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The effects of a hot and magnetized medium on the axion mass, self-coupling, and topological
susceptibility are analyzed when in the presence of an anisotropic external magnetic field along the
z-direction, within the Nambu–Jona-Lasinio effective model for quantum chromodynamics. The effects
of both Magnetic Catalysis and Inverse Magnetic Catalysis are explicitly taken into account through
appropriate matching of parameters with those from lattice Monte Carlo numerical simulations. The
dependence of the results is also analyzed, with respect to different model parametrizations in the context of
the Nambu–Jona-Lasinio model.
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I. INTRODUCTION

The axion is a pseudo Nambu-Goldstone boson of a
spontaneously broken global Abelian symmetry [1]. The
axion is considered to be the most elegant and robust
solution to the absence of the charge and parity (CP)
violating effects (also dubbed the strong CP problem) in
quantum chromodynamics (QCD) [2,3]. It has also been
considered as a prime candidate for cold dark matter given
that they are very weakly coupled to baryonic matter in
general, besides possibly being extremely light (see, e.g.,
Ref. [4] for a recent review and references therein).
The importance of the QCD axion as a solution to the

strong CP problem and its potential in explaining the dark
matter abundance in the Universe makes it one of the most
sought out prospects beyond the particle physics Standard
Model. Recent studies also show that axions can thermalize
and form a Bose-Einstein condensate [5,6], which in turn
indicates the relevance of finite temperature extension of
the axion properties. On the other hand, the coupling of
QCD axions with an external electromagnetic field was first
exploited long ago in Ref. [7] to make the axion exper-
imentally detectable. Since then, various other experimen-
tal techniques involving the axion-photon coupling have
been proposed [8–10], and results of some such experi-
ments are also available [11,12].
Axions have also been associated with the anomalous

stellar cooling problem [13,14], including neutron stars

[15–17]. This is because axions could be produced in hot
astrophysical plasmas and, thus, could take part of the
energy transport in stellar objects. This is in particular a
motivation for studying the properties of the QCD axion
when in presence of an environment that accounts not only
thermal effects (which can also be of relevance to the
physics of these particles in the early Universe), but also
density (chemical potential) and external magnetic fields
(relevant also for the physics of compact stellar objects, like
neutron stars).
As a pseudo Goldstone boson, the QCD axion acquires

a mass, ma, from the QCD chiral symmetry breaking, and
this mass is typically of Oðmπfπ=faÞ [2], where mπ is the
pion mass, fπ is the pion decay constant, and fa is the axion
decay constant, which is proportional to the Peccei-Quinn
symmetry breaking scale. We can also define an effective
self-coupling, λa, to the axion field. Furthermore, there are
derivative couplings that can also be present in a system
involving axions. The axion mass and the couplings
(including the self-coupling) are all controlled by the scale
fa. Though exact determination of the value of fa is not yet
achievable, present astrophysical constraints suggest the
value for fa to be in between 108 GeV and 1018 GeV
[13,18,19]. This makes the couplings associated with axion
field extremely small, making it experimentally challenging
to be probed (see, e.g., Ref. [20] and references therein for
some of the experimental proposals looking for axions).
The extension of axion studies in relatively higher

temperatures can be done perturbatively, using, e.g., the
dilute instanton gas approximation [21]. But around and
below the pseudo critical temperature, Tc ∼ 170 MeV,
which is particularly important in relation to the chiral
symmetry breaking, there are no reliable perturbative
techniques. Nonperturbative methods making use of
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effective models come into play in this regime of study
along with the first principle calculations of Lattice QCD.
In this particular work, we have chosen to deal with one
such effective model, the Nambu–Jona-Lasinio (NJL)
model [22], to study the QCD axions in a hot and
magnetized medium (For a recent study of an axion within
a chiral effective Lagrangian model, see Ref [23].). Beside
its relevance to spontaneous CP violation [24–28], the
advantage of using a two-flavor NJL model to study a
system of axions is that being a quark model, it incorporates
the effects of axions via the effective (‘t Hooft determinant)
interaction [29,30]. As for the electromagnetic coupling
of the axions, for this work we will only consider an
anisotropic external magnetic field along the z-direction. In
the future we plan to extend the present study for other
general systems, where both electric and magnetic fields
can be present in the system. As an additional remark, since
the energy scales we are working with are much smaller
than the axion symmetry breaking scale fa, we can
consider the axion field to be in its (constant) vacuum
expectation value, so it behaves like a CP violating term
added to the QCD action. Thus, in this sense, our
derivations can be performed in a way similar to previous
studies [24–28].
This paper is organized as follows. In Sec. II we discuss

the formalism of the NJL model when incorporating the
axion field. We also explain the derivation of the thermo-
dynamic potential for the model in the cases without and
with an external anisotropic magnetic field. The way the
parameters are fixed is also discussed. In Sec. III we present
our results concerning the analysis of the effects of
temperature and magnetic field on the axion mass, coupling
constant, and also on the axion topological susceptibility,
which is an important observable derivable, for example,
from lattice QCD results. Finally, in Sec. IV we have our
conclusions.

II. FORMALISM

We start with a brief review of the QCD axion and how
its associated field is included in the NJL model quasi-
particle description of quark matter. Then, we will discuss
the incorporation of both temperature and an external
anisotropic magnetic field in the derivation of the thermo-
dynamic potential for the model. While parametrizing the
model, focus will also be given on the recently discovered
phenomena of Magnetic Catalysis (MC) [31] and Inverse
Magnetic Catalysis (IMC) [32,33] on the thermodynamic
potential when in the presence of a magnetized medium.

