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The mass spectra, mixing angle, and decay constants of the JP ¼ 1þ heavy-light mesons are
systematically studied within the framework of the Bethe-Salpeter equation (BSE). The full 1þ Salpeter
wave function is given for the first time. The mixing between the 1þ− and 1þþ in the 1þ heavy-light
systems are automatically determined by the dynamics in the equation without any man-made mixing. The
results indicate that in a rigorous study there exists the phenomenon of mixing angle inversion or mass
inversion within 1þ heavy-light doublet, which is sensitive to the s-quark mass for the charmed mesons and
u- or d-quark masses for the bottomed mesons. This inversion phenomenon can answer the question of why
we have confused mixing angles in the literature and partly explain the lower mass ofDs1ð2460Þ compared
to that of Ds1ð2536Þ. The decay constants are also presented and can behave as a good quantity to
distinguish the 1þ doublet in heavy-light mesons. This study indicates that the light-quark mass may play
an important role in deciding the mass order, mixing angle, and decay constant relation between the jjl ¼ 3

2
i

and jjl ¼ 1
2
i heavy-light mesons.
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I. INTRODUCTION

Generally, all the physical mesons have definite JP spin
parity or JPC for quarkonia. The spin S and orbital angular
momentum L are no longer the good quantum numbers in
the relativistic situations, and usually the physical states are
not located in the definite 2Sþ1LJ states. These situations
become obvious in the 1þ and 1− mesons; for the 1− states,
the 23S1-13D1 mixing is needed to fit the experimental
measurements for both quarknia [1,2] and heavy-light
mesons [3–9], while for the 1þ states, we always have
to make the 1P1-3P1 mixing fit the physical states [10–12].
So, to describe the bound states more effectively and
appropriately, one should focus on the JPðCÞ, which are

always the good quantum numbers. In the previous
literature, the unnatural parity 1þ heavy-light mesons were
usually studied by two methods: one is the heavy-quark
effective theory [11,12], and another makes a man-made
mixing between the 1P1 and 3P1 states. For the former one,
which works in the approximation mQ → þ∞, it does not
hold well when the light-quark mass is comparable with the
heavy quark, such as in the (cs̄) and (bc̄) systems. While for
the latter one, the mixing angle is always difficult to decide
and usually treated as a free parameter. Neither of the two
methods to deal with the unnatural parity states is
satisfactory.
On the other hand, the mass relation between the two 1þ

states is also a problem. The mass of the broad
state D1ð2430Þ is little heavier than that of the narrow
state D1ð2420Þ, while compared with the narrow state
Ds1ð2536Þ, the broad state Ds1ð2460Þ has a much lower
mass. In the relativized Godfrey-Isgur (GI) model [13], the
mass of the 1þ (cs̄) doublet are predicted to be 2.55 and
2.56 GeV [12,14], which correspond to the experimental
Ds1ð2535Þ and Ds1ð2460Þ respectively in the traditional
quark model. This is the famous low-mass puzzle, which
means the mass ofDs1ð2460Þ is much lower than the quark
model predictions [13–16]. A more detailed review on this
low-mass puzzle can be found in Ref. [17]. The coupled
channel effects (CCEs) [18,19] have been used to answer
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the low-mass question of Ds1ð2460Þ. But we want to
explore what the mass relation would be between the
two heavy-light 1þ states, when the CCEs can be ignored or
only make small contribution. A long time ago, Schnitzer
first noted that, according to the spin-orbit interaction
between quarks, there may be inverted mass relations
between j 1

2
i and j 3

2
i multiplets [20,21]; this is not right

for the 0þ and 2þ states, but we want to know if this would
happen to the two 1þ states.
In fact, from the view of experiments, the 1þ heavy-light

mesons have not been well established [22]. In Table I, the
current known mesons with JP ¼ 1þ are listed. In the
nonrelativistic description, the JP ¼ 1þ doublet is gener-
ally considered as the mixtures of the 1P1 and 3P1 states,

� jPli
jPhi

�
¼RðθÞ

�j1P1i
j3P1i

�
¼
�
cosθ sinθ

−sinθ cosθ

��j1P1i
j3P1i

�
; ð1Þ

where jPli and jPhi denote the lower- and higher-mass
states, respectively; RðθÞ is the defined mixing matrix with
angle θ; and 1P1 and 3P1 correspond to the JPC ¼ 1þ− and
1þþ, respectively. For neutral charmed mesons D1ð2420Þ
and D1ð2430Þ, the mixing angle θðD1Þ ≃ 35.3° [10] is
determined in the heavy-quark limit. In the traditional
quark models, the analogy 1þ charm-strange doublet is also
considered as the mixtures of 1P1 and 3P1 states. However,
in order to fit the experimental data, this time, one has to
use the mixing angle θðDs1Þ ¼ −54.7° [2,8,23]. The differ-
ent choices of mixing angles in charm and charm-strange
systems caused ambiguities in the previous literature. In
this work, we will try to show and explain the different
choices by the full 1þ Salpeter wave functions. In the
bottomed systems, the 1þ states B1ð5721Þ0, B1ð5721Þþ,
and Bs1ð5830Þ0 are discovered in experiments, while their

orthogonal partners and the two 1þ Bð0Þ
c1 states are still

missing [22]. We will also explore the mixing angle and
mass spectra and especially discuss whether the mixing
angle inversions exist in the JP ¼ 1þ bottomed systems.

