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Doubly heavy baryons (QQq) and singly heavy antimesons (Q̄q) are related by the heavy quark-diquark
(HQDQ) symmetry because in the mQ → ∞ limit, the light degrees of freedom (d.o.f.) in both the hadrons
are expected to be in identical configurations. Hyperfine splittings of the ground states in both systems are
nonvanishing at Oð1=mQÞ in the heavy quark mass expansion, and HQDQ symmetry relates the hyperfine
splittings in the two sectors. In this paper, working within the framework of nonrelativistic QCD
(NRQCD), we point out the existence of an operator that couples four heavy quark fields to the
chromomagnetic field with a coefficient that is enhanced by a factor from Coulomb exchange. This
operator gives a correction to doubly heavy baryon hyperfine splittings that scales as 1=m2

Q × αS=r, where r
is the separation between the heavy quarks in the diquark. This correction can be calculated analytically in
the extreme heavy quark limit in which the potential between the quarks in the diquark is Coulombic.
In this limit, the correction is Oðα2s=mQÞ and comes with a small coefficient. For values of αs relevant to
doubly charm and doubly bottom systems, the correction to the hyperfine splittings in doubly heavy
baryons is only a few percent or smaller. We also argue that nonperturbative corrections to the prediction for
the hyperfine splittings are suppressed by Λ2

QCD=m
2
Q rather than ΛQCD=mQ. Corrections should be ≈10% in

the charm sector and smaller in heavier systems.

DOI: 10.1103/PhysRevD.100.076014

I. INTRODUCTION

The first doubly charm baryon Ξþþ
cc with mass 3621.40�

0.72� 0.27� 0.14 MeV was recently observed by the
LHCb Collaboration in the exclusive decay modes Ξþþ

cc →
Λþ
c K−πþπþ and Ξþþ

cc → Ξþ
c π

þ [1,2]. Even though the
SELEX Collaboration [3–5] had earlier reported the obser-
vation of doubly charmed baryons years ago, those obser-
vations were not confirmed by other experiments such as
FOCUS [6], Belle [7,8], and BABAR [9]. The large isospin
violation implied by the recent LHCb results also cast doubt
on thevalidity of theSELEX results. The recent experimental
observationof theΞþþ

cc baryonhas greatly revived the interest
in the physics of doubly heavy baryons. This includes the
experimental efforts to search for the other doubly charm
and bottombaryons such asΞþ

cc andΞbc [10] aswell as recent
theoretical studies regarding the lifetimes, production rates,
and decay rates of the double heavy baryons [11–16].

An interesting idea regarding the physics of doubly
heavy baryons is that of heavy quark-diquark (HQDQ)
symmetry which relates the physics of doubly heavy
baryons (QQq) to the heavy antimesons (Q̄q). The appro-
priate theory for dealing with heavy mesons is the heavy
quark effective field theory (HQET) [17–19], whereas the
appropriate theory for dealing with doubly heavy baryons
is nonrelativistic quantum chromodynamics (NRQCD)
[20–22]. In the limit of large heavy quark mass mQ, the
two heavy quarks QQ in the doubly heavy baryon
experience an attractive Coulomb force, and the ground
state of the two heavy quarks is a tightly bound spin-1
diquark in the 3̄ color representation. The size of the
diquark is small, r ∼ ð1=mQvÞ−1 ≪ Λ−1

QCD, where v is the
relative velocity of the two heavy quarks in the diquark.
This implies that the diquark can be considered as a point
source of color charge in the 3̄ representation that looks the
same to the light d.o.f. as a singly heavy antiquark, up to
corrections that are suppressed by inverse powers of heavy
quark massmQ. The light d.o.f. in the heavy antimeson also
orbit a point source of color charge in the 3̄ representation.
Therefore, the two heavy hadrons have identical configu-
rations for the light d.o.f. in themQ → ∞ limit. The HQDQ
symmetry also relates the double heavy tetraquarks to
singly heavy baryons, and the chiral Lagrangians incorpo-
rating this symmetry have been derived in Refs. [23,24].
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One of the implications of the HQDQ symmetry is the
relation between the hyperfine mass splittings of the doubly
heavy baryons and heavy antimesons. The chromomag-
netic interactions of the diquark and quark are responsible
for the hyperfine splittings in the doubly heavy baryons and
antimesons. The effective Lagrangian describing the chro-
momagnetic coupling of diquarks atOð1=mQÞ was derived
in Refs. [25,26] in the framework of NRQCD. The ground
state of the heavy antimeson consists of a spin-0 meson P
and a spin-1 meson P�. The ground state of the doubly
heavy baryon consists of a spin-1=2 baryon Ξ and a
spin-3=2 baryon Ξ�. These states are degenerate due to
heavy quark spin symmetry that breaks at Oð1=mQÞ due to
spin-dependent chromomagnetic interactions. The heavy
quark-diquark symmetry implies the relation between the
hyperfine splittings is [25–27]

