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Using vector and axial-vector correlators within finite-energy sum rules with inputs from a chiral quark
model, coupled to the Polyakov loop, with nonlocal vector interactions, we extend our previous work to
confirm the equivalence between the continuum threshold s0 and the trace of the Polyakov loop Φ as order
parameters for the deconfinement transition at finite temperature T and quark chemical potential μ. The
obtained results are in agreement with our initial conclusion, where we showed that s0ðT; μÞ and ΦðT; μÞ
provide the same information for the QCD deconfinement transition.
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I. INTRODUCTION

Since quark color charge in a medium is screened due to
density and temperature effects, quantum chromodynamics
(QCD) predicts that at very high temperatures (T ≫ ΛQCD)
and low baryon densities, matter appears in the form of a
plasma of quarks and gluons [1].
If one of those variables increases beyond a certain

critical value, the interactions between quarks no longer
confine them inside hadrons. This is usually referred to as
the deconfinement phase transition. Simultaneously [2], at
small densities another transition takes place: the chiral
restoration. For high values of chemical potential, these
two transitions can arise at different critical temperatures.
The result will be a quarkyonic phase, where the chiral
symmetry is restored but the quarks and gluons remain
confined.
In the confined region, QCD is strongly coupled and

coupling-constant expansions become inapplicable. At
finite density, lattice QCD (lQCD) methods based on
large-scale Monte Carlo simulations are also not applicable
because lQCD has the sign problem [3,4].

Therefore, predictions of the transition features in
regions that are not accessible through lattice techniques
arise from effective theories, like for instance, the nonlocal
Polyakov-Nambu-Jona-Lasinio (nlPNJL) models (see
Ref. [5] and references therein), where quarks interact
through covariant nonlocal chirally symmetric couplings in a
background color field. These approaches, which can be
considered as an improvement over the local model [6–12],
offer a common framework to study both chiral restoration
and deconfinement transitions for hadronic systems
at finite temperature and/or chemical potential (see e.g.,
Refs. [5,13–19]). In fact, the nonlocal character of the
interactions arises naturally in the context of several suc-
cessful approaches to low-energy quark dynamics [20–22],
and leads to a momentum dependence in the quark propa-
gator that can be made consistent with lQCD results.
In this work we use a nlPNJL model with vector and

axial-vector interactions [23]. In addition to the standard
scalar and pseudoscalar quark-antiquark currents, we con-
sider couplings between vector and axial-vector nonlocal
currents, satisfying proper QCD symmetry requirements.
In order to study the properties of chiral and deconfine-

ment phase transitions it has been customary to study the
behavior of corresponding order parameters as functions of
the temperature and quark chemical potential, namely the
quark-antiquark chiral condensate hq̄qi and the trace of the
Polyakov loop (PL) Φ, respectively.
In addition to Φ, another phenomenological QCD

deconfinement parameter that has been introduced in the
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literature [24] is the continuum threshold s0, for the onset of
perturbative QCD (PQCD) in hadronic spectral functions.
Around this energy, and at zero temperature, the resonance
peaks in the spectrum are either no longer present or
become very broad.
The natural framework to determine s0 has been that of

QCD sum rules [25]. This quantum field theory framework
is based on the operator product expansion (OPE) of current
correlators at short distances, extended beyond perturbation
theory, and on Cauchy’s theorem in the complex s plane.
In this article we reconsider the light-quark axial-vector

channel with an improved hadronic spectral function
involving the a1ð1260Þ resonance [26], in addition to the
already considered pion pole approximation [27]. We also
include the vector channel with a ρ-meson saturated
spectral function.
Within this theoretical framework, using finite-energy

sum rules with inputs for the spectral functions obtained
from a nonlocal quark model (masses, decay constants and
widths), we compare the thermal behavior of s0 and Φ in
both channels, at zero and finite chemical potential.
The paper is organized as follows. In the next section, we

briefly review the finite-energy sum rules (FESR) program for
the light-quark vector andaxial-vector channels. InSec. IIIwe
present the general formalism for a finite-temperature and
-density system within the nlPNJL effective model. The
numerical and phenomenological analyses at zero and finite
density are included in Sec. IV. Finally, in Sec. V we
summarize our results and present the conclusions.

II. FINITE-ENERGY SUM RULES

Within the formalism of finite-energy sum rules [25] we
extend our previous work [27], reconsidering the light-
quark axial-vector channel with an improved hadronic
spectral function involving the a1ð1260Þ resonance, in
addition to the already considered pion pole approximation.
Moreover, we also include in this analysis the vector
channel with a ρ-meson saturated spectral function.
We begin by considering the current-current correlation

function

Πμνðq2Þ ¼ i
Z

d4xeiqxh0jTðJμðxÞJ†νð0ÞÞj0i; ð1Þ

where JðxÞ is a local quark current. Let us consider, for our
study, the correlator of light-quark vector and axial-vector
currents

ΠV
μνðq2Þ ¼ i

Z
d4xeiqxh0jTðVμðxÞV†

νð0ÞÞj0i

¼ ð−gμνq2 þ qμqνÞΠV
0 ðq2Þ;

