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We study the Landau gauge gluon propagators in dense two-color QCD at quark chemical potential, μq,
in the range from 0.5 to 1.0 GeV not reachable by the perturbative method at weak coupling. In order to
take into account the nonperturbative effects, at tree level we use a massive Yang-Mills model for the Yang-
Mills theory (or the Curci-Ferrari model) which has successfully described the lattice results of the gluon
and ghost propagators in the Landau gauge. We couple quarks to this theory and compute the one-loop
polarization effects in medium. The presence of the gluon mass significantly tempers the medium effects
and uncertainties associated with the strong coupling constant αs. The diquark condensate in two-color
QCD is color-singlet, for which neither electric nor magnetic screening masses should appear at the scale
less than the diquark gap. The presence of the gap helps to explain the lattice results which are not very
sensitive to the quark density. Meanwhile we also found the limitation of the one-loop estimate as well as
the lack of some physics in perturbative medium corrections.

DOI: 10.1103/PhysRevD.100.076017

I. INTRODUCTION

A highly compressed matter of quantum chromodynam-
ics (QCD) is expected to transform from a hadronic to
a quark matter when baryons overlap; then quarks (and
gluons) start to directly contribute to equations of state as
well as transport properties of the matter [1]. Considering
the size of hadrons of ∼0.5–1 fm the transition should
occur around the baryon density nB ∼ 5–10n0 (n0 ≃
0.16 fm−3: nuclear saturation density) or quark chemical
potential μq ¼ 0.5–0.8 GeV [2,3]. Such dense matter may
be realized at the cores of the two-solar mass neutron stars
discovered in binary systems [4–6] including the most
recent one with the mass 2.14� 0.10 solar mass at 68.3%
confirmation level [7].
The direct QCD calculations for quark matter have been

based on the perturbation theory and carried out to 3-loop
order [8–10]. But these calculations at μq ≲ 1 GeV or nB ≲
50n0 show that the perturbative series do not converge well
[9], or the renormalization scale dependence is large [10].
These QCD calculations, together with the estimate of
the onset density of quark matter, suggest that matter at

μq ¼ 0.5–1 GeV is strongly correlated quark matter [2].
In order to explore this region one needs to develop a
framework based on quarks and gluons but must retain
strong coupling effects.
Concerning the strong coupling effects at finite density,

the theoretical description of the confinement-deconfinement
phenomenon remains a difficult problem, see [11] for
various theoretical scenarios. But for a matter dense enough
for the color-singlet state to appear locally and homo-
geneously, the detailed account of confining forces might
not be so important for most of physical quantities, except
colored excitations on top of the color-white background.
This is the case for spatially one-dimensional QCD in which
the color-flux remains confining from low to high densities
nevertheless the equation of state is dominated by free
quark gas contributions [12–15]. Inspired by this result, we
conjecture that, in the domain where the color-singlet
condition is satisfied, the quasiparticle picture for quarks
and gluons can be applied at distance of ≲1 fm or
momentum transfer of 0.2–1 GeV, as in the constituent
quark models where quarks with effective chiral masses of
Mq ¼ 300–500 MeV explain the dynamics inside of
hadrons [16], see a schematic picture in Fig. 1. For the
quasiparticle descriptions to be useful, the strong coupling
effects should be largely absorbed into the effective mass,
coupling, and so on, after which the residual interactions
should be under control [17,18].
This paper is our first step to the quasiparticle description

for strongly correlated quark matter and we take up 2-color

*suenaga@mail.ccnu.edu.cn
†torujj@mail.ccnu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 076017 (2019)

2470-0010=2019=100(7)=076017(17) 076017-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.076017&domain=pdf&date_stamp=2019-10-25
https://doi.org/10.1103/PhysRevD.100.076017
https://doi.org/10.1103/PhysRevD.100.076017
https://doi.org/10.1103/PhysRevD.100.076017
https://doi.org/10.1103/PhysRevD.100.076017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


QCD (QC2D) as a testing ground. In this theory the
lattice QCD simulation is possible without suffering from
the sign problem and one can confront his calculations with
the lattice data for the phase diagram, equations of state,
diquark condensates, Polyakov loops, and so on [19–21].
Also the Landau gauge gluon propagators and vertices have
been measured [22,23]. For model studies of QC2D, see
Ref. [24] and work in the context of quarkyonic matter [25],
see Ref. [26].
In this work, we study the in-medium modification of

the Landau gauge gluon propagator, including quark loop
effects to one-loop.We combine the in-medium effects with
nonperturbative vacuum gluon propagators. For the latter,
the Landau gauge studies in lattice QCD [27,28] and
functional approaches [29–32] for pure Yang Mills (YM)
theory have reported the generation of effective mass
of mg ∼ 0.4–0.7 GeV at soft Euclidean momenta (see
Refs. [33–35] for early studies). Based on this finding
seminal works assumed the massive Landau gauge YM, or
the Curci-Ferrari (CF) model [36] as an effective theory and
performed the 1-loop calculations for gluon and ghost
propagators, finding the remarkable agreement with the
lattice results in vacuum [37,38] and reasonable agreement
at finite temperature [39,40]. Encouraged by these findings,
we use the gluon and ghost propagators in the CF model as
our tree level propagators, and add the polarization effects
due to quarks in medium. For vacuum gluon and ghost
propagators with dynamical quarks, see Ref. [41] for the
CF model, Ref. [42] for the lattice results, and Ref. [43] for
the results of functional calculations. Also, the CF model
was applied at nonzero chemical potential including (heavy)
quarks to investigate the QCD phase diagram [44–47].
The analyses of in-medium gluon propagators, however,

can in principle be more nonlinear and complex, as the
quark loop effects may strongly depend on the phase
structure [48–53]. For example the quarks entering the
loop can be either gapped or gapless depending on the
pairing near the Fermi surface, and add totally different
contributions to the gluon polarization functions. Following
the previous one-loop study [53], we classify three distinct

possibilities of phases and the corresponding screening mass
effects: (i) normal phase, in which quarks are gapless. Here
thegluons acquire the electricmass fromgapless particle-hole
excitations, but no magnetic mass, due to the exact cancella-
tion between the paramagnetic contribution (due to the
particle-hole) and diamagnetic contribution (due to the
particle-antiparticle); (ii) Higgs phase, in which quark-pairs
form a colored diquark condensate and quarks are gapped,
while the phase fluctuations of the condensate are colored and
hence couple to the longitudinal mode of gluons, yielding
both electric and magnetic (Meissner) masses; (iii) singlet
(gapped) phase, in which the diquarks form a color-singlet
condensate and quarks are gapped, while the color-singlet
phase fluctuations of the condensate do not couple to gluons.
In this case the gapped quarks and the absence of Meissner
effects together protect gluons from acquiring electric and
magnetic masses. In this paper we investigate the normal and
singlet phases of QC2D, using the CF model.
The singlet phase corresponds to the Bardeen-Cooper-

Schrieffer (BCS) phase in QC2D where the most favorable
pairing is antisymmetric with respect to color, flavor, and
spin, while the spatial wave function is S-wave. The lattice
calculations found that the critical temperature is Tc ≃
80–120 MeV so we estimate diquark gaps Δ to be 140–
210 MeV by assuming the BCS formula Tc ≃ 0.57Δ. Since
this matter is an insulator, the gluons are unscreened at scale
lower than∼Δ. This observation is consistent with the recent
lattice results for QC2D at μq ¼ 0.5–1 GeV [23], where the
electric and magnetic gluon propagators, ghost propagators,
and gluon-ghost vertices are not as sensitive to the variation
of μq as predicted by the normal phase scenario.
In our analyses for QC2D we do not manifestly calculate

the diquark gaps Δ, but just treat them as given in the range
of 0–200 MeV. Then we use quark propagators with Δ to
compute the polarization effects. As we will see Δ improves
the consistency with the lattice results in the electric sector.
Quantitatively, the overall size of the quark loop strongly
depends on the strong coupling αs and our choice of the
renormalization scale for it; a proper renormalization scale
should be used to minimize truncation errors in practical
diagrammatic calculations. In the infrared its value can be as
large as ∼3 (see Ref. [54] for the recent summary about αs
extracted in various approaches). Although the CF model
is provided as an effective theory of QCD at the infrared
regime, the value of coupling within the CF model still
includes an uncertainty. For this reason, we vary it consid-
erably, from 0 to 3, to cover a wide range of possibilities. It
turns out, however, that the presence of the gluon mass in the
vacuum propagator largely tempers the impact of varying αs.
Similar observation was made for the hot QCD equations of
state in Ref. [55], where the authors applied the Gribov-
Zwanziger gluon propagators. We also expect that the
insensitivity to αs should significantly stabilize our analyses
of various quantities at finite density. This is one of the main
conclusions in this work.