The decay constant is another physical quantity in which
we are interested and appears in many weakly decaying
processes and is quite important in extracting some
fundamental quantities, such as the Cabibbo-Kobayashi-
Maskawa matrix elements. Also, under the factorization
assumption [24–26], the decay constants play a key role in
calculating the nonleptonic decays. So, besides the mixing
angle and mass spectra, we will also calculate the decay
constants of the 1þ heavy-light mesons, which could
behave as a cross-check on our analysis.
In this work, we will directly construct the Salpeter wave

function for JP ¼ 1þ states without using any man-made
mixing angle. By solving the corresponding Salpeter wave
functions, we could naturally obtain the mixing angle of the
1þ heavy-light mesons. This work is studied within the
framework of the instantaneous Bethe-Salpeter (BS) meth-
ods [27,28], which have been widely used and have
achieved good performance in the strong decays of heavy
mesons [29–31], hadronic transition [32–34], decay con-
stants calculations, and annihilation rates [35–37]. This
manuscript is organized as follows. In Sec. II, first, we
construct the BS wave function of the 1þ states and then
calculate the mixing angle and decay constants. In Sec. III,
we present the numerical results and discussions of the
mixing angle and decay constants. Finally, we give a short
summary of this work.

II. THEORETIC CALCULATIONS

In this section, first, we give a brief review of the
instantaneous BS methods; then, we present the formalism
of mixing angle and decay constants together with BS wave
function of JP ¼ 1þ states.

A. Brief review on the instantaneous BS methods

The Bethe-Salpeter equation of the meson in momentum
space reads [27]

ΓðP; qÞ ¼
Z

d4k
ð2πÞ4 iKðk − qÞ½Sðk1ÞΓðP; kÞSð−k2Þ�; ð2Þ

where ΓðP; qÞ is the BS vertex; P is the total momentum of
the meson; and Sðk1Þ and Sðk2Þ are the Dirac propagators
of the quark and antiquark, respectively. The internal
momenta q and k are defined as

q ¼ α2p1 − α1p2; k ¼ α2k1 − α1k2;

αi ≡ mi
m1þm2

(i ¼ 1, 2), where m1ð2Þ denotes the constituent
mass of the quark (antiquark), and p1ðk1Þ and p2ðk2Þ are
the corresponding momenta. The BS wave function of the
meson is then defined as

TABLE I. The discovered JP ¼ 1þ heavy-light mesons from
the experimental information of the particle data group [22] and
the corresponding predictions of the GI model [12–14]. The mass
and width are in units of mega-electron-volts.

Resonances MassExp MassGI Width Decay

D1ð2420Þ0 2421.4� 0.6 2.46 27.4� 2.5 D�þπ−

D1ð2420Þ� 2423.2� 2.4 2.46 25� 6 D�0π0

D1ð2430Þ0 2427� 36 2.47 384þ107
−75 � 75 D�þπ−

Ds1ð2460Þ 2459.5� 0.6 2.56 < 3.5 D�
sπ

0, Dsγ
Ds1ð2536Þ 2535.1� 0.1 2.55 0.92� 0.05 D�K
B1ð5721Þ0 5727.7� 2.0 5.78 30.1� 3.8 B�þπ−

B1ð5721Þþ 5725.1� 2.0 5.78 29.1� 5.6 B�πþ

Bs1ð5830Þ0 5828.7� 0.4 5.86 0.5� 0.4 B�K
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ψðP; qÞ≡ Sðp1ÞΓðP; kÞSð−p2Þ: ð3Þ

As usual, in this work, the specific interaction kernel we
use is the Coulomb-like potential plus the unquenched
scalar confinement one. In the instantaneous approxima-
tion, the interaction kernel does not depend on the time
component of s ¼ ðk − qÞ. Then, the QCD-inspired inter-
action kernel used in this work is

KðsÞ ≃ Kðs⃗Þ ¼ ½VGðs⃗Þ þ V0�γμ ⊗ γμ þ VCðs⃗Þ; ð4Þ

where the potential in the Coulomb gauge behaves
as [38–41]

VGðs⃗Þ ¼ −
4

3

4παsðs⃗Þ
s⃗2 þ a21

;

VCðs⃗Þ ¼ ð2πÞ3δ3ðs⃗Þ λ

a2
−

8πλ

ðs⃗2 þ a22Þ2
; ð5Þ

where 4
3
is the color factor; a1ð2Þ is introduced to avoid the

divergence in small momentum transfer zone; and the
kernel describing the confinement effects is introduced
phenomenologically, which is characterized by the string
constant λ and the factor a2. The potential used here
originates from the famous Cornell potential [42,43],
namely, the one-gluon exchange Coulomb-type potential
at short distance and a linear growth confinement one at
long distance. To incorporate the color screening effects
[44,45] in the linear confinement potential, VC is modified
and taken as the aforementioned form. V0 is a free constant
fixed by fitting the data. The strong coupling constant αs
has the form