ΠA
μνðq2Þ ¼ i

Z
d4xeiqxh0jTðAμðxÞA†

νð0ÞÞj0i

¼ ð−gμνq2 þ qμqνÞΠA
0 ðq2Þ þ qμqνΠA

1 ðq2Þ; ð2Þ

where AμðxÞ≕ d̄ðxÞγμγ5uðxÞ ∶ is the charged axial-vector
current, VμðxÞ ¼ 1

2
½∶ ūðxÞγμuðxÞ − d̄ðxÞγμdðxÞ ∶� is the

electric-charge-neutral conserved vector current in the
chiral limit, and qμ ¼ ðω; q⃗Þ is the four-momentum carried

by the current. The transverse parts ΠA;V
0 are related to the

vector-meson resonances, whereas the longitudinal axial
contribution ΠA

1 corresponds to the pion pole. Since we are
working with nonstrange current correlators, there is no
longitudinal term in the vector channel [28].
In addition, through the operator product expansion of

current correlators at short distances [29,30], one has

ΠA;Vðq2ÞjQCD¼C0Îþ
X
N¼1

C2Nðq2;μ2Þ
ð−q2ÞN hÔ2Nðμ2Þi

����
A;V

; ð3Þ

where hÔ2Nðμ2Þi≡ h0jÔ2Nðμ2Þj0i, μ2 is a renormalization
scale, and the Wilson coefficients CN depend on the
Lorentz indices and quantum numbers of the currents,
and on the local gauge-invariant operators ÔN built from
the quark and gluon fields in the QCD Lagrangian. These
operators are ordered by increasing dimensionality and the
Wilson coefficients are calculable in PQCD. The unit
operator Î has dimension d≡ 2N ¼ 0, and C0 stands for
the purely perturbative contribution.
On the other hand, using Cauchy’s theorem in the

complex squared energy s plane, we obtain the quark-
hadron duality

1

π

Z
s0

0

dssNImΠA;VðsÞjHAD

¼ −
1

2πi

I
Cðjs0jÞ

dssNΠA;VðsÞjQCD; ð4Þ

where the radius of the circle s0 is large enough for QCD
and the OPE to be used on the circle. Using the OPE,
Eq. (3), the finite-energy sum rules at finite temperature T
and chemical potential μ become [24,31,32]

ð−ÞN−1C2NhÔ2NijA;V
¼ 4π

Z
s0ðT;μÞ

0

dssN−1½ImΠA;Vðs; T; μÞjHAD
− ImΠA;Vðs; T; μÞjPQCD�: ð5Þ

For N ¼ 1, the dimension d ¼ 2 term in the OPE does
not involve any condensate, as it is not possible to construct
a gauge-invariant operator of such dimension from the
quark and gluon fields. Moreover, there is no evidence for
such a term for low values of T [33–35].
The dimension d ¼ 4 term, a renormalization-group-

invariant quantity, is given in the chiral limit, for the vector
and axial sectors by
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1

2
C4hÔ4ijV ¼ C4hÔ4ijA ¼ π2

6

�
αs
π
GμνGμν

�
: ð6Þ

As was mentioned previously, there is a difference in the
currents involved in vector and axial processes, i.e., the
former involves electrically neutral currents, while the latter
involves electrically charged currents. Thus, the normal-
izations of these vector current correlators differ by a factor
of 2.
The leading power correction of dimension d ¼ 6 is the

four-quark condensate, which in the vacuum saturation
approximation [30] becomes

C6hÔ6ijV ∝ C6hÔ6ijA ∝ αsjhq̄qij2; ð7Þ

which is channel dependent and has a very mild depend-
ence on the renormalization scale. This approximation has
no solid theoretical justification, other than its simplicity.
In the static limit (q⃗ → 0), and for finite T and μ, the

spectral function in PQCD, ΠA;Vðω2; T; μÞjPQCD (to sim-
plify the notation we shall omit the s, T and μ dependence),
is given by

ImΠAjPQCD ¼ ImΠV jPQCD
¼ 1

4π

�
1 − nþ

� ffiffiffi
s

p
2

�
− n−

� ffiffiffi
s

p
2

�	

−
2

π
T2δðsÞ½Li2ð−eμ=TÞ þ Li2ð−e−μ=TÞ�; ð8Þ

where Li2ðxÞ is the dilogarithm function, s ¼ ω2, and

n�ðxÞ ¼
1

eðx∓μÞ=T þ 1
ð9Þ

are the Fermi-Dirac thermal distributions for particles and
antiparticles, respectively.
In the chiral limit, the axial-vector hadronic sector in the

spectral function can be approximated by the pion pole,
followed by the a1ð1260Þ resonance

ImΠAjHAD ¼ 2πf2πδðsÞ þ ImΠAja1 ; ð10Þ

where fπ is the pion decay constant, and a fit in the
resonance region (s < 2 GeV2) to the ALEPH data quoted
in Ref. [36], gives

ImΠAja1 ¼ παfa1 exp

�
−
�
s − δm2

a1

Γ2
a1 þ βs

�
2
	
; ð11Þ

with α ¼ 0.1136� 0.0002, β ¼ 0.302� 0.001 and δ ¼
0.8501� 0.0006. The mass, width and decay constants
of the a1 meson,ma1 , Γa1 and fa1 , respectively, are obtained
from a two-flavor nonlocal PNJL model with vector

interactions [23], that will be described in Sec. III. This
fit together with the ALEPH data are shown in Fig. 1.
In our previous work [27] we only considered the pion

pole for the axial spectral function. Therefore, incorporat-
ing the a1 resonance improves the approximation and
constitutes the best possible approach within the present
theoretical advances.
For the vector sector, as usual [37–39], we will assume ρ-

meson saturation of the spectral function in terms of a
Breit-Wigner resonance. This parametrization has been
normalized such that its area is equal to the area under a
zero-width expression [37]. In addition, we will consider a
contribution due to the coupling of the vector current to two
pions in the thermal bath, the so-called scattering term,
which is given by

ImΠV jS ¼
2

3π
δðsÞ

Z
∞

0

ynB

�
y
T

�
dy ¼ π

9
δðsÞT2; ð12Þ

where nBðzÞ ¼ 1=ðez − 1Þ is the Bose thermal function.
Therefore, we have

1

2
ImΠV jHAD ¼ f2ρ

m3
ρΓρ

ðs −m2
ρÞ2 þm2

ρΓ2
ρ
þ 1

8π
ImΠV jS; ð13Þ

where as before, mρ, Γρ and fρ are the ρ mass, width and
decay constants, respectively, also calculated within the
nlPNJL model.