FIG. 1. A schematic description of a single hadron. The vertical
axis represents the energy (distance) scale.
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Our calculations of the polarization functions maintain
the conservation law or symmetry by handling the
regularization artifacts which need special care. The regu-
larization artifacts would appear when (i) there are non-
perturbative changes in fermion bases, from the vacuum
ones to the medium ones; and (ii) the gaps are made
constant from the IR to the UV regions. These features are
typical for in-medium computations in practice. Such UV
artifacts can couple to the medium effects in the IR,
yielding unphysical screening masses which are UV finite.
In the previous study [53], the authors cancel the symmetry
violating UV artifacts with symmetry violating counter-
terms, by demanding the final expression to recover the
conservation laws. In this paper we offer a simpler method
in which the conservation law is kept at every step of
computations so that one needs only the standard set of
counter terms.
This paper is structured as follows. In Sec. II we

summarize our models for gluons and the possible pairing
patterns. In Sec. III we discuss general remarks on the
polarization functions, and in Sec. IV explain how to
preserve the conservation laws during computations. In
Sec. V we present our one-loop results and compare them
with the lattice data. Section VI is devoted to discussions
about the nonperturbative considerations beyond one-loop.
Section VII is devoted to the summary.
We use the following notations:

R
q ≡

R
d4q=ð2πÞ4,R

q⃗ ≡
R
d3q⃗=ð2πÞ3. The matrices σa (a ¼ 1, 2, 3) and τi

(i ¼ 1, 2, 3) are the Pauli matrices with respect to the color
and flavor spaces, respectively. We freely raise or lower the
color and flavor indices when the notations become
simpler. As for the space-time metric, we will work on
the Euclidean space but we leave the upper and lower
indices as in the Minkowski space. In this way we can
transfer the expression developed in the Minkowski space
to the Euclidean with minimal efforts. The relations
kμ ¼ gμνkν, a · b ¼ gμνaμbν, fγμ; γνg ¼ 2gμν, are common
for these two spaces. In the components gEμν ¼ −δμν,
gMμν ¼ ð1;−1;−1;−1Þdiag, aE4 ¼ −iaM0 ða4E ¼ ia0MÞ, aEj ¼
aMj for four-vectors, and γEμ ¼ −ðγEμ Þ†. The only difference
we should care about is the overall factor of propagators G
as −iGMðkÞ ¼ GEðkÞ, and the iϵ term in the Minkowski
expression. The others need not be modified. When we
emphasize the positivity of the scalar product of momenta,
we occasionally use the capital letters, e.g., K2 ¼
−k2ð≥ 0Þ, and also the notation K ¼

ffiffiffiffiffiffiffiffi
−k2

p
. The conven-

tion for the self-energy Π is D−1 ¼ D−1
tree þ Π where D and

Dtree are the dressed and tree level propagators.

II. MODEL

A. A model for gluons

For quasiparticle descriptions for gluons we use a model
introduced by Curci-Ferrari [36], which is the massive

YM Lagrangian with the Landau gauge fixing condition
[37,38]. The theory is renormalizable with finite set of
counter terms [36], as in the pure YM theory. On the other
hand this model does not preserve the perturbative unitarity
[56,57]. Whether the unitarity is recovered or not in a
nonperturbative regime, see discussions in Ref. [58].
We will regard that the gluon mass emerges from the

dynamics in the Landau gauge. Hence, even though the
introduction of the gluon mass already breaks the gauge
invariance, we use the massive YM Lagrangian together
with terms that enforce the Landau gauge fixing condition,
∂μAa

μ ¼ 0. Now the Lagrangian for the CF model is

Lgauge ¼ −
1

4
Gμν

a Ga
μν þ

m2
g

2
Aμ
aAa

μ

−
1

2α
ð∂μAa

μÞ2 þ c̄ai∂μDμca; ð1Þ

where Aa
μ and ca are the gluon and ghost fields, respec-

tively, with the color indices a ¼ 1, 2, 3 (for QC2D), and
mg is the gluon mass. For the moment we keep the gauge
parameter α in the Lagrangian but in the end we will
take the limit α → 0. The covariant field strength Ga

μν is
defined by

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν; ð2Þ

where g is the gauge coupling constant and fabc is the
structure constant. The covariant derivative for the ghost
field ca is

Dμca ¼ ∂μca þ gfabcAb
μcc: ð3Þ

The resultant tree level propagator, after putting α → 0, is
(in Euclidean space)

½Dab
μνðkÞ�tree ¼ DtreeðkÞδabPμν; Pμν ¼ gμν −

kμkν
k2

; ð4Þ

which is transverse, kμPμν ¼ 0, and

DtreeðkÞ ¼
−1

k2 −m2
g
: ð5Þ

The radiative corrections in the CF model may contain
the radiative corrections which are not transverse, but
thanks to the Landau gauge condition its longitudinal
component anyway can be dropped off from the dressed
gluon propagators.
We regard this tree level Lagrangian as the consequence

of nonperturbative calculations. Thus the suitable choice
of the tree level mass mg can differ for theories with and
without quarks. We will come back to this point after
performing one-loop calculations with quarks.
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B. A model for quarks

In order to examine the pairing effects we use an
effective Lagrangian in which diquark operators couple
to the gap parameters Δ. Such gaps are produced by
diquark condensates for which one can consider several
quantum numbers. For the Dirac mass associated with the
chiral symmetry breaking (ChSB) we use the effective
quark mass Mq rather than the current quark mass mq. In
this paper we will not solve the gap equations to derive Δ
and Mq, but simply choose some characteristic values to
examine the impact of medium effects.
We usually guess the most favorable diquark pairing by

applying the one-gluon exchange picture. But its validity is
uncertain at strong coupling. So we also present another
qualitative description here. The condensate should be
color-antisymmetric, as it reduces its color-charge and
the associated color-electric flux (in QC2D, such a diquark
condensate is color-singlet). Then, the flavors, spins, and
spatial wave functions should form a symmetric wave
function as a total. For the spatial wave function the S-wave
pairing should be most preferable as one can fully utilize
the entire Fermi surface for quark pairing. For the flavor
wave function, we assume it to be antisymmetric as the
system can reduce the flavor charges; accumulation of
charges usually produce fields and cost more energy.
Taking all these considerations the condensate should be
spin-singlet, leading to the form

hψTCγ5σ2τ2ψi ∼ Δμ2q; ð6Þ

where the matrices σ2 and τ2 combines the color and flavor
indices of quarks in antisymmetric way. C is the charge-
conjugation matrix defined by C ¼ −γ2γ4. The factor μ2q
comes from the phase space near the Fermi surface, ∼4πμ2q,
at large density.
The diquark condensate in Eq. (6) is not invariant with

respect to Uð1ÞB-transformations, ψ → eiθψ , but invariant
with respect to the SUð2Þc-transformations, ψ → eiθaσa=2ψ ,
as the condensate does not carry color charges. Thus unlike
the color-superconductivity in 3-color QCD, the phase
fluctuations of diquark condensates do not participate in
the longitudinal modes of gluons, and hence no Messner
mass is generated. The phase fluctuations simply appear as
gapless Nambu-Goldstone modes associated with the
Uð1ÞB symmetry breaking.
The effective Lagrangian for quarks takes the form

