and fiðxÞ
(i ¼ 2, 3, 4) have the following functional forms

f2ðxÞ ¼
8

9
ð3T2 þ 2xTT 0 þ x2T 02Þ; ð20Þ

f3ðxÞ ¼ −
64

81
½ðx2 − 18ÞT3 þ 2xð3þ x2ÞT2T 0

þ x2ð15þ x2ÞTT 02 þ 3x3T 03�; ð21Þ

f4ðxÞ ¼
16

729
½ð720 − 29x2 þ 16x4ÞT4

þ 4xð144þ 73x2 þ 8x4ÞT3T 0

þ 2x2ð864þ 219x2 þ 8x4ÞT2T 02

þ 4x3ð198þ 31x2ÞTT 03 þ x4ð108þ 7x2ÞT 04�:
ð22Þ

The explicit expression for transfer function T ¼ TðxÞ can
be found in Eq. (3). From Eqs. (8) and (11), we see that

only hSð2Þ
k Sð2Þ

k0 i contributes to second-order induced GWs.

Meanwhile, both hSð3Þ
k Sð3Þ

k0 i and hSð2Þ
k Sð4Þ

k0 i contribute to the
third-order correction. Following the pioneering work of
[47,48], for the δ-spectrum in Eq. (13), we obtain

ΩGWðη; kÞ ¼
A2

192k̃2
½I22M1 þ AðM2I23 þM1I2I4Þ�; ð23Þ

where an overbar denotes the oscillation average [48] and Ii
(i ¼ 2, 3, 4) are defined as

Ii ¼ lim
x→∞

Z
x

0

dx̃fi

�
x̃

k̃

�
x̃
x
sinðx − x̃Þ; ð24Þ

which reflects the phase oscillation of the GWs. For
convenience, we have defined some dimensionless param-
eters, i.e., k̃≡ k=k�, x≡ kη and x̃≡ kη̃. Similar to [48],
Eq. (24) can be analytically integrated by multiple usages
of the trigonometric addition theorem and the properties of
sine integral SiðθÞ and cosine integral CiðθÞ. The angle
integrals M1 and M2 in Eq. (23) are defined as

M1ðkÞ ¼ ð4 − k̃2Þ2Θð2 − k̃Þ; ð25Þ

M2ðkÞ ¼
1

π2

Z
pmax

pmin

dp̃
Z

2π

0

dα
Z

2π

0

dϕM0ΘðΔÞ; ð26Þ

where Θ is the Heaviside step function, pmin ¼ j1 − k̃j, and
pmax ¼ minð2; 1þ k̃Þ. Due to its complexity, the expres-
sion of M2 is evaluated numerically and the definition of
M0 and Δ are given by

Δ ¼ 4μ2 þ 4ð1 − μ2Þ cosðα − ϕÞ2 − p̃2; ð27Þ
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M0 ¼
X2
i¼1

ð1−ν2i Þ
jμ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ν2i

p
−νi

ffiffiffiffiffiffiffiffiffiffiffiffi
1−μ2

p
cosðα−ϕÞj

× ½ð1−ν2i Þ
3
2 cos2 2αþ2p̃3ð1−μ2Þ32 cos2ϕcosðαþϕÞ

−2p̃ð1−ν2i Þð1−μ2Þ12 cos2αcosðαþϕÞ
− p̃2ð1−μ2Þð1−ν2i Þ12 cosðαþϕÞ2�; ð28Þ

where μ and νi (i ¼ 1, 2) are defined as

μ ¼ p̃2 þ k̃2 − 1

2p̃ k̃
; ð29Þ

ν1;2 ¼
p̃μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
j cosðα − ϕÞj ffiffiffiffi

Δ
p

2ðð1 − μ2Þ cosðα − ϕÞ2 þ μ2Þ : ð30Þ

Note that M1 is originated from the hSð2Þ
k Sð2Þ

k0 i and

hSð2Þ
k Sð4Þ

k0 i terms, and indicates a cutoff frequency at

k ¼ 2k�; while M2 is originated from the hSð3Þ
k Sð3Þ

k0 i,
and indicates a cutoff at k ¼ 3k�. Therefore the third-
order correction not only enhances the amplitude of GW
energy density, but also extends the cutoff frequency from
2k� to 3k�.
Note that Eq. (23) is only valid from the horizon reentry

to matter-radiation equality. Because the energy density
of GWs decays as radiation, current density parameter of
GWs can be approximated by [74]