III. THERMODYNAMICS AT FINITE DENSITY

In this section we present the formalism of a two-flavor
quark model coupled to the Polyakov loop, that includes
nonlocal vector and axial-vector quark-antiquark currents,
in addition to the standard scalar and pseudoscalar nonlocal
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FIG. 1. Fit to ALEPH data in the axial-vector channel [36] up to
s ≃ 2 GeV2. Errors are represented by the size of the data points.
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interactions [23]. The corresponding Euclidean effective
action is given by [40]

SE ¼
Z

d4x



ψ̄ðxÞð−iγμDμ þ m̂ÞψðxÞ

−
GS

2
½jSðxÞjSðxÞ þ jaPðxÞjaPðxÞ þ jMðxÞjMðxÞ�

−
GV

2
½jμaV ðxÞjaVμðxÞ þ jμaA ðxÞjaAμðxÞ�

−
G0

2
jμ0V ðxÞj0VμðxÞ −

G5

2
jμ0A ðxÞj0AμðxÞ

þUðΦ½AðxÞ�Þ
�
; ð14Þ

where ψ is the Nf ¼ 2 fermion doublet ψ ≡ ðu; dÞT , and
m̂ ¼ diagðmu;mdÞ is the current quark mass matrix. In
what follows we consider isospin symmetry,
mu ¼ md ¼ m. The fermion kinetic term in Eq. (14)
includes a covariant derivative Dμ ≡ ∂μ − iAμ, where
Aμ ¼ gGμ

aλa=2, with Gμ
a being the SU(3) color gauge

fields. The nonlocal currents are given by

jSðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
ψ

�
x −

z
2

�
;

jaPðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
iγ5τaψ

�
x −

z
2

�
;

jMðxÞ ¼
Z

d4zF ðzÞψ̄
�
xþ z

2

�
i∂↔
2κp

ψ

�
x −

z
2

�
;

jμaV ðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
γμτaψ

�
x −

z
2

�
;

jμaA ðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
γμγ5τ

aψ

�
x −

z
2

�
;

jμ0V ðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
γμψ

�
x −

z
2

�
;

jμ0A ðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
γμγ5ψ

�
x −

z
2

�
; ð15Þ

where uðx0Þ∂↔vðxÞ ¼ uðx0Þ∂xvðxÞ − ∂x0uðx0ÞvðxÞ, τa are
the Pauli matrices and the functions GðzÞ and F ðzÞ in
Eq. (15) are nonlocal covariant form factors characterizing

the corresponding interactions. The scalar-isoscalar com-
ponent of the nonlocal currents will generate a momentum-
dependent quark mass in the quark propagator, while
the “momentum” current jMðxÞ leads to a momentum-
dependent wave-function renormalization of the quark
propagator, in consistency with lQCD analyses.
To work with mesonic degrees of freedom, the

fermionic theory is bosonized in a standard way [41] by
considering the corresponding partition function Z ¼R
Dψ̄Dψ exp½−SE�, introducing auxiliary bosonic fields

σ1ðxÞ, σ2ðxÞ [scalar, related to jSðxÞ and jMðxÞ], πaðxÞ
(pseudoscalar), vaμðxÞ (vector) and aaμðxÞ (axial-vector) and
integrating out the quark fields. Details of this procedure
can be found in Ref. [40].
Since we are interested in deconfinement and chiral

restoration transitions, we extend the bosonized effective
action to finite temperature T and chemical potential μ.
This will be done using the standard imaginary-time
formalism. Concerning the gauge fields Aμ, we assume
that quarks move in a constant background field ϕ ¼
A4 ¼ iA0 ¼ igδμ0G

μ
aλa=2. We will work in the so-called

Polyakov gauge, in which the matrix ϕ is given a diagonal
representation ϕ ¼ ϕ3λ3 þ ϕ8λ8.
Although at finite chemical potential, the traced PLΦ and

its conjugateΦ� could in principle have different values, the
difference between theΦ andΦ� emerges beyond the mean-
field approximation [10,42,43]. Therefore we choose for our
model to adopt the usual prescriptionΦ ¼ Φ� (see Ref. [23])
implying that ϕ8 ¼ 0, leaving only ϕ3 as an independent
variable. Consequently, the traced Polyakov loop is
Φ ¼ ½2 cosðϕ3=TÞ þ 1�=3.
For the light-quark sector the trace of the Polyakov loop

turns out to be an approximate order parameter, in the same
way the chiral quark condensate is an approximate order
parameter for the chiral symmetry restoration.
Thus, in the mean-field approximation (MFA), and

following the same prescriptions as in Refs. [5,16,19],
the thermodynamic potential ΩMFA at finite temperature T
and chemical potential μ is given by [44]

ΩMFA ¼ Ωreg þ Ωfree þ UðΦ; TÞ þ Ω0; ð16Þ

where

Ωreg ¼ −4
XZ
cnq

ln

�
q2n;c þm2ðqn;cÞ

z2ðqn;cÞðq2n;c þm2Þ
	
þ σ̄21 þ κ2pσ̄

2
2

2GS
−

ω̄2

2G0

;

Ωfree ¼ −4T
X

c¼r;g;b

X
s¼�1

Z
d3q⃗
ð2πÞ3 Re ln

�
1þ exp

�
−
ϵq þ sðμþ iϕcÞ

T

�	
; ð17Þ

with the shorthand notation
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XZ
cnq

≡ X
c¼r;g;b

T
X∞
n¼−∞

Z
d3q⃗
ð2πÞ3 :