mΞ� −mΞ ¼ 3

4
ðmP� −mPÞ: ð1Þ

The purpose of this paper is to study higher order
corrections to this prediction. Since the hyperfine splittings
themselves are Oð1=mQÞ, one might expect the leading
corrections to scale as 1=m2

Q. What we will see below is
that there is a higher dimension operator that scales as
1=m2

Q × αs=r, where r is the typical separation between the
quarks within the diquark. Since 1=r ∼mQv, this operator
gives a correction to Eq. (1) of relative order αsv. In the
extreme limit where the quarks within the diquark are
bound by Coulombic gluon exchange, v is proportional to
αs, and this Oðα2sÞ correction is computed below. Note that
Oðα2sÞ corrections to the prediction for the doubly charm
hyperfine splittings were first anticipated in Eq. (35) of
Ref. [26]. Here we compute this correction explicitly for the
first time, and it turns out to be only of order a percent or
less for values of αs relevant to doubly charm and bottom
baryons. A similar correction to the HQDQ symmetry due
to the finite size of the diquark was also calculated in
Ref. [28]. The finite size effects were due to operators
coupling the light quarks and the diquarks that contribute
to the mass of the double heavy baryon. The correction
to HQDQ symmetry was also estimated to be small in
Ref. [28]. In this paper, we also argue that the leading
corrections to the prediction in Eq. (1) will be the non-
perturbative corrections to both the hyperfine splittings
scaling asOðΛ2

QCD=m
2
QÞ, which has not yet been computed.

In the body of this paper we review the effective action for
heavy diquark fields, introduce the operator, and compute
its effect on the prediction for doubly heavy baryon
hyperfine splittings. We then give our argument for why
the nonperturbative corrections to the prediction for the
hyperfine splitting in Eq. (1) are suppressed by Λ2

QCD=m
2
Q.

This is followed by our conclusions. In the Appendix,
we derive the form of the operator by matching the full

QCD diagrams for QQg → QQ scattering onto NRQCD
to Oð1=m2

QÞ.

II. EFFECTIVE ACTION FOR COMPOSITE
DIQUARK FIELDS

The effective action for the heavy composite diquark
fields with the lowest order heavy quark spin symmetry
violating chromomagnetic interaction was derived by
Fleming and Mehen in Ref. [25] and Brambilla, Vairo,
and Rosch in Ref. [26] in the framework of NRQCD. The
leading order chromomagnetic couplings of diquarks gives
Oð1=mQÞ corrections to the heavy quark spin symmetry
and is responsible for the hyperfine splittings in the ground
state of doubly heavy baryons. In this section, we use the
formalism in Ref. [25] to include the correction to the
chromomagnetic coupling of diquark fields from diagrams
that contribute to the effective action at higher order in
NRQCD power counting.
The NRQCD Lagrangian relevant for constructing the

effective action for composite diquarks is

L¼−
1

4
FμνFμνþ

X
p

ψ†
p

�
iD0−

ðp− iDÞ2
2mQ

þ g
2mQ

σ ·B

�
ψp

−
1

2

X
p;q

g2s
ðp−qÞ2ψ

†
qTAψpψ

†
−qTAψ−pþ…; ð2Þ

where ψp represents the quark field with a three vector label
p, B is the chromomagnetic field, and the ellipsis represents
the higher order corrections as well as terms including soft
gluons. The color and spin Fierz identities that project the
potential into color antitriplet ð3̄Þ and color sextet (6) states
and decompose the quark bilinears such as ψpψ−p into
operators of definite spin are

δαδδβγ ¼ −
1

2
ðσiϵÞαβðϵσiÞγδ þ

1

2
ϵαβϵδγ; ð3Þ

Ta
ilT

a
jk ¼ −

2

3

X
m

1

2
ϵmijϵmlk þ

1

3

X
ðmnÞ

dðmnÞ
ij dðmnÞ

kl ; ð4Þ

where the Greek letters refer to spin indices, the Roman
letters refer to color indices, σi denotes the Pauli matrices,