Lψ ¼ ψ̄ði=Dþ iμqγ4 −MqÞψ − ψTΔψ ; ð7Þ

where Mq, μq, and Δ≡ σ2τ2γ5Δ are the effective quark
mass, quark chemical potential, and a matrix for the
diquark gap, respectively. The covariant derivative is

Dμψ ¼ ∂μψ þ igAa
μ
σa

2
ψ : ð8Þ

The standard technique to handle the mean field di-fermion
condensate is the Nambu-Gor’kov formalism. Useful
summary can be found in Ref. [48]. Introducing a two-
component spinors

Ψ≡ 1ffiffiffi
2

p
�

ψ

ψc

�
; Ψ̄≡ 1ffiffiffi

2
p ðψ̄ ; ψ̄cÞ; ð9Þ

and using a relation ψT ¼ −ψ̄cC (ψ̄T ¼ −Cψc), the
Lagrangian (7) is rewritten into

Lq ¼ Ψ̄KΨ − gΨ̄=AΨ; ð10Þ

where we have defined a matrix for the quark bilinear
terms,

K ¼
�
i=∂ þ iμqγ4 −Mq Δ̄

Δ i=∂ − iμqγ4 −Mq

�
; ð11Þ

(Δ̄ ¼ γ0Δ
†γ0) and the bare vertex matrix

=A ¼ γaμAa
μ; γaμ ¼ γμRa; ð12Þ

with

Ra ≡
�
σa=2 0

0 −ðσaÞT=2

�
: ð13Þ

Next, we construct a tree level propagator from the quark
bilinear term. According to Eq. (11), the inverse of the
propagator reads in the momentum space

S−1ðq̃Þ ¼
�
=qþ iμqγ4 −Mq Δ̄

Δ =q − iμqγ4 −Mq

�
: ð14Þ

Below we assume the diquark gap function Δ to be
constant. More realistically it should be vanishing for
quarks away from the Fermi surface. In order to find the
expression for S, it is convenient to decompose the matrix
into the particle and antiparticle components. We introduce
the particle (p) and antiparticle (a) projection operators

Λp;a ¼ γ0
Eqγ0 � ðMq þ γ⃗ · q⃗Þ

2Eq
; ð15Þ

where Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þM2

q

q
. We also express Δ as

Δ ¼ ΔΛp þ ΔΛa: ð16Þ

Solving an equation SS−1 ¼ 1, we find the quark propa-
gator of the form
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S ¼
�

SD11 τ2σ2SD12
τ2σ2SD21 SD22

�
; ð17Þ

with (ΛC
p ¼ Λa and ΛC

a ¼ Λp)

SD
11 ¼

� jupj2
iq4 − ϵp

þ jvpj2
iq4 þ ϵp

�
Λpγ0

þ
� jvaj2
iq4 − ϵa

þ juaj2
iq4 þ ϵa

�
Λaγ0

SD
12 ¼ −

�
u�pv�p

iq4 − ϵp
−

u�pv�p
iq4 þ ϵp

�
Λpγ5

−
�

u�av�a
iq4 − ϵa

−
u�av�a

iq4 þ ϵa

�
Λaγ5

SD
21 ¼

�
upvp

iq4 − ϵp
−

upvp
iq4 þ ϵp

�
ΛC
p γ5

þ
�

uava
iq4 − ϵa

−
uava

iq4 þ ϵa

�
ΛC
a γ5

SD
22 ¼

� jvpj2
iq4 − ϵp

þ jupj2
iq4 þ ϵp

�
ΛC
p γ0

þ
� juaj2
iq4 − ϵa

þ jvaj2
iq4 þ ϵa

�
ΛC
a γ0; ð18Þ

where ϵp, ϵa are quasiparticle dispersions,

ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq − μqÞ2 þ jΔj2

q

ϵa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq þ μqÞ2 þ jΔj2

q
; ð19Þ

and up, vp, ua, va are factors satisfying the following
relations:

jupj2 ¼
1

2

�
1þ Eq − μq

ϵp

�
; juaj2 ¼

1

2

�
1þ Eq þ μq

ϵa

�
;

jvpj2 ¼
1

2

�
1 −

Eq − μq
ϵp

�
; jvaj2 ¼

1

2

�
1 −

Eq þ μq
ϵa

�
;

ð20Þ

and

jupj2 þ jvpj2 ¼ juaj2 þ jvaj2 ¼ 1;

upvp ¼
Δ
2ϵp

; uava ¼
Δ
2ϵa

: ð21Þ

III. SELF-ENERGY: GENERAL REMARKS

In this section we give general remarks on the structure
of the gluon self-energy and a new renormalization

condition which is associated with the gluon mass term
in the tree level Lagrangian. We first review the treatment
for the gluon self-energy of the CF model for the pure YM
theory (ΠYM), and then include quarks in vacuum (Πvac).
Finally we discuss general remarks on the gluon self-
energy in-medium (Π).

A. Vacuum cases

Unlike the massless YM theory, the modified Ward-
Takahashi (WT) identity for the CF model leads to the
gluon self-energy tensor which includes the terms propor-
tional to m2

ggμν. They contribute to the transverse as well as
the longitudinal components,

ΠYM
μν ðkÞ ¼ ΠYMðkÞPμν þ ΠYM

L ðkÞ kμkν
k2

: ð22Þ

But we use the massive YM theory together with the
Landau gauge condition; as we have already mentioned the
longitudinal component decouples from the gluon propa-
gator. Hereafter we discuss only the transverse part.
Now we discuss how to handle the UV divergences in

the CF model. For the vacuum computation we use the
dimensional regularization as it satisfies the WT identity.
Then it is guaranteed that the divergences specific to the CF
model appear as the coefficient of m2

g terms and are at most
logarithmic. Such logarithmic divergence can be cancelled
by a new mass counterterm which originates from the gluon
mass term. Now the renormalized self-energy includes the
bare (regularized) function and counterterms,

ΠYMðkÞ ¼ Πbare
YMðkÞ − k2δYMZg

þ δYMm2
g: ð23Þ

Here we have two counterterms and hence we must set up
two renormalization conditions. Following Ref. [37], we
choose our renormalization points to be

ΠYMðμRÞ ¼ ΠYMð0Þ ¼ 0; ð24Þ

where μR is some renormalization points.
Next we include quarks. They do not change the

structure of the gluon self-energy. So we have only to
make replacements,

ðΠ; δZg
; δm2

g; μRÞYM → ðΠ; δZg
; δm2

g; μRÞvac: ð25Þ

B. In-medium self-energy

In medium, the presence of matter breaks the Lorentz
symmetry and one must deal with electric and magnetic
components differently. Then the projector Pμν splits into

Pμν ¼ PE
μν þ PM

μν; ð26Þ
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where the projector for magnetic components is three-
dimensionally transverse,

PM
44 ¼ PM

i0 ¼ PM
0i ¼ 0; PM

ij ¼ −δij þ
kikj

jk⃗j2
; ð27Þ

so that the electric tensor is

PE
μν ¼ Pμν − PM

μν: ð28Þ

Using these projectors the polarization tensor in medium
can be written as

ΠμνðkÞ ¼ ΠEðkÞPE
μν þ ΠMðkÞPM

μν þ ΠL
μνðkÞ: ð29Þ

Therefore the Landau gauge gluon propagators must be of
the form (K2 ¼ −k2 ≥ 0)

DμνðkÞ ¼
X
i¼E;M

1

K2 þm2
g þ ΠiðkÞ

Pi
μν; ð30Þ

where as we have already mentioned ΠL
μνðkÞ could be

dropped off because it does not couple to the tree Landau
gauge propagator.
The counterterms set up in vacuum will be also used in

medium computations for ΠE;M. We make the decompo-
sition for the in-medium polarization function (for the
moment we suppress the subscript E and M),

Π ¼ Πvac þ δΠ; δΠ ¼ Πbare − Πbare
vac ; ð31Þ

where the counterterms are already included intoΠvac while
δΠ includes the difference between the bare self-energies.
Below we focus on the term δΠ.
The term δΠ would look insensitive to the UV con-

tributions. The medium part is most typically computed by
picking up the residues with an implicit assumption of the
three-dimensional cutoff regularization, jp⃗j ≤ ΛUV (other-
wise poles may exist outside of the contour in the complex
p0-plane). But computations of δΠwith such regularization
would suffer from UVartifacts that violate the WT identity.
It impacts on the qualitative behaviors of gluon self-energy;
without removing this artifact the gluons would acquire
spurious magnetic masses.
Without satisfying the WT identity, each of Πbare in the

medium and in vacuum has the quadratic divergence
and the single subtraction, Πbare − Πbare

vac , leaves terms that
couple to the differences between quark bases (in the UV
domain). Such terms are absent in the regularization
consistent with the WT identity; in that case the leading
divergences before the subtraction are at most logarithmic
and hence the difference between the bases appear as
coefficients of Λ−2

UV. Since we are trying to go beyond the
perturbative framework by including the modification of
quark bases, this problem deserves special remarks. In the

next section we will introduce a practical scheme which is
free from the artifacts.