The constants σ̄1;2 and ω̄ are the mean-field values of the
scalar fields and the isospin-zero vector field. At nonzero
quark densities, the flavor-singlet term of the vector
interaction develops a nonzero expectation value ω̄, while
all other components of the vector and axial-vector inter-
actions have vanishing mean fields [45].
The mean-field values can be calculated by mini-

mizing ΩMFA, while the functions mðpÞ and zðpÞ—the
momentum-dependent effective mass and wave-function
renormalization—are related to the nonlocal form factors
and the vacuum expectation values of the scalar fields by

mðpÞ ¼ zðpÞ½mþ σ̄1gðpÞ�;
zðpÞ ¼ ½1 − σ̄2fðpÞ�−1; ð18Þ

where gðpÞ and fðpÞ are the Fourier transforms of the form
factors in Eq. (15). We have also defined

q2nc ¼ ½ωn þ ϕc − iμ̃�2 þ q⃗2; ð19Þ

where the sums over color indices run over c ¼ r, g, b, with
the color background field components being ϕr¼−ϕg¼ϕ,

ϕb ¼ 0, and ϵq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

p
, and ωn ¼ ð2nþ 1ÞπT are

the fermionic Matsubara frequencies. The vector coupling
generates a shift in the chemical potential as [44]

μ̃ ¼ μ − gðq̄ncÞzðq̄ncÞω̄; ð20Þ

where

q̄nc ¼ qncjω̄¼0: ð21Þ

The term Ωreg is the regularized expression with the
thermodynamic potential of a free fermion gas Ωfree, and
finally the last term in Eq. (16) is just a constant fixed by the
condition that ΩMFA vanishes at T ¼ μ ¼ 0.
The effective gauge field self-interactions are given by

the Polyakov loop potential UðΦ; TÞ. At finite temperature,
it is usual to take for this potential a functional form based
on properties of pure gauge QCD. Among the most used
effective potentials, the ansatz that provides the best
agreement with lQCD results [5,18] is the polynomial
function based on a Ginzburg-Landau ansatz [9,46]:

UpolyðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð22Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð23Þ

Numerical values for the parameters can be found in
Table I [9].
In the absence of dynamical quarks, from lattice

calculations one expects a deconfinement temperature
T0 ¼ 270 MeV. However, it has been argued that in the
presence of light dynamical quarks this temperature scale, a
further parameter of the model, should be adequately
reduced to about 210 and 190 MeV for the case of two and
three flavors, respectively, with an uncertainty of about
30 MeV [47].
In order to fully specify the model under consideration,

we proceed to fix the model parameters as well as the
nonlocal form factors gðqÞ and fðqÞ. We consider here
Gaussian functions

gðqÞ ¼ exp ð−q2=Λ2
0Þ;

fðqÞ ¼ exp ð−q2=Λ2
1Þ; ð24Þ

which guarantee a fast ultraviolet convergence of the loop
integrals and offer a momentum dependence in good
agreement with lQCD, and other form factors [18,40].
Once the mean-field values are obtained, the behavior

of other relevant quantities as functions of the temperature
and chemical potential can be determined. We concentrate,
in particular, on the chiral quark condensate hq̄qi ¼
∂ΩMFA

reg =∂m and the traced PL Φ, which will be taken as
order parameters for the chiral restoration and deconfine-
ment transitions, respectively. The associated susceptibil-
ities will be defined as χch ¼ ∂hq̄qi=∂T and χΦ ¼ dΦ=dT.

A. Meson masses

Meson masses can be obtained from the terms in the
Euclidean action that are quadratic in the bosonic fields.
From the zero-temperature action [40] one can obtain,
using the imaginary-time formalism, the finite-temperature
action,

TABLE I. Parameter set used for the polynomial Polyakov loop
potential (22).

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5
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SquadE ¼ 1

2

XZ
mp

fGσσðνm; p⃗ÞδσðpmÞδσð−pmÞ þ Gσ0σ0 ðνm; p⃗Þδσ0ðpmÞδσ0ð−pmÞ þGππðνm; p⃗Þδπ⃗ðpmÞ · δπ⃗ð−pmÞ

þ iGπaðνm; p⃗Þ½pμ
mδa⃗μð−pmÞ · δπ⃗ðpmÞ − pμ

mδa⃗μðpmÞ · δπ⃗ð−pmÞ� þGμν
vvðνm; p⃗Þδv⃗μðpmÞ · δv⃗νð−pmÞ

þ Gμν
aaðνm; p⃗Þδa⃗μðpmÞ · δa⃗νð−pmÞ þ Gμν;0

vv ðνm; p⃗Þδv0μðpmÞδv0νð−pmÞ þ Gμν;5
aa ðνm; p⃗Þδa0μðpmÞδa0νð−pmÞg; ð25Þ

with pm ≡ ðνm; p⃗Þ. The functions Gabðνm; p⃗Þ are given by
finite-temperature one-loop integrals arising from the
fermionic determinant in the bosonized action, and νm ¼
2mπT are the bosonic Matsubara frequencies. Once cross
terms have been eliminated, the resulting functions
GMðνm; p⃗Þ stand for the inverses of the effective thermal
meson propagators, in the imaginary-time formalism. The

functions Gρ;a1ðνm; p⃗Þ correspond to the transverse projec-
tions of the vector and axial-vector fields. Thus the masses
of the physical ρ0, ρ� (which are degenerate in the isospin
limit) and a1 (the transverse parts of the a⃗μ fields do not mix
with the pions) can be obtained by solving the equation
Gρ;a1ð0;−imρ;a1Þ ¼ 0, where

Gð ρa1Þðνm; p⃗Þ ¼
1

GV
− 8

XZ
cnq

h2ðqncÞ
zðqþncÞzðq−ncÞ
DðqþncÞDðq−ncÞ

�
q2nc
3

þ 2ðpm · qncÞ2
3p2

−
p2
m

4
�mðq−ncÞmðqþncÞ

	
; ð26Þ

with DðqncÞ ¼ q2nc þm2ðqncÞ and q�nc ¼ qnc � pm=2.
In the case of the pseudoscalar sector, from Eq. (25) it is seen that there is a mixing between the pion fields and the

longitudinal part of the axial-vector fields [48,49]. Therefore, after the elimination of the mixing term, the pion mass can
then be calculated from Gπ̃ð0;−imπÞ ¼ 0, where