ϵ ¼ iσ2 is an antisymmetric 2 × 2 matrix, and dðmnÞ
ij are

symmetric matrices in color space:

dðmnÞ
ij ¼

� ðδmi δnj þ δni δ
m
j Þ=

ffiffiffi
2

p
m ≠ n

δmi δ
n
j m ¼ n:

ð5Þ

After Fourier transforming with respect to the labels and
using the color and Fierz identities above, the Lagrangian in
Eq. (2) can be written as
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L ¼ −
1

4
FμνFμν þ

X
p

ψ†
p

�
iD0 −

ðp − iDÞ2
2mQ

þ g
2mQ

σ · B

�
ψp

−
1

2

Z
d3rVð3̄ÞðrÞ

�X
q

e−iq·rϵijk
1

2
ðψ†

qÞjσϵðψ†
−qÞk

�
·

�X
p

eip·r
1

2
ϵilmðψ−pÞlϵσðψpÞm

�

−
1

2

Z
d3rVð6ÞðrÞ

�X
q

e−iq·r
1ffiffiffi
2

p dðmnÞ
ij ðψ†

qÞiϵðψ†
−qÞj

��X
p

eip·r
1ffiffiffi
2

p dðmnÞ
kl ðψ−pÞkϵTðψpÞl

�
; ð6Þ

where we have suppressed the spin indices and explicitly shown the color indices. The antitriplet potential Vð3̄ÞðrÞ and sextet
potential Vð6ÞðrÞ are defined by

Vð3̄ÞðrÞ ¼ −
2

3

αs
r
; Vð6ÞðrÞ ¼ 1

3

αs
r
: ð7Þ

The color and spin Fierz identities in Eqs. (3) and (4) introduce four terms, but two of them vanish due to Fermi statistics.
The diquark fields in Eq. (7) are in the 3̄ and 6 representations in color space and have spin-1 and spin-0, respectively.
We define the following composite diquark operators:

Ti
r ¼

X
p

eip·r
1

2
ϵijkðψ−pÞjϵσðψpÞk; ð8Þ

ΣðmnÞ
r ¼

X
p

eip·r
1ffiffiffi
2

p dðmnÞ
ij ðψ−pÞiϵTðψpÞj; ð9Þ

where Ti
r is a spin-1 vector field and ΣðmnÞ

r is a spin-0 scalar field.
The composite diquark fields, Ti

r and ΣðmnÞ
r , enter the theory by using the Hubbard-Stratonovich transformation, which

cancels the quartic interaction terms in heavy quark fields in favor of interaction terms between the diquark fields and the
two heavy quark fields:

ΔL ¼ 1

2

Z
d3rVð3̄ÞðrÞ

�
Ti†
r −

X
q

e−iq·rϵijk
1

2
ðψ†

qÞjσϵðψ†
−qÞk

��
Ti
r −

X
p

eip·r
1

2
ϵilmðψ−pÞlϵσðψpÞm

�

þ 1

2

Z
d3rVð6ÞðrÞ

�
ΣðmnÞ†
r −

X
q

e−iq·r
1ffiffiffi
2

p dðmnÞ
ij ðψqÞiϵðψ−qÞj

��
ΣðmnÞ
r −

X
p

eip·r
1ffiffiffi
2

p dðmnÞ
ij ðψ−pÞiϵTðψpÞj

�
: ð10Þ

The NRQCD Lagrangian after using the Hubbard-Stratonovich transformation reduces to