ΩGWðη0; fÞ ≃Ωr × ΩGWðη; fÞ; ð31Þ

where Ωr is the density parameter of radiation at present.
From Eq. (16), heavier masses of PBHs corresponds to
lower peak frequencies of induced GWs. Figure 1 shows
the GWs induced by scalar perturbation up to third order
compared with the sensitivity curves of LISA, IPTA,
FAST, and SKA. Because a substantial windows for PBH
as all of DM in the approximate range ½10−16; 10−14� ∪
½10−13; 10−12�M⊙ is still available, for example, we choose
mpbh ¼ 10−12M⊙ and fpbh ¼ 1 and then the peak fre-
quency of the induced GW is f ∼ 10−3 Hz which is within
the LISA frequency band. In addition, roughly speaking,
since the abundance of stellar mass PBHs has been
constrained to be less than 0.01 [8], we choose mpbh ¼
0.2 M⊙ and fpbh ¼ 10−3, and then the peak frequency of
induced GWs is just located at the PTA frequency band. In
fact, since Eqs. (14) and (15) imply fpbh ∝

ffiffiffiffi
A

p
expð−A−1Þ

for a relatively small value of A, even decreasing fpbh by
multiple orders, the consequent value of A will almost not
change. Therefore the amplitude of ΩGW will almost be
irrespective with the choice of fpbh unless fpbh is dra-
matically much smaller than our choice in Fig. 1. From
Fig. 1, we also see that the third-order correction not

only enhances the magnitude ofΩGW (especially smooth the
deep valley at f¼ ffiffiffiffiffiffiffiffi

2=3
p

f� from the second-order effect),
but also extends cutoff frequency from 2f� to 3f�. Besides,
for a narrow spectrum, it would also generate two new
resonant peaks at f¼ð1= ffiffiffi

3
p Þf� and f¼ ffiffiffi

3
p

f�. Moreover,
the typical ΩGWðη0; fÞ in Fig. 1 shows that the third-order
correction of the induced GWs is also far beyond the
sensitivity curves for both LISA and PTA observations,
rendering third-order correction being detectable and thus,
indispensable in testing the hypothesis of PBHs.
In order to quantitatively evaluate the effects of the third-

order correction in observations, we need to estimate the
SNR, ρ, for different GWexperiments. For LISA, it is given
by [75]

ρ ¼
ffiffiffiffi
T

p �Z
df

�
ΩGWðfÞ
ΩnðfÞ

�
2
�
1=2

; ð32Þ

where ΩnðfÞ ¼ 2π2f3Sn=ð3H2
0Þ and Sn is the strain noise

power spectral density [77]. For PTA observations, if we
assume pulsars are distributed homogeneously and all
pulsars have the same noise characteristics, the SNR is
given by [78]

ρ¼
ffiffiffiffiffiffi
2T

p �XM
I;J

χ2IJ

�Z
df

�
ΩGWðfÞ

ΩnðfÞþΩGWðfÞ
�

2
��1=2

; ð33Þ

where χIJ is the Hellings and Downs coefficient for pulsars
I and J [79]. Figure 2 shows the expected SNR obtained for
LISA and PTA experiments, and indicates that the third-
order correction would raise the SNR as expected. For
LISA, we expect around a 15% increase in the relative

FIG. 1. The GW density parameter of scalar induced GWs
along with the power-law integrated sensitivity curves [75] of
LISA, IPTA, FAST, and SKA. The black solid (dashed) lines
represent ΩGW induced by scalar perturbations up to third-order
(second-order). We assume IPTA, FAST, and SKA last for the
same observation time of 30 years, and other settings of these
PTA projects can be found in Table 5 of [76].
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SNR; while for PTA observations, we expect the increase is
more than 5% and could even reach 20% for stellar mass
PBHs. Most importantly, since the third-order correction
will extend the cutoff frequency from 2k� to 3k�, the
induced GWs accompanying heavier PBHs are supposed to
be detected by PTA observations. For instance, as shown in
Fig. 2, the third-order correction will extend the largest
detectable mass of PBHs from around 30 M⊙ to 65 M⊙,
which will be an invaluable complimentary tool to test the
PBH scenario in addition to the analysis LIGO/Virgo.
In this paper, we compute the third-order correction to

the induced GWs generated by the scalar perturbations

accompanying the formation of PBHs during the RD era.
After deriving a general expression for the GW energy
density, we investigate an infinite narrow power spectrum
of the scalar perturbation and obtain a semianalytical
expression for ΩGW. Our result implies that the third-order
correction to the induced GWs accompanying formation
of PBH DM will generate detectable effects on the
waveform and the amplitude in observation data. The
third-order correction not only enhances the magnitude
of ΩGW, but also extends the cutoff frequency from 2f�
to 3f�. We also forecast the SNR for LISA and PTA
observations, including IPTA, FAST, and SKA. These
planned GW projects cover a wide frequency band from
10−9 Hz to 10−3 Hz corresponding to PBHs with mass
range 10−18 M⊙–10

2 M⊙. Our results indicate that the
third-order correction could not only lead to an increase in
the relative SNR around 10% for these planned GW
projects, but also extend the maximum detectable PBH
mass. On the other hand, if all of these projects are unable
to detect such induced GWs, we could rule out PBH DM
in a wide mass ranges of ∼10−18 M⊙–10 M⊙.
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