αsðs⃗Þ ¼
12π

ð33 − 2NfÞ
1

ln ðaþ s⃗2

Λ2
QCD

Þ ;

where ΛQCD is the scale of the strong interaction, Nf is the
active flavor number, and a ¼ e is a constant. In this work,
we will only consider the time component (μ ¼ 0) of the
vector kernel, for the spatial components (μ ¼ 1, 2, 3) are
always suppressed by a factor v

c in the heavy-light meson
systems.
With the instantaneous kernel, we can introduce the three-

dimensional BS wave function (also called the Salpeter
wave function) φðq⊥Þ≡ i

R dqP
2π ψðqÞ, where qP ¼ q·P

M cor-
responds to q0 in the rest frame of P. Then, we can express
the BSE as a three-dimensional integration equation,

Γðq⊥Þ ¼
Z

d3k⊥
ð2πÞ3Kðk⊥ − q⊥Þφðk⊥Þ; ð6Þ

where q⊥ ¼ q − qP
P
M and Γðq⊥Þ is the three-dimensional

BS vertex. Sðp1Þ and Sð−p2Þ are the propagators for the
quark and antiquark, respectively. To perform the integration
over qP, we decompose the propagators as

Sðþp1Þ¼
iΛþ

1

qPþα1M−ω1þ iϵ
þ iΛ−

1

qPþα1Mþω1− iϵ
;

Sð−p2Þ¼
iΛþ

2

qP−α2Mþω2− iϵ
þ iΛ−

2

qPþα2M−ω2þ iϵ
; ð7Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i − p2
i⊥

p
, and the projection operators are

defined as

Λ�
1 ¼ 1

2
½1� Ĥðp1⊥Þ�γ0; Λ�

2 ¼ 1

2
γ0½1 ∓ Ĥðp2⊥Þ�;

where Ĥðpi⊥Þ≡ 1
ωi
ðpα

i⊥γα þmiÞγ0 are the usual Dirac
Hamilton divided by ωi.
Performing the contour integration over qP on both sides

of Eq. (3), the BSE is reduced to the four coupled three-
dimensional Salpeter equations [28]

ðM − ω1 − ω2Þφþþðq⊥Þ ¼ þΛþ
1 ðq⊥ÞΓðq⊥ÞΛþ

2 ðq⊥Þ;
ðM þ ω1 þ ω2Þφ−−ðq⊥Þ ¼ −Λ−

1 ðq⊥ÞΓðq⊥ÞΛ−
2 ðq⊥Þ;

φþ−ðq⊥Þ ¼ φ−þðq⊥Þ ¼ 0; ð8Þ

where φ�� are defined as φ��≡Λ�
1 ðq⊥Þ=PMφðq⊥Þ=PMΛ�

2 ðq⊥Þ;
φþþ and φ−− are called the positive and negative energy
wave functions, respectively; in the weak bound states, we
usually have φþþ ≫ φ−−; and it can be easily checked that
φ ¼ φþþ þ φ−þ þ φþ− þ φ−−. Note that the Salpeter
equations are, in fact, two eigenvalue equations and two
constraint conditions. The bound state mass M behaves as
the eigenvalue. The normalization condition for Salpeter
equation reads

Z
d3q⊥
ð2πÞ3 Tr

�
φ̄þþ =P

M
φþþ =P

M
− φ̄−− =P

M
φ−− =P

M

�
¼ 2M: ð9Þ

The Salpeter equations can also be rewritten as the
compact Shrödinger type,

MφðP;q⊥Þ¼ ðω1þω2ÞĤðp1⊥Þφðq⊥Þ

þ1

2
½Ĥðp1⊥ÞWðq⊥Þ−Wðq⊥ÞĤðp2⊥Þ�; ð10Þ

with the constraint condition

Ĥðp1⊥Þφðp⊥Þ þ φðp⊥ÞĤðp2⊥Þ ¼ 0; ð11Þ

where Wðp⊥Þ≡ γ0Γðq⊥Þγ0 denotes the potential energy
part. The normalization condition is now expressed as

Z
d3q⃗
ð2πÞ3 Trφ

†ðP; q⊥ÞĤðp1⊥ÞφðP; q⊥Þ ¼ 2M: ð12Þ
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B. Salpeter wave function of the 1+ states