Lþ ΔL ¼ −
1

4
FμνFμν þ

X
p

ψ†
p

�
iD0 −

ðp − iDÞ2
2mQ

þ g
2mQ

σ · B

�
ψp

þ 1

2

Z
d3rVð3̄ÞðrÞ

�
Ti†
r Ti

r − Ti†
r

X
p

eip·r
1

2
ϵilmðψ−pÞlϵσðψpÞm −

X
q

e−iq·rϵijk
1

2
ðψ†

qÞjσϵðψ†
−qÞkTi

r

�

þ 1

2

Z
d3rVð6ÞðrÞ

�
ΣðmnÞ†
r ΣðmnÞ

r − ΣðmnÞ†
r

X
p

eip·r
1ffiffiffi
2

p dðmnÞ
ij ðψ−pÞiϵTðψpÞj

−
X
q

e−iq·r
1ffiffiffi
2

p dðmnÞ
ij ðψqÞiϵðψ−qÞjΣðmnÞ

r

�
: ð11Þ

The Feynman rules describing the interaction of diquarks with two heavy quarks corresponding to the above Lagrangian are
shown in Fig. 1.
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The σ · B term in the NRQCD Lagrangian in Eq. (2) is
the chromomagnetic interaction for heavy quarks. This is
the lowest order heavy quark spin symmetry violating term
that gives Oð1=mQÞ corrections to the heavy quark spin
symmetry and is responsible for the hyperfine splittings in
the ground state of heavy mesons. The chromomagnetic
coupling for the heavy diquark field Ti

r was derived in
Ref. [25] by considering the two one-loop diagrams shown
in Fig. 2; it contributes at Oðv2Þ to the effective action in
the NRQCD power counting. The effective Lagrangian for
the diquark field Ti

r, which gives Oð1=mQÞ corrections
to the heavy quark spin symmetry and is responsible for the
hyperfine splittings in the ground state of doubly heavy
baryons, is

Lσ:B ¼ i
g

2mQ

Z
d3rTi†

r · BcT̄c
ij × Tj

r: ð12Þ

Other Oðv2Þ couplings of the diquark field, Ti
r, which do

not violate the heavy quark spin symmetry can be found in

Ref. [22]. The composite diquark field ΣðmnÞ
r is a scalar and

therefore does not have a chromomagnetic coupling. Other
chromomagnetic couplings are possible if one considers
diquarks composed of two different heavy quarks.
The effective Lagrangian for the diquark field, Ti

r, in
Eq. (12) can have corrections from terms that contribute at
Oðv3Þ and higher to the effective action in the NRQCD
power counting. The leading corrections to the chromomag-
netic coupling of diquarks come from a two-loop diagram
shown in Fig. 3. The two-loop diagram contributes atOðv4Þ

to the effective action and givesOð1=m2
QÞ corrections to the

heavy quark spin symmetry. It arises from an effective five-
point contact interaction shown in Fig. 4, which is obtained
after matching tree-level scattering of two heavy quarks and
a gluon in QCD and NRQCD. The Lagrangian for the
effective operator in Fig. 4 is given by Eq. (A12), and a
detailed derivation is shown in the Appendix.
In order to evaluate the correction to the chromomagnetic

coupling of a diquark from the two-loop diagram in Fig. 3,
we consider the external diquark fields Ti

r and Ti
r0 to be at

rest and have energy E and E0, respectively. The external
diquarks have spin indices k and l and color indices a
and b, respectively. The soft gluon has polarization indexm
and color index c. Using the Feynman rules for the diquark-
quark interaction in Fig. 1 and the effective four-quark
contact vertex in Eq. (A12), the two-loop diagram in Fig. 3
evaluates to

iΣ ¼ −
g3

6m2
Q
ϵklmT̄c

ba

Z
d3l
ð2πÞ3

Z
d3l0

ð2πÞ3

×
e−il·rVð3̄ÞðrÞ

E − l2=mQ þ iϵ
eil

0·r0Vð3̄Þðr0Þ
E0 − l02=mQ þ iϵ

Bc
m

jl − l0j2 : ð13Þ

The effective Lagrangian describing the leading correction
to the chromomagnetic coupling of diquark field Tr in
Eq. (12) is

FIG. 2. Two one-loop diagrams at Oðv2Þ in NRQCD power
counting that are responsible for the chromomagnetic coupling of
diquarks.

FIG. 3. The two-loop diagram that give corrections to the
chromomagnetic coupling of diquarks and contributes at Oðv4Þ
to the effective action in NRQCD power counting.

FIG. 4. Effective five-point contact interaction with four heavy
quarks and a gluon. This interaction gives Oð1=m2

QÞ chromo-
magnetic coupling of diquarks.