A. The axion contribution

The study of CP violation within strongly interacting
matter has been a subject of extensive scrutiny over the
years [24–28,34–37]. It is a well-known fact that within the
regime of strong interaction instanton contributions can

lead to CP violation [29,30]. In this kind of scenario,
where gauge field configurations have nontrivial topo-
logies, the QCD Lagrangian density generally contains
an extra θ-term,

Lθ ¼
θg2

32π2
FF̄ ; ð2:1Þ

where g is the coupling for the strong interaction, and F
and F̄ are the gluonic field strength tensor and its dual,
respectively. The real parameter θ defines the choice of
vacuum from infinite possibilities, and its value sub-
sequently dictates whether the corresponding theory is
CP symmetric or not. As can be seen straightforwardly
from Eq. (2.1), only for θ ¼ 0 (mod π), is the QCD
Lagrangian CP conserving. Again, various experimental
studies on pseudoscalar mass ratios [38], electrical dipole
moments [39–42], as well as Lattice QCD calculations
[43,44], conclude that the value of this real angular
parameter θ is very close to 0 in nature. A simple and
elegant way to explain why θ should be so small or null is
giving θ a dynamical character, elevating it to a field, the
axion, such as to have a vanishing vacuum expectation
value [1]. The axion field a is the canonically normalized
dynamical θ, θðxÞ ¼ aðxÞ=fa, where fa is the axion decay
constant. Its only nonderivative coupling is to the QCD
topological charge, and it is suppressed by the scale fa.
The interaction Lagrangian density in Eq. (2.1) can now be
written as

La ¼
g2

32π2
a
fa

FF̄ : ð2:2Þ

Equation (2.2) can be effectively represented as an inter-
action of the QCD axion field a with the quarks by
performing a chiral rotation [45] of the quark fields by
the angle a=fa, which yields [29,30]

La ¼ 8G2½ei
a
fa detðψRψLÞ þ e−i

a
fa detðψLψRÞ�; ð2:3Þ

where ψL and ψR are the left- and right-handed components
of the quark wave function ψ , and G2 is a coupling
constant.

B. Thermodynamic potential for the axion
background field within the NJL model

The effective Lagrangian density for the isospin sym-
metric two-flavor NJL model with the CP violating term is
given by

L ¼ ψ̄ðiγμ∂μ −m0Þψ þ Lq þ La; ð2:4Þ

where ψ depicts the fermionic (quark) fields and m0 is the
current quark mass. The fermionic interaction part of the
Lagrangian density is given by
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Lq ¼ G1½ðψ̄ψÞ2 þ ðψ̄τkiγ5ψÞ2�; ð2:5Þ

where τk, k ¼ 0, 1, 2, 3, represents the unit matrix (for
k ¼ 0) and the Pauli matrices (for k ¼ 1, 2, 3), andG1 is the
coupling constant associated with the fermionic interaction.
Lastly, the symmetry breaking ’t Hooft determinant inter-
action term La is given by Eq. (2.3). The axion contribution
Eq. (2.3) effectively breaks down the global Uð2ÞV sym-
metry into SUð2ÞV × Uð1ÞB. Often, in recent studies
involving flavor mixing within the NJL model and its
extensions, the couplings G1 and G2 are also taken to
be equal [24,45]. In the present work we choose G1 ¼
ð1 − cÞGs and G2 ¼ cGs, following Refs. [24,25,46],
which assumes the connection of both the coupling con-
stants with Gs, the standard scalar channel coupling
constant for the NJL model. The parameter c connecting
the two couplings determines the strength of the axion
interaction and we will discuss more about its value in
Sec. II D.
Next, for the derivation of the thermodynamic potential,

we use the usual mean-field approximation [22], where the
scalar and pseudoscalar fields are replaced by their corre-
sponding mean-field values, or condensates,

ψ̄ψ → hψ̄ψi ¼ σ; ð2:6Þ

ψ̄iγ5ψ → hψ̄iγ5ψi ¼ η; ð2:7Þ

with σ and η representing the chiral and pseudoscalar
condensates, respectively. Note that in the following we
will be considering only the isospin symmetric case; hence,
only hψ̄ψi and hψ̄iγ5ψi survive from Eq. (2.5). Usually, for
θ ¼ 0, or in the present case, for a ¼ 0, hψ̄iγ5ψi also
vanishes. Considering a nonvanishing hψ̄ iγ5ψi emphasizes
explicitly the fact that the axion field couples to the axial
current. Hence, in terms of σ and η, the thermodynamic
potential for the QCD axion within the NJL model,
following for instance Ref. [46], is given by

Ω ¼ Ωq þ G1ðη2 þ σ2Þ −G2ðη2 − σ2Þ cos a
fa

− 2G2ση sin
a
fa

; ð2:8Þ

where the quark contribution Ωq is given by [22,45]

Ωq ¼ −8Nc

Z
d3p
ð2πÞ3

�
Ep

2
þ T ln ð1þ e−Ep=TÞ

�
; ð2:9Þ

where Nc ¼ 3 is the number of colors, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 þ α0Þ2 þ β20

q
; ð2:10Þ

and α0 and β0 in the effective mass M, Eq. (2.10), can be
written in terms of the axion background field a and the
condensates σ and η as [46]