To solve the above Salpeter equation, we have to
construct the form of the wave function according to the
different spin-parity JP and appropriate Dirac structures.
The Salpeter wave function for JP ¼ 1þ states will be given
in this subsection. It is the first time that the 1þ Salpeter
wave functions are obtained without using the artificial
mixing. The mixing between 1þ− and 1þþ for the 1þ
doublet will be determined naturally by the dynamics of the
BSE without using any free mixing angle.
The general form of the JP ¼ 1þ states Salpeter wave

functions can be constructed as

φ1þ ¼
q⊥ ·ξ
jq⃗j

�
f1þf2

=P
M

þf3
=q⊥
jq⃗j þf4

=P=q⊥
Mjq⃗j

�
γ5

þ i
ϵμPq⊥ξ
Mjq⃗j γ

μ

�
h1þh2

=P
M

þh3
=q⊥
jq⃗j þh4

=P=q⊥
Mjq⃗j

�
; ð13Þ

where the radial wave functions fiðjq⃗jÞ and hiðjq⃗jÞ
(i ¼ 1;…; 4) are explicitly dependent on jq⃗j, ϵμPq⊥ξ ¼
ϵμναβPνqα⊥ξβ and ϵμναβ is the totally antisymmetric
Levi-Civita tensor, and ξ is the polarization vector of the

bound state and fulfills P · ξ ¼ 0,
P

ξðrÞμ ξðrÞν ¼ PμPν

M2 − gμν.
Moreover, the constraint condition, Eq. (11), can further
reduce the undetermined radial wave functions to 4, namely,

f3¼−
jq⃗jðω1−ω2Þ
m1ω2þm2ω1

f1; f4¼−
jq⃗jðω1þω2Þ
m1ω2þm2ω1

f2;

h3¼þ jq⃗jðω1−ω2Þ
m1ω2þm2ω1

h1; h4¼þ jq⃗jðω1þω2Þ
m1ω2þm2ω1

h2: ð14Þ

Notice that f3ð4Þ and h3ð4Þ are suppressed by a factor of jq⃗j.
Now, there only exist four independent radial wave func-
tions f1, f2, h1, and h2. Inserting this wave function into
Eq. (12), we obtain the normalization condition as

hf1f2i−2hh1h2i¼ 1;

hx1x2i≡
Z

d3q⃗
ð2πÞ3

8ω1ω2

3Mðm1ω2þm2ω1Þ
ðx1x2Þ;

ð15Þ

where we defined the abbreviation hx1x2i to denote the
normalization integral.
It can be checked that the first part ofφ1þ , consisting off1,

f2, f3, and f4, has the spin parity JPC ¼ 1þ−, while the
second part, consisting of h1, h2, h3, and h4, has JPC ¼ 1þþ.
The JP ¼ 1þ Salpeter wave function can also be expanded
in terms of the spherical harmonics Ym

l , and thenwe can find
that it also contains the S- and D-wave components besides
the dominant P-wave (see the Appendix). Then, we decom-
pose the 1þ Salpeter wave function, Eq. (13), into two parts
according to Eq. (1),

φl ¼ þ cos θφ1þ− þ sin θφ1þþ ; ð16Þ
φh ¼ − sin θφ1þ− þ cos θφ1þþ ; ð17Þ

where φ1þ− and φ1þþ are the normalized Salpeter wave
functions for 1þ− and 1þþ states, respectively. Then, the
mixing angle θ can be obtained from the integral of the low-
mass wave function φl as

cos2θ ¼ hf1f2il; sin2θ ¼ −2hh1h2il: ð18Þ
Of course, the mixing angle can also be calculated from the
integral of φh as

cos2θ ¼ −2hh1h2ih; sin2θ ¼ hf1f2ih; ð19Þ
whichwould give exactly the samemixing angle as that from
Eq. (18). Since an overall minus sign can be absorbed by the
redefinition of φlðhÞ, we can constraint the mixing angle to a
range of−90° to 90°. The relative sign of θ can be determined
by the relative sign between fi and hi. For example, if the
signs of (f1,h1) forφlðcūÞ are ðþ;−Þ, and ðþ;þÞ forφlðcs̄Þ,
we can conclude that their mixing angles should differ by a
minus sign. Also notice that φhðθÞ ¼ φlðθ þ 90°Þ, namely,
the two states in the JP ¼ 1þ doublet are orthogonal, andwe
can use the form of Eq. (16) to express the general JP ¼ 1þ
Salpeter wave function, in which the low- and high-mass
states are denoted by the mixing angle θ and (θ þ 90°),
respectively. More about the mixing angle will be discussed
in the next section.
By solving the BS equation (the detailed procedures on

solving the full Salpeter equation can be found in our
previous work [32,34,41,46]), we obtain the numerical
results including two sets of solutions. The wave functions
share the same structure, but take different radial values; see
Fig. 1. In Figs. 1(a) and 1(c), the 1þ (cū) radial wave
functions of low-mass states jnPli with the radial quantum
number n ¼ 1, 2 are shown, while the results of its
corresponding partners, namely, the high-mass states
j1Phi and j2Phi are displayed in Figs. 1(b) and 1(d).
Notice that the figures show f1 ≃ h1 and f2 ≃ −h2 for the
nPh (cū). Then, we can calculate that tan2θ ≃ 1