FIG. 1. Feynman rules for the coupling of the composite
diquark fields to quarks.
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L0
σ:B ¼

Z
d3r

Z
d3r0T†

rΣTr0 ; ð14Þ

where iΣ is given in Eq. (13) and the color and spin indices
of the diquark field, Tr, have been suppressed. This
Lagrangian can be easily interpreted using the notation
of Ref. [25], where the diquark field Tr is thought of as a
vector in a Hilbert space spanned by the position space
eigenkets jri:

L0
σ:B ¼ i

g3

6m2
Q
ϵklmT̄c

baB
c
mhTjV̂ð3̄Þ 1

E0−H0
0

1

4πr
1

E−H0

V̂ð3̄ÞjTi;

ð15Þ
where we define the diquark field Tr ≡ hrjTi, the potential
operator hr0jV̂ð3̄Þjri≡ Vð3̄Þδ3ðr − r0Þ, the momentum eigen-
states hrjli ¼ e−il·r, and a free Hamiltonian H0jli ¼
l2=mQjli. Using the formalism developed in Ref. [25], the

potential operator V̂ð3̄Þ in Eq. (15) cancels against the factors
of E −H0 in the denominator after using the equation of
motion for the diquark field Tr. Therefore, the effective
Lagrangian describing the leading correction to the chro-
momagnetic coupling of diquarks in Eq. (12) is

L0
σ:B ¼ i

g
2mQ

αs
3mQ

Z
d3rTi†

r ·
1

r
BcT̄c

ij × Tj
r: ð16Þ

The effective Lagrangian in the above equation contributes
at Oðv4Þ to the effective action of diquarks because the
chromomagnetic fieldB scales asOðv4Þ, the diquark fieldTr

scales as Oðv3Þ, the strong coupling constant αs scales as
OðvÞ, the position vector r scales as Oðv−1Þ, and the
integration measure d4x scales as Oðv−5Þ in the NRQCD
power counting that was developed in Ref. [21].
The mesons P and P� and the baryons Ξ and Ξ� are both

degenerate in the absence of the chromomagnetic inter-
action that is suppressed by an inverse power of mQ. The
chromomagnetic coupling of heavy quarks in Eq. (2) and
the chromomagnetic coupling of heavy diquarks in
Eqs. (12) and (16) lead to mass splittings of heavy mesons
and doubly heavy baryons in the ground state. Since the
ground state of diquarks in the double heavy baryons is an
s-wave (l ¼ 0), the spatial wave function of the diquark can
be approximated by a hydrogenlike spatial wave function
in the limit of extremely large mQ:

ϕðrÞ ¼
�

1

πa30

�
1=2

e−r=a0 ; ð17Þ

where a0 is the Bohr radius given by

a0 ¼
3

αsmQ
; ð18Þ

The identical configurations of light d.o.f. in the heavy
Q̄q meson and the heavy QQq baryons implies that the

hyperfine mass splittings in the heavy antimeson and the
doubly heavy baryon are related by the heavy quark-
diquark symmetry. The hyperfine splittings depend on
the matrix elements of the chromomagnetic couplings of
quarks and diquarks in Eqs. (2), (12), and (16). The matrix
element of the Oð1=m2

QÞ chromomagnetic coupling of the
diquark in Eq. (16) depends on h1=ri:�

1

r

�
¼

Z
d3r

jϕðrÞj2
r

¼ 1

a0
: ð19Þ

This gives a correction to the matrix element of the
chromomagnetic operator in Eq. (12) that appears only
in the doubly heavy baryon mass splitting as there is no
analogue correction in the heavy meson sector. Therefore,
the relation between the hyperfine splittings in Eq. (1) is
modified to

mP� −mP ¼ 4

3
ðmΞ� −mΞÞ

�
1þ αs

3mQ

�
1

r

��
;

¼ 4

3
ðmΞ� −mΞÞ

�
1þ α2s

9

�
; ð20Þ

where α2s=9 is the correction to the hyperfine splitting from
the two-loop diagram in Fig. 3. Of the two powers of αs
appearing in Eq. (20), one arises from matching QCD onto
NRQCD and naturally lives at the scalemQ, while the other
appears in the evaluation of the matrix element, h1=ri, and
naturally lives at the scale mQv. It would be interesting to
compute the anomalous dimension of the operator in
Eq. (16) in order to sum logarithms of ratios of these
two scales, but that is beyond the scope of this work.
For numerical purposes, we will use the value of αs

evaluated at the scalemQv. If the doubly heavy baryons are
composed of charm quarks, the value of the strong coupling
constant is αsðmcvÞ ≈ 0.52, which implies the correction to
the hyperfine splitting is 3 × 10−2. If the doubly heavy
baryons are composed of bottom quarks, the value of the
strong coupling constant is αsðmbvÞ ≈ 0.35, which implies
the correction to the hyperfine splitting is 1.4 × 10−2.
Therefore, we conclude that the heavy quark-diquark sym-
metry prediction receives a very small correction at Oðv2Þ,
at least as mQ → ∞.