IV. IN-MEDIUM REGULARIZATION

In this work we consider the medium effects which come
from a current-current correlator (Fig. 2),

ðΠbare
q ðkÞÞabμν ¼ −g2

Z
x
e−ikxhjaμðxÞjbνð0Þi ð32Þ

where jaμ ¼ ψ̄γaμψ . Defining a general three point vertex
function Γa

μ as (Fig. 3)

hjaμðxÞΨðz1ÞΨ̄ðz2Þi

≡
Z
w;u

Sðz1 − wÞΓa
μðw − x; x − uÞSðu − z2Þ; ð33Þ

the correlator (32) is written as

ðΠbare
q ðkÞÞabμν ¼ −

g2

2

Z
q
Tr½Γa

μSðqþÞγbνSðq−Þ�; ð34Þ

with q� ¼ q� k
2
. The symbol “Tr” in Eq. (34) represents a

trace over Dirac, color, flavor, and Nambu-Gor’kov indices.
For the sake of clarity we write the gluon self-energy as a
functional of the propagators, Π ¼ Π½S�. To examine the
medium effects we focus on the difference between the
medium and vacuum correlators,

ðδΠqÞabμν ¼ ðΠbare
q ½Smed�Þabμν − ðΠbare

q ½Svac�Þabμν ; ð35Þ

FIG. 2. The diagrammatical picture of the current-current
correlator ðΠbare

q Þabμν in Eq. (34). The Abelian-type vertex circled
by a blue curve (Γa

μ) is shown in Fig. 3, and the solid lines are full
quark propagators.

FIG. 3. The Abelian-type vertex Γa
μ.
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where Smed and Svac are quark propagators in medium and
in vacuum, respectively. We also note that the vertex
functions are also functionals of S, so we write Γa

μ ¼ Γa
μ½S�.

It is crucial to recognize the vertex functions as func-
tionals of S especially when we change the fermion bases
for the loop expansion, as a naive treatment of vertices
violates the conservation laws. First we eliminate problems
associated with naive use of a tree level vertex so that we
can focus on the regularization artifacts. For this purpose
we use the WT-identity (for its derivation, see, e.g., the
Appendix in Ref. [53]),

hDac
μ jcμðxÞΨðz1ÞΨ̄ðz2Þi ¼ −δDðx − z1ÞhRaΨðz1ÞΨ̄ðz2Þi

þ δDðx − z2ÞhΨðz1ÞΨ̄ðz2ÞRai:
ð36Þ

Now we define

hðfabcAb
μjcμðxÞÞΨðz1ÞΨ̄ðz2Þi

≡
Z
w;u

Sðz1 − wÞLa
NAðw − x; x − uÞSðu − z2Þ; ð37Þ

where La
NA (see Fig. 4 for its diagrammatic structure)

comes from composite operator, ∼Aj, specific to the non-
Abelian theories (the matrix La

NA appears through the WT
identity but not through the perturbative expansion).
By substituting Eqs. (33) and (37) into the left-hand side

(LHS) of Eq. (36), and taking the Fourier transform and
multiplying S−1ðqþÞ and S−1ðq−Þ, we get

ikμΓa
μ ¼ S−1ðq−ÞRa − RaS−1ðqþÞ þ La

NA: ð38Þ

The vertex in the LHS enters our one-loop polarization
function. The last term is a composite operator which is
specific to non-Abelian theories and already contains at
least 1-loop, and hence it appears only beyond the 1-loop
polarization function (Fig. 4). With this composite operator
the WT identity is not as useful as in the QED case.
However our main concern here is to illustrate the regu-
larization artifacts associated with changes in fermion
bases, and the expression is sufficient for our purpose,
as we will see below.
Now we contract Eq. (38) with two propagators and a

tree vertex, and get the constraint for the correlator between
quark color currents,

ikμðΠbare
q Þabμν ¼ −

δabg2

4

Z
q
trD;G½ðSDðqþÞ − SDðq−ÞÞγν�

−
g2

2

Z
q
trc;f;D;G½SðqþÞLa

NASðq−Þγbν �;

ð39Þ

where in the right-hand side (RHS) we have carried out the
trace over colors and flavors for the first term, while in the
second term the trace for the color, flavor, Dirac, and
Nambu-Gor’kov space is all left.
As stated above, in this paper we study the gluon self-

energy at one-loop. At this level of computations, non-
Abelian contributions, which at least include two loops, do
not enter, and hence

ikμðΠbare
q Þ1loopμν ¼ −

g2

4

Z
q
trD;G½ðSDðqþÞ − SDðq−ÞÞγν�;

ð40Þ

where the first and second terms in the trace should cancel
if we are allowed to integrate the momentum q from −∞ to
þ∞. This is the case for the dimensional regularization
with which we arrive at kμðΠbare

q Þ1loopμν ¼ 0. But for the three
momentum regularization, there remains a finite term as a
regularization artifact. To see it, first we define

Fν½S; q⃗� ¼
Z

dq0
2πi

trD;G½SDðqÞγν�; ð41Þ

then kμðΠbare
q ÞAμν is proportional to

Z
q⃗
θðΛ2

UV − q⃗2ÞðFν½S; q⃗þ� − Fν½S; q⃗−�Þ

¼
Z
q⃗
½θðΛ2

UV − q⃗2−Þ − θðΛ2
UV − q⃗2þÞ�Fν½S; q⃗�

≃
Z
q⃗
2δðΛ2

UV − q⃗2ÞkjqjqνF½S; q⃗2�ðFνðq⃗Þ ¼ qνFðq⃗2ÞÞ

¼ kjδνj
6π2

Λ3
UVF½S;Λ2

UV�; ð42Þ

where in the third line we dropped off higher orders of
q⃗ · k⃗=ΛUV which start with two extra powers.1

The expression tells us that the artifact appears only if
ν is spatial, which in turn means the magnetic sector.

FIG. 4. The non-Abelian-type vertex La
NA only appearing in the

WT identity.

