
 

Composite Higgs models with a hidden sector

Ann E. Nelson,1,* Michael Park,1,2,† and Devin G. E. Walker3,‡
1Department of Physics, University of Washington, Seattle, Washington 98195, USA
2Department of Physics, University of Washington, Bothell, Washington 98011, USA

3Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

(Received 21 October 2018; published 21 October 2019)

We discuss the phenomenology of composite Higgs models that naturally produce a Standard Model-
like Higgs boson with a mass of 126 GeV. The effective theory below the compositeness scale is weakly
coupled in these models, and the Goldstone sector acts as a portal between the third generation of quarks
and a hidden gauge sector. The addition of hidden-sector fermions gives rise to a calculable effective scalar
potential with a naturally light scalar resonance. The generic prediction of these theories is the existence
of additional pseudo-Nambu Goldstone bosons with electroweak-scale cross sections and masses. In this
paper we analyze the collider signatures for some simple concrete realizations of this framework. We find
that despite the existence of additional weakly and strongly coupled particles that are kinematically within
reach of current experiments, the generic signatures are difficult to resolve at the LHC, and could remain
well hidden in the absence of an eþe− Higgs factory such as the CEPC or a surface detector such as
MATHUSLA.
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I. INTRODUCTION

Despite its success in discovering a Standard Model-like
Higgs boson, the Large Hadron Collider (LHC) has yet to
provide a satisfying explanation for the mechanism of
electroweak symmetry breaking (EWSB). To date there is
no discovery leading the way to new physics, and many of
the popular explanatory frameworks are becoming con-
strained into finely tuned regions of their parameter spaces.
Theoretical development over the last several decades has
largely been motivated by criteria of naturalness and
parsimony [1]. While there is a strong logical and historical
motivation for this notion of naturalness, there is also an
arguably comparable motivation for cautious skepticism
in our conceptions about parsimony. In this paper we study
a class of effective theories that generically give rise to a
composite Higgs boson with Standard Model (SM)-like
properties, and analyze their collider signatures. A light
Higgs boson with a large quartic is achieved via the
introduction of a hidden sector that couples to the SM
through the Higgs portal, thus preserving naturalness at

the expense of parsimony. This work adds to a growing
abundance of effective models for electroweak symmetry
breaking with highly subtle hadron-collider signatures, and
motivates several concrete analyses for further scrutiny.
The composite Higgs hypothesis [2] offers an attractive

and radically conservative [3] possibility for the origin of a
naturally macroscopic electroweak scale. In this framework
the compositeness scale is naturally higher than the electro-
weak symmetry breaking scale, as the Higgs boson arises as
a pseudo-Nambu-Goldstone boson (pNGB) [4–16] from
the spontaneous breaking of an approximate global sym-
metry by the compositeness dynamics. These models retain
a weakly coupled description of the EWSB sector above
the chiral symmetry breaking scale f, with a full UV
completion appearing at a higher scale associated with the
new strong dynamics Λ [17,18]. The most parsimonious
constructions of composite Higgs theories have historically
found tension with measurements of precision electroweak
(PEW) observables due to their generic assumption
of additional gauge structure above the scale f. The
Intermediate Higgs (IH) or “natural composite” scenario
[19–22] relaxes this assumption, which results in a quad-
ratic sensitivity to the compositeness scale Λ from loops of
gauge bosons. However this contribution is numerically
small enough to avoid serious fine-tuning for a new physics
scale as high asΛ ∼ 10 TeV. The large radiative corrections
to the Higgs mass from the top sector are canceled by new
vectorlike quarks with TeV-scale masses, utilizing the
mechanism of collective symmetry breaking, and resulting
in a partially composite third generation [23].
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The recently measured mass of the SM Higgs boson
mh ¼ 126 GeV [24,25] provides a significant piece of
additional data for the composite Higgs hypothesis. In
the IH scenario, the scalar potential is highly constrained by
the explicit symmetry breaking pattern of the approximate
global symmetries. Again the most parsimonious construc-
tions have historically found difficulty generating a suffi-
ciently light Higgs mass or an otherwise viable Higgs
potential [26–32]. In this paper we consider the effects of
extending the composite sector to include additional
hidden-sector interactions via Yukawa couplings between
the pNGB matrix and a new multiplet of hidden-sector
fermions. The addition of a dark gauge group G ensures
that the interactions involving hidden-sector fermions
remain well sequestered from Standard Model processes.
We find that the radiative corrections to the Higgs potential
from these states at f generically produce a pattern of
EWSB that is consistent with current experimental data.
The invariant prediction of these theories is the existence
of new vectorlike quarks with masses of OðfÞ and new
weakly interacting scalars with masses ofOðgfÞ. All of the
pNGB scalars remain uneaten in these models and manifest
as physical resonances; however, their weak scale cross
sections are typically below threshold for discovery via
direct production at the LHC. Furthermore the extended
Yukawa sector can generically lead to nonstandard decays
of the new quarks that significantly weaken the limits from
LHC searches for simplified top-partner models [33,34].
The variety of possible coset spaces thus provides a wide
range of theoretically motivated collider signatures that
should now be considered more seriously.
In this paper we select two contrasting examples for

detailed analysis. Sec. II discusses a model based on the
SUð5Þ=SOð5Þ coset space [5], which generates a rich
variety of new scalar resonances. Here we focus on the
low-energy phenomenology as well as the conditions for a
realistic pattern of EWSB. Large couplings between the
pNGBs and the new vectorlike quarks in this model lead to
an enhanced production of high-multiplicity tops and
bottoms, resulting in cascade decays with many leptons
and b-quarks in the final state. The hidden-sector inter-
actions result in a fairly generic hidden-valley phenom-
enology which we review in the context of these models.
Section III discusses the SUð4Þ=Spð4Þ coset space [5],
which generates only one new pNGB resonance beyond the
Higgs multiplet. We briefly discuss the tension between the
fermionic sector of this model and electroweak precision
constraints on the bottom quark interactions and how to
alleviate this. We then focus on the difficulties in resolving
the Goldstone sector of this theory, which could remain
well hidden until future Higgs factories come online. In
Sec. IV we conclude with a summary of these results.

II. SUð5Þ=SOð5Þ INTERMEDIATE MODEL

The symmetry breaking pattern SUð5Þ=SOð5Þ produces
24 − 10 ¼ 14 pseudo-Nambu-Goldstone bosons (pNGBs).

The sigma field transforms under SUð5Þ as VΣVT where V
is an SUð5Þ matrix. It is convenient to specify an SOð5Þ
symmetric background field Σ0, under which the unbroken
SUð5Þ generators T and the broken generators X satisfy

TΣ0 þ Σ0TT ¼ 0

XΣ0 − Σ0XT ¼ 0
Σ0 ¼

0
B@

1

1

1

1
CA: ð1Þ

The SOð5Þ symmetry contains the global custodial
SOð4Þc ¼ SUð2ÞL ⊗ SUð2ÞR subgroup, where SUð2ÞR
is approximate and contains Uð1ÞY . The generators of this
global symmetry La and Ra can be expressed as

La ¼ 1

2

0
B@

σa

0

−σa�

1
CA; ð2Þ

Ra ¼ 1

2

8>><
>>:
0
B@

−iσ2

0

iσ2

1
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0
B@

−σ2

0
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1
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0
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1

0
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1
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9>>=
>>;: ð3Þ

To describe the quantum numbers, we embed the SUð2ÞL ⊗
Uð1ÞY gauge symmetry of the Standard Model into the
global SUð2ÞL ⊗ SUð2ÞR with Y ¼ R3. These generators
remain unbroken in the reference vacuum Σ ¼ Σ0 and
the pNGB’s are fluctuations about this background in the
direction of the broken generators, Π≡ πaXa. Under the
gauged SUð2ÞL ⊗ Uð1ÞY they transform as 10 ⊕ 2�1=2 ⊕
30 ⊕ 3�1 and may be parametrized as

ΣðxÞ ¼ e2iΠ=fΣ0;

Π ¼ 1

2

0
BB@

1ffiffiffiffi
10

p ηþΦ HT Φ̃

H� − 4ffiffiffiffi
10

p η1 Hc

Φ̃† Hc† − 1ffiffiffiffi
10

p ηþΦ�

1
CCA: ð4Þ

All of the Goldstone modes in this theory remain uneaten
and appear as physical fluctuations. These include the SM
Higgs doublet H ¼ ðHþH0Þ, a parity-odd electroweak
singlet η, and a set of Georgi-Machacek scalars Φ and Φ̃
[35,36] which may be written as

Φ̃ ¼ 1ffiffiffi
2

p
 ffiffiffi

2
p

ϕ̃þþ ϕ̃þ
ϕ̃þ

ffiffiffi
2

p
ϕ̃0

!
; Φ ¼ 1ffiffiffi

2
p
 

ϕ0 ϕþ
ϕ�þ ϕ0

!
:

ð5Þ
Under the SUð2ÞL ⊗ SUð2ÞR global symmetry the

pNGBs transform as ð2; 2Þ ⊕ ð3; 3Þ ⊕ ð1; 1Þ. The SM
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Higgs field transforms as a b-doublet, while the real and
complex triplets Φ and Φ̃ transform together as a bitriplet.
The fermionic sector of this theory gives a large negative
contribution to the mass of the Higgs boson, while the
remaining Goldstone masses are dominated by a positive
contribution from the one-loop gauge interactions. The
resulting vacuum breaks the gauge symmetry down to
Uð1ÞEM and can be parametrized by a single angle θ.

θ2 ≡ 1

4

H†H
f2

;

hΣi ¼

0
BBBBBBBB@

0 0 0 1 0

0 −sin2θ iffiffi
2

p sin 2θ 0 cos2θ

iffiffi
2

p sin 2θ 0 cos 2θ 0 iffiffi
2

p sin 2θ

1 0 0 0 0

0 cos2θ iffiffi
2

p sin 2θ 0 −sin2θ

1
CCCCCCCCA
:

ð6Þ
The SUð5Þ global symmetry is explicitly broken by the
SUð2ÞL ×Uð1ÞY gauge couplings. The covariant derivative
can be expanded to second order in the vacuum giving tree-
level masses to the weak gauge bosons in terms of the
SUð2ÞL ×Uð1ÞY couplings g, g0. The vacuum expectation
value of the Higgs bidoublet thus gives mass to theW and Z
bosons which preserves the remnant custodial SUð2Þc, thus
guaranteeing tree-level relation mW=mZ ¼ cos θw,

DμΣ ¼ ∂μΣ − ½igWa
μðLaΣþ ΣQaTÞ þ ig0BμðYΣþ ΣYTÞ�;

ð7Þ

m2
W ¼ g2

2
f2sin22θ; m2

Z ¼ g2 þ g02

2
f2sin22θ: ð8Þ

A. Fermion sector

If the SUð5Þ symmetry arises accidentally from the
dynamics of a strongly coupled theory then the Yukawa
sector could contain interactions between the Σ field and
composite fermions in SUð5Þ multiplets. Yukawa cou-
plings that softly break the global symmetry can result in
potentially large contributions to the scalar potential.
However these interactions can naturally be constructed
with a collective symmetry breaking property that guaran-
tees the absence of quadratic divergences to the Higgs mass
from fermion loops. Despite the absence of such quadratic
divergences, constructing soft-symmetry breaking inter-
actions that reproduce the measured properties of the
Higgs boson remains nontrivial. We find that this goal
can be achieved in a relatively simple way by extending the
fermion sector of this theory to include two vectorlike
multiplets of fermions in the fundamental representation of
SUð5Þ. One of the multiplets ðψ ; ψ̄Þ is color charged and
mixes with the SM quarks resulting in a partially composite

third generation. The other multiplet ðχ; χ̄Þ is assumed to be
charged under a hidden-sector gauge group G that confines
at some scale Λ̃ < f.