Gπ̃ðp2
mÞ ¼ Gπðp2

mÞ −
G2

πaðp2
mÞ

L−ðp2
mÞ

p2
m; ð27Þ

with

Gπðp2
mÞ ¼

1

GS
− 8

XZ
cnq

gðqncÞ2
zðqþncÞzðq−ncÞ
DðqþncÞDðq−ncÞ

½ðqþnc · q−ncÞ þmðqþncÞmðq−ncÞ�;

Gπaðp2
mÞ ¼

8

p2
m

XZ
cnq

gðqncÞhðqncÞ
zðqþncÞzðq−ncÞ
DðqþncÞDðq−ncÞ

½ðqþnc · pmÞmðq−ncÞ − ðq−nc · pmÞmðqþncÞ�;

L−ðp2
mÞ ¼

1

GV
− 8

XZ
cnq

h2ðqncÞ
zðqþncÞzðq−ncÞ
DðqþncÞDðq−ncÞ

�
q2nc −

2ðpm · qncÞ2
p2
m

þ p2
m

4
−mðq−ncÞmðqþncÞ

	
: ð28Þ

B. Meson decay constants

The pion weak decay constant fπ is given by the matrix
elements of axial currents between the vacuum and the
physical one-pion states at the pion pole,

h0jJaAμð0Þjπ̃bðpÞi ¼ iδabfπðp2Þpμ: ð29Þ

On the other hand, the matrix elements of the electro-
magnetic current Jem between the neutral vector-meson state
and the vacuum determine the vector decay constant fρ [40],

h0jJemμð0ÞjρνðpÞi ¼ efρðp2Þðgμνp2 − pμpνÞ; ð30Þ

with p2 ¼ −m2
ρ, where e is the electron charge.

And finally, the axial-vector decay constant fa1 is
defined by the matrix elements of the electroweak charged
currents Jew between the axial-vector meson state and the
vacuum, at p2 ¼ −m2

a1 , as [23]

h0jJewμð0Þja1νðpÞi ¼ fa1ðp2Þðgμνp2 − pμpνÞ: ð31Þ
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In order to obtain these matrix elements within our
model, we have to gauge the effective action through the
introduction of gauge fields, and then we have to calculate
the functional derivatives of the bosonized action with
respect to the currents and the renormalized meson fields.
In addition, due to the nonlocality of the interaction, the
gauging procedure requires the introduction of gauge fields
not only through the usual covariant derivative in the
Euclidean action, but also through a transport function
that comes with the fermion fields in the nonlocal currents
(see e.g., Refs. [41,50,51]).
After a lengthy calculation, the decay constants at finite

T and μ, are given by

fπ ¼
mqZ

1=2
π

m2
π

�
F0ð0;−imπÞ þ

Gπaðp2
mÞ

L−ðp2
mÞ

F1ð0;−imπÞ
	
;

fρ ¼
Z1=2
ρ

3m2
ρ
½JðIÞV ð0;−imρÞ þ JðIIÞV ð0;−imρÞ�;

fa1 ¼
Z1=2
a1

3m2
a1

½JðIÞA ð0;−ima1Þ þ JðIIÞA ð0;−ima1Þ�; ð32Þ

where the meson wave-function renormalization can be
obtained from

Z−1
M ¼ dGMðp2

mÞ
dp2

m

����
p2
m¼−m2

M

: ð33Þ

The analytical expressions for F0, F1, JðI;IIÞV;A and the
thermal behavior of fπ , fv and fa can be found in Ref. [23].
In the absence of vector-meson fields, the mixing term

F1 in fπ vanishes, and the expression reduces to that quoted
in Ref. [52].

The resulting one-loop contributions are diagrammati-
cally schematized in Fig. 2. Tadpole-like diagrams, which
are not present in the local PNJL model, arise from the
occurrence of gauge fields.

C. Decay widths

In general, various transition amplitudes can be calcu-
lated by expanding the bosonized action to higher orders in
meson fluctuations. The decay amplitudesAρðρ → ππÞ and
Aa1ða1 → ρπÞ are obtained by calculating the correspond-
ing functional derivatives of the effective action.
For the vector sector, only the transverse piece contrib-

utes to ρ → ππ decay [40], while for the axial-vector sector
both the transverse and longitudinal parts contribute to the
a1 → ρπ decay [23].
In order to study the thermal dependence of these decay

widths, it is necessary to modify the two-body phase space
to include finite-temperature effects.
Following Refs. [53,54], the decay of a particle at rest of

mass M, into particles of masses m1 and m2 in equilibrium
with the heat bath, is given by

ΓM→m1m2
jp¼0 ¼

jAMj2
32πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ðm1 þm2Þ2
M2

��
1 −

ðm1 −m2Þ2
M2

�s
exp ½ 1

2T M�
cosh

h
1
2T M

i
− cosh

h
1
2T

ðm1−m2Þðm1þm2Þ
M

i ; ð34Þ

where AM is evaluated within the effective model.
For the decays ρ → ππ (M ¼ mρ, m1 ¼ m2 ¼ mπ) and a1 → ρπ (M ¼ ma1 , m1 ¼ mρ, m2 ¼ mπ) we have

jAρj2 ¼
m2

ρ

3

�
1 −

4m2
π

m2
ρ

�
g2ρππ;

jAa1 j2 ¼ 2g2aρπ þ
1

16m2
ρm2

a1

f2gaρπðm2
a1 −m2

π þm2
ρÞ þ faρπ½m4

a1 − 2m2
a1ðm2

ρ þm2
πÞ þ ðm2

ρ −m2
πÞ2�g2: ð35Þ

The factors gρππ , gaρπ and faρπ are one-loop functions that
arise from the expansion up to order three of the effective
action and, due to the π − a1 mixing, receive contributions

from the diagrams sketched inFig. 3. For the explicit formsof
these functions and the temperature dependence of the
widths, we refer the reader to Refs. [23,40].