1The Taylor expansion of the step function will generate the
derivatives of the delta function which look awkward. To get
more well defined expressions, one can replace the step function
with a smoother analytic function which interpolates 0 and 1 with
a finite window. In such treatment k⃗=ΛUV → 0 limit can be taken
in a rigorous way.
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The function can be expanded by the inverse power of the
UV cutoff,

F½S;Λ2
UV� ¼

Cuniv

ΛUV
þ Cdim 2½S�

Λ3
UV

þ � � � ; ð43Þ

where the first term is universal while the rest of terms
depend on the quark bases.
Now we can quantify how the regularization artifact

enters in δΠ,

kμδΠab
μν j3d reg ∝ δabðCdim 2½Smed� − Cdim 2½Svac�Þ; ð44Þ

where we have neglected terms of OðΛ−2
UVÞ. This artifact

cancels when Smed ¼ Svac, but in general such equality
does not hold. (As should be clear from this derivation,
the artifact is absent when Smed and Svac asymptotically
coincide if damping of gaps takes place at some scale
Λdamp. But in this case one must manifestly take into
account the momentum dependence of gaps. This makes
the improvement of the vertices more complicated and will
not be attempted in this paper.)
Here we have two competing demands. On one hand it is

convenient to use the dimensional regularization to be free
from the artifact, but in medium the computations are
cumbersome. The three-dimensional cutoff allows more
straightforward calculations but it would suffer from the
artifact. In order to utilize the advantages of both regula-
rizations we consider the following trick. We introduce a
propagator which has the same structure as the vacuum one
but has the mass M̃q in place of the vacuum mass Mvac

q ,

S̃vac ¼ SvacðMvac
q → M̃qÞ: ð45Þ

We regroup the calculation of δΠ as (we suppress the Dirac
and color indices for the moment)

δΠ ¼ δΔμqΠþ δΔSΠ; ð46Þ

where

δΔμqΠ ¼ Πbare
q ½Smed� − Πbare

q ½S̃vac�; ð47Þ

δΔSΠ ¼ Πbare
q ½S̃vac� − Πbare

q ½Svac�: ð48Þ

As for δΔSΠ, there is no technical difficulty to use the
dimensional regularization and each term in δΔSΠ
is separately independent of artifacts. For δΔμqΠ, the
computations based on the dimensional regularization is
practically not so useful. But if we choose M̃q to be M̃�

q

such that

Cdim 2½Smed� ¼ Cdim 2½S̃vac�; ð49Þ

then the artifacts in δΔμqΠ cancel in the three-dimensional
cutoff scheme. As a consequence the dimensional regu-
larization and three-dimensional cutoff regularization
become equivalent [neglecting terms of OðΛ−2

UVÞ]

δΔμqΠjdim reg ¼ δΔμqΠj3d reg: ðfor M̃q ¼ M̃�
qÞ ð50Þ

Now the RHS can be computed in the standard way,
without suffering from the artifact. In the next section
we will perform the one-loop computation based on these
regularization method.
Finally we mention that the present regularization

resolves the problem of the spurious Meissner mass of
two-flavor matter found in Ref. [48]. Such Meissner mass
was rejected in Ref. [59] by some subtraction method, but
its justification was not claimed. The present discussion
gives its justification: the subtraction method in Ref. [59]
naturally follows from the demand to maintain the con-
servation law or the WT identity. Moreover the discussion
here explains how to generalize the method for general sets
of Mvac

q , Mq, and Δ.

V. ONE-LOOP RESULT

Now we examine the gluon self-energy at one-loop. As
we have discussed, in general we need to use the improved
vertices when we change the bases for the loop expansion.
The improved vertex for one loop polarization graphs
should satisfy

ikμΓa
μðq−; qþÞj1loop ¼ S−1ðq−ÞRa − RaS−1ðqþÞ; ð51Þ

where the non-Abelian part appears beyond one-loop and is
neglected here. In this work we consider only the momen-
tum independent gaps. Then it simply takes the tree level
form,

kμΓa
μðq−; qþÞ ¼ kμγaμ: ðfor 1 loopÞ ð52Þ

Hence we can compute Eq. (34) with replacement Γa
μ → γaμ,

and this vertex is sufficient to satisfy the WT identity.
After handling the regularization artifacts we have
kμΠμνj1loop ¼ 0.
In the following we first examine the vacuum gluon self-

energy without quarks, and then add quarks next. After
calibrating the parameters in the theory to reproduce the
lattice results, we then use them to calculate the gluon self-
energy in a medium. For all comparisons from YM theory
to the QC2D in medium, we use the lattice data of Ref. [23].

A. The vacuum part

For the comparison to the unrenormalized lattice data
[23] we need to multiply an overall constant Zoverall

g . This
factor should be distinguished from the conventional
renormalization constant Zg that explains the difference
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of fields at different scales, e.g., the renormalized fields at
μR and the bare fields at ΛUV as Abare ¼ Z1=2

g AR. In contrast
to Zg, the overall factor Zoverall

g is common for the
renormalized and bare fields (Abare ¼ ðZoverall

g Þ1=2A0
bare

and AR ¼ ðZoverall
g Þ1=2A0

R), and hence has nothing to do
with the quantum corrections; the factor Zoverall

g appear in
propagators as well as the vertices, and they cancel in the
final expression of physical quantities which should be
independent of our choice of the overall normalization.
We use the expression of a gluon propagator in vacuum
with the one-loop correction (DYM;vac

μν ¼ DYM;vacPμν and
K2 ¼ −k2 ≥ 0)

DYM;vacðkÞ ¼ Zoverall
g

K2 þm2
g þ ΠYM;vacðkÞ

: ð53Þ

As described in Eq. (24) our renormalization conditions are
ΠYM;vacðμ2RÞ ¼ ΠYM;vacð0Þ ¼ 0 [37] which determine our
counter terms δZ and δm2

g. Meanwhile the constant Zoverall
g

is adjusted as

DYM;vacðμRÞ ¼
Zoverall
g

μ2R þm2
g
¼ DYM;vac

lat ðμRÞ: ð54Þ

Because our theory is chosen for the description at low
energy, we take μR ∼ 1 GeV.
We will not put too much effort for the precise fit beyond

∼1 GeV because some discrepancy is expected due to the
use of constant mg, which actually should be momentum
dependent and be vanishing in the UV limit, and also due to
the lack of the RG improvement in the present work.
Hence, if one compares the one-loop results for K2DðkÞ to
the lattice’s, the large momentum behaviors look different
for the reasons rather obvious to us. We postpone the
calibration of the UV part to the future studies and focus
more on the behaviors up to K ∼ 1 GeV.

1. The YM part

We first discuss the YM case. The contribution from the
massive pure YM theory can be written as [37]

ΠYMðkÞ ¼
g2K2

192π2

�
111s−1 − 2s−2 þ ð2 − s2Þ lnðsÞ

þ 2ðs−1 þ 1Þ3ðs2 − 10sþ 1Þ lnð1þ sÞ
þ ð4s−1 þ 1Þ3=2ðs2 − 20sþ 12Þ

× ln

� ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p
−

ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
�
− ðs ↔ μ2R=m

2
gÞ
�
; ð55Þ

with s ¼ K2=m2
g. Below we examine the values of the

coupling constant and the gluon mass that can fit gluon
propagators in the lattice results.

The lattice results [23] for gluon propagators in the
infrared are sensitive to the finite volume effects (for
systematic studies, see Refs. [60,61]) and we need to
decide which data to be fitted. The general trend is that
with larger volume the gluon propagators are more sup-
pressed in the infrared. Without taking the volume suffi-
ciently large, we tend to underestimate the size of mg. For
illustration purposes we plot the largest and second largest
volume results in the lattice data of [23] to show the impact
of finite size effects on the estimate of mg.
Shown in Fig. 5 is the comparison of the one-loop and

the lattice results for gluon propagators with the sets YM1
and YM2 listed in Table I. When we fit each lattice data
set, we first adjust the overall normalization Zoverall

g at
μR ¼ 1 GeV, and then search the nonperturbative param-
etermg which gives the good fit. The value of αs is changed
from 1 to 3 and we attached the error band around the line

FIG. 5. The gluon propagators in the YM theory renormalized
at μR ¼ 1 GeV. The dots indicate the lattice results [23] for the
sets YM 1 and 2 shown in Table I, compared to the one-loop
calculations with a fitting parameter mg. We put the error band
which comes from the variation, αs ¼ 1–3, in the one-loop result.
The line inside of the band corresponds to the αs ¼ 2 results.
With larger αs, the one-loop result of Dg below (above) 1 GeV is
more enhanced (reduced).

TABLE I. The parameters used for the fit. The first two
columns are parameters in the lattice simulations; L and a are
the box size and lattice spacing. The last two columns are
parameters used in our model calculations. For all fits we used
αs ¼ 1–3 whose variation is reflected in the error band.