1. Color-charged fermions

The most serious quadratic divergence to the Higgs
potential from the top quark can be eliminated by extending
the fermion sector of the Standard Model to include new
vectorlike quarks ðψ ; ψ̄Þ in the fundamental representation
of SUð5Þ. The states in this multiplet mix with the massless
chiral third generation q and ðt̄; b̄Þ to produce partially
composite top and bottom mass eigenstates. The gauge
quantum numbers of the vectorlike quarks are fixed by the
requirement of partial compositeness and the proposed
embedding of SUð2ÞL ×Uð1ÞY ⊂ SUð5Þ. The correspond-
ing embedding of the gauge eigenstate components in
ðψ ; ψ̄Þ is given in Eq. (9), and their transformation proper-
ties are given in Table I

ψ ¼ ðQ T PÞ; ψ̄ ¼ ðP̄ T̄ Q̄ÞT: ð9Þ
The most general gauge invariant fermion interactions
include terms that softly break the SUð5Þ global symmetry.
For simplicity we assume that the SM bottom quark mass
term arises from the Yukawa interactions of an incomplete
SUð5Þ multiplet. This introduces an explicit source of
SUð5Þ breaking and a quadratic contribution to the Higgs
potential from loops of bottom quarks. However, due to the
relatively small value of the bottom quark Yukawa cou-
pling, these effects are numerically negligible compared to
the leading logarithmic contribution from the top sector. We
thus express the Yukawa interactions for the color-charged
fermions as

Lψ ¼ y1fψΣψ̄ þ y2fqQ̄þ y3fTt̄þ y4fs2θqBb̄þ H:c:

ð10Þ
The top and bottom quark mass matrices MT , MB are
shown in Table II and Table III and can be expressed in
terms of the Higgs boson vacuum expectation value θ
defined in Eq. (6), and the UV insensitivity of the Yukawa
interactions is guaranteed by the following identity:

TABLE I. Gauge quantum numbers for the new vectorlike
quarks. These include two new SUð2ÞL doublets Q ¼ ðQT;QBÞ
and P ¼ ðPT; PBÞ, in addition to a vectorlike singlet T. The new
vectorlike states mix with the SM chiral doublet q ¼ ðqT; qBÞ and
singlets ðt̄; b̄Þ.

ðQQ̄Þ ðTT̄Þ ðPP̄Þ q t̄ b̄

SUð3Þc ð33̄Þ ð33̄Þ ð33̄Þ 3 3̄ 3̄
SUð2ÞL (22) (11) (22) 2 1 1
Uð1ÞY ð1

6
− 1

6
Þ ð2

3
− 2

3
Þ ð7

6
− 7

6
Þ 1

6
− 2

3
1
3

G (11) (11) (11) 1 1 1
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∂
∂θ trM

†
TMT ¼ ∂

∂θ trðM
†
TMTÞ2 ¼ 0: ð11Þ

Diagonalizing MT and MB gives seven mass eigen-
states. The up-type sector contains four charge �2=3
states which we label in order of descending mass as
t000, t00, t0, t, and the lightest of these states corresponds
to the SM top quark. The down-type sector contains
three mass eigenstates. Two of these b0, b have charge
∓ 1=3 and include the SM bottom quark, and there is
additionally a “peculiar” charge �5=3 quark p0, which
can lead to interesting phenomenological signatures.
The heavy mass eigenstates are independent of the
Higgs VEV at leading order, and the numerically diagon-
alized mass spectrum is shown in Fig. (1). Their analytic
expressions have been computed in the Appendix B to
leading order in sin2 2θ and are approximated by the
following scalings:

m2
t ∼

f2

2
y2t sin22θ; m2

b ∼
f2

2
y2bsin

22θ;

m2
t0 ∼ f2y21; m2

p0 ∼ f2y21;

m2
t00 ∼ f2ðy21 þ y22Þ; m2

b0 ∼ f2ðy21 þ y22Þ
m2

t000 ∼ f2ðy21 þ y23Þ: ð12Þ

The top-sector mass matrix MT also has the property that
detM†

TMT ∝ sin2 2θ, thus producing one massless state
when θ ¼ nπ=2 for n ∈ Z. The states corresponding to the
SM top and bottom quarks t and b remain massless at
zeroth order in θ, and couple to the Higgs boson via the
following Yukawa couplings:

yt ¼
y1y2y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y23
p ; yb ¼

y1y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p : ð13Þ

2. Hidden-sector fermions

The Higgs potential in this theory is computable from
one-loop radiative corrections due to the terms which break
the SUð5Þ symmetry. The minimal theory described so far
predicts a Higgs mass which is too large to agree with the
125 GeVof the LHC discovery. It is however plausible that
there could exist other vectorlike fermions in addition to the
ones responsible for generating the top quark Yukawa
coupling. Here we show that a realistic pattern of EWSB
via radiative effects can be achieved throughout this
parameter space by introducing an additional multiplet
of vectorlike fermions ðχ; χ̄Þ. These hidden-sector fermions
endow the Yukawa sector of the theory with additional
couplings that allow the Higgs mass and quartic to take
values consistent with experimental observations, as out-
lined in the following section and detailed in Appendix B.
In this analysis we will assume that ðχ; χ̄Þ are charged under
a hidden-sector gauge group G, transforming in the
ð□; 5Þ ⊕ ð□̄; 5Þ representation ofG × SUð5Þ. The addition
of these gauge interactions forbid tree-level couplings to

TABLE II. Mass matrices for the toplike quarks MT in the
gauge eigenbasis.

T̄ Q̄T P̄T t̄

T y1fc2θ iffiffi
2

p y1fs2θ
iffiffi
2

p y1fs2θ y3f

QT
iffiffi
2

p y1fs2θ y1fc2θ −y1fs2θ 0

PT
iffiffi
2

p y1fs2θ −y1fs2θ y1fc2θ 0

qT 0 y2f 0 0

TABLE III. Mass matrices for the bottomlike quarks MB in the
gauge eigenbasis.

Q̄B P̄B b̄

QB y1fc2θ −y1fs2θ 0

PB −y1fs2θ y1fc2θ 0

qB y2f 0 y4s2θ

FIG. 1. Mass spectrum for the new fermions at two benchmark points. One corresponding to y2=y3 ¼ 2=2 (left) and y2=y3 ¼
3=3

2
GeV (right). The hidden-fermion masses are fixed relative to the color-charged states by the Higgs mass.
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Standard Model fields, thus naturally suppressing poten-
tially dangerous interactions that could modify precisely
measured hadronic observables. If the new gauge group G
confines at some scale Λ̃ < f, then the low energy
spectrum will be comprised of hidden-sector mesons,
baryons, and glueballs. Due to a conserved Uð1ÞB in the
hidden sector, the baryons can be stable on cosmological
timescales and may thus be an attractive candidate for dark
matter if the lightest baryon is electrically neutral. The
direct and indirect detection signatures for these scenarios
have been well studied in the context of asymmetric dark
matter [37–43] and will not be discussed further. Here we
choose a hypercharge assignment for the hidden-sector
fermions that can naturally accommodate a number of low-
lying neutral mass eigenstates. The hidden-sector baryons
in this framework thus become a plausible candidate for
dark matter, although in general this will depend on the
discrete ZN subgroup at the center of G and the mass
splitting interactions of the hidden baryon spectrum. The
embedding of the gauge eigenstate components in ðχ; χ̄Þ is
given in Eq. (14) and the gauge quantum numbers of these
new states are given in Table IV,

χ ¼ ðX N YÞ; χ̄ ¼ ðȲ N̄ X̄ÞT; ð14Þ
If the SU(5) symmetry is broken via collective effects

from the new fermions we get additional contributions to
the one-loop effective potential for the Higgs boson. In a
manner which is similar to the mixing of the top partners,
we introduce symmetry breaking interactions between the
hidden-sector SUð5Þ multiplet ðχ; χ̄Þ and an additional
massless vectorlike pair of hidden fermions ðn; n̄Þ. The
Yukawa interactions thus include an SUð5Þ symmetric
coupling to the Σ field in addition to terms that softly
break the global symmetry. Here we assume the existence
of an additional approximate chiral Uð1Þ global symmetry
that forbids an explicit mass term for the hidden fermions n
and n̄ so that they obtain mass via this mixing. (Giving the
n and n̄ a bare mass would not be a phenomenological
problem for the model but we wish to avoid introducing
more parameters in order to keep the analysis reasonably
simple.)

Lχ ¼ ỹ1fχΣχ̄ þ ỹ2fnN̄ þ ỹ3fNn̄þ H:c: ð15Þ

In this scenario the mass matrix for the neutral hidden-
sector states MN has the property detM†

NMN ∝ cos2 2θ,
resulting in one massless particle when θ ¼ ðnþ 1=2Þπ=2
for n ∈ Z. The absence of a quadratic sensitivity to the
Higgs mass from loops of hidden-sector fermions is
guaranteed by the identity

∂
∂θ trM

†
NMN ¼ ∂

∂θ trðM
†
NMNÞ2 ¼ 0: ð16Þ

The hidden-sector mass matrix for MN produces four
electrically neutral mass eigenstates which we label in order
of descending mass as n000, n00, n0, n. The lightest of these
states is generically comparable in mass to the heaviest
Goldstone modes, and thus stable against pair production
via resonant scalar decay. The down-type hidden-sector
mass eigenstates include a charge �1 vectorlike pair
ðxþ; x̄þÞ and a charge ∓1 vectorlike pair ðy−; ȳ−Þ. Since
these hidden-sector states are color-neutral, their relatively
low production cross sections make all but the lightest state
n inconsequential for collider phenomenology. For the
remainder of this section we thus consider a simplified
parameter space for this sector in which ỹ3 ¼ ỹ2 ¼ ỹ1.
Analytic expressions for general couplings have been
derived in Appendix B to leading order in sin2 2θ. With
this simplified parameter space the hidden-sector fermion
masses scale approximately as

m2
n ∼

f2

4
ỹ21cos

22θ;

m2
n0 ∼ f2ỹ21;

m2
y− ∼m2

xþ ∼ f2ỹ21;

m2
n00 ∼m2

n000 ∼ 2f2ỹ21: ð17Þ

3. Theory space

The fermion interactions introduce a number of new
parameters to the Standard Model. The new color-charged
interactions introduce four Yukawa couplings yi, two of
which are fixed by the Standard Model top and bottom
quark masses as implied by Eq. (13). This leaves two free
parameters y1 and y2 which are bound from below by the
top-quark Yukawa coupling yt < y1y2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p
. The large

observed top quark mass in this framework thus descends
from the Oð1Þ values of the composite sector Yukawa
couplings. The new hidden-sector interactions introduce
three new Yukawa couplings which we have reduced to a
single parameter by assuming ỹ1 ¼ ỹ2 ¼ ỹ3. The fermion
content of this theory has been chosen to allow for a pattern
of electroweak symmetry breaking that can be tuned to agree
with the measured properties of the Higgs boson. In this
simplified parametrization, for each point in the two-
dimensional parameter space of ðy1; y2Þ there exists a unique
value for ỹ1 which gives a Higgs mass and quartic that is
consistent with Standard Model predictions. The conditions
of EWSB thus generically imply a mass scale for the new
hidden fermions that is OðfewÞ times lower than the masses
of the new color-charged states. The masses of the new

TABLE IV. Gauge quantum numbers for the new vectorlike
hidden-sector fermions. These include two SUð2ÞL doublets X ¼
ðXþX0Þ and Y ¼ ðY−Y0Þ, as well as two singlets N and n.

ðXX̄Þ ðNN̄Þ ðYȲÞ ðnn̄Þ
SUð3Þc (11) (11) (11) (11)
SUð2ÞL (22) (11) (22) (11)
Uð1ÞY ð1

2
− 1

2
Þ (00) ð− 1

2
1
2
Þ (00)

G ð□□̄Þ ð□□̄Þ ð□□̄Þ ð□□̄Þ
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fermions as a function of the chiral symmetry breaking
scale f are illustrated for two benchmark points in Fig. 1.
Thesebenchmarkshavebeenchosenarbitrarily to illustrate the
resulting mass scales of the new fermions at relatively low
values of f (consistent with precision electroweak constraints)
when the Yukawa couplings take on Oð1Þ values.
These Yukawa interactions also introduce additional

sources of SUð2Þc violation which can generate contribu-
tions to the T-parameter at loop level. These contributions
will vanish as the chiral symmetry breaking scale f
increases due to the decoupling of these vectorlike states,
but can become unacceptably large at low values of f. The
T parameter may be computed from the fermionic con-
tributions to the W- and Z-boson self-energies ΠWW and
ΠZZ as defined in Eq. (18). We find that these SUð2Þc
violating interactions provide unacceptable contributions to
the T parameter when f becomes on the order of 600 GeV,
as illustrated in Fig. 2,

αðmZÞT ¼ ΠWWð0Þ
m2

W
−
ΠZZð0Þ
m2

Z
: ð18Þ

Note that the corrections to the S parameter from loops
of the new fermions are very small. However the precise
lower bound on the compositeness scale from precision
electroweak corrections has sensitivity to the UV model.
For instance UV sensitive contributions to the S and T
parameters from the modified gauge couplings was done
in Ref. [44], where, given an assumption about the UV
physics, the authors found a positive low energy contri-
bution to the T parameter allowed a lower composite-
ness scale.