2
from

Eq. (19); namely, the mixing angles are about 35.3°. The
different structures of radial wave functions of two JP ¼ 1þ
states will lead to different physics, for example, the decay
constants.
Before moving on, we first discuss the nonrelativistic

mixing angle predicted in the heavy-quark limit, which
could behave as a simple check for our results. In the
heavy-quark limit, the total angular momentum jl of the
light quark becomes the good quantum number. Then, it is
more convenient to describe the heavy-light mesons in the
jJ; jli basis, which is related to the jJ; Si basis by [10] 
j3
2
i

j1
2
i

!
¼RðθHÞ

 
j1P1i
j3P1i

!
¼ 1ffiffi

3
p

" ffiffiffi
2

p
1

1
ffiffiffi
2

p
# 

j1P1i
j3P1i

!
; ð20Þ
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where θH ¼ arctan
ffiffiffiffiffiffiffiffi
1=2

p ¼ 35.3° denotes the ideal mixing
angle in the heavy-quark limit. Combining Eqs. (1) and
(20), we can conclude that in the heavy-quark limit θ ¼
35.3° if the state j 3

2
i is the lower-mass one, while θ ¼

θH − 90 ¼ −54.7° if the state j 3
2
i is the higher-mass one. It

should be pointed out that the two different mixing angles
arise from our mixing convention defined in Eq. (1), in
which we always put the lower-mass one upside. Apart
from this, they are totally equivalent, just as stated in
Ref. [47]. So, if our methods could correctly reflect the
character of the heavy-light mesons, we should obtain the
mixing angle θ close to the θH or (90° − θH).
On the other hand, from Eqs. (1) and (20), the states jPli

and jPhi can also be expressed in the heavy-quark limit
basis jJ; jli as

� jPli
jPhi

�
¼ RðθHÞ

� j 3
2
i

j 1
2
i

�
; ð21Þ

where θH ¼ θ − 35.3°. Usually, if above the corresponding
strong decay threshold, the jjl ¼ 3

2
i state corresponds to the

narrow state since it could only decay by theD-wave, while
the jjl ¼ 1

2
i state corresponds to the broad one, for it could

decay by the S-wave. The D1ð2420Þ and D1ð2430Þ are just
exactly coincident with the analysis. In this work, among
the 1þ doublet, we will always use jnPi to denote the j 3

2
i

dominant state, while jnP0i will denote the j 1
2
i dominant

one. In the heavy-quark limit basis, usually, one should
obtain the mixing angle θ close to 0° or −90°.

C. Decay constants

The decay constant for the JP ¼ 1þ meson is defined as

f1þMξμ ≡ h0jq̄ΓμQjM; ξi; ð22Þ

where the abbreviation Γμ ≡ γμð1 − γ5Þ is used and Q and
q̄ denote the heavy-quark and light-antiquark fields,
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FIG. 1. BS wave functions for JP ¼ 1þ (a) 1PlðcūÞ, (b) 1PhðcūÞ, (c) 2PlðcūÞ, (d) 2PhðcūÞ.
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respectively. According to the Mandelstam formalism [48],
the transition matrix element can be expressed by the
Salpeter wave function as

h0jq̄1Γμq2jM; ξi ¼ −
ffiffiffiffiffiffi
Nc

p Z
d3q⊥
ð2πÞ3 Tr½φðq⊥ÞΓ

μ�

¼ 4
ffiffiffiffiffiffi
Nc

p
3

ξμ
Z

d3q⊥
ð2πÞ3 ðf3 þ 2h4Þ; ð23Þ

where Nc ¼ 3 denotes the number of colors. Then,
the decay constant can be expressed by Salpeter wave
function as

f1þ ¼ 4
ffiffiffiffiffiffi
Nc

p
3M

Z
d3q⃗
ð2πÞ3 ðf3 þ 2h4Þ: ð24Þ

From above expression, we can see that decay constant is
sensitive to the relative sign of f3 and h4, namely, the sign
of the mixing angle θ.

III. NUMERICAL RESULTS AND DISCUSSIONS

First, we specify the model parameters used in in this
work. The potential model parameters we use in this
work read

a ¼ e ¼ 2.7183; a1 ¼ 0.060 GeV;

λ ¼ 0.125 GeV2; ΛQCD ¼ 0.252 GeV;

a2 ¼ 0.040 GeV:

The constituent quark masses we use aremu ¼ 0.305 GeV,
md ¼ 0.311 GeV, ms ¼ 0.5 GeV, mc ¼ 1.72 GeV, and
mb ¼ 4.96 GeV. The free parameter V0 is fixed by fitting
the mass eigenvalue to experimental values. Besides, the
retardation effects are considered as a perturbation term and
incorporated by making the replacement s⃗2 → s⃗2 − ðs0Þ2 in
the interaction kernel, where s0 is further expressed by its
on-shell value by assuming the quarks (antiquarks) are on
their mass shells [49–51].
The obtained mass spectra, decay constants, and mixing

angles are presented in Table II, in which we use the
symbols θnP and θnH to denote the mixing angles defined in
Eqs. (1) and (21), respectively, in order to indicate the
different radially excited states. We can see clearly that
there exist the JP ¼ 1þ doublet, two states with close mass,
and the same radial quantum number. The predicted masses
of two JP ¼ 1þ (cū) are consistent with experimental data,
while since we did not consider the effect of CCEs, the
theoretical mass forDs1ð2460Þ is still about 70 MeV higher
than experimental data.