α0 ¼ −2
�
G1 þ G2 cos

a
fa

�
σ þ 2G2η sin

a
fa

; ð2:11Þ

β0 ¼ −2
�
G1 −G2 cos

a
fa

�
ηþ 2G2σ sin

a
fa

: ð2:12Þ

The momentum integral in Eq. (2.9) consists of a vacuum
part (the first term inside the argument of the integral) and a
medium part (the second term inside the argument of the
integral). The vacuum contribution is ultraviolet (UV)
divergent and usually taken care of by a sharp cutoff
regularization procedure, i.e., with a finite three-momen-
tum upper cutoff Λ. It can be checked in a straightforward
way that the vanishing axion field limit, i.e., setting a → 0
in Eq. (2.8), reproduces the usual NJL thermodynamic
potential [22].
From the thermodynamic potential Ω, Eq. (2.8), we can

now find the physical values for the condensates σ and η by
solving the appropriate gap equations,

∂Ωðσ; η; a
fa
Þ

∂σ
����
σ¼σ0
η¼η0

¼ 0;

∂Ωðσ; η; a
fa
Þ

∂η
����
σ¼σ0
η¼η0

¼ 0; ð2:13Þ

which also depend on the value of the axion background
field through the ratio a=fa. The effective thermodynamic
potential for the QCD axion in a hot medium and within the
NJL model is then given by

ΩTða; TÞ ¼ Ω½σ0ða; TÞ; η0ða; TÞ; a; T�: ð2:14Þ

Since in the present study the axion is treated as a
background field, the axion mass ma is simply defined
by the second derivative of the effective potential at a
vanishing axion field, i.e.,

m2
a ¼

d2ΩTða; TÞ
da2

����
a¼0

¼ χtop
f2a

; ð2:15Þ

where χtop is the topological susceptibility, which is
independent of the scale fa, as is evident from
Eq. (2.15). Similarly, the axion self-coupling λa is defined
as the fourth derivative of the effective potential at the
vanishing axion field limit,

λa ¼
d4ΩTða; TÞ

da4

����
a¼0

: ð2:16Þ
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C. Adding an external magnetic field

We now turn to the modification of the thermodynamic
potential when in the presence of an external magnetic
field. The effective Lagrangian density of the QCD axion
in the presence of an external electromagnetic (EM) field,
within the two-flavor NJL model and at leading order in
1=fa, can be written as

LEM ¼ ψ̄ðiγμDμ −m0Þψ þ Lq þ La

−
1

4
FμνFμν þ gγa

a
4
FμνF̃μν; ð2:17Þ

where Dμ ¼ ∂μ − iqAμ, q being the electric charge and Aμ

the EM gauge field. Fμν is the field strength tensor given by
Fμν ¼ ∂μAν − ∂νAμ and F̃μν is its dual. The axion-photon
coupling constant gγa appearing in the interaction term is
given by [47]

gγa ¼
αem
2π

E
N
; ð2:18Þ

where αem is the EM fine-structure constant and E=N is the
EM to color anomaly ratio (for example, with the value of
8=3 in light of the Grand Unification Theory (GUT) SUð5Þ
model [47]).
As mentioned in Sec. I, for our present study we consider

an external anisotropic magnetic field along the z-direction.
In this case, the axion-photon coupling term vanishes
(FμνF̃μν ∝ E:B → 0) and the effective Lagrangian density
simplifies to

LB ¼ ψ̄ðiγμDμ −m0Þψ þ Lq þ La −
1

4
FμνFμν: ð2:19Þ

In the presence of the anisotropic external magnetic field
along the z-direction, the transverse plane in the momen-
tum space gets quantized and the dispersion relation for the
quarks modifies to [48]

E0
pðBÞ ¼ ½M2 þ p2

z þ ð2nþ 1 − sÞqfB�1=2; ð2:20Þ

where n and s represent the Landau levels and the spin
states, respectively, and qf is the absolute charge of the
fermion with flavor1 f ≡ ud. Using 2l ¼ ð2nþ 1 − sÞ, the
above relation can also be written as

EpðBÞ ¼ ½M2 þ p2
z þ 2lqfB�1=2; ð2:21Þ

l being the redefined index for the Landau levels. As we
shall see, this reorganization of variables produces the
degeneracy factor ð2 − δl;0Þ in the expression, counting the

spin states for all except the lowest Landau level. Thus, by
incorporating the quantized transverse momenta, the three
momentum integral becomes

Z
d3p
ð2πÞ3 fðEpÞ →

qfB

2π

X∞
n¼0

Z
∞

−∞

dpz

2π
fðE0

pðBÞÞ

→
qfB

2π

X∞
l¼0

ð2 − δl;0Þ
Z

∞

−∞

dpz

2π
fðEpðBÞÞ:

ð2:22Þ

The quark part of the thermodynamic potentialΩq now gets
modified in the presence of the magnetic field and becomes

ΩqðB; TÞ ¼ −
Nc

π2
X
l;f

qfBð2 − δl;0Þ
Z

∞

−∞
dpz

�
EpðBÞ

2

þ T ln ½1þ e−EpðBÞ=T �
	
; ð2:23Þ

and the total thermodynamic potential for the present
system can be written as,

Ω ¼ ΩqðB; TÞ þG1ðη2 þ σ2Þ − G2ðη2 − σ2Þ cos a
fa

− 2G2ση sin
a
fa

: ð2:24Þ

It is important to note here that in the presence of the
external magnetic field, the condensates corresponding to
the u and d quarks are not the same anymore due to the
presence of the factor qf in ΩqðB; TÞ. Hence, in Eq. (2.24),
the new σ and η condensates are basically the average
with respect to the quark flavors, i.e., σ ¼ ðσu þ σdÞ=2
and η ¼ ðηu þ ηdÞ=2.
For convenience, the thermodynamic potential can also

be rearranged in three separate parts using the Magnetic
Field Independent Regularization (MFIR) procedure.
MFIR was proposed in [48–50] and has been recently
applied in several works [51–63]. Using this procedure the
thermodynamic potential becomes