B. Electroweak symmetry breaking

The scalar effective potential in this theory is sculpted by
the radiative corrections from SUð5Þ breaking interactions

at f, which may be extracted from the quadratically and
logarithmically sensitive terms in the Coleman Weinberg
potential. The absence of additional gauge structure above
the chiral symmetry breaking scale implies that the con-
tribution from W and Z loops is quadratically sensitive to
the compositeness scale f, which we take to be Λ ∼ 4πf.
The form of this gauge contribution δVG can be extracted
from the covariant derivative and expressed in terms of the
gauge boson mass matrix MV

δVGðc; θÞ ¼ f2trM2
VðΣÞ ð19Þ

¼ f4cðg2tr½LaΣðLaΣÞ�� þ g02tr½YΣðYΣÞ��Þ
ð20Þ

¼ −f2f2G cos 2θ; ð21Þ

f2G ¼ f2c
2

ð3g2 þ g02Þ: ð22Þ

Here c is a UV sensitive constant which parametrizes the
leading gauge contribution to the effective potential for the
pNGBs. Dimensional analysis gives c of order 1, while a
technicolorlike UV completion of the model requires c
to be positive, that is, the gauge contribution to vacuum
alignment prefers vanishing gauge boson masses. The
analogous term in the effective low energy description of
QCD gives the (positive) mass squared splitting between
the πþ and π0 [16].
The absence of quadratically divergent one-loop con-

tributions from the Yukawa interactions follows from the
properties of the color-charged and hidden-sector fermion
mass matrices in Eqs. (11) and (16). The most significant
contribution to the scalar potential from fermions δVF in
this effective theory thus comes from the logarithmically
sensitive term. The above relations again guarantee that the
Λ dependent terms cancel order by order in θ. The result is

FIG. 2. Constraints from the T parameter at f ¼ 600 GeV (left), 800 GeV (middle), and 1000 GeV (right). The light/medium/dark
gray correspond to the 1σ=2σ=3σ deviations from experimentally measured values. The black corresponds to regions inconsistent with
the top quark mass.
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thus sensitive only to scales of OðfÞ, and can be written in
terms of ratios of mass eigenstates,

δVFðθÞ ¼ −
3

16π2
trðM†

FMFÞ2 log
M†

FMF

Λ2
ð23Þ

¼ −
3

16π2
X
F

jm2
FðθÞj2 log jm2

FðθÞj: ð24Þ

The collective symmetry breaking property of these mass
matrices guarantees that these contributions to the effective
potential are extremely well approximated by their leading
order terms in detM†

FMF. As argued in Appendix B, higher
order terms in detM†

FMF are negligible due to correspond-
ing suppression by powers of ðtrM†

FMFÞ4. The most
significant logarithmic contributions from the color-charged
toplike sector δVT and the neutral hidden-sector δVN thus
enter with opposite sign, and the θ dependence is numeri-
cally well approximated by δVF ∝ � cos 4θ. The dominant
contribution to the Higgs potential from fermions may thus
be parametrized by two scales fT and fN , which are
functions of the color-charged and hidden-sector Yukawa
couplings respectively. For concreteness we assume the
hidden gauge group to be SUð3Þ for these calculations

δVFðθÞ ¼ δVTðyi; θÞ þ δVNðỹi; θÞ ð25Þ

≈f2ðf2T − f2NÞ cos 4θ; ð26Þ

f2T ¼
3f2

32π2
y21y

2
2y

2
3

y22−y23
log

y21þy22
y21þy23

; f2N ¼ 3f2

32π2
ỹ41: ð27Þ

In this simplified parameter space, the hidden-sector fermion
mass spectrum is fixed by the masses of the color-charged
fermions and the conditions of electroweak symmetry
breaking. The ỹi dependence of this potential for arbitrary
hidden-sector Yukawa couplings are derived in Appendix B.
Since all of the Yukawa and gauge interactions are

invariant under the axial Uð1Þa ⊂ SUð5Þ, the Goldstone
excitation η in this direction is left massless by the contri-
butions considered thus far. In order to give a mass to this
gauge singlet large enough to avoid constraints fromhadronic
physics, we introduce an explicit source ofUð1Þa violation in
the formof a spurion term that is proportional to the reference
vacuum M0 ≡m0Σ0. Such a contribution would descend
naturally from fermion mass terms in the UV completion,

δV0ðm0; θÞ ¼ −f3tr½M0Σ� ð28Þ

¼ −f2f20 cos 2θ; ð29Þ

f20 ¼ 2fm0: ð30Þ
In the absence of additional symmetry breaking terms,
the scalar potential is fully parametrized by the Yukawa
coupings yi and ỹi, the one-loop gauge coefficient c, and

spurion coefficient m0. This potential has a generic EWSB
vacuum when f2T − f2N ≫ f20 þ f2G > 0 and can be
expressed as

VHðθÞ ¼ −f2ðf2B cos 2θ þ f2F cos 4θÞ; ð31Þ

f2B ¼ f20 þ f2G; f2F ¼ f2T − f2N: ð32Þ

Here we emphasize the crucial role of the hidden-sector
fermions in producing a viable pattern of EWSB through
the parameter fN, as the contribution from top partners via
fT is highly constrained by the measured values of the third
generation quarks in Eq. (13). Additional details are given
in Appendix B. The order parameter sin2 θ is assumed to
develop a vacuum expectation value at v ∼ 246 GeV.

4f2hsin2 θi ¼ hH†Hi ¼ v2: ð33Þ
The observed Higgs mass mh ¼ 126 GeV thus fixes the

relation between the color-charged and hidden sector
Yukawa couplings, as well as between the gauge renorm-
alization coefficient c and the Uð1Þ axial-breaking spurion
coefficient m0. EWSB is generic when 4f2F − f2B > 0, and
the Higgs potential can be reparametrized in terms of the
doublet mass μ and quartic λ, as shown in Eq. (35),

VHðHÞ ¼ −
1

2
ð4f2F − f2BÞjHj2 þ 1

4

2f2F
f2

jHj4 ð34Þ

¼ −
1

2
μ2jHj2 þ 1

4
λjHj4: ð35Þ

The Higgs doublet vev is thus fixed by both the difference
in interaction strengths between the color-charged and
hidden fermions fF, and the sum of the contributions from
the scalar interactions fB. The Higgs mass can thus be
expressed as in Eq. (37).

v2 ¼ μ2

λ
¼ 2f2 ×

�
4f2F − f2B

4f2F

�
¼ ð246 GeVÞ2; ð36Þ

m2
h ¼ 2λv2 ¼ 2 × ð4f2F − f2BÞ ¼ ð126 GeVÞ2: ð37Þ

A naïve measure of fine-tuning in the Higgs mass with
respect to the mass scales of fermionic and scalar inter-
actions fF and fB can be estimated from the parameters of
this theory. We find that EWSB is most generic in this
parameter space when f2B ¼ f20 þ f2G ∼ 0, as illustrated in
Fig. 3

Δðf2F; f2BÞ ¼
∂2 logm2

h

∂ log fF∂ log fB ¼ 16f2Ff
2
B

ð4f2F − f2BÞ2
: ð38Þ

The contributions to the low energy effective theory
described here also give rise to an effective potential for the
other Goldstone modes of the theory. These include the
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Georgi-Machacek scalars Φ̃=Φ and the singlet η, which
together transform in the ð3; 3Þ ⊕ ð1; 1Þ representation of
the SUð2ÞL × SUð2ÞR global symmetry. In this work we
remain agnostic about UV dynamics which may appear
near the cutoff scale Λ, and assume the absence of any
custodial symmetry violating terms outside of those arising
from top quark interactions. This is in contrast to models
like those described in [30], where a custodial violating UV
term was introduced in order to generate a viable quartic
interaction for the Higgs boson, thus resulting in a danger-
ous tadpole-induced VEV for the triplet Φ̃. In this model,
a viable quartic is generated from IR terms alone, thus
eliminating the need for such considerations. Note that the
custodial SU(2) symmetry prevents any custodial SU(2)
violating tadpole for the triplet Φ̃ scalars from tree-level
couplings to the Higgs doublet vev. The mass spectrum of
the non-SM scalars can also be readily extracted from an
expansion of these IR terms. In particular, the fermionic
contributions to the potential of the scalars Φ̃ and Φ are
suppressed by Oðθ2Þ and their masses are thus roughly

independent of the Yukawa couplings yi. This results in a
generically positive mass squared for the remaining
Goldstone scalars which is dominated by contributions
from the gauge and spurion interactions,

m2
Φ̃ ∼ 4f2

�
c

�
g2 þ g02

2

�
þm0

f

�
;

m2
Φ ∼ 4f2

�
cg2 þm0

f

�
; ð39Þ

m2
η ∼ 4fm0: ð40Þ

The mass of the gauge-singlet η is simply proportional
to the coefficient of the spurion operator m0, which is a
function of the Higgs mass mh and the gauge renormaliza-
tion coefficient c. The mass splitting between the Georgi-
Machacek scalars Φ̃=Φ and the gauge-singlet η thus grows
as a function of c, with η developing a vacuum expectation
value at c ∼ 0.35. These features of the scalar mass
spectrum are shown in Fig. 4.

C. Phenomenology

In this SUð5Þ=SOð5Þ model the spectrum of new states
contains strongly interacting quarks with masses that scale
asMT ∼ yif, hidden-sector fermions with masses that scale
as MN ∼ ỹif, and weakly interacting scalars with masses
that scale as MS ∼ gf. At

ffiffiffi
s

p ¼ 13 TeV the neutral spin-0
states are singly produced via gluon fusion with OðpbÞ
cross sections. There is also a zoo of new particle states that
are pair produced with OðfbÞ cross sections. These include
Drell-Yan production of the charged Goldstone scalars,
strong production of the lightest quark partners t0 t̄0=p0p̄0, as
well as weak production of the lightest hidden fermions nn̄.
The lightest hidden-sector states will be a spectrum of
glueballs which could be long lived, and produced via nn̄
annihilation or through Higgs boson decay. The direct
production cross section for these states at two benchmark
points are shown in Fig. 5.

FIG. 3. Contour lines of the fine-tuning parameter ΔðfF; fBÞ as
a function of the fermion interaction scale fF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2T − f2N

p
and

the boson interaction scale fB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2T − f2N

p
.

FIG. 4. Mass spectrum for the Goldstone scalars as a function of the renormalization constant c for f ¼ 600 GeV (left), f ¼ 800 GeV
(middle), and f ¼ 1000 GeV (right).
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Despite the abundance of new particle states in this
theory, their production cross sections and dominant
decay paths would make them extremely difficult to
resolve in current LHC datasets. The vectorlike fermions
in this model provide a negligible contribution to the
loop-induced Higgs-digluon and Higgs-diphoton verti-
ces (fractional corrections of 10−4 and 10−5 respec-
tively), and are thus well beyond the reach of recently
improved measurements for these couplings [45–47].
Drell-Yan production of the doubly charged scalar ϕ̃þþ
is appreciable in large parts of the parameter space due
to the Q2þþ enhancement to its cross section relative to
the other charged states. However, existing limits on this
process typically assume an Oð1Þ branching fraction to
pairs of same sign leptons [48,49] rendering them
inapplicable to the Goldstone scalars in this model,
which are leptophobic by assumption. Pairs of the
lightest top quark partner t0t̄0 and peculiar quark p0p̄0
can also be strongly produced with cross sections as
high as ∼5 fb in the viable regions of parameter space.
The strongest limits on vectorlike quarks are set by the
CMS search at

ffiffiffi
s

p ¼ 13 TeV in the single lepton
channel [33,34]. These limits are driven by kinemati-
cally optimized searches for tt̄þ X and bb̄þ X where
X ¼ W, Z, h is highly boosted, and are interpreted in the
context of simplified models that assume BRðt0 → ZtÞþ
BRðt0 → htÞ þ BRðt0 → WbÞ ¼ 1. In thismodel the lowest
lying vectorlike partners are composed mostly of the
hypercharge-7=6 doublet ðPT; PBÞ and their branching
fractions are dominated by decays to top and bottom
quarks in association with the scalar states in Φ̃. These
generic experimental signatures are thus qualitatively
different from those of simplified models of top and bottom
partners [50–53], rendering existing limits on vectorlike
quarks largely inapplicable.