III. NONPERTURBATIVE CORRECTIONS TO
HYPERFINE SPLITTINGS

Having established that the perturbative corrections to
the HQDQ symmetry prediction for the hyperfine splitting
are small, we now consider nonperturbative corrections
which scale as powers of ΛQCD=mQ.

1 We point out that the
spin-color structure of the operator that contributes to the
hyperfine splittings at Oð1=m2

QÞ is the same as the leading

1We thank Nora Brambilla for comments on an earlier version
of this paper that led us to add this section.
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operator. Therefore, its corrections to Eq. (1) should give
contributions that are consistent with the relative factor of
3=4 between the hyperfine splittings. Thus we expect the
corrections to Eq. (1) will be OðΛ2

QCD=m
2
QÞ, which will be

≈10% for charm and smaller for bottom.
The hyperfine splittings in Eq. (1) vanish in the absence of

heavy quark spin symmetry violation. So, we only need to
consider the heavy quark spin symmetry violating operators
in the HQET Lagrangian. To OðΛ2

QCD=m
2
QÞ these are

g
2mQ

X
p

ψ†
pσ ·Bψp þ i

g
8m2

Q

X
p

ψ†
pσ · ðD×E−E×DÞψp:

ð21Þ

Both operators have the same color and spin structure; in the
second operator the heavy quark spin couples to a different
background field: B→iðD×E−E×DÞ=ð4mQÞ. Thus by a
calculation that is essentially identical to the one in Ref. [25],
one finds the corresponding Lagrangian for diquarks:

L ¼ i
g

2mQ

Z
d3rTi†

r · BcT̄c
ij × Tj

r

−
g

8m2
Q

Z
d3rTi†

r · ðD ×Ec −D ×EcÞT̄c
ij × Tj

r: ð22Þ

The arguments in Ref. [27] that lead to the factor of 3=4
relating the two hyperfine splittings hold for both operators
in Eq. (22). Note that in the quark model the factor
D ×E −D ×E leads to spin-orbit couplings that vanish
in the ground state meson and doubly heavy baryons because
all constituents are in an S-wave. In full QCD, there could be
a nonvanishing contribution, but the group theoretical argu-
ments that lead to the factor of 3=4 still apply.
At Oð1=m3

QÞ in the HQET Lagrangian, there are 11
operators, several of which violate heavy quark spin
symmetry. These have different color structures than the
leading two operators, so we expect that these operators
will give corrections to Eq. (1) at OðΛ2

QCD=m
2
QÞ.

IV. CONCLUSION

The ground state mass hyperfine splittings in the double
heavy baryons and singly heavy antimesons are related by
the HQDQ symmetry. The hyperfine splittings are due to
the Oð1=mQÞ chromomagnetic couplings of the diquark
and quark, and the leading prediction for the splittings is
given by Eq. (1). In this paper, we compute the leading
correction to the hyperfine splitting of the double heavy
baryons in the framework of NRQCD. We point out an
effective five-point contact operator that couples the four
heavy quark fields with the chromomagnetic field with a
coefficient that is enhanced by the Coulomb exchange.
Naively, one would expect the leading correction to the
chromomagnetic coupling of the diquark to scale as 1=m2

Q;
instead, we find that the correction from the effective

operator scales as 1=m2
Q × αs=r, where r is the separation

between the heavy quarks in the diquark. The Lagrangian
describing the leading correction to the chromomagnetic
coupling of the diquark is given by Eq. (16).
We estimate the correction to the ground state mass

hyperfine splitting in the doubly heavy baryons due to the
next leading order Lagrangian in Eq. (16).We find that in the
mQ → ∞ limit, when the two quarks within the diquark are
bound by strong Coulombic interaction, the leading correc-
tion to the hyperfine splitting of double heavy baryons is of
Oðα2s=mQÞwith a small coefficient as shown inEq. (20). This
Oðα2sÞ correction to the hyperfine splittings was anticipated
in Ref. [26], but we have explicitly calculated the correction
in this paper. For values of αs relevant to doubly charm and
doubly bottom systems, we find that the correction to the
hyperfine splitting in doubly heavy baryons is 3 × 10−2 for
doubly charm baryons and 1.4 × 10−2 for doubly bottom
baryons. We also gave an argument for why corrections to
Eq. (1) should scale asOðΛ2