FIG. 2. Diagrammatic representation of the contributions to the
weak decay constants. The cross represents the axial current
vertex. (a) Two-vertex diagram. (b) Tadpole-like contribution.
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IV. RESULTS

To determine the relation between the perturbative QCD
threshold s0 and the trace of the Polyakov loopΦ, we study
the finite-energy sum rules first at zero density, where chiral
restoration and deconfinement occur simultaneously. Then
we move on to finite values of the chemical potential,
where chiral symmetry is restored through a first-order
phase transition at a certain critical temperature whereas the
deconfinement transition occurs at a higher temperature.
Therefore, for large chemical potentials, the critical

temperatures for the restoration of the chiral symmetry
and deconfinement transition begin to separate. The
region between them denotes a phase where the chiral
symmetry is restored but quarks remain confined. This
splitting is strongly dependent on the functional form of the
Polyakov loop effective potential and also on the parameter
T0 entering in the PL potential [5]. If we consider for this
parameter an explicit dependence on μ [47,55,56], both
transitions are always simultaneous, and therefore there is
no such mixed phase.
It should be mentioned that the FESR program was

performed at one-loop order. In the thermal perturbative
QCD sector, only the leading one-loop contributions can be
taken into account, since the problem of the appearance of
two scales, i.e., the short-distance QCD scale and the
critical temperature, remains unsolved. However, at zero
temperature it is possible to extend the calculations up to
five-loop order. The estimations at one-loop and five-loop
order for s0, C4hÔ4i and C6hÔ6i differ considerably
[26,37,57] (even with changes in the sign of the coeffi-
cients). Therefore, only the thermal behavior of the con-
densates obtained through the higher-order FESR should be
taken into account.
The nlPNJL effective model includes six free parame-

ters, namely the current quark mass m and the coupling
constantsGS,GV ,G0,G5 and κp [see Eq. (14)]. In addition,
one has to determine the cutoffs Λ0 and Λ1 introduced in
the form factors (24).
Through a fit to lQCD results quoted in Ref. [58] for the

functions mðpÞ and zðpÞ, we obtain Λ0 ¼ 1092� 22 and
Λ1 ¼ 1173� 60 MeV. Furthermore, by requiring that the
model reproduces the value of zðp ¼ 0Þ and the empirical
values of three physical quantities, namely the masses of

the mesons π and ρ and the pion weak decay constant fπ ,
one can determine the model parameters quoted in Table II.
Regarding the vector coupling constants G0 and G5, in

the MFA only the former should be fixed [see Eq. (17)].
Therefore, we will follow the prescription used in Ref. [44],
parametrizing the isoscalar vector coupling as G0 ¼ ηGV .
Hence, the strength of the vector coupling can be evaluated
by considering different values for η.
The influence of the vector coupling increases with the

chemical potential. At zero density, ω̄ vanishes for all
temperatures and therefore the vector interactions do not
contribute to the mean-field thermodynamic potential.
Once the model parametrization is defined, one can

calculate several meson properties at finite temperature
and/or chemical potential. For the numerical results of
meson masses, decay constants, decay widths and other
observables we refer the reader to Ref. [23].
The inputs used in the FESR calculated within the

nlPNJL model are the masses, decay constants and decay
widths of the π, ρ and a1 mesons.

A. FESR program at zero density

At zero chemical potential, for the above set of param-
eters and for the polynomial Polyakov loop potential (22),
with T0 ¼ 210 MeV, we obtain through the corresponding
susceptibilities, almost the same chiral and deconfinement
critical temperatures Tc ¼ 202 MeV (less than 3% of
difference), as expected, since at μ ¼ 0 chiral restoration
and deconfinement take place simultaneously as crossover
phase transitions. This behavior was verified by lQCD
calculations [2], in nlPNJL models [5,17,18] and also
obtained by finite-energy sum rules [32].
Moreover, in Ref. [2], the deconfinement temperature

defined at the peak of the entropy of a static quark (which is
related to the Polyakov loop) was located at the same
temperature, within errors, as the chiral susceptibility even
at finite lattice spacing. In several works (see Ref. [2] and
references therein), the deconfinement transition in lQCD
with light dynamical quarks has been studied in terms of
the inflection point of the renormalized Polyakov loop and
fluctuations of conserved charges. Usually, these critical
deconfinement temperatures are equal or larger than the
restoring chiral transition critical temperature. In addition,
these approaches have the disadvantage of being lattice
scheme dependent and therefore the obtained values may
differ considerably between them.

TABLE II. Model parameter values.

Parameter Value

m [MeV] 2.256
GS [GeV2] 23.296
GV [GeV2] 20.049
κp [GeV] 4.265

FIG. 3. Diagrams contributing to ρ and a1 decays due to the
π − a1 mixing.
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Furthermore, as it was discussed in Refs. [59–61], the
strict comparison between our results and lattice data for
the traced Polyakov loop has to be taken with some care,
owing to the difference between the definitions of Φ in the
continuum and on the lattice.
From Eq. (5), for N ¼ 1 and μ ¼ 0, we obtain the first