1. Resonant tt̄ final states

Gluon fusion of neutral pseudoscalars ϕ0, η and the
complex scalar ϕ̃0 generically leads to a resonant tt̄ final
state. The CP properties of the pNGB matrix forbids the
two-body decays of the Goldstone scalars into pairs of
gauge and Higgs bosons and their branching fractions are
thus dominated by decays to the third generation quarks
whenever these channels are kinematically open. In the
bulk of this parameter space we find BRðϕ̃0=ϕ0=η → tt̄Þ∼
BRðϕ̃þ=ϕþ → tb̄Þ ∼ 1, although the gauge singlet η can
also have a significant branching fraction to gg and bb̄
when its mass is below the top threshold as computed in
Sec. III C. Currently the strongest limit on the process
gg → ϕ̃0=ϕ0 → tt̄ comes from the ATLAS search at

ffiffiffi
s

p ¼
8 TeV in the single lepton channel [54]. The gluon fusion
process is mediated by loops of heavy vectorlike quarks.
Their effects may thus be parametrized by a set of
dimension-5 couplings cSgg, which can be expressed as a
sum over the well-known gluon vertex function for the
fermion triangle graph VS

gg

L ⊃
X

S∈ϕ̃;ϕ;η

−
1

4
cSggSGμνG̃μν; ð41Þ

cSgg ¼
X
t000t00t

VS
ggðiÞ≡ αSffiffiffi

8
p

π

X
t000t00t

ySii
τifðτiÞ
mi

: ð42Þ

Searches for scalar resonances decaying to tt̄ pairs is
complicated by destructive interference between the
spin-0 and spin-1 mediated s-channel diagrams in Fig. 6.
This results in a “peak-dip” structure for the invariant
mass distribution of the tt̄ pairs rather than the usual
Breit-Wigner resonance. The analysis performed by
ATLAS searches for this kinematic feature in resolved

FIG. 5.
ffiffiffi
s

p ¼ 13 TeV cross sections for new particle states in their dominant production modes at f ¼ 800 GeV. Cross sections are
shown as a function of the gauge renormalization coefficient c at two benchmark points corresponding to y2 ¼ y3 ¼ 2 (left) and y2 ¼ 3,
y3 ¼ 3=2 (right).

COMPOSITE HIGGS MODELS WITH A HIDDEN SECTOR PHYS. REV. D 100, 076015 (2019)

076015-9



tt̄ pairs at invariant masses in the range of mtt̄ ¼
500–800 GeV.1 The results are interpreted in the context
of a two-Higgs-doublet model (2HDM) and the cuts are
kinematically optimized for the case of a scalar, a pseu-
doscalar, and the case of a degenerate scalar-pseudoscalar
pair. The limits are reported as a function of the 2HDM
parameter tan β in the alignment limit where the W=Z
couplings are equal to their SM values. In this limit, tan β
can be interpreted as the ratio of the top quark Yukawa
coupling to the SM Higgs and heavy Higgs bosons,
tan β → yHtt =yH̃tt . HereH and H̃ refer to the SUð2ÞL doublets
containing the SM and heavy Higgs bosons respectively.
The strength of this kinematic feature is a function of

ratios of the amplitudes for the two processes, which
include factors involving the vertex function VH

gg. For each
scalar mass eigenstate S we can thus define an analogous
angle βSeff by replacing the vertex function in the numerator
with its analogous dimension-5 coupling as shown in

Eq. (44). If the vectorlike quark masses are heavy and
decoupled, the contribution to the gluon fusion vertex
function is dominated by the top quark loop. In this regime
the Oð1Þ top-quark Yukawa coupling implies the approxi-
mate relation cot βSeff ∼ yStt=yHtt ,

cot2β ¼
�
yH̃tt
yHtt

�
2

¼ yH̃tt VH̃
ggðtÞ

yHtt VH
ggðtÞ

; ð43Þ

cot βSeff ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yStt
yHtt

cSgg
VH
ggðtÞ

s
⟶
hθi→0 yStt

yHtt
: ð44Þ

The ATLAS limits are strongest in the mass range of
Oð500 GeVÞ, but are insensitive to new scalars with
Yukawa couplings to the top quark that are below Oð1Þ.
These limits have been reparametrized as a function of
cot βSeff in Fig. 7, alongwith the translated2σATLAS limits atffiffiffi
s

p ¼ 8 TeV. The masses of the Georgi-Machacek scalars
ϕ0 and ϕ̃0 and the gauge-singlet η can be varied as a function
of the spurion coefficient m0 throughout the mass range of
interest, and are roughly independent of the magnitude of
their Yukawa couplings. Throughout the parameter space

FIG. 6. Interfering diagrams for tt̄ production via spin-0 and spin-1 mediators (left). Invariant mass distributions for the tt̄ pairs (right).
The contribution from the spin-0 mediator (S) is shown in blue and the combined contribution (Sþ I) is shown in red.

FIG. 7. Expected and observed limits from CMS searches for tt̄ resonances mediated by a pseudo-scalar (left) and a degenerate scalar/
pseudo-scalar (right), as a function of cot βeff . Maximum values for cot βeff are also shown.

1Invariant masses below 500 GeVare not considered due to the
importance of higher order corrections involving Higgs boson
decays to virtual top quarks in that regime.
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of this model we find that cot βϕ0

eff < cot βϕ̃0

eff ≪ 1. The ability
to resolve these neutral scalars are thus well beyond the reach
of near-term LHC limits in this channel.

2. Multitop final states

Pair production of doubly charged scalars and heavy
vectorlike quarks democratically provide an OðfbÞ con-
tribution to σðpp → tt̄tt̄Þ via final states that include
ðWbÞn with n ≥ 4. Despite the kinematic suppression of
these production modes, the abundance of new particle
states can lead to a measurable multitop signature when
combined over all processes. An anomalous production of
final states with high multiplicity top and bottom quarks is
thus a general expectation for this class of theories. The
most sensitive searches for these final states are driven by
multilepton analyses that look for anomalously high b-jet
multiplicities within samples containing three or more
leptons, or two leptons of the same sign [55]. The
dominant contributions to the multitop final state come
from diagrams such as those in Fig. 8.
In this model Drell-Yan production of the charged scalars

are mediated by current interactions that can be extracted
from the covariant derivative as shown in Eq. (49). The
form of these couplings agrees with those computed in the
low energy effective theory for Georgi-Machacek scalars
[36] in the limit where only the Higgs boson gets a vacuum
expectation value,

JμEM¼ gswðϕþ∂
↔μ

ϕ−þ ϕ̃þ∂
↔μ

ϕ̃−þ2ϕ̃þþ∂
↔μ

ϕ̃−−þ ϕ̃†
0∂
↔μ

ϕ̃0Þ;
ð45Þ

JμZ ¼ g
2cw

½ð1 − 2s2w þ c2hθiÞϕþ∂
↔μ

ϕ−

þ ð1 − 2s2w − c2hθiÞϕ̃þ∂
↔μ

ϕ̃− ð46Þ

þ 2ð1 − 2s2wÞϕ̃þþ∂
↔μ

ϕ̃−− þ c2hθiϕ̃
†
0∂
↔μ

ϕ̃0�; ð47Þ

Jμþ ¼ g½c2hθiðϕ̃þþ∂
↔μ

ϕ̃− þ ϕ̃þ∂
↔μ

ϕ̃0 − ϕþ∂
↔μ

ϕ0Þ ð48Þ

þ s2hθiðϕ̃þþ∂
↔μ

ϕ− − ϕ̃þ∂
↔μ

ϕ0 þ ϕ̃0∂
↔μ

ϕþÞ�: ð49Þ

These current interactions also mediate transitions between
the different scalar mass eigenstates via “weak-strahling”
processes. However these branching fractions are sublead-
ing relative to their decays to pairs of fermions via Oð1Þ
Yukawa couplings. The mass, charge, and CP properties
of the ϕ̃þþ scalar in this model forbid all two-body decays
and its branching fraction is thus dominated by the 3-body
decay BRðϕ̃þþ → Wþtb̄Þ ∼ 1. Pair production of this
doubly charged scalar will thus always result in the final
state ϕ̃þþϕ̃−− → ðWbÞ4, effectively providing an OðfbÞ
contribution to the four top-quark cross section from the
process shown in Fig. 8. The other major contribution to an
anomalous multitop cross section comes from strong
production of pairs of heavy vectorlike quarks, which
are the lightest top quark partner t0 t̄0 and peculiar quark
p0p̄0. The lightest top partner t0 decays mostly via the
neutral current t0 → ϕ̃0t but there is also a subleading
branching fraction to the top quark via emission of Z and h
bosons. These two subleading contributions are approx-
imately equal due to the Goldstone equivalence theorem,
as shown in Fig. 9. Flavor-changing charged-current decays
of t0 are suppressed due to the fact that it is mostly an
electroweak doublet implying that BRðt0 → WþbÞ ∼ 0. The
lightest bottom-type quark partner p0 has a peculiar charge
of 5=3 and therefore decays exclusively via emission of
charged bosons. Pair production of these heavy color-
charged fermions thus generically results in final states
involving pairs of Φ̃ scalars and additional third generation
quarks. At large values of the SUð5Þ symmetric Yukawa
coupling y1, the mass splitting between the new fermion
and scalar states becomes large enough to attenuate the
kinematic advantage of two-body final states. In this regime
we find an increasingly significant contribution from
3-body decays, which can result in exotic signatures
containing a very high multiplicity of leptons and b-jets.

FIG. 8. Dominant contributions to the final state ðWbÞn for n ≥ 4. These include Drell-Yan production of charged scalars (left) as well
as strong production of the lightest top partner (middle) and peculiar quark (right).
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In this model the contribution to the multitop cross section
from any one production mode is generally below threshold
for detection by current experimental searches. However
we find that combining the effective contribution to this
final state across multiple channels makes these searches
sensitive to large parts of the parameter space. The various
combinations of decay paths that contribute to the effective
tt̄tt̄ cross section are enumerated in Appendix C. The
aggregate contribution from all of these channels allows
for a direct translation of the limit on anomalous 4-top
production to the parameter space of this theory, as
illustrated in Fig. 10.

3. Hidden-sector final states

The lightest states in the hidden-sector are a spectrum of
glueballs which may be labeled by their JPC quantum
numbers. The masses and widths of these glueballs take a
large contribution from the nonperturbative dynamics of
the hidden-sector gauge groupG, thus preventing a detailed
quantitative analysis of their collider phenomenology.
However naive dimensional analysis implies that the
glueball masses should be proportional to the hidden-
sector confinement scale Λ̃, and their widths should be

proportional to some high power of Λ̃. If the hidden-sector
gauge group is G ¼ SUð3Þ, computations on the lattice
indicate the existence of at least a dozen stable glueball
mass eigenstates [56–58]. The lightest state has JPC ¼ 0þþ

and a massm0þþ ∼ 7Λ̃, while the higher excited states all lie
within OðfewÞ ×m0þþ . Despite the relative compression of
this mass spectrum, if m0þþ ≫ Λ̃ then the production of
higher-mass glueballs will be subdominant due to a
Boltzmann suppression in the thermal partition function.
We will thus assume going forward that anOð1Þ fraction of
all glueballs produced are of the type 0þþ. The lowest-lying
glueball 0þþ can decay back to Standard Model particles
through the Higgs portal and its branching ratios are thus
approximately equal to those of a Higgs boson of the
same mass. The widths of low-mass Higgs bosons are well
known [59] and are illustrated in Fig. 11. The parametric
form of the glueball width has been worked in out in [60],
and is given by the expression in Eq. (50),

Γð0þþ → h� → XXÞ ¼
�

κvm3
0þþ

24π2f2ðm2
h −m2

0þþÞ
�

2

× Γðh� → XXÞ: ð50Þ

FIG. 9. Branching fractions of the lightest top-quark partner (left) and the peculiar bottom-quark partner (right) as a function of y1 at
benchmark points corresponding to f ¼ 800 GeV and y2 ¼ 2. The shaded gray areas correspond to the limits from the T parameter.

FIG. 10. Total cross section (fb) for production of final state ðWbÞn with n ≥ 4 at f ¼ 600 GeV (left) and f ¼ 800 GeV (right). Limits
from multitop searches shown in red.
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Here κ is an Oð1Þ constant that parametrizes the non-
perturbative contribution to the width, and lattice compu-
tations for G ¼ SUð3Þ give κ ∼ 3 [57,61]. For this analysis
we remain agnostic about the details of the hidden-sector
gauge group by treating κ and m0þþ as the input quantities
that parametrize the relevant glueball properties.
Ifm0þþ > mh=2 then the primary production mode of the

0þþ glueball will be through decays of a broad nn̄-onium
resonance, which has an OðfbÞ production cross section in
the bulk of this parameter space, often exceeding the pair
production rate of the new color-charged states t0 t̄0 and
p0p̄0. Weak production of nn̄ pairs is enhanced by an
abundance of new production modes via s-channel dia-
grams involving the new Goldstone states, and also by the
conditions of EWSB which generically result in a hierarchy
between the color-charged and hidden-sector Yukawa
couplings mn < mt0 . However in this regime, the hidden-
sector states would be extremely difficult to resolve in any
near-term LHC search due to the overwhelming QCD
backgrounds to its generic final states. For example if the

hidden-sector gauge group is QCD-like, then a relatively
light glueball mass m0þþ ≪ mn ∼ 0.5 TeV may result in a
nn̄-onium state that decays to a high multiplicity of
glueballs, the lightest of which would decay promptly
with an Oð1Þ branching fraction to pairs of bottom quarks.
This OðfbÞ contribution to high-multiplicity bottom-quark
final states would be extremely challenging to probe.
However given the impressive recent advances on object
identification using deep-learning algorithms, it is conceiv-
able that future analysis techniques may become sensitive
to the resonance structure of such glueball decays between
correlated bb̄ pairs. As the lightest glueball mass begins to
saturate the kinematic limitm0þþ → mn, the nn̄-onium state
will decay promptly to pairs of the 0þþ glueball, which has
a promptOð1Þ branching fraction toWþW− in this regime.
The hidden sector will thus provide an OðfbÞ contribution
to the cross section σðpp → nn̄ → WþW−WþW−Þ that
would be similarly challenging to resolve. The nonresonant
same-sign dilepton and multilepton final states are sup-
pressed by Oð10−2Þ branching fractions and the rates are
thus orders of magnitude too low to be constrained by
current nonresonant multilepton searches [62,63]. In the
regime m0þþ > 2mW where allW-bosons are on-shell, then
the fully hadronic decay modes of the WþW−WþW− final
state would contain interesting hierarchical resonance
structures that could also conceivably be exploited by
future advances in analysis techniques.
As a consequence of Eq. (50), the lifetime of the 0þþ

glueball is a strong function of the hidden-sector confine-
ment scale Λ̃ and its lifetime can either be prompt or
extremely long lived. The decay lengths at a generic value
of the Yukawa couplings are illustrated in Fig. 12, with the
middle plot corresponding to the QCD-like scenario with
κ ¼ 3. Here we define “prompt” decays as those corre-
sponding to cτ < 10 μm and “invisible” as those corre-
sponding to cτ > 10 m. In the regime where m0þþ < mh=2
then the 0þþ glueball can be very long lived [64–67], and

FIG. 11. Branching ratio of the lightest hidden-sector glueball
to Standard Model particles as a function of the glueball mass
m0þþ .