QCD=m
2
QÞ. Therefore, we expect

nonperturbative corrections to Eq. (1) to be 10% for charm
and smaller for bottom. This is consistent with lattice
calculations of doubly charm spectra [29–43].
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APPENDIX: EFFECTIVE FIVE-POINT
CONTACT OPERATOR

In this appendix, we derive the Lagrangian for the
effective contact operator shown in Fig. 4. The effective
five-point contact operator with four heavy quarks and one
gluon in Fig. 4 gives an Oð1=m2

Q × αs=rÞ correction to
the chromomagnetic coupling of diquark field Tr. This
effective operator is obtained after matching the low-energy
tree diagrams for QQ → QQg in full QCD theory onto
NRQCD. In QCD, the diagrams forQQ → QQg are shown
in Fig. 5. The two tree diagrams at the top of Fig. 5, where
the external gluon is attached to the external quarks, match
onto two distinct types of NRQCD diagrams. One diagram
is the tree diagram shown in Fig. 6, in which the gluon
couples to an external quark via the chromomagnetic
interaction and there is a virtual nonrelativistic quark.
The other diagram is the contact interaction in Fig. 4.
The bottom two diagrams in Fig. 5, where the external
gluon is attached to the exchanged gluon via the three-
gluon vertex, could, in principle, also contribute. However,
the bottom two diagrams in Fig. 5 have a vanishing color
factor when the incoming and outgoing diquarks are both in
the 3̄ representation.
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In Fig. 5, the incoming heavy quarks have four-momenta
p1 ¼ ðE1;P1Þ and p2 ¼ ðE2;P2Þ and color indices i and j,
respectively. The outgoing heavy quarks have four-
momenta given by p3 ¼ ðE3;P3Þ and p4 ¼ ðE4;P4Þ and
color indices r and l, respectively. The external gluon have
four-momenta q and color index c. In full QCD, the
contribution to the low-energy scattering amplitude from
the upper two diagrams of Fig. 5 is

iA ¼ ig3Ta
rk0T

c
k0iT

a
ljεm

×
½ūlðp4Þγμujðp2Þ�½ūrðp3Þγμð=kþmQÞγmuiðp1Þ�

ðk2 −m2
Q þ iϵÞðp2 þ iϵÞ

− ðp3 ⟷ p4; r ⟷ lÞ; ðA1Þ

where p ¼ p4 − p2 is the four-momenta of the inter-
mediate gluon in the first term, k ¼ p3 þ p is the four-
momenta of the intermediate fermion in the first term, εm

is the polarization 4-vector of the incoming gluon, and
mQ is the mass of the heavy quark. In the above
expression we have explicitly shown the color indices
and suppressed the spinor indices. Using the equation of
motion for the external states, the amplitude in Eq. (A1)
can be written as

iA ¼ ig3Ta
rk0T

c
k0iT

a
ljεm

×
½ūlðp4Þγμujðp2Þ�½ūrðp3Þð2pμ

3 þ γμpÞγmuiðp1Þ�
ðk2 −m2

Q þ iϵÞðp2 þ iϵÞ
− ðp3 ⟷ p4; r ⟷ lÞ: ðA2Þ

Using the identity for the product of three gamma
matrices, the terms in the second square brackets in
the numerator of the above equation can be rewritten as

ūðp3Þð2pμ
3γ

mεm þ pμγmεm − εμpmγ
m þ pmεmγ

μ

− iϵσμαmγσpαεmγ
5Þuðp1Þ: ðA3Þ

In the above expression, p3 ∼OðmQÞ and p ¼ p4 − p2 ∼
OðmQvÞ; thus, the leading contribution comes only from
the first term in the parentheses. The low-energy scatter-
ing amplitude for QQ → QQg can be obtained from
QCD by doing the nonrelativistic expansion of the
amplitude in Eq. (A1) in powers of 3-momenta. Using
the Gordon identity

ūðpÞγμuðqÞ ¼ ūðpÞ
�ðpþ qÞμ

2m
þ iσμν

ðp − qÞν
2m

	
uðqÞ;

ðA4Þ

and then taking the nonrelativistic limit of the Dirac
spinors

uiðPÞ ¼
�
ξi

0

�
; ðA5Þ

where ξi is a two-spinor and i denotes the color index, we
find that the leading term with a spin-dependent inter-
action in the nonrelativistic expansion of the numerator in
Eq. (A2) is

2p0
3½ūðp4Þγ0uðp2Þ�½ūðp3Þ=ϵuðp1Þ�
¼ −iξ†4;lξ2;jξ

†
3;rσ:ðq × εÞξ1;i þ � � � ; ðA6Þ

where ε is the three-space polarization vector and the
ellipsis represents terms that are suppressed by powers
of v or do not explicitly break the heavy quark spin
symmetry.

