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The ratio of dilepton production cross sections on a proton, using the yp — [T p process, above and
below the dimuon production threshold allows one to extract the effective lepton-proton interaction, which
is required to be identical for electrons and muons if lepton universality is exact. To test for a scenario of
broken universality at the percent level, of the size that could explain the different proton charge
radii extracted from electron scattering and from muonic hydrogen spectroscopy, we evaluate all
one-loop QED corrections to this process, including the full lepton mass dependencies. We furthermore
show that two photon—exchange processes with both photons attached to the proton line vanish after
averaging over dilepton angles and estimate the relatively small radiation off the proton. We compare the
full one-loop calculation with a soft-photon approximation of the same order and present estimates for a

planned experiment.
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I. INTRODUCTION

The proton radius puzzle, the discrepancy between
extractions of the proton charge radius from electron
scattering or electronic hydrogen spectroscopy on the one
hand and from muonic hydrogen spectroscopy on the other
hand, has not been solved yet. The initial discrepancy
amounted to around 5.66 when comparing both values:
the extraction using elastic electron scattering, from which
the A1@MAMI Collaboration reported the value Ry =
0.879(8) fm [1,2], and the muonic hydrogen spectroscopy,
which reported the value Rz = 0.84087(39) fm [3,4], with
more than an order of magnitude higher precision. This
puzzle has spurred a lot of activity, resulting in a new round
of experiments in the field, which are crucial for scrutinizing
and improving our understanding of systematic errors in
such precision measurements. Recent measurements using
electronic hydrogen spectroscopy [5,6] as well as new
electron scattering experiments [7] have each reported
support for both large and small values of the proton charge
radius. Several further experiments [8,9] have reported
preliminary results and are at the stage of final analysis.
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Attempts to explain the discrepancy reach from system-
atic errors in the extraction of the radius (see Refs. [10-18])
to new physics models beyond the Standard Model of
particle physics (see, e.g., Refs. [19-28] as well as Ref. [29]
for an early review of the field).

The possible explanations of the electron vs muon
discrepancy by a new physics scenario require giving up
lepton universality, since the Standard Model has the same
tree-level couplings for all leptons. In this context, new
experiments have been proposed to measure the proton
form factors using muon beams: the MUSE@PSI experi-
ment [30,31], which is ongoing with the aim to compare
low-energy elastic electron scattering vs elastic muon
scattering off the proton, and the COMPASS@CERN
[32] experiment, which plans to measure the elastic muon
scattering off a proton using a 100 GeV muon beam.

In Ref. [33], the authors suggested testing lepton
universality by comparing the cross sections for electron-
and muon-pair production in the reaction yp — [T p.
According to the findings of Ref. [33], a measurement of
the cross section ratio below and slightly above the dimuon
production threshold can test lepton universality without
having to rely on the precision that can be achieved for an
absolute cross section measurement. It was found that the
difference between both values for the extracted proton
charge radius amounts to an effect of 0.2% on this cross
section ratio. Such a measurement would therefore allow
one to test lepton universality at a significance level of three
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standard deviations, if one is able to measure such a cross
section ratio with a precision of around 7 x 107, An
upcoming experiment at MAMI has been conceived to
perform such measurements [34].

To make a conclusive statement from such a kind of
measurements, it is clearly necessary to include higher
order corrections. In our previous work [35], we estimated
the one-loop and higher order QED corrections in the soft-
photon approximation. We found that the effect of radiative
corrections is of the order 1% on the cross section ratio and
thus significantly larger than the 0.2% effect between both
values for the radius. Therefore, the knowledge of the full
one-loop corrections becomes imperative for an interpre-
tation of an upcoming experiment.

In this work, we extend our calculation of the QED
corrections in the soft-photon approximation and present a
full one-loop QED calculation, keeping all terms in the
lepton mass. Moreover, we estimate the size of radiative
effects on the proton side and indicate the vanishing two
photon—exchange effect after the integration over the
lepton-pair angles.