ΩðB; TÞ ¼ ΩV þ ΩBðBÞ þ ΩMðT; BÞ; ð2:25Þ

where ΩV corresponds to the vacuum part, ΩBðBÞ a term
that carries the dependence on B only, and ΩMðT; BÞ is the
medium part which is dependent on both T and B. Each one
of these terms is given, respectively, as

ΩV ¼ G1ðη2 þ σ2Þ −G2ðη2 − σ2Þ cos a
fa

− 2G2ση sin
a
fa

− 4Nc

Z
Λ

d3p
ð2πÞ3 Ep; ð2:26Þ

1We would like to note here that usually in literature it is a
common practice to use jqfBj, where qf is expressed in terms of e
and it also carries the sign of the charge.
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ΩB ¼ −
Nc

2π2
X
f

ðqfBÞ2

×

�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ ln xf þ

x2f
4

�
; ð2:27Þ

ΩM ¼ −
Nc

2π2
X
l;f

ð2 − δl;0ÞqfB

×
Z

∞

−∞
dpzT ln ½1þ e−EpðBÞ=T �; ð2:28Þ

where xf¼M2=ð2qfBÞ andΛ is the finite three-momentum
cutoff introduced in Sec. II B. The first derivative of the
Hurwitz zeta function, ζ0ð−1; xfÞ, can be written in a
simplified form that helps to evaluate the derivatives
numerically without hassle. It is done by differentiating
and integrating the function with respect to xf, leading to

ζ0ð−1; xfÞ ¼ ζ0ð−1; 0Þ þ x2f
2
−
xf
2
½1þ lnð2πÞ� þ ψ ð−2ÞðxfÞ:

Hence, we get for ΩB the result

ΩB ¼ −
Nc

2π2
X
f

ðqfBÞ2
�
3x2f
4

−
xf
2
½1þ lnð2πÞ�

þ ψ ð−2ÞðxfÞ −
1

2
ðx2f − xfÞ ln xf

	
; ð2:29Þ

where ψ ðmÞðxfÞ represents the m-th polygamma function,
and the xf independent term ζ0ð−1; 0Þ has been neglected.
Subsequently, using Eq. (2.25) as the thermodynamic
potential for the case of axions in a hot and magnetized
medium within the NJL model, we can solve the gap
equations (2.13) to get the T and B dependent condensates
vis-à-vis effective potential and, hence, obtain the T and B
dependent axion mass, the axion self-coupling, and the
topological susceptibility from Eqs. (2.15) and (2.16).

D. Parametrization

Before getting the results from the thermodynamic
potential, we need to discuss the choice of parametrization
within the NJL model. The usual parameters for the two-
flavor NJL model have been introduced in Secs. II B
and II C. There are various parameter sets used in the
literature over the years to describe the system within the
NJL model. Prior to moving into the values of different
parameters used in the present study, we discuss here the
complexities of dealing with two interesting and recently
discovered phenomena in a hot and magnetized medium,
the MC and IMC phenomena. Earlier studies of such
medium effects using the NJL model have shown that
the spontaneous chiral symmetry breaking gets enhanced
when in the presence of a strong constant magnetic field

through the generation of a fermion dynamical mass
[31,64]. This phenomenon is commonly known as the
MC. The existence of the MC was further solidified by
many other effective model studies [26,65–67]. On the
other hand, different lattice QCD simulation results found
that even though the values of the light quark condensates
increase at temperatures distant from Tc, they decrease near
Tc [32,33]. This counterintuitive behavior was dubbed as
IMC. The dominance of sea contributions over the valence
contributions of the condensate around Tc is one of the
probable reasons [68] behind the IMC. After the recog-
nition of the presence of IMC through lattice QCD for
both chiral and deconfinement transitions [68,69], several
attempts have been made to understand it through different
effective QCD models [53,59,63,70–77]. At this point we
want to emphasize that in the present work we will be
discussing both the effects of MC and IMC and the way
of incorporating them in the axion thermodynamic poten-
tial, which is one of the novel features related to the
present work.
In the present study, to observe the parametrization

dependence of the various quantities evaluated in the
vanishing magnetic field limit, we have used three different
parameter sets, given in Table I. Using different parameter
sets will enable us to quantify the dependence of the results
on them.
For MC we have considered Set I from Refs. [53,59]

with a fixed value of the coupling constant Gs. To
incorporate IMC in the model we have also chosen the
procedure taken in Ref. [59], i.e., by keeping the other
parameters the same as in Set I and using a four-fermion
scalar coupling constant that is dependent on both the
temperature and magnetic field. This was proposed for the
case of the SUð2Þ NJL model in Ref. [59], such that

GsðeB; TÞ ¼ bðeBÞ
�
1 −

1

1þ eβðeBÞ½TaðeBÞ−T�

	
þ sðeBÞ;

ð2:30Þ

TABLE I. Different parameter sets are listed from different
references, which have been used in the present study.