FIG. 5. Full QCD diagrams for QQ → QQg. There are six
other diagrams in QCD similar to the upper two diagrams, in
which the external gluon is attached to each of the external
quarks.

FIG. 6. One of the two types of NRQCD required to reproduce
the full QCD result at low energy. The other is the contact
interaction shown in Fig. 4.
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In the nonrelativistic limit, the fermion propagator in the
denominator of the amplitude in Eq. (A2) is given by

1

k2 −m2
Q þ iϵ

¼ 1

2mQ

�
1

k0 −Ek þ iϵ
−

1

2mQ

	
þOðP2=m4

QÞ;

ðA7Þ

where k ¼ P3 þ P4 − P2 and

k0 − Ek ¼
P2
3

2mQ
þ P2

4

2mQ
−

P2
2

2mQ
−
ðP3 þ P4 − P2Þ2

2mQ
: ðA8Þ

Similarly, the gluon propagator can also be expanded in
powers of 3-momenta as

1

ðp4 − p2Þ2 þ iϵ
¼ −

1

ðP4 − P2Þ2
ð1þOðP2=m2

QÞÞ: ðA9Þ

Using the nonrelativistic expansion of the numerator in
Eq. (A6) and the nonrelativistic expansion of the fermion
and gluon propagators in Eqs. (A7) and (A9), the low-
energy scattering amplitude in Eq. (A2) is

iA ¼ ig3Ta
rk0T

c
k0iT

a
lj

�
ξ†4ξ2ξ

†
3

σ · Bc

2mQ
ξ1

	

×

�
1

k0 − Ek þ iϵ
−

1

2mQ

	
1

ðP4 − P2Þ2
− ðP3 ⟷ P4; r ⟷ lÞ þ � � � ; ðA10Þ

where k ¼ P3 þ P4 − P2 and k0 − Ek is given by
Eq. (A8). In the above expression we have suppressed
both the color and spin indices. The low-energy ampli-
tude in Eq. (A10) has a pole where the intermediate
fermion propagator goes on shell. This pole will be
reproduced in the effective theory by the contribution to
the scattering amplitude from Fig. 6. If the vertex with
the external gluon line is the chromomagnetic coupling of

the heavy quark, then the contribution to the scattering
amplitude from Fig. 6 is

iA ¼ ig3Ta
rk0T

c
k0iT

a
lj

�
ξ†4ξ2ξ

†
3

σ · Bc

2mQ
ξ1

	
�

1

k0 − Ek þ iϵ

	
1

ðP4 − P2Þ2
− ðξ4 ⟷ ξ3; P4 ⟷ P3; r ⟷ lÞ; ðA11Þ

where k ¼ P3 þ P4 − P2 and k0 − Ek is given by
Eq. (A8). In the above expression we have suppressed
both the color and spin indices. On comparing Eqs. (A10)
and (A11), we see that the pole in the low-energy
scattering amplitude in Eq. (A10) from the intermediate
fermion propagator is canceled exactly by the correspond-
ing contribution in NRQCD. After canceling the pole, we
are left with a term which is reproduced by the effective
four-quark and gluon contact interaction shown in Fig. 4.
The five-point operator with four heavy quarks and one
gluon receives contributions from six other diagrams in
QCD and three other diagrams in NRQCD, where the
external gluon is attached to each of the external quarks.
After taking into consideration all of these diagrams, the
Lagrangian for the five-point contact interaction with four
heavy quarks and one gluon in Fig. 4 is

Leff ¼ −
g3

2

1

2mQ

X
P1;P2;P3;P4

ψ†
P4
TaψP2

ψ†
P3
ðTaTc þ TcTaÞ

×
σ · Bc

2mQ
ψP1

1

ðP4 − P2Þ2
: ðA12Þ

The Feynman rule for the contact vertex in Fig. 4 is
given by

−i
g3

4m2
Q
Ta ⊗ ðTaTc þ TcTaÞ σ · Bc

ðP4 − P2Þ2
: ðA13Þ
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