TABLE II. Mass spectrum and decay constants of 1þ heavy-light mesons in mega-electron-volts. The mixing angles are presented in
units of degrees. θnH ¼ θnP − 35.3°, where θnH is under basis j 3

2
i and j 1

2
i, while θnP is under basis j1P1i and j3P1i with n denoting the

radial quantum number.

Qq̄ cū cd̄ cs̄ bū bd̄ bs̄ bc̄

V0 485 485 249 857 857 710 181
M1l 2421−96þ95 2433−96þ94 2531−85þ85 5714−216þ215 5720−216þ215 5803−219þ217 6815−218þ218

M1h 2431−93þ92 2441−93þ92 2535−85þ84 5721−219þ217 5728−219þ217 5829−220þ218 6830−217þ217

M2l 2863−88þ88 2873−88þ88 2936−86þ86 6214−207þ205 6221−207þ205 6305−205þ203 7168−217þ217

M2h 2878−88þ88 2888−88þ88 2941−87þ86 6222−205þ203 6228−205þ204 6307−206þ204 7174−217þ217

M3l 3139−90þ90 3149−90þ90 3196−88þ88 6522−199þ198 6539−199þ198 6604−200þ200 7415−218þ218

M3h 3149−90þ90 3159−90þ90 3200−89þ88 6526−198þ198 6533−198þ198 6604−200þ200 7419−218þ218

f1l 56.6−5.2þ8.7 57.7−6.3þ10.8 267.7−9.0þ8.9 265.9−225.2þ8.9 266.6−9.0þ8.8 286.1−7.5þ7.1 227.0−12.8þ13.4

f1h 266.8−8.7þ8.6 266.3−8.8þ8.9 54.9−47.2þ5.9 20.3−16.4þ239.1 21.0−13.8þ5.0 33.4−2.4þ2.5 57.0−2.3þ2.3

f2l 59.9−3.6þ3.6 60.5−4.4þ4.6 81.5−6.0þ8.6 31.5−3.0þ4.1 32.0−3.2þ4.5 239.1−165.4þ6.5 201.4−7.7þ7.6

f2h 222.4−7.8þ8.0 221.8−7.5þ7.8 212.8−7.5þ7.5 240.3−6.3þ6.4 240.2−6.3þ6.3 16.9−16.2þ210.9 52.1−2.0þ1.9

f3l 59.0−3.0þ3.0 59.5−3.9þ3.9 78.2−4.7þ6.1 33.8−3.1þ3.9 34.3−3.2þ4.2 222.8−138.2þ5.9 189.7−6.5þ6.5

f3h 200.1−7.0þ7.1 199.8−6.7þ6.9 194.8−6.8þ6.8 221.4−5.7þ5.7 221.3−5.7þ5.7 9.6−9.6þ197.6 49.3−1.8þ1.7

θ1P 35.1−0.4þ1.6 35.1−0.5þ2.1 −60.4−10.0þ1.4 −55.4−5.3þ114.4 −55.4−10.1þ0.2 −55.3−0.1þ0.1 −58.0−0.4þ0.4

θ2P 34.9−0.2þ0.3 34.9−0.3þ0.3 36.2−1.1þ2.1 35.9−0.3þ0.6 35.9−0.3þ0.7 −59.7−26.5þ114.5 −58.8−0.5þ0.4

θ3P 35.0−0.3þ0.4 35.0−0.3þ0.4 36.2−1.1þ1.7 36.2−0.4þ0.7 36.3−0.4þ0.8 −62.0−24.6þ128.1 −59.3−0.5þ0.5

θ1H −0.2 −0.2 84.3 89.3 89.3 89.4 86.7
θ2H −0.4 −0.4 0.9 0.6 0.6 85.0 85.9
θ3H −0.3 −0.3 0.9 0.9 1.0 88.7 85.4
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The mixing angles θ1P for (cū) and (cd̄) systems are both
35.1°, very close to 35.3° predicted in the heavy-quark
limit. So, for (cū) and (cd̄) systems, physical state j1Pli is
the jjl ¼ 3

2
i dominant narrow state with a small decay

constant, while j1Phi is the jjl ¼ 1
2
i dominant broad state

with a large decay constant. On the other hand, the mixing
angle θ1P for (cs̄) is −60.4°, and then j1Pli corresponds to
the jjl ¼ 1