L [fm] a−1 [GeV] mg [GeV] Zoverall
g

YM 1 6.5 0.91 0.68 4.0
2 4.3 1.59 0.66 4.5

vac A 8.5 0.74 0.85 2.8
B 7.4 0.86 0.85 2.8
C 6.0 1.10 0.74 3.2
D 2.2 1.40 0.48 4.5
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given at αs ¼ 2. The infrared behavior is most sensitive to
the choice of mg, and we found that mg ≃ 0.66–0.68 GeV
fits the data well. Meanwhile the loop corrections (which
are regular in the infrared) damp as ∼K2 at small momenta
and hence the details do not have much impacts in the deep
infrared. In fact the variation of αs from 1 to 3 changes the
gluon propagators only modestly in the infrared. Because
we renormalize the self-energy asΠðμR ¼ 1 GeVÞ ¼ 0, the
different propagators coincide at K ¼ 1 GeV. Below this
momentum the loop corrections enhance the propagator
while suppress it at large momenta.

2. The vacuum part with quarks

Next we include quarks. The quark contribution is

Πvac
q ðkÞ ¼ −K2

g2

2π2

×
Z

1

0

dxxð1 − xÞ ln ðM
vac
q Þ2 þ xð1 − xÞK2

ðMvac
q Þ2 þ xð1 − xÞμ2R

:

ð56Þ

There are four lattice data sets with different volumes
[23]. The values used for the fit are listed in Table I as the
vac A-D. As in the YM case we choose αs ¼ 1–3 and
associate the error band. We also checked how the results
depend on the effective quark massMvac

q , and found that its
impacts are negligible for Mvac

q ¼ 0.1–0.3 GeV. Below we
use Mvac

q ¼ 0.3 GeV.
Shown in Fig. 6 are the comparison between the lattice

data and the one-loop results. The finite volume effects in
the lattice data are very large in the infrared and accordingly

our choices for mg vary considerably, from mg ¼ 0.48 to
0.85 GeV. The lattice results for the largest volume favors
mg ≃ 0.85 GeV. At this point we are not very sure about
the value of mg and further examination of finite volume
effects as well as the discretization artifacts is called for.
Nevertheless, it seems safe to conclude that the gluon
propagators with larger mg become more insensitive to the
value of αs in the infrared.
This indicates that, by including strong coupling effects

into the effective residue and mass in gluon propagators,
the residual strong coupling effects may be treated as
small corrections. This is the key feature for quasiparticle
descriptions.
Having examined the finite volume effects, below we fix

our parameters to fit the lattice data for β ¼ 1.9 and
Nt × N3

s ¼ 24 × 163, although this is not the best quality
in the available data. The reason to choose this set is that it
was used for the lattice simulations in medium, see the next
section. In medium computations the size in the temporal
and spatial directions are often taken to be different,

Lt ¼ aNt ¼ 0.186 fm × 24 ¼ 4.46 fm;

Ls ¼ aNs ¼ 0.186 fm × 16 ¼ 2.98 fm; ð57Þ

and hence the propagators for electric and magnetic gluons
may differ even in vacuum.2 For this set the electric and
magnetic propagators do not differ much.3 Taking the
renormalization scale to be μR ¼ 1 GeV as before and
adjusting the overall normalization to be Zoverall

g ¼ 3.0, our
one-loop propagator fits the data well for mg ¼ 0.66 GeV
for αs ¼ 1–3. The quality of the fit can be seen in Fig. 7.
The comparison between Figs. 6 and 7 seems to

suggest that the volume used for the medium is not small
enough for decisive statements and the value of mg tends
to be underestimated. Keeping this in mind, in what
follows we take mg ¼ 0.66 GeV as a reference point to
examine the medium effects for the set β ¼ 1.9 and
Nt × N3

s ¼ 24 × 163.

B. The medium part

1. The determination of M̃q

Now we turn to the gluon propagator in the medium.
As we have detailed in Sec. IV, we must handle the

FIG. 6. The gluon propagators in vacuum with dynamical
quarks, renormalized at μR ¼ 1 GeV. The dots indicate the
lattice results [23] for the sets vac A-D shown in Table I,
compared to the one-loop calculations. The finite volume effects
are large and accordingly the values of mg used for the fits vary
considerably. The error bands for the sets A-C with large mg are
tiny and not visible.

2Strictly speaking, in [23] no lattice data are available for
μq ¼ 0 in this setup. But there is data at μq ¼ 318 MeV below the
matter threshold, μc ¼ mπ=2 is ∼380 MeV for the heavy pion
mass used in this simulation. Thus we can regard the result at
μq ¼ 318 MeV as the vacuum result.

3In [23] there are other set of lattice data, β ¼ 2.1 and
Nt × N3

s ¼ 32 × 163, but the volume is smaller, Lt ¼ 4.4 fm
and Ls ¼ 2.2 fm. The artifacts of anisotropy is much stronger
than the case we are studying. So we omit this case from our
study.
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regularization artifact. The medium computations in our
regularization involves the parameter M̃q and it is fixed
according to the condition Eq. (49). To examine this
condition we calculate the function Fν explicitly,

Fν½S; q⃗� ¼
Z

dq0
2πi

trD½ðSD
11ðqÞ þ SD

22ðqÞÞγν�

¼ 2δνiqi
X
s¼p;a

ju2sðq⃗Þj2 − jv2sðq⃗Þj2
Eq

: ð58Þ

At large jq⃗j,

ju2sðq⃗Þj2 − jv2sðq⃗Þj2
Eq

∼
1

jq⃗j −
Δ2 þM2

q

2jq⃗j3 þ � � � : ð59Þ

The expression for Fν½S̃vac; q⃗� is obtained by replacement,
μq, Δ → 0 andMq → M̃q. In order to achieve the condition
Cdim 2½Smed� ¼ Cdim 2½S̃vac�, we take

M̃q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þM2

q

q
; ð60Þ

with which the medium calculations in three dimensional
cutoff are free from the UV artifacts.
Now we compute the medium self-energy Π¼ΠvacþδΠ

where δΠ ¼ δΔSΠþ δΔμqΠ.

2. The computation of δΔSΠ
The function δΔSΠðkÞ ¼ Πbare

q ½S̃vac� − Πbare
q ½Svac� mea-

sures the modification associated with the changes in
vacuum bases for quark propagators. It can be computed
in the dimensional regularization as

δΔSΠðkÞjdim reg

¼ −K2
g2

2π2
×
Z

1

0

dxxð1 − xÞ ln ðM̃qÞ2 þ xð1 − xÞK2

ðMvac
q Þ2 þ xð1 − xÞK2

;

ð61Þ
which enters the electric and magnetic components in the
same way. This contribution approaches zero for vanishing
momenta.

3. The computation of δΔμqΠ
Next we present the results of δΔμqΠ. There are three

distinct medium contributions; the particle-hole (pp),
antiparticle-antihole (aa), and particle-antiparticle (pa)
contributions. The electric and magnetic parts of the quark
one-loop self-energy are calculated in the three dimensional
regularization as in Ref. [53],

δΔμqΠ
q
E;MðkÞj3d reg ¼ g2

X
s;s0¼p;a

Z
q⃗
½Css0E;Mðq⃗þ; q⃗−ÞKss0

E;Mðq⃗þ; q⃗−ÞGss0 ðqþ; q−Þ − ðMq → M̃q; μq;Δ → 0Þ�: ð62Þ

Here C’s and K’s are the coherence and kinematic
factors, respectively, which differ for magnetic and electric
polarizations. The former is sensitive to the quantum
numbers (color, flavor, spin) of condensates which decide
whether the normal and anomalous contributions add
coherently or incoherently. Meanwhile K’s reflect the
kinematical structure of the spinor bilinears. These factors
depend only on the static momenta. The factors G are
the propagators which reflect the pole structures. Only this
part depends on k4 and hence is totally responsible for the
dynamical aspect of the gluon polarization.