The outline of the paper is as follows. In Sec. II, we
introduce the Bethe-Heitler process at tree level and define
the relevant kinematic variables. In Sec. III, we present
details of the full one-loop QED calculation. We introduce
the crossing relation to simplify the evaluation of the
crossed diagrams from direct ones. We demonstrate that
our full one-loop calculation reproduces the correct double-
logarithmic behavior of the soft-photon approximation
[35]. In Sec. IV, we present details of the numerical
approach to this calculation, using the Mathematica pack-
ages FeynArts and FormCale, which serves to cross-check
the analytic result. In Sec. V, we present the calculation
of the real corrections for the emission of a soft photon, as
was done in our previous work [35]. We verify that the
infrared divergences in these contributions cancel with the
infrared-divergent part of the virtual one-loop corrections.
In Sec. VI, we give the expression for the full one-loop
QED corrections and exponentiate parts associated with the
soft-photon contributions. In Sec. VII, we present an
estimate of the radiative corrections on the proton side.
We prove that two photon—exchange diagrams do not
contribute on the level of the cross section after integrating
over the dilepton phase space. In Sec. VIII, we present
our numerical results and show the effect on the absolute
cross section as well as on the cross section ratio of muon-
and electron-pair production. We conclude in Sec. IX.
In addition, several technical details are discussed in five
Appendixes.

II. LEPTON-PAIR PRODUCTION AT TREE LEVEL

The Bethe-Heitler (BH) process at tree level is described
by two graphs; see Fig. 1. We use p (p’) for the momenta of
the initial (final) proton and p; (p4) for the momenta of
leptons [~ (IT). The initial photon has momentum p;, and

p1 %i\ p1
5 D3 > D3
P4 L« P4
P2
D2
p v P I
FIG. 1. The Bethe-Heitler process at tree level.

the virtual photon momentum in the one photon—
exchange graphs of Fig. 1 is defined as p, = p—p'.
The Mandelstam variables for this process are defined as

(p3+ pa)* = su, (1)
(3= p1)* =t (2)
(p3 = p2)* = un, (3)
(p1+p)=s, (4)
(p=p3) =u, (5)
p=p-p)y=t (6)

The on-shell condition for external particles implies

p3 = pi=m, (7)
p?=p"? =M, (3)
pi =0, ©)

where m is the mass of the lepton and M is the mass of
the proton.

At leading order, the scattering amplitude M, is
given by

My = a(pa)tie) | LB

i = Pa+m) il iV
+r —(Pl_p4)2_m2y:|( )v(pa)
(=i)

x2e(poa(p) (—ieT (Du(p).  (10)

where the electromagnetic vertex ', for the proton is
expressed as
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_iFP(t)O-va(pZ)a’ (11)

() -

=Fp(t)y,

with the proton’s Dirac and Pauli form factors Fp, and Fp,
respectively.

The corresponding unpolarized differential cross section
doy is given by

dtds,;dQ;,"" )
I 1
~BmiET & S M) (2

where E/, is the laboratory energy of the initial photon and

QICZM’”_ is the solid angle of the lepton pair in the /7]~

center-of-mass frame, in which the lepton velocity is
denoted by

p= 1= (13)

In Eq. (12), we average over all polarizations in the initial
state and sum over the polarizations in the final state. We
express the cross section as a product of hadronic and
leptonic parts as

do > a’p
— L¥H,,. (14)
(dtdsl,dgzﬁ’”l*l‘ , l6m(2ME,)* >0 Y

where the fine-structure constant is defined as a = e?/
47 ~ 1/137. Furthermore, the unpolarized leptonic tensor
at leading order L{” (including the average over the initial
photon polarization) is given by

(#s-pitm)
(p3=p1)? —m*
(#1 = Vs +m) a)

2

(Pl - P4)2 —-m

X (Pg—m) <7’”%%
(71 —ﬂ4+m)2 ,,)}

a(l’l —P4)2—m

12 1 X
Ly =—5Tr {(% + m) (J/‘
+ 7
+v (15)
and the unpolarized hadronic tensor H*¥ is given by
1
H* ziTr[(ﬂ’+M)F”(ﬂ+M)(FT)”]. (16)

Using (11),
expressed as

the unpolarized hadronic tensor can be

Hw = <—g"” + p;p2>H1 + PP Hy,  (17)
2

where p=(p+ p')/2. We have defined with 7=
—t/(4M?)