Sets Input parameters Output parameters

I fπ ¼ 93 MeV Λ ¼ 650 MeV
Ref. [53,59] mπ ¼ 140 MeV Gs ¼ 2.122=Λ2

hψ̄ψi13 ¼ −250 MeV m0 ¼ 5.5 MeV

II fπ ¼ 92.6 MeV Λ ¼ 590 MeV
Ref. [24,46] mπ ¼ 140.2 MeV Gs ¼ 2.435=Λ2

hψ̄ψi13 ¼ −241.5 MeV m0 ¼ 6 MeV

III fπ ¼ 92.4 MeV Λ ¼ 664.3 MeV
Ref. [45] mπ ¼ 135 MeV Gs ¼ 2.06=Λ2

hψ̄ψi13 ¼ −250.8 MeV m0 ¼ 5 MeV
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where the aforementioned parameters b; β; Ta, and s (see
Table II) are obtained by fitting the lattice data for the
average of the quark condensates [33].
At this point we would also like to mention that the

scarcity of lattice data at lower values of temperature
eventually requires this procedure to be performed with
the fitting at T > 110 MeV and to extrapolate through
the region of lower temperatures, which can give rise to
ambiguities over the value of the coupling constant
GsðeB; T ¼ 0Þ. This dilemma can be avoided all together
following, e.g., the procedure explained in Ref. [58], where
the authors have generated a coupling constant G0ðeBÞ for
T ¼ 0, as a good fit to the lattice simulations using selected
values of eB from 0 to 1 GeV2, given as

G0ðeBÞ ¼ αþ βe−γðeBÞ2 ; ð2:31Þ

with values of α, β, and γ given, respectively, as
1.44373 GeV−2, 3.06 GeV−2, and 1.31 GeV−4. Using this
magnetic field dependent coupling G0ðeBÞ in our present
study,2 we will separately show the behavior of the
magnetic field dependence of the topological susceptibility
χtop at T ¼ 0.
Finally, for the choice of the parameter c introduced in

Sec. II B that controls the strength of axion interaction,
there have been many discussions in the past. Comparing
with the three-flavor NJL model parameters [24] one gets
the value of c to be around 0.2. On the other hand,
successful models, like the instanton liquid model, suggest
c ∼ 1, thereby indicating La as the dominant part of the
Lagrangian density. In the present work most of our results
consider c ¼ 0.2 following the Refs. [25,46], though we
have also shown a case comparison for the topological
susceptibility with two different values of c, i.e., c ¼ 0.2
and c ¼ 0.8, which can be considered as representative
cases when comparing the results. Furthermore, choosing
the vacuum expectation value (VEV) of the scaled axion
field a=fa ¼ π as an illustration, we have done a systematic
analysis of the minimum value of c (which we call as cmin),
i.e., the value of c after which the condensates σ and η

becomes nonvanishing, hence, signalling the chiral and
spontaneous CP symmetry violating phases, respectively.
In Fig. 1, we have shown the T − cmin phase diagram for
different values of the external magnetic field and with
different parametrizations. From this phase diagram we can
clearly identify the three different phases appearing in the
T − cmin plane due to second order CP phase transition and
the chiral crossover. So in the bottom right part of Fig. 1,
i.e., σ ≠ 0, η ≠ 0 represents both the chiral and the
spontaneous CP symmetry violating phase; in the bottom
left part, i.e., σ ≠ 0, η ¼ 0 stands for the phase where chiral
symmetry is still violated but spontaneous CP symmetry is
restored; and finally in the top part, i.e., σ ≈ 0 shows the
almost chiral symmetric phase (chiral symmetry is not fully
restored due to the nonvanishing quark masses). Figure 1
also shows that for each case corresponding to different
values of eB and parametrization, after certain values of
higher temperatures (dependent on eB and parametrization)
the spontaneous CP violating phase vanishes. These
behaviors will be more transparent through the discussions
of the next section. The results shown in Fig. 1 are also
consistent with the ones shown, for example, in Ref [25],
for the values of current quark masses considered in our
present work (i.e., given by Sets I, II, and III). Finally, all of
the cases shown in Fig. 1 suggest that the chosen value of
c ¼ 0.2 is well within the viable regime.

III. RESULTS AND DISCUSSIONS

In this section we will present our results for the different
quantities associated with the thermodynamics of the QCD
axion in a hot and magnetized medium within the NJL
model. Firstly, we will revisit the case with a vanishing
magnetic field [46] and discuss some relevant points related
to these results. Next, we will move into the scenario with
an external anisotropic magnetic field. Then, we will deal
with the two different procedures, both related to the NJL
model. First we will be working with a fixed coupling
constantGs, which accounts for only MC. Then, finally, we
will also incorporate the IMC effect in our results using the
effective B and T dependent coupling constant GsðeB; TÞ,
defined in the previous section, and discuss the effects of
both MC and IMC on the axionic QCD system.

A. The eB= 0 case

The case of a vanishing magnetic field has recently been
studied with a different parametrization in Ref. [46]. In the
current study we will present some different aspects along
with some of the quantities already evaluated in Ref. [46],
for the purposes of comparing between different para-
metrizations. This will be particularly useful as a way of
quantifying the differences that different parametrizations
can make on the results.
In Fig. 2 we have shown the variation of the physical

condensates σ and η with the axion field a scaled with fa

TABLE II. Values of different fitting parameters used in
Eq. (2.30).

eB (GeV) b (GeV) Ta (GeV) s (GeV) β (GeV)

0.0 0.9 0.168 3.731 40.0
0.2 1.226 0.168 3.262 34.117
0.4 1.769 0.169 2.294 22.988

2We would like to note here that G0ðeB ¼ 0Þ comes out to be
4.50373 GeV−2, which is different from the value of Gs shown in
the parameter Set I. This discrepancy slightly affects the values of
the other parameters, e.g., fπ becomes 91.22 MeV instead of
93 MeV. For our results using G0ðeBÞ, we have neglected these
changes.