The explicit forms of these factors are as follows: the
coherence factors are

CppE;M ¼ 1

2

�
1 −

ðEqþ − μqÞðEq− − μqÞ � jΔj2
ϵpðqþÞϵpðq−Þ

�
;

CaaE;M ¼ 1

2

�
1 −

ðEqþ þ μqÞðEq− þ μqÞ � jΔj2
ϵaðqþÞϵaðq−Þ

�
;

CpaE;M ¼ 1

2

�
1þ ðEqþ − μqÞðEq− þ μqÞ ∓ jΔj2

ϵpðqþÞϵaðq−Þ
�
; ð63Þ

FIG. 7. The gluon propagators in vacuum with dynamical
quarks, renormalized at μR ¼ 1 GeV. The setup for this lattice
data will be also used for the medium propagator. In spite of the
vacuum results, the lattice’s electric and magnetic propagators
slightly differ due to the artifacts of using the anisotropic lattice.
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where CpaE;Mðqþ; q−Þ ¼ CapE;Mðq−; qþÞ; the kinematic
factors are

Kpp
E ¼ Kaa

E ¼ 1þ q⃗2 − k⃗2=4þM2
q

EqþEq−

;

Kpa
E ¼ Kap

E ¼ 1 −
q⃗2 − k⃗2=4þM2

q

EqþEq−

;

Kpp
M ¼ Kaa

M ¼ −1þ ðjq⃗j cos θÞ2 − k⃗2=4þM2
q

EqþEq−

;

Kpa
M ¼ Kap

M ¼ −1 −
ðjq⃗j cos θÞ2 − k⃗2=4þM2

q

EqþEq−

; ð64Þ

where k̂ ¼ k⃗=jk⃗j and cos θ is the angle between q⃗ and k⃗;
finally the propagator part is

Gss0 ðqþ; q−Þ ¼
1

2

�
1

ik4 þ ϵsðqþÞ þ ϵs0 ðq−Þ

þ 1

−ik4 þ ϵsðqþÞ þ ϵs0 ðq−Þ
�
: ð65Þ

Below we focus on the static behaviors of the gluon
propagators at k4 ¼ 0.
The qualitative behaviors of these factors in the limit

k4 ¼ 0 and jk⃗j → 0 are summarized in [53]. For practical
convenience we reproduce it in Table II.
Now we examine the behavior of the in-medium con-

tributions, δΠE;M, from the electric and magnetic sectors in
the singlet phase. We consider μq > 600 MeV and assume
that the chiral mass Mq is close to the current quark mass.
The lattice data to be compared (next subsection) have used
the current quark mass of mq ∼ 100 MeV, so we fix
Mq ¼ 100 MeV. Through our attempts in fitting, we found
that the details of Mq are not important.
Figures 8 and 9 show our results for the electric and

magnetic polarization functions at one-loop. We examine
the roles of pp-, aa-, pa-channels and their dependence on
the gap. We took the parameters, μq ¼ 795 MeV, αs ¼ 2,
Δ ¼ 200 MeV, and Mq ¼ 100 MeV. As the particle-hole
contributions are most sensitive to the value of the gap,

we also plot the results of Δ ¼ 10 and 100 MeV with
thin lines.
The electric polarization function in the infrared is

largely dominated by the particle-hole (pp-) contributions.
In particular the in-medium electric screening mass is
saturated by the particle-hole contributions near the
Fermi surface. For jk⃗j → 0 the coherence factor CppE
vanishes. In the absence of gaps the static particle-hole
propagator Gpp has the IR divergence of ∼1=k⃗2 for jk⃗j → 0,
so the product of CppE and Gpp becomes finite yielding
the Debye mass. With finite gaps the IR divergence from

TABLE II. The coherence and kinematical factors for electric
and magnetic gluons, and the factors from the propagators at
jq⃗j ¼ pF where pF is the quark Fermi momentum such that
EðpFÞ ¼ μq.

CE KE CM KM Gðjq⃗j ¼ pFÞ
pp ∼k⃗2 2 ð Δ

ϵpðqÞÞ2 ð q⃗
Eq
sin θÞ2 ∼ 1

k⃗2þΔ2

aa ∼k⃗2 2 ð Δ
ϵaðqÞÞ2 ð q⃗

Eq
sin θÞ2 ∼ 1

pF

pa finite ∼k⃗2 finite −2 ∼ 1
pF

FIG. 8. The polarization in the electric channel for
μq ¼ 795 MeV, αs¼2, Δ ¼ 200 MeV, and Mq ¼ 100 MeV.
The particle-hole contributions are very sensitive to the value
of Δ, so only in this channel we also plot the results of
Δ ¼ 10 and 100 MeV. The vacuum polarization renormalized
at μR ¼ 1 GeV is also plotted as a reference. The allow
indicates 2pF ≃ 1.58 GeV.

FIG. 9. The polarization in the magnetic channel plotted in the
same way as Fig. 8. The particle-hole contribution has a negative
peak near 2pF and approaches zero at higher momenta. The
impacts of variation Δ ¼ 10–200 MeV are small in all channels.
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Gpp is regulated, so the product vanishes as ∼k⃗2=Δ2 for

jk⃗j → 0, resulting in the vanishing electric screening mass.
The difference between the normal phase with Δ ¼ 0 and
the singlet phase is seen up to ∼2Δ beyond which the
effects arising from the different phase structures become
negligible.
Meanwhile the magnetic polarization function is much

less affected by the details of the gaps. The absence of the
magnetic screening mass is achieved only after summing
up all the contributions, (pp, pa, aa) parts, which are related
in an intricate way by the gauge invariance. Here it should
be emphasized that the particle-hole and antiparticle-
antihole contribute as the para-magnetic effects which
enhances the propagation of magnetic gluons, while the
particle-antiparticle (with the vacuum subtraction) contrib-
utes as the dia-magnetic effects that suppress magnetic
gluons. For k⃗ → 0 these contributions precisely cancel ifwe
correctly maintain the conservation law or the WT identity
[53]. At finite momenta, the para-contributions win and the
magnetic gluon propagators are enhanced from the vacuum

one. The para-contribution is maximized around 2pF
and then approaches zero at higher momenta. Finally we
mention that, if we treat the Higgs phase instead of the
singlet (or normal) phase, the coherence factor vanishes as
∼k⃗2 and the para-contributions are suppressed; then the
particle-antiparticle contributions dominate to screen the
magnetic gluons, resulting in the Meissner mass.

4. Comparison with the lattice data

Now we examine the electric and magnetic gluon
propagators by adding δΠ ¼ δΔSΠþ δΔμqΠ to the vacuum
polarization tensors. The gluon mass mg and overall
normalization Zg are kept fixed to the vacuum one
(mg ¼ 0.66 GeV and Zg ¼ 3.0) so that the medium
dependence of the propagator should be regarded as the
prediction of one-loop calculations. The results of one-loop
calculations are shown in Figs. 10 and 11 together with the
lattice data (β ¼ 1.9, Nt × N3

s ¼ 24 × 163) at μq ¼ 636,
795, and 954 MeV.

FIG. 10. The in-medium electric gluon propagators at one-loop for αs ¼ 1–3 and the gaps Δ ¼ 10, 100, and 200 MeV. Larger αs
reduces more the propagator at finite momenta (jk⃗j ≳ Δ) by the screening effects. The discrete data points are from the lattice results.
The vacuum result is also shown for a reference.