H, = 4M*2G2, (1), (18)

4
1+7

Hy = [GE(1) + G}, (1)), (19)

where the electric (Gg) and magnetic (G,,) form factors are
defined as

GE:FD—TFP, (20)
GM:FD+FP7 (21)

which are functions of the spacelike momentum transfer 7.

A very compact expression for the contraction of the
tree-level leptonic tensor Ly with the hadronic tensor H, w
can be found in Refs. [33,36]. We show the expression in
our notation in Appendix A.

For the electric and magnetic proton form factors, which
enter the total cross sections for lepton-pair production, we
exploit the fit of Ref. [2], which is based on a global analysis
of the electron-proton scattering data at 9> < 10 GeV? with
an empirical account of two-photon exchange corrections.

In the experimental setup, when only the recoil proton is
measured, one has to integrate (14) over the lepton angles:

do o’ p M
= - dQTTT LY H 22
(dtds”>0 16717(2ME}/)21‘2 / i o ( )

The kinematical invariant ¢ iS in one-to-one relation

with the recoiling proton laboratory momentum 1;’
(or energy E'),

1P| = 2M /(1 + 1), (23)
E = M(1 +21), (24)

whereas the invariant s; is then determined from the
recoiling proton laboratory scattering angle,

sy+2(s + M)t
2(s —M?)\/t(1+ 1)

cos 6, = (25)

where s can be expressed in terms of the initial photon-
beam energy E, as

s = 2E,M + M. (26)

In Ref. [33], the authors calculated the cross section ratio
R between electron- and muon-pair production,
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FIG. 2. Ratio of the cross sections for yp — (eTe™ +utu™)p
vs yp = (ete™)p. The blue band corresponds to a 34 band
around the lepton universality result, with standard deviation
A=T7x10

5 50 _ oo u7)](su) + [op(e™e™)](su)
Rows) == e @

which depends on the invariant mass of the lepton pair
s;; and a reference point s?l to which the measurement is
normalized.

The corresponding plot for the kinematical range acces-
sible at MAMI is shown in Fig. 2. The normalization is
shown for the choice s?l = s 1.e., at each point above the
muon-pair production threshold, the sum of the cross
sections for muon- and electron-pair production is divided
by the corresponding cross section for electron-pair pro-
duction. In this plot, the blue curve describes the scenario in
which lepton universality holds, i.e., G = G4, while the
red curve corresponds to a case in which lepton universality
is broken by an amount of 1%, which would correspond
with the difference in proton radii as extracted from muonic
hydrogen spectroscopy [3,4] and from electron scattering
[1,2]. The blue band corresponds to three standard

P

Ps3
ﬁ b4
P2

FIG. 3.

deviations, if this observable is measured with an absolute
accuracy of 7 x 107*. We will show in this work that
radiative corrections shift this curve by more than three
standard deviations, making their inclusion indispensable
for a comparison with experiment.

III. CALCULATION OF THE ONE-LOOP
CORRECTIONS

In this work, we calculate all one-loop leptonic correc-
tions contributing to the yp — [T~ p in three independent
setups:

(i) an analytic calculation using the techniques of

integration-by-parts (IBP) identities,

(i) a numerical calculation using the Mathematica
package FormCale, which uses the Passarino-Veltman
tensor reduction with numerical implementation of
scalar integrals in LoopTools,

(iii) a calculation of the self-energy and vertex diagrams
with the help of projection techniques.