BANDYOPADHYAY, FARIAS, LOPES, and RAMOS PHYS. REV. D 100, 076021 (2019)

076021-6



for both T ¼ 0 and T ¼ 180 MeV. The sinusoidal behavior
can be attributed to the sinða=faÞ and cosða=faÞ functions
present in the effective mass M, appearing explicitly in the
defined quantities in Eqs. (2.10)–(2.12). It is evident from
Fig. 2 that the behaviors of σ and η differ whether the
results are obtained for T ¼ 0 or for T ≠ 0. As one can note
from Fig. 2(b), at T ¼ 0 η displays discontinuities for
a=fa ¼ ð2jþ 1Þπ, for j ¼ 0; 1; 2;…, whereas for a=fa ¼
2jπ it vanishes. This result agrees with the Dashen’s
phenomena [78], which predicts the existence of two
degenerate vacua at T ¼ 0 and a=fa ¼ ð2jþ 1Þπ due to
spontaneous CP symmetry violation.3 Different signs
of the two vacua indicate that they differ by a CP

transformation between them. But Dashen’s phenomena
starts to break down with the increase in temperature. After
a certain critical temperature Tc, the spontaneous CP
symmetry is restored, and from the CP violating phase
(η ≠ 0, σ ≠ 0), it returns to the phase of the ordinary chiral
condensate (η ¼ 0, σ ≠ 0). This value of Tc depends on the
external magnetic field and parametrization. In fact, it can be
realized from the phase diagram shown in Fig. 1; also, e.g.,
the solid curve in Fig. 1(a) confirms the fact that for eB ¼ 0
and using the parameters from the Set I case, the sponta-
neous CP violating phase has already disappeared before
T ¼ 180 MeV. This is evident from Fig. 2(b), looking at
the dashed curve at T ¼ 180 MeV, where now we have
only one vacuum. On the other hand σ attains its minimum
value for a=fa ¼ 2jπ and reaches the maximum value for
a=fa ¼ ð2jþ 1Þπ for both T ¼ 0 and T ≠ 0.
In Fig. 3 we have shown the comparison between three

different sets of parametrizations listed in Table I for the
variations of the temperature dependent axion mass maðTÞ
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FIG. 1. The T − cmin phase diagram, shown for three different values of external magnetic fields with the different parametrizations
considered in this work. For these plots, we have considered the VEV of a=fa set as hai=fa ¼ π.

3Vafa-Witten theorem [79] dictates that for a=fa ¼ 2jπ the
Lagrangian density is both explicitly and spontaneously CP
conserving. But for a=fa ¼ ð2jþ 1Þπ, though the Lagrangian
density is explicitlyCP symmetric, no restrictions are imposed on
the spontaneous CP symmetry breaking.
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and the temperature dependent axion self-coupling λaðTÞ,
scaled with their respective zero temperature values. One
notices that after the value of T ≃ 0.1 GeV, the different
parametrizations start to deviate from each other. For both
the case of the axion mass and the axion self-coupling, a
relatively rapid decrease is noticed around the chiral
(pseudo critical) transition temperature Tc, while for the
self-coupling a kinklike feature appears in this region.
In Fig. 4 we show the results for the topological

susceptibility χtopðTÞ, for which we also have available
the lattice QCD results [80] at zero magnetic field. We have
displayed the variation of χtop with respect to the temper-
ature for the three different parametrization sets previously
mentioned and compared them all with the available lattice
QCD results. As one can see from Fig. 4(a), the parameter
sets I and III given in the Table I look more compatible with
the lattice data. In these cases, we can also see that χtopðTÞ
has decreased substantially around Tc. This is a behavior

matched by the corresponding lattice QCD data. In
Fig. 4(b), we have plotted χtopðTÞ in the case of choosing
two different values of the constant c, corresponding to two
different strengths of the axion interaction. When the
strength of the axion interaction is weaker, like in the case
where c ¼ 0.2, the topological susceptibility is dragged
down a little bit more at higher T than in the higher strength
case of c ¼ 0.8.

B. The case of finite magnetic field, eB ≠ 0,
but fixed coupling constant Gs

In this subsection we work with the same parametriza-
tion used for the eB ¼ 0 case, i.e., with a fixed coupling
constant Gs ¼ 5.022 GeV−2. As discussed earlier, with the
fixed coupling constant we only consider the effects of
magnetic catalysis in this case. Later we will also consider
the more physical scenario, which accounts for the inverse
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FIG. 2. (a) Variation of σ with respect to a=fa for two different
values of T and a vanishing magnetic field. (b) Same variation
done for η. The curves are obtained using the parameters from Set
I shown in Table I.
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FIG. 3. (a) Comparison between the variation of the axion
mass ratio maðTÞ=ma with respect to T for a vanishing
magnetic field with three different sets of parametrizations
(see Table I). (b) Same comparison done for the axion self-
coupling ratio λaðTÞ=λa.
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magnetic catalysis effect that appears around the pseudo
critical temperature.
In Fig. 5, the variation of the scaled axionic part of

the effective thermodynamic potential is shown with the
scaled axion background field a=fa for three different
values of the external magnetic field, namely, eB ¼ 0,
0.2 GeV2, and 0.4 GeV2, respectively. The aforemen-
tioned variation is shown for two different temperatures
in the two panels shown in Fig. 5. It is apparent from these
results that for both T ¼ 0 and T ¼ 180 MeV, with the
increasing magnetic field the value of the effective
thermodynamic potential gets increased, which effectively
also follows a valley-hill-like structure. This behavior can
be traced again due to the presence of the terms sinða=faÞ