2
i dominant broad state Ds1ð2460Þ with a large

decay constant, while the j1Phi is the jjl ¼ 3
2
i dominant

narrow state Ds1ð2536Þ with a small decay constant. So,
without the CCEs, the predicted Ds1ð2460Þ would also
have a lower mass than Ds1ð2536Þ, and we have obtained
the correct mass order for the JP ¼ 1þ (cs̄) doublet. The
large difference of mixing angles between the (cū) and (cs̄)
systems shows that the light-quark masses may play an
important role in the 1þ heavy-light mesons.
To investigate the relation between light-quark

mass mq and θ in JP ¼ 1þ (cq̄) systems, we let mq change
from 0 to mc and then explore the mixing angle and
ΔM≡ ðM1h −M1lÞ. The obtained numerical results are
graphically displayed in Fig. 2(a). First, when mq ranges
from 0 to 0.35GeV, θ1P keeps almost constant near the value
of 35.3° predicted in the heavy-quark limit, then increases
quickly and reaches the peak at mq ¼ mMax ≃ 0.4 GeV;
whenmq > mMax, the sign of θ is changed (a negative sign is
added in the figure), and the absolute value drops rapidly as
mq increases until aboutmq ≃ 0.5 GeV; finally, θ increases
to −90° as mq closes to mc. On the other hand, the mass
difference ΔM drops rapidly until zero when mq ranges
from 0 to mMax and then slowly grows to reach a plateau as
mq increases to mc.
Notice that when mq ¼ mc, θ1P ¼ −90° means the

charmonium system has definite charge conjugation parity,
and now the j1Pli and j1Phi correspond to the χc1ð1PÞ and

hcð1PÞ, respectively. Notice the method is still valid for
quarkonia, and the corresponding results here are consistent
with what we obtained by solving the JPC ¼ 1þ− and 1þþ
quarkonia directly in Ref. [52]. The sign of the mixing
angle or the mass inversion happens when the light-quark
mass is around 0.4 GeV, so this inversion picture of the
mixing angle can explain well the mass inversion of the
JP ¼ 1þ states Ds1ð2536Þ and Ds1ð2460Þ and partly
explain the low mass of Ds1ð2460Þ. We also display the
dependence of decay constants on mq for 1þ (cq̄) systems
in Fig. 2(b). The variation of decay constants is consistent
with the mixing angle.
The dependence of θ1P and mass difference ΔM ≡

ðM1h −M1lÞ on mq for JP ¼ 1þ bottomed states is dis-
played in Figs. 3(a), and 3(b) displays the variation of the
decay constant vs mq. From Table II and Fig. 3(a), we can
see that, for bottomed 1P mesons, the mixing angle
inversion happens when mq ≃ 0.27 GeV, which is very
close to the constituent masses of u- and d-quark, but much
lower than the s-quark mass. So, the mass inversions
happen for (bs̄) and (bc̄) 1P states, while for (bū) and
(bd̄) systems, the inversion phenomenon is sensitive to the
choice of light-quark mass. In our calculations, the quark
massesmu ¼ 0.305 andmd ¼ 0.311 GeVare chosen, so the
inversions also happen for (bū) and (bd̄) ground states. The
results indicate that the nonobserved j 1

2
i dominant broad

states B0
1 and B0

s1 are mostly lighter than their partners
B1ð5721Þ0 and Bs1ð5830Þ0, respectively. This prediction
could also behave as a test on ourmethods presented here. In
Ref. [53], the authors also get a similar resultwithin theQCD
string model; they obtain θ1P ¼ −78.7°, and B0

1 is approx-
imately 10MeV smaller than B1ð5721Þ, which is consistent
with our predictions. For excited states, the situation is
different; there is no mass inversion for any of the 2P
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charmed mesons, but for 2P bottomed mesons, inversion
happens for bottom-stranged and bottom-charmed states.
The decay constants results for JP ¼ 1þ states are listed

in Table III to make a comparison with other studies. Our
results of decay constants are close to the previous studies
[52,54–56]. From Table II and Figs. 2 and 3, one can see
that the decay constant of the narrow j1Pi state is usually
much smaller than that of its broad j1P0i partner, namely,
f1P ≪ f1P0 . Hence the decay constant can behave as a good
quantity to distinguish the JP ¼ 1þ doublet of the heavy-
light mesons, especially when both states are narrow
(because of small phase space, the broad state may have
a narrow width) and then hard to be identied by mass and
width, such as the situation in Ds1 and Bs1 systems.

To see the sensitivity of the results on the model
parameters, we calculate the theoretical uncertainties by
varying potential parameters λ, ΛQCD, a1ð2Þ, and V0, and all
the constituent quark masses by �3% simultaneously and
then finding the maximum deviation. Considering the
uncertainties of parameters, we obtain large ranges of
the mixing angle and decay constant for 1þ heavy-light
states because of the peak structure of special inversion;
this may be the reason why a large range of mixing angles
exists in the literature. We also note that for 1P (bū) and 2P
(bs̄) (similar to bd̄ if with larger variation of down-quark
mass) the inversion phenomenon is sensitive to the choice
of light-quark mass; there may be no inversion within the
errors.
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TABLE III. Comparison of the decay constants f1þ for JP ¼ 1þ heavy-light mesons with others’ in units of mega-electron-volts.
Reference [54] used the mock-meson approach, Refs. [56,57] used the covariant light-front approach, and Ref. [55] applied the
unquenched lattice QCD.