A. Crossing relations

One can find relations between a given loop diagram and
its crossed counterpart. Let us assume that the first diagram
(direct diagram) in Fig. 3 is given by

Mgy = a(p3)Ty(p1. Vo V3. Pam)v(ps).  (28)

Then, the crossed diagram is given by

M, = a(p3)T. (P, Pa. V3. Pa, m)v(pa), (29)

where  [.(#i, #, 3, Ps,m) can be related to
Ly(#1. Vo, 3. Pa.m) by reading Ty(py, o, P, Pa.m)

backward and changing the direction of the momentum
flow, i.e.,

Lo (P Vs V30 Pasim) = }’OFZ(_ﬂh_f/Zv — P4 —P3.m)Yo.
(30)

I' is always a product of an odd number of Fermion
propagators, so we can pull out the minus sign and, instead,
change m to —m:

P
b3
P4
P2

Generic one-loop leptonic diagram with its crossed counterpart.
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L. (P12 V3. Pasm) = —YOFL(ﬂl Va3 —m)yy.  (31)

This relation also holds for the tree level. Interfering the
loop diagrams with the tree diagrams, we therefore get

MMy = 2(p4)[Caec (P15 Vs P30 Par 1)
- yOFj:l,tree(ﬂl Vs Pas B3 —m)yo] u(p3)
x u(p3)[Ta(P1s Por P35 Par m)|0(Ps). (32)

Summing over spins, we find

D (MiMy)

N

:Tr[(ﬁét_m) ( altree(ﬁl’ﬂ2 V3, Py )

= Yol dwee (P1+ Par Pas P3. —M)Y0)
X (ps +m) -Ty(p, Pa. V5. Pa.m)]. (33)

The interference with the crossed counterpart gives

MM =5(pa) [Lamee (P15 Po. P35 Pasm)
o iree (P11 P2 Pa B3, —m)yo] 'u(p3)
X i(p3)[=roTy(#1- Pa- Pas P —m) 7ol v(pa)
(34)
and summing over spins,

D (MM, ) ="Tr

N

[(#s—m)- (T dtree(ﬂhﬂz V3. Paim)

=YL dree (P11 P2 P 3. —M)70)
X (=p3—m) - yoL§(P1, Par Pas 3 =)o)
=Tr[(#s +m) - (T oo (P1: Pos Pas B3 —m)
=70l dwee(P1. P2, 3. Pa-m)Y0)
X (Pa—m)-Ta(P1. P2, Pa. 3. —m)]",  (35)
where we used cyclicity and complex conjugation of the

argument of the trace in the second step. Comparing
Egs. (33) and (35), one can easily verify that

> (MigMy) ZfMM (36)
f

(P3= Parpa—p3.m——m)

Since an odd number of gamma matrices does not
contribute to the trace, only terms with an even number
of powers of m contribute. Therefore, the substitution m —
—m has no effect, and the crossing relation reads

> (MiMy)

7

=3 MM,y (37)

(P3=P4:pa—P3)

Having calculated any diagram, one can therefore easily
obtain the expression for its crossed counterpart by only

-

FIG. 4. Lepton self-energy diagram with k2 = s’

exchanging p; and p,. Note that the complex conjugation
in Eq. (36) only affects the algebraic, i.e., the trace over
gamma matrices, and not the analytic part (the ie pre-
scription in the integrals) of the diagram. For the unpolar-
ized cross section, which only involves the real part of such
interference, this complex conjugation is of no relevance.

B. Lepton self-energy

1. Lepton self-energy at first order

We show the first order lepton self-energy diagram in
Fig. 4. In the following, we use for the calculation of all
Feynman diagrams the Feynman gauge and dimensional
regularization for UV divergences (eyy =2 —d/2 > 0)
and for IR divergences (g =2 —d/2 <0). The self-
energy is then given by

" _ dll y'(f + 1+ mra
—iZ(f) = -’ / o (T —n) (38)
It can easily be reduced to
O e e 2]
—l—l—MBo(s 0,m )—i—%Ao(mz)}
+m%{4 [%—y,g—l—ln@n)} —2—|—4B0(s’,0,m2)},
(39)

where s’ = (K')? and where the finite parts of the master
integrals A, and B, are given by the expansions in
Appendix B

For } = m, we find

1 2
mi{3{——75+ln(47r)] +4—31n(’"—2>}.
4r €uv H

(40)

X(m) =

Note that we separate the UV-divergent part and imply only
the regular part of the scalar integrals A, By, and Cj, in all
expressions in the main part of this paper.