FIG. 12. The glueball decay length cτ (m) as a function of m0þþ and f. Results are shown for various values of the constant κ
pametrizing nonperturbative effects with κ ¼ 6 (left), κ ¼ 3 (middle), and 1=2 (right). Here we define “prompt” decays as those
corresponding to cτ < 10 μm and “invisible” as those corresponding to cτ > 10 m.
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big-bang nucleosynthesis (BBN) places a limit on long-
lived particles for which cτ > 107 m. For a QCD-like
hidden sector this would place a lower limit on the lightest
glueball mass m0þþ of about OðfewÞ GeV. A simplified
parametrization of the decay length relative to the BBN
limit is given by Eq. (51),

cτð0þþÞ ∼ 1.5 × 107 m

�
1.5 GeV
m0þþ

�
7
�

f
800 GeV

�
4

: ð51Þ

In this parameter space cτð0þþÞ ∼ 10 m corresponds
approximately to m0þþ ∼ 10 GeV, thus placing the glue-
ball decay vertex outside of the LHC detectors at lower
masses. For simplicity we thus restrict our analysis to
glueball masses m0þþ > 2mb where we have approxi-
mately BRð0þþ → bb̄Þ ∼Oð1Þ, although similar limits
hold at lower masses when BRð0þþ → τþτ−Þ ∼Oð1Þ.
The primary production mode of the 0þþ glueball in this
regime occurs via decays of the Higgs boson mediated by
loops of hidden-sector fermions. The branching ratio of
the Higgs boson to hidden-sector glueballs in this frame-
work can be estimated by the Higgs boson partial width to
pairs of hidden-sector gluons, and is parametrically given
by the relation in Eq. (52),

BRðh → 0þþ0þþÞ
BRðh → ggÞ ∼

�
α̃ðmhÞ
αS

v2

f2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
0þþ

m2
h

s
: ð52Þ

This branching ratio BRðh → 0þþ0þþÞ depends on the
running of the hidden-sector coupling constant α̃ from the
hidden confinement scale Λ̃ to the Higgs mass mh. In this
model we have assumed that the lightest states charged

under the hidden-sector gauge group G have masses on
the order of f > Λ̃ and the β-function for α̃ thus depends
purely on the quadratic Casimir of G. Weak-scale pertur-
bativity of the coupling constant α̃ðmhÞ < 0.5 generically
implies a small branching fraction for h → 0þþ0þþ.
However, sophisticated tracker search strategies at the
LHC [68] will nonetheless become sensitive to certain
regions of the parameter space for Higgs branching
fractions as low as 7 × 10−4 as illustrated in Fig. 13.
These limits may be further improved after proposed high-
luminosity upgrades [69–72]. Additionally, future Higgs
factories such as the proposed Circular Electron-Positron
Collider (CEPC) or the International Linear Collider
(ILC) [73–75] will be able to exclude a wide range of
values for α̃ðmhÞ. The expected sensitivities to a variety of
rare Higgs boson decays have been projected for a long-
term run at the CEPC [76], which will be sensitive to the
decay topology BRðh → 0þþ0þþ → bb̄bb̄Þ ∼ 6 × 10−4, as
illustrated in Fig. 13. Here we have restricted these limits
to regions in which the 0þþ glueballs decay within the
tracker radius of the proposed CEPC detectors
∼1810 mm, and assume that object identification would
be inefficient from calorimeter data alone. The large
region of parameter space with macroscopic glueball
decay lengths also provides additional motivation for a
more careful exploration of the lifetime frontier via
surface detectors such as the proposed MATHUSLA
experiment [77]. Preliminary studies indicate that such
a surface detector could exclude rare branching fractions
of the Higgs boson as low as BRðh → XXÞ ∼ 10−5 for
detector-optimized values of cτð0þþÞ. The long-term
projections for these rare Higgs boson decays assuming
3 ab−1 of MATHUSLA data are also illustrated in Fig. 13.

FIG. 13. Higgs branching ratio to hidden-glueballs as a function of m0þþ and f for a fast and slow running hidden-sector gauge
couplings α̃ ¼ 0.2 (left) and 0.4 GeV (right). Projected 95% confidence limits are shown for the proposed MATHUSLA surface detector
(red) as well as the proposed CEPC Higgs factory (yellow). The light/medium/dark shades correspond to different values of the glueball
width parameter κ ¼ 6=3=0.5.
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III. SUð4Þ=Spð4Þ INTERMEDIATE MODEL

The symmetry breaking pattern SUð4Þ=Spð4Þ produces
15 − 10 ¼ 5 pseudo-Nambu-Goldstone Bosons (pNGBs).
The nonlinear sigma model describing the low energy
effective theory may be expressed in terms of an anti-
symmetric unitary matrix Σ, which transforms under SUð4Þ
as VΣVT where V is an SUð4Þ matrix. It is convenient to
specify a background field Σ0, which is invariant under the
Spð4Þ subgroup containing SUð2ÞL ⊗ SUð2ÞR. The gen-
erators for the SUð2ÞL ⊗ Uð1ÞY gauge symmetry La and Y
are embedded into an approximate global custodial sym-
metry via Y ¼ R3, which remains unbroken in the reference
vacuum Σ ¼ Σ0,

Σ0 ¼
�
iσ2

iσ2

�
; La ¼ 1

2

�
σa

0

�
;

Ra ¼ 1

2

�
0

σa

�
: ð53Þ

The pNGB’s thus transform under the electroweak gauge
group as 10 ⊕ 2�1=2 giving one real electroweak singlet
and a SMHiggs doublet. The Nambu-Goldstone bosons are
fluctuations about this background in the direction of the
broken generators, Π≡ πaXa, and may be parametrized as

Π ¼ 1

2

� 1ffiffi
2

p η1 ðHcHÞ
ðHcHÞ† − 1ffiffi

2
p η1

�
: ð54Þ

Here H ¼ ðHþH0Þ and Hc ¼ iσ2H�. Vacuum misalign-
ment with respect to the weak gauge interactions can be
parametrized by an angle θ. This vacuum, which is invariant
under the custodial SUð2Þc generated by Ra þ La, can be
written as

θ2 ≡ 1

2

H†H
f2

;

hΣi ¼

0
BBB@

0 cos θ 0 i sin θ

− cos θ 0 −i sin θ 0

0 i sin θ 0 cos θ

−i sin θ 0 − cos θ 0

1
CCCA: ð55Þ

The gauge couplings explicitly break the SUð4Þ global
symmetry. The covariant derivative can be expanded to
second order in the vacuum giving tree-level masses to
the weak gauge bosons in terms of the SUð2ÞL ×Uð1ÞY
couplings g, g0. The tree-level relation mW=mZ ¼ cos θw is
guaranteed by the preservation of the remnant custodial
symmetry SUð2Þc ⊂ Spð4Þ

m2
W ¼ g2

2
f2sin2θ; m2

Z ¼ g2 þ g02

2
f2sin2θ: ð56Þ

A. Fermion sector

In this model the Yukawa sector of the Standard Model
is extended to include interactions between the Σ field
and composite fermions in complete SUð4Þ multiplets.
Additional gauge invariant interactions softly break the
global symmetry, generating a significant negative contri-
bution to the Higgs potential, thus driving electroweak
symmetry breaking. In a manner similar to the SUð5Þ=
SOð5Þ model of the previous section, the mass and quartic
couplings of the Higgs boson can be fit to their exper-
imentally measured values by extending the fermion sector
of this theory to include two vectorlike multiplets of
fermions in the fundamental representation of SUð4Þ.
The first multiplet ðψ ; ψ̄Þ is charged under SUð3Þc and
mixes with the third generation of Standard Model quarks
resulting in a partially composite top and bottom. The
second multiplet ðχ; χ̄Þ is charged under a hidden-sector
gauge group G that confines at some scale Λ̃ < f.

1. Color-charged fermions

The new color-charged vectorlike states ðψ ; ψ̄Þ mix with
the chiral third-generation of SM quarks, which are singlets
under the global SUð4Þ symmetry. The gauge eigenstate
components of these multiplets are fixed by the embedding
of SUð2ÞL ×Uð1ÞY ⊂ SUð4Þ, and are shown in Eq. (57).
The gauge quantum numbers of the new color-charged
fermions are given in Table V,

ψ ¼ ðQ T BÞ; ψ̄ ¼ ðQ̄ T̄ B̄ÞT: ð57Þ
The most general gauge invariant Yukawa couplings for the
color-charged fermions are given by Eq. (58), and collec-
tive symmetry breaking properties of these interactions
guarantee the absence of quadratic divergences to the scalar
potential from fermion loops. The resulting toplike mass
matrix MT has the property detM†

TMT ∝ sin2 θ, thus
producing one massless state when θ ¼ nπ for n ∈ Z,

Lψ ¼ y1fψΣψ̄ þ y2fqQ̄þ y3fTt̄þ y4fBb̄þ H:c: ð58Þ
Below the scale of electroweak symmetry breaking the
fermion interactions can be expressed in terms of their low

TABLE V. Gauge quantum numbers for the new vectorlike
quarks. These include a new SUð2ÞL doublet Q ¼ ðQT;QBÞ in
addition to two vectorlike singlets T and B. The new vectorlike
states mix with the SM chiral doublet q ¼ ðqT; qBÞ and singlets
ðt̄; b̄Þ.

ðQQ̄Þ ðTT̄Þ ðBB̄Þ q t̄ b̄

SUð3Þc ð33̄Þ ð33̄Þ ð33̄Þ 3 3̄ 3̄
SUð2ÞL (22) (11) (11) 2 1 1
Uð1ÞY ð1

6
− 1

6
Þ ð2

3
− 2

3
Þ ð− 1

3
1
3
Þ 1

6
− 2

3
1
3

G (11) (11) (11) 1 1 1
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energy gauge eigenstates. The toplike and bottomlike
mass matrices MT and MB shown in Table VI and
Table VII are a function of Higgs’ vacuum expectation
value θ ¼ hhi=ð ffiffiffi

2
p

fÞ, and produce six mass eigenstates
upon diagonalization. The up-type sector contains three
charge �2=3 states which we label in order of descending
mass as t00, t0, t, and the lightest of these states corresponds
to the SM top quark. The down-type sector contains three
charge ∓1=3 mass eigenstates which we label in order
of descending mass as b00, b0, b, and the lightest of these
states corresponds to the SM bottom quark. The effective
Yukawa couplings for the SM top and bottom quarks may
be expressed as

yt ¼
y1y2y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y23
p ; yb ¼

y1y2y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y23

p :

ð59Þ
Note that a nonzero top quark mass requires y1, y2, y3 > 0
simultaneously, revealing the collective symmetry break-
ing properties of the top sector mass matrix. The masses of

the color-charged fermions are computed in Appendix A
to second order in sin2 θ, and the numerically diagonalized
mass spectrum for the heavy fermions are shown in
Fig. 14. To leading order in sin2 θ these masses scale
approximately as

m2
t ∼ f2y2t sin2θ; m2

b ∼ f2y2bsin
2θ;

m2
t0 ∼ f2ðy21 þ y22Þ; m2

b0 ∼ f2ðy21 þ y24Þ;
m2

t00 ∼ f2ðy21 þ y23Þ; m2
b00 ∼ f2ðy21 þ y22Þ: ð60Þ

2. Hidden-sector fermions

The new hidden-sector vectorlike states ðχ; χ̄Þ transform
in the ð□; 4Þ ⊕ ð□̄; 4Þ representation of G × SUð4Þ. The
hidden-sector gauge group G confines at some scale Λ̃ < f
resulting in a low energy spectrum comprised of unstable
mesons, stable baryons, and potentially long-lived glue-
balls. The lightest baryons in this sector are a natural
candidate for dark matter if they are electrically neutral;
however, a detailed analysis of hidden-baryon spectrum is
beyond the scope of this analysis. The gauge quantum
numbers of the hidden fermions are given in Table VIII,

χ ¼ ðX N CÞ; χ̄ ¼ ðX̄ N̄ C̄ÞT: ð61Þ

A Standard Model-like Higgs boson can be obtained
from fermionic loop corrections by introducing symmetry

FIG. 14. Mass spectrum for the new quark partners at two benchmark points. One corresponding to y1=y2 ¼ 7=2 (left) and y1=y2 ¼
10=2 GeV (right). The hidden-fermion masses are fixed relative to the color-charged states by the Higgs mass.