and cosða=faÞ in the effective massM. It is also noticeable
that with increasing temperature, the thermal effects start
to melt down the amplitude of the axionic part of the
thermodynamic potential, which is visible most promi-
nently when we compare the case of eB ¼ 0 in Fig. 5(a)
and Fig. 5(b).
In Fig. 6 we show the effects of the temperature and

magnetic field on the effective dynamical mass MðT; BÞ,
which in turn depends on the physical condensates σðT; BÞ
and ηðT; BÞ. The effect of MC is clearly evident from the
results displayed in the figure: by increasing the magnetic
field magnitude eB, the effective mass increases throughout
the temperature range T ¼ 0–250 MeV. The effect of the
axion field is also noticeable comparing the two plots in
Fig. 6, as we see that the effective dynamical massMðT; BÞ
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FIG. 4. (a) Comparison between the variation of the topological
susceptibility χtop with respect to T and for a vanishing magnetic
field with three different parametrizations (see Table I) along with
the lattice QCD results from [80]. (b) Comparison of χtop with
respect to T with two different values for the constant c, i.e., two
different strengths of the axion interactions along with the lattice
QCD results. In this case it uses the parameters from Set I shown
in Table I.
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FIG. 5. Variation of the scaled axion contribution of the
effective thermodynamic potential Ω − Ωða ¼ 0Þ with the scaled
axion field a=fa for three different values of the external
magnetic field. The curves are obtained using the parameters
from Set I shown in Table I for the magnetized medium and for
two different values of temperature, i.e., for T ¼ 0 (a) and for
T ¼ 180 MeV (b).
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gets slightly decreased with a finite value of the scaled
axion field.
In Fig. 7 the temperature effects are shown for the axion

mass and for the self-coupling, both scaled with their
respective zero temperature values, for three different
values for the external magnetic field. For both of the
cases shown in the figure, the magnetic catalysis effects are
visible around the inflection point close to Tc. We can see
the inflection points shifting towards higher values of T for
higher values of eB, a clear sign of MC. Similar behavior of
MC is obtained in Fig. 7(c), where it shows the topological
susceptibility as a function of the temperature. The MC
effect is visible throughout the temperature range. We can
notice that the value of χ1=4top at zero temperature goes up to
∼0.0865 GeV for the highest value of eB considered,
eB ¼ 0.4 GeV2 ∼ 20m2

π .
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FIG. 6. Variation of the constituent quark mass M with T for
three different values of the magnetic field. The plots are done
with the parameters from Set I given in the Table I and for two
different values of the scaled axion field, i.e., for a=fa ¼ 0 and
for a=fa ¼ 2π=3.
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FIG. 7. Panel (a): Variation of the axion mass ratio maðTÞ=ma
with respect to T for three different values for the external
magnetic field. Panel (b): Same variation done for the axion self-
coupling ratio λaðTÞ=λa. Panel (c): Likewise for the topological
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Set I shown in the Table I.
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C. The case considering a temperature and magnetic
field dependent coupling GsðeB;TÞ constrained

by lattice QCD

Finally, let us here explore the more physical scenario
involving the effect of inverse magnetic catalysis around
the transition temperature, originally predicted by lattice
QCD for a hot and magnetized medium. As mentioned
previously, for the purposes of incorporating IMC in the
ambit of the NJL model, in this subsection we have used a
temperature and magnetic field dependent coupling con-
stant GsðeB; TÞ.
In Fig. 8 we have again plotted the scaled axion

dependent part of the thermodynamic potential varying
with respect to the scaled axion field. In this figure, we have
used the fully temperature and magnetic field dependent
coupling constant GsðeB; TÞ, given by Eq. (2.30). The
main qualitative and quantitative difference in this case

with respect to that shown in the previous Fig. 5 can be
noticed in Fig. 8, where the effect of IMC is evident
throughout the whole range of the axion background field.
For the case of T ¼ 180 MeV, i.e., T ∼ Tc, we can see that
with the increasing magnetic field the amplitude of the
thermodynamic potential gets decreased. For this case, the
overall value of the scaled thermodynamic potential also
becomes very low because of the low value of GsðeB; TÞ at
higher temperatures. The strong dependence on the way the
coupling constant is parametrized is evident comparing
Fig. 5 with Fig. 8.
In Fig. 9 we show the variation of the effective

constituent quark mass M with respect to T and using
the explicitly dependent on B and T coupling constant
GsðeB; TÞ. It clearly explores the full spectrum of hot
magnetized medium showing both the MC and IMC
effects for both vanishing and finite axion field. At zero
to lower temperatures it shows the catalysis effect as
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FIG. 8. Same as in Fig. 5, but considering now the effect of a eB
and T dependent coupling constant GsðeB; TÞ for two different
temperatures: Panel (a) T ¼ 0, and panel (b) T ¼ 180 MeV.
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dependent coupling constant GsðeB; TÞ for two different values
of the scaled axion field, i.e., a=fa ¼ 0 and a=fa ¼ 2π=3.
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higher eB values correspond to a higher effective mass.
But at the higher temperatures, it goes through a crossover,
and around Tc the behavior is completely opposite,

emphasizing the occurrence of the inverse magnetic cataly-
sis in that regime.
In Fig. 10 we have shown the variation of the scaled