FIG. 11. The magnetic gluon propagators for the setup same as Fig. 10. With larger αs, the polarization effects enhance more the
propagators at finite momenta (the para-magnetic contributions dominate over the dia-magnetic ones). The difference in Δ has little
impact and is difficult to see in this plot.
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As for the electric sector, the comparisons seem to
suggest that the phase structure or quark pairings are
important for the explanation of the lattice results. With

too small gaps (Δ≲ 100 MeV), at jk⃗j≳ 2Δ the polariza-
tion function approaches the normal phase result which are
dominated by the Debye screening scale of ∼gμq, and the
resulting gluon propagator is screened too much. We varied
αs from 1–3 but such variation does not improve the
situation. Therefore we first conclude that the inclusion of
the gap is crucial to obtain the reasonable fit. Having
concluded that, we also emphasize that the use of the gap of
Δ ¼ 100–200 MeV does not fully explain the lattice results,

especially the tendency at jk⃗j less than ∼0.5GeV. The
agreement becomes worse at larger μq. In particular Fig. 10
shows that the lattice electric propagator has the larger
screening mass than the vacuum one, in contrast to the one-
loop prediction for the singlet phase. This discrepancy likely
indicates the lack of the relevant physics in the one-loop
result. For example, gluon propagators inside of loops
remain the vacuum one but this is not a consistent treatment
when the in-medium effects become large. We will come
back to this point in Sec. VI.
The situation seems more problematic in the magnetic

sector. Here the polarization functions are almost degen-
erate in the normal and paired phases. Indeed, changing Δ
does not improve the consistency between the lattice results
and the one-loop prediction. Two features are particularly
noteworthy: (i) the one-loop result predicts the absence of
the medium induced magnetic mass, but the lattice results
seem to suggest the enhancement of the magnetic mass;
(ii) at finite momenta the gluon propagator in the one-loop
result is significantly enhanced from the vacuum one by the
para-magnetic contributions associated with the particle-
hole channels, but in the lattice results the changes are
much more modest or absent.
To summarize this section, we found that the inclusion

of the quark gaps improves the consistency between the
one-loop calculations and lattice results. Another important
point is that, starting with the propagator with the gluon
mass, the importance of the medium effects are tempered;
as the denominator of the propagator already has some
mass scales of ∼0.5–0.8 GeV even before the medium
effects enter there. Having said that, we must also conclude
that the consistency at this level of analyses is not quite
satisfactory especially in the magnetic sector. In fact the
lattice results suggest that the electric and magnetic
propagators behave similarly in contrast to the one-loop
propagator. The obvious deficiency in the one-loop
approach was that we kept using the vacuum gluon
propagators inside of the loop in spite of the fact that
the one-loop vacuum and medium propagators start to

deviate already around jk⃗j ≃ 1 GeV. We expect the reduc-
tion in the electric propagator and the enhancement in the
magnetic propagator to be somehow averaged out as the

electric (magnetic) gluon propagator enters the loop for
the magnetic (electric) polarization. To take into account
such effects one must perform the renormalization group
(RG) improvement. We postpone such analyses to our
future project.

VI. PHENOMENOLOGICAL INSPECTION OF
NONPERTURBATIVE EFFECTS

We have seen in the previous section that the one-loop
result is not satisfactory in reproducing the lattice data.
A part of the reasons is the lack of the RG improvement
which is still within the perturbative framework. Another
possible missing piece is nonperturbative modifications of
the gluon mass. Such effects should appear when we
construct the gap equations for the gluon mass that contain
gluon loops [34]. Solving the gap equations is beyond the
scope of this work, but in this section we examine how
large the in-medium gluon masses can be.
To examine the possible impacts of nonperturbative

modifications of gluon masses, we fit the lattice data in
medium by modifying the parameter mg in the one-loop
result from the vacuum value. We write this new parameter
m�

g and optimize its value for each μq. We fix the Zoverall
g to

the vacuum value. The value of αs is again varied, but this
time we classify its error band for a wider range of αs; the
domain of αs is divided into [0, 1], [1, 2], and [2, 3], and we
attach the error band for each. Meanwhile we examine only
Δ ¼ 200 MeV as it gives better fit than the other choices.
As we have found in Figs. 10 and 11, the lattice data
suggests that the overall structure is similar in the electric
and magnetic sectors. For this reason we take the same
values for m�

g in both sectors at given μq.
The results for the electric and magnetic sectors are

shown in Figs. 12 and 13. We found that reasonably good
fits are obtained for both electric and magnetic sectors
when we choose m�

g ¼ ð0.7; 0.8; 1.0Þ GeV for μq ¼ 636,
745, and 945 MeV, respectively. Compared to the vacuum
value mvac

g ≃ 0.66 GeV, at μq ≃ 1 GeV its value is
enhanced by ∼50%. One might think this modification is
large, but it is much smaller than that expected from the
perturbative framework with mg ¼ 0. We would say the
change is modest.
In principle the evolution of mg as a function of μq

should be determined by solving the gap equations for the
gluon mass. While at one-loop the electric and magnetic
gluons are protected from the screening effects, we saw that
their finite momentum behaviors are not protected from the
medium effects. As the gap equation uses the gluon and
quark propagators for all momenta, it is natural to expect
that such finite momentum components modify the struc-
ture of the gap equation and thereby the resulting non-
perturbative gluon mass.
Finally we emphasize again that the growth of mg makes

the dependence on αs less significant. As discussed in the
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vacuum case this tendency gives us a hope that proper
identification of quasiparticles and the parameters make the
residual interactions under control.

VII. SUMMARY

In this paper, we have studied the in-medium gluon
propagator in QC2D by employing the CF model as an
effective theory at the energy less than ∼1 GeV.While αs is
known to be large in the infrared, the strong coupling
effects may be largely absorbed into the parameters
characterizing the quasiparticles in medium, so that the
residual interactions may be under control. Our studies in
this paper indeed indicates that the gluon mass significantly
tempers the αs corrections, compared to the case of
massless gluons.
The study of quasiparticle picture at μq ¼ 0.5–1.0 GeV

is an important step to predict a variety of quantities
relevant at the cores of neutron stars where μq ¼
0.3–0.8 GeV or the corresponding baryon density may
reach ≃10n0. The pQCD calculations suggested that the

matter below μq ≃ 1 GeV (or nB ≲ 50n0) should be
regarded as strongly correlated matter. The open question
is whether such strongly correlated matter can accommo-
date quasiparticles or no such simplification occurs.
Meanwhile it is not unreasonable to expect the validity
of quasiparticle descriptions by referring to the success
of constituent quark models in describing the hadron
dynamics; inside of hadrons the αs used for the interaction
is ∼1, but the level splitting due to the one-gluon-
exchange can capture the overall features of the hadron
spectroscopy, provided that the confinement is supplied
by collective effects of gluons (rather than their quasi-
particle contributions).
The present work must be significantly improved in

several respects. First, we need to perform the RG improve-
ment of the one-loop result by using the in-medium gluon
propagators inside of the loop graphs; by doing this the
electric and magnetic components couple in a nontrivial
way and it may explain the similarity of the electric and
magnetic sectors in the lattice results. Second, we need to
consider the possibility of the nonperturbative modification

FIG. 13. The magnetic gluon propagators for the setup same as Fig. 12. With larger αs, the polarization effects enhance more the
propagators at finite momenta (the para-magnetic contributions dominate over the dia-magnetic ones). The difference in Δ has little
impact and is difficult to see in this plot.

FIG. 12. The electric gluon propagator at various chemical potentials. Zoverall
g is kept fixed to the vacuum value and we chose

Δ ¼ 200 MeV. At a given μq the gluon mass is chosen to fit the lattice data points. The impact of the variation of αs is indicated as the
error bands. The vacuum result is also shown for a reference.
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of the gluon mass by solving the gap equation for the gluon
mass; by taking into account the medium modification of
finite momentum behaviors, the gap equation itself is
modified and so does the solution. Third, we need to
estimate the diquark gap, both by performing theoretical
calculations and also by extracting the value from the lattice
results. Finally, we need to understand better the system-
atics of the lattice results, the finite volume effects in
particular [60,61]; according to the current precision the
gluon mass in mediummay vary to a factor of two or so. All
of these require hard work but seem doable.
Once successful descriptions are established for QC2D,

one will be able to utilize the understanding for the quark
matter domain to strengthen the constraints for three-color
QCD. In particular the equations of state at nB ≳ 5–10n0
seems calculable but not much work has been done based

on the up-to-date frameworks for the nonperturbative
physics. Some works toward this direction can be found
in Refs. [62–64], but more will be needed to establish our
baseline for the phenomenological applications.
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