The on-shell renormalization condition fixes the pole at
(K')?> = m? with residue equal to 1. This gives the wave-
function renormalization constant Z, and the mass renorm-
alization constant Z,,:
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p1
> ps3
A
< yZ!
P2
p o’
FIG. 5. Lepton self-energy contributing to the Bethe-Heitler
process.

Zy=1+ digf') K (41)
(1= Z,)Zym = Z(m). (42)

The evaluation of (k') and its derivative results in the
renormalization constants:

1 Adru?
o)
4z | |eyy m
4 2
+2{——y5+ln( s )] +4} (43)
€IR

a 1 Azp®

722, =1——q4|——yg+1n 5
4z €yv m

1 A’
+2{——}/E+ln< i >]+8}. (44)
€1IR m

The renormalized self-energy is then given by
S(K)=2(K) - (Z

which reads as

i(k):—%{(k—m)[— [i_”ﬂn@n )]
5o (i )m(1-33)
() (-5

= (f—m)E, (k) +mE, (k2). (46)

2 l)ﬂ/ + (ZZZm - l)m’ (45)

2. Self-energy diagram

In the on-shell scheme, only self-energy diagrams
contribute with the virtual photon attached to an internal
fermion line. In Fig. 5, we show the corresponding
diagram, contributing to the Bethe-Heitler process. The
amplitude is given by

_ v s — P+ m)
u(ps)(ie)r” (pr—p P —m?

e e YA

x e (p)a(p) (—ie)T, (Dulp), (47)

where the renormalized self-energy X is given by Eq. (46).
The interference of the direct self-energy diagram with the
lowest order diagrams is given by

ZZMO Msg) =

Mgg = ( )Z(P3 p1)

2 ZaSELSE H* (48)

ispv

=12
where
(fi +m) (fr+m)
L?]fw__ETr[(ﬂ4_ )(},ﬂ k% 2 Yat7 ak%_mz yﬂ
L +m)
SE (kl +m) (kz +m)
LZW/ _ETr[(ﬂ4_m) (},ﬂ k%_mz «t7 2 —m? yﬂ
1
x (p3+ m)y“—y”] ; (49)
m
with
ki = p3 = p1, (50)
ky = p1 — pa, (51)
and
2
- m ~
=2, (k) + Zmzz(k%)v (52)
2
m ~
A = 2 ) (53)

Evaluating these two traces, we find for the direct self-
energy diagram

ZZMO Msg) =

2

where

TSE LgdeﬂU’ (55)
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4H,

(m?* —ty) (=sy =ty +m* +1)
H,

(m* —1y)(=sy =ty +m* +1)

SE _
5" =

_|_

{—4m2s,, —4m2t” - 3ts,1 +2slltll + Slzl + Ztlzl —Sltll +2m4 +7m2t—|— 2t2}

{3m4s” ‘l‘ 17m2M2s” + 12m2M2t” - 6m2ts” - 4m2st”

— mzslltu — szus” + mzslzl - 6m2ssll — mzttll + 12M4SH + 6M4t11 - 3M2tS11 - 1OM2St”

—7M2S”l” - IOMZMSH - 14M2SS” - 2M2Ml” _5M2t12[ + IOMZHH +452[” +4S25” +4IMSII

+ 2suty + usyty + S5+ Sstsy + stty + 2tsyty 4 2u s — ust + 6susy; — ss7,— 37t — tuty
+ 165, = Tm*M?* + 3m*s = 2m*t — 6m> M* 4+ 10m> M?s — 20m> M*1 4 2m* M*u — 4m?s*
+5m%st—2m2su+6m> > + Sm>tu — 12M*t + 14M>st +3M>1> + 10M>tu — 45>t — 4st> — 6stu —32u—2tu*}, (56)

where L{", denotes the direct part of the tree-level leptonic tensor, which is given by L{, = L&* and where TSE is given

by Eq. (A1).