axion mass, self-coupling, and topological susceptibility
with T for the fully magnetic field and temperature
dependent coupling constant GsðeB; TÞ. The MC effect
at the lower temperature is not visible in Figs. 10(a)
and 10(b) because of the scaling used, but for both of
these cases the IMC is clearly noticeable around Tc: The
inflection points, indicating the pseudo critical temperature
location, are shifted towards a lower temperature with
increasing magnetic fields. The kinklike feature in the
position of the pseudo critical temperature location appear-
ing in the axion self-coupling plot shows a similar behavior.
In Fig. 10(c) the topological susceptibility is also shown in
view of the fully B and T dependent coupling constant
GsðeB; TÞ, which again shows both the MC and the IMC
effects in different temperature regimes with a crossover
happening in between. The quantitative difference between
the zero temperature values of χtop shown in Fig. 7(c)
and Fig. 10(c) is solely due to the difference in the coupling
constant Gs parametrization, i.e., the difference between
the extrapolation of lattice fitted GsðeB; TÞjT;eB¼0 ¼
4.6311 GeV−2 with the fixed Gs ¼ 5.022 GeV−2 case
shown in Fig. 7(c).
Finally, as mentioned in Sec. II D, at T ¼ 0 we can now

predict the behavior of the magnetic field dependence of
the topological susceptibility χtop using the magnetic field
dependent coupling G0ðeBÞ. This is explicitly shown in
Fig. 11, where the variation for both G0ðeBÞ and when
taking a fixed coupling constant, puttingB ¼ 0 in Eq. (2.31),
i.e., G0ðeB ¼ 0Þ ¼ 4.50373 GeV−2, are considered.
As a central theme of our present work, let us discuss the

effect of the spontaneous CP violation observed in our
results.
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FIG. 10. Same as in Fig. 7 but considering the fully eB and T
dependent coupling constant GsðeB; TÞ for the axion mass ratio
maðTÞ=ma, panel (a), the axion self-coupling ratio λaðTÞ=λa,
panel (b), and for the topological susceptibility, panel (c).
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In Fig. 12, we have shown the variations for both the σ and
η condensates with respect to the temperature and for
three different values of the external magnetic field. As a
consequence of our discussions and results up to this point,
we have only considered the running coupling GsðeB; TÞ
when getting these results. Also, for illustration purposes,
we have chosen two specific values for a=fa, i.e., 0 and π,
which we believe should suffice for our discussion. The
result shown in Fig. 12(a) illustrates that there is no CP
violation happening at a=fa ¼ 0, irrespective of the
increasing temperature and external magnetic field. This
result is compatible with the well known Vafa-Witten
theorem [79]. Now, the results displayed in Fig. 12(b)
clearly show the CP violating η ≠ 0 phase for a=fa ¼ π in
the lower temperature region. The external magnetic field
dependence of the critical temperature TcðeBÞ is also quite
visible from Fig. 12(b), which gradually decreases with
increasing eB (in agreement with the IMC phenomena).
This result helps to show both the spontaneous CP
symmetry breaking at T ¼ 0, i.e., Dashen’s phenomena,
and the gradual restoration of the same at T ¼ TcðeBÞ.

Then, in Figs. 12(c) and 12(d), we show similar variations
for the chiral condensate. They mimic the nature of the
constituent quark mass shown in Fig. 9(a). As a summary
of the possible phases involved in our work, we can say that
for a=fa ¼ 2jπ we have only the chiral symmetry breaking
phase, i.e., σ ≠ 0 and η ¼ 0, which becomes restored at a
temperature T > 0.2 GeV, i.e., leading to σ ¼ η ¼ 0. But
for a=fa ¼ ð2jþ 1Þπ, apart from the chiral phase transition
(a crossover), we have another second order phase tran-
sition at a magnetic field dependent critical temperature
TcðeBÞ, when the spontaneous CP violating phase gets
restored. For a=fa ¼ π, these three phases have explicitly
been shown in the T − cmin plane in Fig. 1.

IV. CONCLUSION

In conclusion, we would like to convey that in the
present work we have studied, for the first time as far as it is
to our knowledge, the thermodynamics of QCD axions
within the NJL model in a hot and magnetized medium
by explicitly emphasizing the effects of two of the most
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FIG. 12. The temperature dependence for the condensates η and σ for three different values of external magnetic fields withGsðeB; TÞ.
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appealing phenomena in this context, i.e., the magnetic
catalysis and the inverse magnetic catalysis effects. In the
process, we have studied the different behaviors shown by
the condensates for two different values of the scaled axion
field, i.e., a=fa ¼ 0 and π, consistent with the well known
Vafa-Witten theorem and Dashen’s phenomena, respec-
tively, leading to a discussion about the occurrence of
different possible phases. Furthermore we have investigated
the effect of the temperature and the external magnetic field
explicitly on the measure of the spontaneous CP violation,
thereby showing the magnetic field dependence of the
critical temperature for the spontaneous CP symmetry
restoration. Choosing the VEV of the axion field as a
CP violating term in the QCD action our results extend the
previous results in the context of strong CP violation
[24–28] by incorporating Inverse Magnetic Catalysis
effects in the medium using a thermomagnetic field
dependent coupling constant GsðeB; TÞ. On top of that,
the axion mass, self-coupling, and topological susceptibil-
ity have their own significance regarding the study of cold
dark matter, axion stars, the cooling anomaly problem in
astrophysics, etc., and we have explored the effects of

temperature and an external magnetic field on these
quantities. Finally throughout this present work, we have
also explored the importance of evaluating the differences
in the results when different parametrizations are consid-
ered in the context of an effective model for QCD. In this
work, we have explicitly made the study in the context
of the two-flavor NJL model applied to the QCD axion
thermodynamics. These results thereby strengthen the
claim of a strong dependence on parametrization within
the NJL model.
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