TABLE VII. Mass matrices for the bottomlike quarksMB in the
gauge eigenbasis.

Q̄B B̄ b̄

QB y1f cos θ −iy1f sin θ 0
B −iy1f sin θ y1f cos θ y3f
qB 0 y2f 0

TABLE VI. Mass matrices for the toplike quarks MT in the
gauge eigenbasis.

Q̄T T̄ t̄

QT y1f cos θ −iy1f sin θ 0
T −iy1f sin θ y1f cos θ y3f
qT y2f 0 0

TABLE VIII. Gauge quantum numbers for the new vectorlike
quarks. These include one SUð2ÞL doublet X ¼ ðXþX0Þ, one
charged singlet C, and two neutral singlets N and n.

ðXX̄Þ ðNN̄Þ ðCC̄Þ ðnn̄Þ
SUð3Þc (11) (11) (11) (11)
SUð2ÞL (22) (11) (11) (11)
Uð1ÞY ð1

2
− 1

2
Þ (00) ð−11Þ (00)

G ð□□̄Þ ð□□̄Þ ð□□̄Þ ð□□̄Þ
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breaking interactions between the multiplet ðχ; χ̄Þ and an
additional massless vectorlike pair of hidden-sector fer-
mions ðn; n̄Þ. The Yukawa interactions thus include an
SUð4Þ symmetric coupling to the Σ field in addition to
terms that softly break the global symmetry. As in the
SUð5Þ=SOð5Þ model, we assume that the hidden fermions
n and n̄ transform under a global chiral Uð1Þ symmetry
thus forbidding an explicit mass term,

Lχ ¼ ỹ1fχΣχ̄ þ ỹ2fnN̄ þ ỹ3fNn̄þ H:c: ð62Þ
The hidden-sector interactions are constructed in such a

way that the neutral mass matrix MN shown in Table IX,
obeys the condition detM†

NMN ∝ cos2 θ, thus producing
one massless state when θ ¼ ðnþ 1=2Þπ. Diagonalizing
MN produces three electrically neutral mass eigenstates
which we label in order of descending mass as n00, n0, n.
Diagonalizing the charged hidden-sector mass matrix MC
shown in Table X, results in a charge �1 vectorlike pair

ðxþ; x̄þÞ and a charge ∓1 vectorlike pair ðc−; c̄−Þ. The
precision electroweak constraints described in the follow-
ing section push the fermion masses of this theory to very
high scales, and the details of their mass spectrum
are thus irrelevant for hadron-collider phenemenology.
We thus consider a simplified parameter space in which
ỹ3 ¼ ỹ2 ¼ ỹ1, though the masses are computed for general
Yukawa couplings in Appendix A to second order in sin2 θ.
In this simplified parameter space the eigenvalues of the
mass matrix scale approximately as

m2
n ∼

f2

4
ỹ21cos

2θ;

m2
n0 ∼m2

n00 ∼ 2f2ỹ21; m2
xþ ∼m2

c− ∼ f2ỹ21: ð63Þ

3. Theory space

The new color-charged fermion interactions introduce
four Yukawa couplings yi, two of which are fixed by the
Standard Model top and bottom quark masses as implied
by Eq. (58). This leaves two free parameters y1 and y2
which are bound from below by the top-quark Yukawa
coupling yt < y1y2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p
. The new hidden-sector

interactions introduce three new Yukawa couplings,
which we reduce to a single parameter by assuming
ỹ1 ¼ ỹ2 ¼ ỹ3. The conditions of EWSB described in the
following section thus fixes a unique value for ỹ1 at each
point in the two-dimensional parameter space of ðy1; y2Þ.
In this framework, the experimentally measured Higgs
mass implies a mass scale for the new hidden-sector
fermions that is OðfewÞ times lower than their color-
charged counterparts. The masses of the new fermionic
states as a function of the chiral symmetry breaking scale
f are illustrated for two benchmark points in Fig. 14.
The most constraining precision electroweak observable

for the SUð4Þ=Spð4Þ model comes from the branching
fraction of Z → bb̄. The doublet-singlet mixing between

TABLE IX. Mass matrix for the neutral hidden-sector fermions
MN in the gauge eigenbasis.

N̄ X̄0 Ȳ0 n̄

N ỹ1fc2θ iffiffi
2

p ỹ1fs2θ iffiffi
2

p ỹ1fs2θ ỹ3f

X0
iffiffi
2

p ỹ1fs2θ ỹ1fc2θ −ỹ1fs2θ 0

Y0
iffiffi
2

p ỹ1fs2θ −ỹ1fs2θ ỹ1fc2θ 0

n ỹ2f 0 0 0

TABLE X. Mass matrix for the charged hidden-sector fermions
MC in the gauge eigenbasis.

X̄þ Ȳ−

Xþ ỹ1fc2θ −ỹ1fs2θ
Y− −ỹ1fs2θ ỹ1fc2θ

FIG. 15. Constraints from precision electroweak measurements at f ¼ 1200 GeV (left), f ¼ 1500 GeV (middle), and f ¼ 2000 GeV
(right). The light/medium/dark shades correspond to the 1σ=2σ=3σ deviations from experimentally measured values. The black
corresponds to regions inconsistent with the top quark mass.
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the SM bottom quark and its vectorlike partners will
generically induce large corrections to the bottom quark
neutral currents if y2 is significantly larger than y1. The
precision of experimental measurements on the parameter
Rb ¼ ΓðZ → bb̄Þ=ΓðZ → hadÞ ¼ 0.21629� 0.00066 thus
excludes all regions except those in which y1 ≫ y2, as
shown in Fig. 15. The precision electroweak constraints
from Rb thus push the masses of the vectorlike fermions to
very high scales that are likely beyond the reach of a
14 TeV machine via direct production. These constraints
may be relaxed by introducing additional states with
bottomlike gauge quantum numbers that reduce the
doublet-singlet mixing. Another approach, used in
Ref. [78], is to leave a subgroup of the custodial SUð2Þ
unbroken which protects corrections to Rb, also requiring
introducing states in different representations of the SUð4Þ.
However, for the remainder of this paper we will assume
the minimal matter content for this model in which the
fermions are heavy and decoupled. The contributions to the
T parameter from fermion loops are less constraining in
this model and are also shown in Fig. 15.

B. Electroweak symmetry breaking

The one-loop corrections to the scalar effective potential
can be extracted from the quadratically and logarithmically
sensitive terms in the Coleman Weinberg potential. The
Higgs mass receives a large positive contribution from
gauge loops that is quadratically sensitive to the compos-
iteness scale Λ, and proportional to the gauge boson mass
matrix squared. Taking Λ ∼ 4πf we find

δVGðc; θÞ ¼ f2trM2
VðΣÞ ð64Þ

¼ −f2f2G cos 2θ; ð65Þ

f2G ¼ f2

4
cð3g2 þ g02Þ: ð66Þ

Collective symmetry breaking ensures the absence of
quadratically divergent contributions from the Yukawa
sector, and a logarithmic contribution that is well approxi-
mated by the leading order terms in detM†

TMT and
detM†

NMN . As argued in Appendix A the higher order
contributions are suppressed by corresponding powers of
ðtrM†

TMTÞ3, and are thus proportional to a function of the
Yukawa couplings that has a numerically negligible global
maximum. The leading contribution to the Higgs effective
potential from the color-charged and hidden-sector fer-
mions are thus numerically well approximated by a simple
δVF ∝ � cos 2θ dependence, and contribute with opposite
sign. Analytical expressions for the coefficients of this
potential are computed for general values of the Yukawa
couplings yi and ỹi in Appendix A, as well as higher order
corrections, assuming that the hidden gauge group is
SUð3Þ. In the simplified parameter space, the fermionic

contribution to the scalar effective potential may be
expressed to leading order as

δVFðθÞ ≈ f2ðf2T − f2NÞ cos 2θ; ð67Þ

f2T ¼
3f2

16π2
y21y

2
2y

2
3

y22−y23
log

y21þy22
y21þy23

; f2N ¼ 3f2

16π2
ỹ41: ð68Þ

A realistic pattern of EWSB in this model requires the
introduction of a Uð1Þa violating spurion analogous to the
operator of Eq. (30). This spurion descends naturally from
fermion mass terms in the UV complete theory, and gives a
contribution to the Higgs potential that is periodic in
θmod2π

δV0ðm0; θÞ ¼ −f3tr½M0Σ� þ H:c: ð69Þ

¼ −f2f20 cos θ; ð70Þ

f20 ¼ 4fm0: ð71Þ

In the absence of additional matter content at the scale f,
the leading contributions to the scalar effective potential are
fixed by the Yukawa coupings yi and ỹi, the one-loop gauge
coefficient c, and spurion coefficient m0. This potential has
a generic EWSB vacuum when f2T − f2N − f2G ≫ f20 > 0

and the vacuum expectation value of the order parameter θ
can be expressed as a function of these scales,

VHðθÞ ¼ −f2ðf20 cos θ þ f̃2 cos 2θÞ; ð72Þ

f̃2 ¼ f2T − f2N − f2G: ð73Þ

The order parameter sin2 θ=2 is assumed to develop a
vacuum expectation value at v ∼ 246 GeV,

4f2
�
sin2

θ

2

�
¼ hH†Hi ¼ v2: ð74Þ

The observed Higgs mass mh ¼ 126 GeV thus fixes the
relation between the color-charged and hidden sector
Yukawa couplings, as well as the relation between the
gauge renormalization coefficient c and the Uð1Þ axial-
breaking spurion coefficient m0. EWSB is generic when
4f2F − f2B > 0, and the Higgs potential can be reparame-
trized in terms of the doublet mass μ and quartic λ, as
shown in Eq. (76),

VHðHÞ ¼ −
1

2
ð4f̃2 − f20ÞjHj2 þ 1

4

2f̃2

f2
jHj4 ð75Þ

¼ −
1

2
μ2jHj2 þ 1

4
λjHj4: ð76Þ
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The Higgs doublet VEV is thus fixed by the both the mass
scales defined by the color-charged and hidden fermions
and gauge bosons f̃2 ¼ f2T − f2N − f2G, and the scale
defined by the spurion term f20. The Higgs mass can thus
be expressed as in Eq. (78),

v2 ¼ μ2

λ
¼ 2f2 ×

�
4f̃2 − f20

4f̃2

�
¼ ð246 GeVÞ2; ð77Þ

m2
h ¼ 2λv2 ¼ 2 × ð4f̃2 − f20Þ ¼ ð126 GeVÞ2: ð78Þ

A naive measure of the fine-tuning of the Higgs mass with
respect to the two mass scales f̃ and f0 and the functional
form is identical to the tuning illustrated in Fig. 3

Δðf2F; f2BÞ ¼
∂2 logm2

h

∂ log fF∂ log fB ¼ 16f2Ff
2
B

ð4f2F − f2BÞ2
: ð79Þ

In this framework the mass of the gauge-singlet pseu-
doscalar η takes a large contribution from the spurion
coefficient m0. At leading order in θ, the size of this
coefficient is fixed by the Higgs mass to be m0 ∼ fm2

h=v
2

resulting in a heavy pseudoscalar mη ∼OðTeVÞ. The
pseudoscalar mass can be made into a free parameter by
introducing an additional symmetry breaking spurion that
is proportional to an alternative Spð4Þ preserving back-
ground field M̃0 ≡ m̃0Σ̃0