f1þ This Ref. [54] Ref. [56] Ref. [57] Ref. [55] Ref. [58]

fD1
56.5−5.2þ8.7 77� 18 −36 −53.6 � � � � � �

fD0
1

266.8−8.7þ8.6 251� 37 130 179 294(88) � � �
fDs1 54.9−47.2þ5.9 87� 19 −38 −57.3 � � � � � �
fD0

s1
267.7−9.0þ8.9 233� 31 122 154 302(39) � � �

fB1
21.0−13.8þ5.0 32� 10 −15 −21.4 � � � � � �

fB0
1

266.6−9.0þ8.8 206� 29 140 175 � � � � � �
fBs1 33.4−2.4þ2.5 36� 10 � � � −28.3 � � � � � �
fB0

s1
286.1−7.5þ7.1 196� 26 � � � 183 � � � 240� 20

fBc1 57.0−2.3þ2.3 � � � � � � −47.3 � � � � � �
fB0

c1
227.0−12.7þ13.4 � � � � � � 157 � � � � � �
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IV. CONCLUSIONS

In this work, we have systematically studied the mass
spectra, mixing angle, and decay constants of the JP ¼ 1þ
heavy-light mesons by Bethe-Salpeter methods. For the
first time, we obtained the Salpeter wave function of JP ¼
1þ states without any man-made mixing. Our results
indicate that the 1þ Salpeter wave function also contains
the S- and D-wave components besides the dominant P-
wave. We found there is the phenomenon of the mixing
angle inversion along with variation of the light-quark
mass, and this phenomenon results in the mass inversion
within the JP ¼ 1þ doublet, which could explain the mass
inversion between Ds1ð2536Þ and Ds1ð2460Þ and help
relieve the low-mass problem of Ds1ð2460Þ. The mass
inversion phenomenon is predicted to exist in the JP ¼ 1þ
bottomed mesons. It is worth pointing out that the existence
of mass or mixing angle inversion in bottomed system is
not sensitive to the choice of the parameters in the potential
model but is quite sensitive to the choice of the light-quark
mass. This inversion and peak picture also explained why
the obtained mixing angles have confused values with large
ranges in the literature. Besides, we also calculated the
decay constants and compared our results with others. The
decay constants of jPi states are usually much larger than

their jP0i partners; this characteristic could provide another
quantity to identify the 1þ doublet in heavy-light mesons.
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APPENDIX: DECOMPOSITION OF JP = 1+

SALPETER WAVE FUNCTIONS

The JP ¼ 1þ Salpeter wave function can be decomposed
into two parts according to the properties under charge
conjugation transformation, namely, φ1þ ¼ϕ1þ− þϕ1þþ ,
where the ϕ1þ� here is not normalized compared with
the φ1þ� in Eq. (16). Then, in terms of the spherical
harmonics, ϕ1þ� can be rewritten as

ϕ1þ− ¼ C1ðY−1
1 ξþ þ Y1

1ξ
− − Y0

1ξ
3Þðf1 þ f2=̂PÞγ5 − C0Y0

0

=ξ⊥ffiffiffi
3

p ðf3 − f4=̂PÞγ5

þ C2

�
Y−2
2 ξþγþ − Y−1

2

ðξ3γþ þ ξþγ3Þffiffiffi
2

p þ Y0
2

ð=ξ⊥ þ 3ξ3γ3Þffiffiffi
6

p − Y1
2

ðξ3γ− þ ξ−γ3Þffiffiffi
2

p þ Y2
2ξ

−γ−
�
× ðf3 − f4=̂PÞγ5; ðA1Þ

ϕ1þþ ¼ −C1ðY−1
1 Γþ

ξ þ Y1
1Γ−

ξ − Y0
1Γ3

ξÞðh1=̂P − h2Þγ5 þ C0Y0
0

=Γξ⊥ffiffiffi
3

p ðh3=̂Pþ h4Þγ5

− C2

�
Y−2
2 ξþγþ − Y−1

2

ðξ3γþ þ ξþγ3Þffiffiffi
2

p þ Y0
2

ð=ξ⊥ þ 3ξ3γ3Þffiffiffi
6

p − Y1
2

ðξ3γ− þ ξ−γ3Þffiffiffi
2

p þ Y2
2ξ

−γ−
�
× ðh3=̂Pþ h4Þγ5; ðA2Þ

where C1 ¼
ffiffiffiffi
4π
3

q
, C0 ¼ C1 and C2 ¼

ffiffi
2
5

q
C1;

ξ� ¼∓ 1ffiffi
2

p ðξ1 � iξ2Þ, γ� ¼∓ 1ffiffi
2

p ðγ1 � iγ2Þ, Γn
ξ ≡ ðξn −

=ξγnÞ with n ¼ 1, 2, 3, Γ�
ξ ¼∓ 1ffiffi

2
p ðΓ1

ξ � iΓ2
ξÞ, and

=Γξ⊥ ¼ ð=ξ⊥ − 3=ξÞ; Ym
l is the usual spherical harmonics;

=̂P ¼ =P
M.

From the decomposition, Eqs. (A1) and (A2), above,
considering the relevant coefficients and suppression of
f3ð4Þ and h3ð4Þ, we can conclude that both ϕ1þ− and ϕ1þþ

contain the S-, P-, and D-wave components compared to
the nonrelativistic description in which only the dominated
P-wave component is included.
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