FESR as a function of the temperature T,

0 ¼ 4π

Z
sA;V
0

ðTÞ

0

dsImΠA;Vðs; TÞjHAD

−
4

3
π2T2 −

Z
sA;V
0

ðTÞ

0

ds

�
1 − 2nF

� ffiffiffi
s

p
2T

�	
; ð36Þ

where nFðxÞ ¼ 1=ð1þ exÞ is the Fermi thermal function,
and the spectral functions ΠA;V jHAD are given by Eqs. (10)
and (13). The continuum threshold sA;V0 can be calculated,
as a function of the temperature, by solving this equation
with the corresponding spectral function.
In Fig. 4 we plot, as a function of the reduced temper-

ature T=Tc, the continuum threshold for the vector (axial)
channel by the solid (dashed) line, together with the trace of
the PL and the quark condensate normalized by its value at
T ¼ 0 by the dotted and dash-dotted lines, respectively.
In addition, for the dot-dashed line, we quote the

continuum threshold for the axial-vector channel in the
pion pole approximation sA;π0 ; its thermal behavior is
equivalent to that found in our previous work [27].
The FESR have solutions up to T ∼ 0.9Tc, a temperature

at which sA;V0 reaches its minimum. A short extrapolation,
denoted in the figure by the thin dotted line, should be
understood for all results in the sequel.
As we expected for both channels, the PQCD threshold

vanishes at the critical temperatures TV
c ¼ 202 MeV and

TA
c ¼ 208 MeV, located almost at the chiral critical tem-

perature Tch
c ¼ 202 MeV and the PL deconfinement tem-

perature TΦ
c ¼ 196 MeV.

From the figure one can see that the thermal behaviors of
sA0 ðTÞ and sV0 ðTÞ close to Tc are similar, even when the
hadronic spectral functions are very different in these two
cases. This result points to an approximate universality of
the deconfinement transition in light-quark systems.
The higher-order FESR, from where it is possible to

estimate the thermal dependence of the gluon and four-
quark condensates, can be analogously obtained from
Eq. (5) with N ¼ 2 and N ¼ 3. Both condensates show
the expected behavior with a finite value at zero temper-
ature, and they decrease monotonically as a function of the
temperature.
In order to avoid the mentioned discrepancies at T ¼ 0

due to different loop-order calculations, we plot in Fig. 5
the normalized C4hÔ4i as a function of the reduced
temperature for the axial and vector channels (dashed
and solid lines, respectively), where we have defined such
quantity as

ΔnC4hÔ4i ¼
C4hÔ4iðT=TcÞ − C4hÔ4ið1Þ
C4hÔ4ið0Þ − C4hÔ4ið1Þ

: ð37Þ

It can be seen from the figure that the thermal evolution
of the gluon condensate is quite similar in both channels (as
is expected), even when the spectral functions, Eqs. (10)
and (13), are completely different.
The thermal behavior of the meson masses directly

affects the decay widths, since the kinematic condition
in Eq. (34) tends to zero as T increases and therefore, even
when the phase space is increased due to the Bose
enhancement, the width decreases [23].
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FIG. 5. Normalized C4hÔ4i, Eq. (37), for the axial and vector
channels (solid and dashed lines, respectively) as a function
of T=Tc.
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(dashed line) channels as a function of T=Tc, with
Tc ¼ 202 MeV.
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For the process ρ → ππ, the decay width starts to drop
above the chiral critical temperature, since beyond this
temperature the π mass grows faster than the ρ mass.
For the a1 decay, the width begins to diminish before the

chiral critical temperature, vanishing close to Tc. This is
caused by the chiral partner mass degeneration. Near above
Tc, vector mesons have approximately the same mass.
The physical decay process is a1 → πππ; however in our

approach we are only considering the main channel of the
partial decay a1 → ρπ. Other partial widths contribute
approximately 40% of the total width [54]. These processes
(not considered here) will contribute to the total width and
could modify the decreasing behavior of the a1 width.
The consequence of this temperature dependence in Γa1

is a small increment in the value of sA0 (see Fig. 4). This
indicates that the unconsidered decay processes for the a1
could be relevant for temperatures close to the critical
temperature Tc.
Nevertheless, it should be noticed that although we are

just considering the a1 main decay channel, the general
thermal dependence of the continuum threshold sA0 ðTÞ is in
agreement with not only other QCD sum rules results at
one-loop order [57], but also with the behavior found in this
work for the vector channel.

B. FESR program at finite density

In general, one can find regions in the QCD phase
diagrams where chiral symmetry is either broken or
restored through a crossover or a first-order phase transition
and regions where the system remains either in confined or
deconfined states.
For relatively low densities, chiral restoration takes place

as a smooth crossover, whereas for high values of chemical
potential the order parameter has a discontinuity at a given
critical temperature Tμ

c signaling a first-order phase tran-
sition. This gap in the quark condensate induces also a
jump in the trace of the PL, and the PL susceptibility
exhibits a divergent behavior at the chiral critical temper-
ature. Therefore, as in Ref. [17], when the chiral phase
transition is first order, we define the deconfinement critical
temperature Tμ

Φ requiring that Φ ¼ 0.4, which could be
taken as large enough to denote deconfinement.
The value of Φ on both sides of the discontinuity

indicates, for a chiral-symmetric state, whether the system
remains confined or not. The region where the chiral
symmetry is restored but the quarks and gluons remain
confined, is usually referred to as the quarkyonic phase
[62–64].
If we move, in the T − μ plane, along the first-order

phase transition curve, the critical temperature rises from
zero up to a critical end-point (CEP) temperature TCEP,
while the critical chemical potential decreases from its
value at zero temperature μc to a critical end-point chemical
potential μCEP. Beyond this point, the chiral restoration
phase transition proceeds as a crossover.