δṼ0ðm̃0; αÞ ¼ −f2tr½M̃0Σ�2 þ H:c: ð80Þ

¼ 8f2m̃2
0η

2
sin2 α
α2

; ð81Þ

Σ̃0 ¼
�
iσ2

−iσ2

�
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þH2

2f2

s
: ð82Þ

The spurion given by Eq. (81) would descend naturally
from a four-fermion interaction in the UV completion at the

compositeness scaleΛ. This term provides a contribution to
the potential for η only. In the absence of additional sources
of symmetry breaking terms, the pseudoscalar mass is
given as a function of the spurion coefficients m0 and m̃0

m2
η ∼ 4f2

�
m0

f
−
8m̃2

0

f2

�
: ð83Þ

C. Phenomenology

In the SUð4Þ=Spð4Þ model, precision electroweak
constraints push the masses of the BSM fermions to very
high values, putting them firmly beyond the reach of near-
term LHC limits. These constraints can be relaxed by
introducing additional vectorlike partners in a way that
suppresses mixing between the SM bottom quark and
the heavy singlet. However in the viable regions of
parameter space the branching fractions of the lightest
BSM states to the singlet η are generically small as shown
in Fig. 16. The lightest color-charged states in these models
are thus extremely similar to the top and bottom partners of
simplified models [33,34,50–53] and their phenomenology
will not be discussed further here. The phenomenological
signatures of the hidden-sector in this model are similar to
those described in Sec. II C 3 and will also not be reiterated
here. In the absence of kinematically accessible BSM
fermions, the production of new particles is limited to
weak production of the Goldstone mode η, which can be
singly produced via gluon fusion, or pair produced
via Higgs decay h → ηη if it is sufficiently light. The
large tree-level Yukawa couplings in this model result in
BRðη → tt̄Þ ∼ 1 when mη > 2mt and BRðη → bb̄Þ ∼ 1

when mη < 2mt.
In the high-mass regime the discovery of such a state

would be extremely challenging due to the low production
cross section and the interference effects of its two-body
decays, as described in Sec. II C. The loop-induced
interactions of the η boson are roughly independent of
the Yukawa couplings due to the dominant invariant

FIG. 16. Branching fractions of the lightest top-quark partner (left) and the lightest bottom-quark partner (right) as a function of y1 at a
benchmark points corresponding to f ¼ 1500 GeV and y2 ¼ 2. The shaded orange areas correspond to the limits from the Rb parameter.
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contribution from the top-quark loop. The cross sections
and branching fractions of the η boson are shown in Fig. 17
for a generic value of the Yukawa couplings. The pseu-
doscalar η only has tree-level couplings to the third
generation quarks and their BSM partners. Its branching
fractions are thus dominated by decays to top and bottom
quark pairs whenever these channels are kinematically
open. However there will also be effective couplings to
pairs of gauge bosons from dimension-5 operators, which
arise via one-loop diagrams analogous to gluon fusion. The
relevant dimension-5 interactions are given in Eq. (84). The
couplings c̃ηV1V2

have been computed in FEYNCALC [79],
and the partial widths to various pairs of gauge bosons are
given by the expression in Eq. (85),

L ⊃
1

4
ηðc̃ηwwWμνW̃μν þ c̃ηzzZμνZ̃μν þ c̃ηzγZμνF̃μν

þ c̃ηγγFμνF̃μν þ c̃ηggGμνG̃
μνÞ; ð84Þ

Γðη→V1V2Þ¼
1

16πmη
jc̃ηV1V2

j2½λðm2
η;m2

V1
;m2

V2
Þþ6m2

V1
m2

V2
�:

ð85Þ

1. Rare Higgs decays

If the pseudoscalar mass is comparable to that of the
Higgs boson then its dominant branching fraction to
bottom quarks would make it vulnerable to sophisticated
searches for boosted bb̄ pairs such as those recently
performed by CMS [80,81]. However these techniques
are unable to resolve boosted objects with low invariant
masses mη < 50 GeV due to overwhelming multijet
backgrounds [82]. In this regime, the most viable kin-
ematic pathway for resolving the pseudoscalar ηwould be

through its interactions with the Higgs boson, which can
decay to pairs of η bosons. The largest contributions to
this decay come from loop-induced couplings via the top-
sector quarks2 as shown in Fig. 18. The branching ratio
BRðh → ηηÞ is thus loop suppressed and such decays
would likely be impossible to resolve at a future hadron
collider such as the HL-LHC, which will constrain the
decay modes of the Higgs boson at a relative precision not
exceeding Oð10%Þ [69–72].
The presence of such a low-mass Goldstone mode

provides additional motivation for precision measure-
ments at a future Higgs factory. One existing proposal
for such a machine is the Circular Electron-Positron
Collider, which is expected to measure various couplings
of the Higgs boson at a relative precision of Oð0.1%–1%Þ
[73–75]. The partial width for the rare Higgs decay
h → ηη is an increasing function of the Yukawa couplings
yi and is saturated at the kinematic limit, as shown in
Fig. 19. The branching fraction for this process lies in the
range of BRðh → ηηÞ ∼ 10−5–10−3 throughout the param-
eter space of this model. The dominant branching fraction
of the pseudoscalar to bb̄ pairs would thus lead to a rare
h → ðbb̄Þðbb̄Þ signal that could be effectively probed at an
eþe− collider. An estimate of the expected reach for this
process at the CEPC has been computed at 5 ab−1 [76],
and we find that translating these limits puts a large part of
this parameter space within reach of a long-term run at the
CEPC, as shown in Fig. 19.

FIG. 17. Cross sections for single pseudo-scalar production at 13 TeV (left) and branching fractions as a function of the pseudo-scalar
mass mη (right).

2There is also a subleading contribution from the momentum
dependent triscalar couplings which go as ð1=12Þðv=f2Þm2

η;
however, in the regime considered here with large Yukawa
couplings and a high chiral symmetry breaking scale, this con-
tribution is comparatively negligible by 2 orders of magnitude.
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IV. CONCLUSIONS AND OUTLOOK

A pseudo-Nambu-Goldstone Higgs with a top coupling
arising from mixing with top partners offers the theoreti-
cally compelling possibility of a natural and calculable
model for electroweak symmetry breaking, which contains
a StandardModel-like Higgs boson and new particles which
are mostly fairly heavy and experimentally challenging to
find. We have considered two of the most economical
scenarios, expanded to include a Higgs boson coupling to a
hidden fermion sector. The addition of a hidden sector
coupled to the pseudo-Nambu-Goldstone bosons allows for
a relatively simple way to obtain a Higgs potential that is
consistent with the experimentally measured masses of
Higgs boson and weak gauge bosons, as well as a possible
dark matter candidate. We have performed analyses on the
most relevant collider signatures of the new fermions and
new spinless particles, and find that for most of the viable
parameter space a new particle discovery will be challeng-
ing at the LHC. Given low energy precision electroweak
constraints, the lack of an LHC discovery of any

nonstandard model particles to date would thus be a general
expectation for both of these composite Higgs boson
models, though for different reasons. Nonetheless our
analysis suggests several options for probing these non-
standard phenomena at the LHC and future colliders.
In the SUð5Þ=SOð5Þ model these challenges arise due to

the serendipitous subtlety of the final state signatures which
arise from electroweak interactions that are preferential to
the third generation of quarks. The backgrounds from
QCD processes generically overwhelm or interfere with
the most obvious processes that could be used to resolve
new particle states beyond the Standard Model. However
the high multiplicity of new BSM states will generally
aggregate to produce a measurable deviation in the pro-
duction of final states with a high multiplicity of third
generation quarks in the high-luminosity limit. The pres-
ence of a confining hidden-sector gauge group could also
lead to a potentially measurable branching fraction of the
Higgs boson to displaced pairs of bottom quarks, thus
providing additional motivation for experiments focused on

FIG. 19. Branching ratios for rare decays of the Higgs boson to pairs of pseudoscalars. The expected reach at CEPC from rare Higgs
decays h → ðbb̄Þðbb̄Þ are also shown at 5 ab−1.

FIG. 18. Feynman diagrams for h → ðbb̄Þðbb̄Þ via h → ηη. In the limit of large Yukawa couplings and a high chiral symmetry
breaking scale, the loop-induced decay (left) dominates over the momentum dependent couplings (right).
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the long-lived particle frontier, such as the proposed
MATHUSLA experiment. In the SUð4Þ=Spð4Þ model,
the experimental challenges arise primarily due to the stark
absence of new particle states involved with the EWSB
dynamics. The Goldstone sector of this theory consists a
single spin-0 gauge-singlet state, and precision electroweak
constraints imply a mass range for new strongly interacting
particles that is likely well beyond the reach of a 14 TeV
hadron collider. However the Higgs boson generically has a
decay rate to the gauge-singlet Goldstone mode that could
be resolved at a future Higgs factory such as the CEPC.
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APPENDIX A: FERMION CONTRIBUTION TO
SUð4Þ=Spð4Þ HIGGS POTENTIAL

In the SUð4Þ=Spð4Þ model, the top-sector mass matrix
for the color-charged quarks MT takes the form given in
Table XI. The mass matrices can be expressed in terms of a
single angle θ≡ v=

ffiffiffi
2

p
f, representing the magnitude of the

Higgs VEV relative to the chiral symmery breaking scale.
The UV insensitivity of the Yukawa sector provides

powerful constraints on the form of the scalar effective
potential, and is guaranteed by the following properties of
the mass matrix

∂θtrM
†
TMT ¼ ∂θtrðM†

TMTÞ2 ¼ 0: ðA1Þ
The fermion masses are periodic with respect to θmod2π.
The color-charged mass matrix MT produces one massless
state when θ ¼ nπ for n ∈ Z. For notational simplicity
we define the following combinations of Yukawa couplings:

y2� ¼ ðy21 þ y22Þ � ðy21 þ y23Þ; y2123 ≡ y21y
2
2y

2
3: ðA2Þ

In terms of these Yukawa parameters, the traces and
determinants of the fermionmassmatrices take a simple form

trM†
TMT ¼ f2y2þ; trðM†

TMTÞ2 ¼
f2

2
ðy4þ þ y4−Þ; ðA3Þ

detM†
TMT ¼ f6y2123 sin

2 θ: ðA4Þ

These expressions allow for a direct computation of the
one-loop fermion corrections order by order in the Higgs
VEV. We thus expand the fermion masses as a power series
in sin2 θ

m2
t ¼

X∞
n¼0

m2
nsin2nθ; m2

0 ¼ 0; ðA5Þ

m2
t0 ¼

X∞
n¼0

m02
n sin2nθ; m02

0 ¼ f2

2
ðy2þ þ y2−Þ; ðA6Þ

m2
t00 ¼

X∞
n¼0

m002
n sin2nθ; m002

0 ¼ f2

2
ðy2þ − y2−Þ: ðA7Þ

Computing to fourth order in sin θ, we find that the color-
charged fermion mass eigenstates take the following form:

m2
t

f2
¼ 4y2123

y4þ − y4−
sin2θ −

64y4123y
2þ

ðy4þ − y4−Þ3
sin4θ; ðA8Þ

m2
t0

f2
¼ y2þ−y2−

2
−

2y2123
y2−ðy2þ−y2−Þ

sin2θþ4y4123ðy2þ−3y2−Þ
y6−ðy2þ−y2−Þ3

sin4θ;

ðA9Þ

m2
t00

f2
¼y2þþy2−

2
þ 2y2123
y2−ðy2þþy2−Þ

sin2θ−
4y4123ðy2þþ3y2−Þ
y6−ðy2þþy2−Þ3

sin4θ:

ðA10Þ

The UV insensitivity of the Yukawa sector additionally
guarantees that their contributions to the scalar effective
potential can be expressed in terms of ratios of mass
eigenstates. Computing to fourth order in sin θ, we find that
the top-sector contribution to the Higgs effective potential
takes the following form:

δVTðyi; θÞ ¼ −
3

16π2
trðM†

TMTÞ2 log
M†

TMT

Λ2
ðA11Þ

¼ −
3

16π2
X
t00t0t

jm2
qðyi; θÞj2 log jm2

qðyi; θÞj ðA12Þ

≈ C0 þ C2 sin2 θ þ C4 sin4 θ: ðA13Þ

The coefficients of the θ dependent terms may be
expressed as

TABLE XI. Mass matrices for the hidden-sector toplike fer-
mions in the gauge eigenbasis.