To determine these temperatures and densities we need
to fix the value of the coefficient η in the definition of G0.
Here, as in Ref. [23], we choose η ¼ 0 and η ¼ 0.3 as
representative cases. The former leads to a mean-field
theory without vector interactions, and the latter provides
the best phenomenological agreement with other effective
models (see Ref. [44] and references therein).
In Fig. 6 we plot the phase diagram for a mean-field

theory with and without vector interactions. Specifically, in
the upper and lower panel we quote the reduced critical
temperatures as a function of the reduced chemical poten-
tial for η ¼ 0 and η ¼ 0.3, respectively.
In the crossover region the deconfinement temperatures

are determined with the PL susceptibility, whereas for μ >
μCEP they are obtained by requiring that 0.4 < Φ < 0.6
(shown by the dotted line and color shaded area,

FIG. 6. QCD phase diagrams for η ¼ 0 and η ¼ 0.3 in the upper
and lower panel, respectively [23], together with the ðμ; TÞ
coordinates and position of the CEP. The sA;V0 associated
deconfinement temperatures are represented by the patterned
areas.
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respectively). In addition, the chiral critical temperatures
are represented by the solid and dashed line, for the first-
order and crossover phase transition curves, respectively.
Finally, the dot indicates the position of the critical end
point. These phase diagrams were taken from Ref. [23].
At zero density the FESR have solutions up to 0.9Tc

where the continuum threshold reaches its minimum.
Therefore, to define the value of T where sA;V0 ¼ 0, it is
usual to perform a short extrapolation.
However, in the crossover region, when μ increases the

FESR equations have no solutions at lower temperatures
and consequently the extrapolation is no longer well
defined. This led us to set a range of critical temperatures
Tμ

sA;V
0

, for each value of μ, that increases as the density

grows.
In both panels of Fig. 6 this is shown by the patterned

areas. The critical temperatures within those bands, corre-
spond to a family of extrapolations of the obtained results,
for both channels, with similar χ2.
Despite this broadening, it can be seen that the density

dependence of Tμ

sA;V
0

is equivalent to that found for Tμ
Φ and

Tμ
c, showing that the continuum threshold and the traced

Polyakov loop provide analogous information about the
QCD deconfinement transition in a wide-range scenario.
On the other hand, for chemical potentials larger than

μCEP, the thermal dependence of the continuum threshold in
the available temperature range, does not allow to extrapo-
late the s0 curve beyond the last obtained value, usually
located at T ≳ Tμ

c (see Fig. 7).
In a finite-density scenario, when μ > μCEP, the two

transitions take places separately at different critical tem-
peratures, and therefore provide unique conditions to
identify the phenomenological equivalence between s0
and Φ as deconfinement order parameters.
In particular, we choose μ ¼ 320 and μ ¼ 350 MeV for

η ¼ 0 and η ¼ 0.3, respectively. Since for these values of
the chemical potential, the chiral and deconfinement critical
temperatures are separated by approximately 25–30 MeV.
In Table III we summarize, for these two scenarios, the

critical temperatures, critical chemical potentials and the
CEP coordinates.
In the upper and lower panels of Fig. 7 we plot the

continuum threshold for the vector and axial channels
(solid and dashed lines) for η ¼ 0 and η ¼ 0.3, respectively,
together with the trace of the PL and the normalized quark
condensate (dotted and dash-dotted lines, respectively).
As before, we also show the continuum threshold for the

axial-vector channel in the pion pole approximation sA;π0 as
a dot-dashed line.
In both situations, η ¼ 0 and η ¼ 0.3, we see that for

bigger densities than the critical end-point chemical poten-
tial, the thermal equation has no solution beyond the critical
temperature Tμ

c. The continuum threshold, for both chan-
nels, stops with a finite value at this temperature, signaling
that the system continues in a confined state.

As in the zero-density case sA0 has a slight increase before
decreasing, which is a consequence of the approximation
used for the a1 width decay.
Regarding the Polyakov loop, the value of Φ on both

sides of T=Tμ
c ¼ 1 indicates that the system, at this

TABLE III. CEP coordinates and critical temperatures and
densities for both cases of vector strength.

G0 0 0.3GV

TCEP [MeV] 173 162
μCEP [MeV] 209 268
Tc [MeV] 202 202
μc [MeV] 343 369

(μ ¼ 320) (μ ¼ 350)
Tμ
c [MeV] 102 108

Tμ
Φ [MeV] 136 134
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FIG. 7. Polyakov loop and normalized quark condensate
(dotted and dash-dotted lines, respectively) together with the
continuum threshold s0 for the vector and axial channels (solid
and dashed lines, respectively) for η ¼ 0 and η ¼ 0.3, in the
upper and lower panels, respectively.
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temperature, remains in a confined state, even when the
chiral symmetry has been restored.
In this way, we see that the Polyakov loop and the

continuum threshold provide the same information. When
the chiral symmetry is restored, s0 and Φ show that we are
still in a confined phase. This characterizes the occurrence
of a quarkyonic phase.

V. SUMMARY AND CONCLUSIONS

Throughout this article, as in our previous work [27], we
compared the behavior of two commonly used phenom-
enological order parameters for the deconfinement tran-
sition: the continuum threshold s0 and the trace of the
Polyakov loop Φ.
In Ref. [27] we studied the finite-energy sum rules for the

axial-vector current correlator saturating the spectral func-
tion with the pion pole approximation. Here, we have
extended that analysis in two complementary directions: we
improved the approximation for the axial spectral function
including the a1 resonance, and we considered the vector
current correlator assuming ρ-meson saturation for the
spectral function.
In this way, in terms of both the FESR formalism and the

nlPNJL model we have considered the best possible
phenomenological approach. Since there are no further
possible corrections to the spectral function or to the

effective model in the light-quark sector, our results seem
to be strong and conclusive.
The input parameters used in the FESR, namely the

masses, decay constants and decay widths for the π, ρ and
a1 mesons, were obtained from a SU(2) PNJL model with
nonlocal vector and axial-vector interactions [23].
At zero density, we determined that the continuum

threshold vanishes, for both channels, at approximately
the same temperature where the Polyakov susceptibility has
its maximum value.
At finite density, beyond the critical end-point chemical

potential, we found that for both deconfinement parame-
ters, the system remains in its confined phase even when the
chiral symmetry is restored.
Therefore, based on our previous study and the results

obtained here, we can conclude that both quantities,
s0ðT; μÞ and ΦðT; μÞ, provide the same kind of physical
information about the QCD deconfinement transition.
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