X̄0 N̄ n̄

X0 ỹ1f cos θ −iỹ1f sin θ 0
N −iỹ1f sin θ ỹ1f cos θ ỹ3f
n 0 ỹ2f 0
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C2 ¼ −
3f4

16π2
2y2123
y2−

log
y2þ − y2−
y2þ þ y2−

; ðA14Þ

C4 ¼−
3f4

16π2
4y4123

ðy2þ−y2−Þ2

×
�
2y2þ
y2−

−
y6þ−3y4−y2þ−6y6−

3y6−
log

8y2123
ðy2þ−y2−Þ3

ðA15Þ

þ y6þ − 3y4−y2þ þ 6y6−
3y6−

log
8y2123

ðy2þ þ y2−Þ3
�
: ðA16Þ

The collective symmetry breaking properties of MT guar-
antees that the potential is proportional to detM†

TMT .
Higher order contributions are thus suppressed by powers
of y2123=y

6þ, which is a function of the Yukawa couplings
that has a global maximum at 1=54

C4

C2

∼
y2123
y6þ

�
1þO

�
y4−
y4þ

��
;

				 y2123y6þ

				 ≤ 1

54
: ðA17Þ

For the color-charged contribution we thus find that the
potential is numerically well approximated by the second
order approximation in sin θ, which has been plotted
against the numerical result in Fig. 20. The fermionic
contribution to the Higgs potential is thus extremely well
approximated by a cos 2θ dependence,

δVTðyi; θÞ ¼ −2f2f2T sin2 θ ðA18Þ
∼f2f2T cos 2θ; ðA19Þ

f2T ¼ 3f2

16π2
y2123
y2−

log
y2þ − y2−
y2þ þ y2−

: ðA20Þ

The contribution to the Higgs effective potential
from hidden-sector fermions follows a similar story to

the color-charged case. The neutral hidden-sector fermion
mass matrixMN is given in Table XII, and the insensitivity
of the Higgs potential to loops of hidden-sector fermions is
guaranteed by Eq. (A21),

∂θtrM
†
NMN ¼ ∂θtrðM†

NMNÞ2 ¼ 0: ðA21Þ

The mass matrix for the neutral states MN produces one
massless state when θ ¼ ðnþ 1=2Þπ, for n ∈ Z which can
be seen from the form of the mass determinant,

ỹ2� ¼ ðỹ21 þ ỹ22Þ � ðỹ21 þ ỹ23Þ; ỹ2123 ≡ ỹ21ỹ
2
2ỹ

2
3; ðA22Þ

detðM†
NMNÞ ¼ f6ỹ2123 cos

2 θ: ðA23Þ

The hidden-sector fermion mass eigenstates thus take a
simple form when expressed as an expansion in cos2 θ

m2
n

f2
¼ 4ỹ2123

ỹ4þ − ỹ4−
cos2 θ −

64ỹ4123ỹ
2þ

ðỹ4þ − ỹ4−Þ3
cos4 θ; ðA24Þ

m2
n0

f2
¼ ỹ2þ − ỹ2−

2
−

2ỹ2123
ỹ2−ðỹ2þ − ỹ2−Þ

cos2 θ

þ 4ỹ4123ðỹ2þ − 3ỹ2−Þ
ỹ6−ðỹ2þ − ỹ2−Þ3

cos4 θ; ðA25Þ

TABLE XII. Mass matrix for the color-charged top-sector
fermions MT in the gauge eigenbasis.

T̄ Q̄T P̄T t̄

T y1fc2θ iffiffi
2

p y1fs2θ
iffiffi
2

p y1fs2θ y3f

QT
iffiffi
2

p y1fs2θ y1fc2θ −y1fs2θ 0

PT
iffiffi
2

p y1fs2θ −y1fs2θ y1fc2θ 0

qT 0 y2f 0 0

FIG. 20. Fermionic contribution to the Higgs potential from the color-charge toplike sector. The numerical result is shown in black
dots while the Oðsin2 θÞ approximation is shown in red.
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m2
n00

f2
¼ ỹ2þ þ ỹ2−

2
þ 2ỹ2123
ỹ2−ðỹ2þ þ ỹ2−Þ

cos2 θ

−
4ỹ4123ðỹ2þ þ 3ỹ2−Þ
ỹ6−ðỹ2þ þ ỹ2−Þ3

cos4 θ: ðA26Þ

Similarly for the hidden-sector fermions, we find that the
contribution is well approximated by a cos 2θ dependence,
but with an opposite sign that descends from the form of the
determinants in Eq. (A23),

δVNðỹi; θÞ ¼ −2f2f2N cos2 θ ðA27Þ

∼ − f2f2N cos 2θ: ðA28Þ

f2N ¼ 3f2

16π2
ỹ2123
ỹ2−

log
ỹ2þ − ỹ2−
ỹ2þ þ ỹ2−

: ðA29Þ

APPENDIX B: FERMION CONTRIBUTION TO
SUð5Þ=SOð5Þ HIGGS POTENTIAL

In the SUð5Þ=SOð5Þ model, the top-sector mass matrix
for the color-charged quarks MT and the hidden sector
fermions M̃T takes the form given in Table XIII. The mass
matrices can be expressed in terms of a single angle
θ≡ v=2f, representing the magnitude of the Higgs VEV
relative to the chiral symmery breaking scale.
The fermion masses are periodic with respect to θmodπ.

The determinant of the color-charged mass matrix guar-
antees the existence of a massless fermion whenever θ ¼
nπ=2 for n ∈ Z, which we may associate with the Standard
Model top quark. Similarly the determinant of the hidden-
sector mass matrix squared produces one massless state
when θ ¼ ðnþ 1=2Þπ=2

detM†
TMT ¼ f8y21y

2
123sin

22θ;

detM†
NMN ¼ f8ỹ21ỹ

2
123cos

22θ: ðB1Þ
Diagonalizing these mass matrices produces four charge
�2=3 mass eigenstates and four neutral mass eigenstates,
which can be computed order by order in sin 2θ using the
constraints described inAppendixA. In terms of theYukawa
couplings that were defined in Eq. (A2), the eigenvalues of
the top-sector mass matrices take the following form to
Oðsin2 2θÞ:
m2

t

f2
¼ 2y2123

y4þ − y4−
sin22θ;

m2
n

f2
¼ 2ỹ2123

ỹ4þ − ỹ4−
cos22θ;

m2
t0

f2
¼ y21;

m2
n0

f2
¼ ỹ21;

m2
t00

f2
¼ y2þ − y2−

2
−

y2123
y2−ðy2þ − y2−Þ

sin22θ;

m2
n00

f2
¼ ỹ2þ − ỹ2−

2
−

ỹ2123
ỹ2−ðỹ2þ − ỹ2−Þ

cos22θ;

m2
t000

f2
¼ y2þ þ y2−

2
þ y2123
y2−ðy2þ þ y2−Þ

sin22θ;

m2
n000

f2
¼ ỹ2þ þ ỹ2−

2
þ ỹ2123
ỹ2−ðỹ2þ þ ỹ2−Þ

cos22θ: ðB2Þ

TABLE XIII. Mass matrix for the hidden-sector toplike
fermions.

N̄ X̄0 Ȳ0 n̄

N ỹ1fc2θ iffiffi
2

p ỹ1fs2θ iffiffi
2

p ỹ1fs2θ ỹ3f

X0
iffiffi
2

p ỹ1fs2θ ỹ1fc2θ −ỹ1fs2θ 0

Y0
iffiffi
2

p ỹ1fs2θ −ỹ1fs2θ ỹ1fc2θ 0

n ỹ2f 0 0 0

FIG. 21. Fermionic contribution to the Higgs potential from the color-charge toplike sector. The numerical result is shown in black
dots while the Oðsin2 2θÞ approximation is shown in red.
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The insensitivity of these mass matrices to UV scales is
again guaranteed by the relations in Eq. (A1). The con-
tributions from these states to the scalar potential may thus
be expressed in terms of ratios of mass eigenstates, and are
extremely well approximated by their leading order terms in
sin 2θ, as shown in Fig. 21. This contribution to the Higgs
potential is thus approximately given by the cos 4θ depend-
ence in Eq. (B4).

δVTðyi;θÞþδVNðỹi;θÞ¼−2f2ðf2Tsin22θþf2Ncos
22θÞ

ðB3Þ
∼ f2ðf2T − f2NÞ cos 4θ; ðB4Þ

f2T ¼ 3f2

32π2
y2123
y2−

log
y2þ − y2−
y2þ þ y2−

;

f2N ¼ 3f2

32π2
ỹ2123
ỹ2−

log
ỹ2þ − ỹ2−
ỹ2þ þ ỹ2−

: ðB5Þ

The fermion contribution to the Higgs potential is
thus a function of two independent scales f2T and f2N
for the color-charged and hidden Yukawa sectors
respectively.

APPENDIX C: MULTITOP FINAL STATES IN
SUð5Þ=SOð5Þ

The SUð5Þ=SOð5Þ theory generically predicts an
enhancement of the total tt̄tt̄ cross section due to the
Drell-Yan production of doubley charged scalars and the
strong production of pairs of vectorlike quarks. In
Table XIV we enumerate all of the possible production
and decay modes that can contribute to the final state
ðWbÞn with n ≥ 4. These decay channels can result in
complex correlations between the final state particles that
could be resolved with targeted kinematic techniques in the
high-luminosity limit.

TABLE XIV. Dominant production and decay modes for the multitop final state.

Production mode Decay Final state

gg → p0p̄0 p0p̄0 → ðϕ̃þþbÞðϕ̃−−Wþ t̄Þ → ðWþtb̄bÞðW− t̄bWþ t̄Þ ðWbÞ6
p0p̄0 → ðϕ̃þþbÞðϕ̃0W− t̄Þ → ðWþtb̄bÞðtt̄W− t̄Þ
p0p̄0 → ðϕ̃þtÞðϕ̃−−Wþ t̄Þ → ðtb̄tÞðW− t̄bWþ t̄Þ
p0p̄0 → ðϕ̃þtÞðϕ̃0W− t̄Þ → ðtb̄tÞðtt̄W− t̄Þ
p0p̄0 → ðϕ̃þþW−tÞðϕ̃−W−b̄Þ → ðWþtb̄W−tÞðt̄bW−b̄Þ
p0p̄0 → ðϕ̃þWþbÞðϕ̃0W− t̄Þ → ðtb̄WþbÞðtt̄W− t̄Þ
p0p̄0 → ðϕ̃þþbÞðW− t̄Þ → ðWþtb̄bÞðW− t̄Þ ðWbÞ4
p0p̄0 → ðϕ̃þtÞðW− t̄Þ → ðtb̄tÞðW− t̄Þ
p0p̄0 → ðWþtÞðϕ̃−W−b̄Þ → ðWþtÞðt̄bW−b̄Þ
p0p̄0 → ðϕ̃þþbÞðϕ̃−−b̄Þ → ðWþtb̄bÞðW− t̄bb̄Þ ðWbÞ4bb
p0p̄0 → ðϕ̃þtÞðϕ̃− t̄Þ → ðtb̄tÞðt̄bt̄Þ
p0p̄0 → ðϕ̃þWþbÞðϕ̃−W−b̄Þ → ðtb̄WþbÞðt̄bW−b̄Þ
p0p̄0 → ðϕ̃þþbÞðϕ̃− t̄Þ → ðWþtb̄bÞðt̄bt̄Þ
p0p̄0 → ðϕ̃þþbÞðϕ̃−W−b̄Þ → ðWþtb̄bÞðt̄bW−b̄Þ
p0p̄0 → ðϕ̃þtÞðϕ̃−W−b̄Þ → ðtb̄tÞðt̄bW−b̄Þ
p0p̄0 → ðWþtÞðϕ̃−−Wþ t̄Þ → ðWþtÞðW− t̄bWþ t̄Þ ðWbÞ4WW

p0p̄0 → ðWþtÞðϕ̃0W− t̄Þ → ðWþtÞðtt̄W− t̄Þ
p0p̄0 → ðϕ̃0WþtÞðϕ̃0W− t̄Þ → ðtt̄WþtÞðtt̄W− t̄Þ ðWbÞ6WW

p0p̄0 → ðϕ̃þþW−tÞðϕ̃−−Wþ t̄Þ → ðWþtb̄W−tÞðW− t̄bWþ t̄Þ
p0p̄0 → ðϕ̃þþW−tÞðϕ̃0W− t̄Þ → ðWþtb̄W−tÞðtt̄W− t̄Þ

gg → t0 t̄0 t0 t̄0 → ðϕ̃0tÞðϕ̃0 t̄Þ → ðtt̄tÞðtt̄ t̄Þ ðWbÞ6
t0 t̄0 → ðWþW−tÞðht̄Þ → ðWþW−tÞðbb̄ t̄Þ ðWbÞ4
t0 t̄0 → ðϕ̃0tÞðht̄Þ → ðtt̄tÞðbb̄ t̄Þ ðWbÞ4bb
t0 t̄0 → ðϕ̃0tÞðZt̄Þ → ðtt̄tÞðZt̄Þ ðWbÞ4Z
t0 t̄0 → ðϕ̃0tÞðWþW− t̄Þ → ðtt̄tÞðWþW− t̄Þ ðWbÞ4WW

qq̄ → ϕ̃þþϕ̃−− ϕ̃þþϕ̃−− → ðWþtb̄ÞðW− t̄bÞ ðWbÞ4
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