In the limit of small lepton masses, the expression for the direct and crossed lepton self-energy contributions keeping only
terms with logarithmic terms in the lepton mass scaled by s; reduces to

1

C. Vertex corrections

1. Decomposition of the half—off shell vertex

To calculate the one-loop vertex corrections on the
lepton side, we need to evaluate the half—off shell vertex
[*, shown in Fig. 6. It can be constructed with the set of
Lorentz structures

gt (kKK (58)
with
qg==K—k. (59)
Using the Dirac equation
fu(k) = mu(k), (60)

we see that ¥ does not appear in the decomposition. All in
all, we find six independent Lorentz structures in the
decomposition of the vertex,

(k+ k')

P = { A0 | Fr 5o P ()
m

- F’%* (S,’ qz)Q_”
; 2m

+AC(K) {Fl(s’,qz)yﬂ +Fy- (S"qz)%
e (S/’QZ)%] } (61)

with scalar form factors F;:, s’ = (k')* and projectors to the
on-shell states:

eta 1
Z MS(MSE) N—Z—Lg Hﬂ {5
7 t“r

2 2
[L—yE—i-ln(‘m'u )] —éln(m—>}. (57)
€IR S 4 Su

|
¥ +m

ARy =2
m

(62)
The structure proportional to F'5= does not contribute to the
cross section, since g* gets contracted with either the
photon momenta or the hadronic tensor; both contributions
give zero due to gauge invariance. However, for the proof
of gauge invariance, we need to consider this structure.

One can construct projectors to extract the six form
factors:

(i.4) (K +K), (©) (1 (i) i p (o) (11
RECY ey A (k)+a3g)%/\ (k) ),
(63)
k/
q
k

FIG. 6. Half—off shell vertex with k2 = m?2, k' off shell, and
q=kK—k.
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where the coefficients ag;i)) are chosen, such that the f, ) project out the different Lorentz structures of the form factor:

Tr(P{H ) = Fu. (64)

L

For the form factors, we find
2 2 _ o 2N (2 o o 2
i) = n () | T 0
q*(—=m? = 3s' +34¢?)
m* =2m*(s' + ¢*) + (s' = ¢*)
N 2(q* (s —m*) + (m® —ms')? = 2q*(m* + 5') + q°)
m* =2m*(s' + ¢*) + (s' — ¢*)?

3 Bo(q®. m* m?)

+

Co(m?, q%,s',0,m*, m?)

2m2s' —2(s' — ¢*)? s 52
G 4(m§ ' (SZ q)’) 72y Ao(m?) + mz(n;l i q/) 22}’ (65)
m*(m* =2m*(s' + q¢*) + (s' — ¢*)?) m* = 2m2(s' + q%) + (s' — ¢%)
Ampi” 3¢2(3m> + 5’ — ¢°)
Fi(s 2 :i - 1 5 , ) ,
1 (S,q) 4”{[€UV YE T n( m2 >:| +m4—2m2(s’+q2)+(s’—q2)2 0(51 ,m ,m)
m + 5 - qz)
2 B /707 2
+<m4 2m25+q)+<s_q2)2+ ) o(s",0,m?)
6(m> —ms')?
4m? — —242\C 2 22 0, m2, m?
—|—<m mt = 2m? (S/+q2)+(s’—q2)2 q o(m*, q*, s m?, m?)
2 65’ — 6m? 6m*s' — 6m*
m Ao(m? ) 66
+<m2+m -2m? (S’+q2)+(s’_q2)2> O(m)+m4_2m2(s’+6]2)+(s’_qz)z} ( )
N 1

) = T o T ) =)
x {4m?s'q* (5m* +m?(2s' +5¢%) — (1s' —44°)(s' — ¢*)) Bo(g*, m* , m?)
+2m?[q®(m* +55") —¢*(Bm* + 18m?s’ + 115"*) — (m* = 5')?(m* = 55") + ¢*
X (3m® + 11m*s’ +17m?s” + 5°3)|By(s',0,m*) —4m?s'[—q® (9m* + 7s') + 8™ (m?* + s')?
+q*(m? =s")(3m* +5')(m? +3s") + 2m?(m? = 5')° +2¢%| Co(m?, ¢*,5',0,m? , m?)
+2[m® —m8 (25" +3¢°) + m* (=45 = 215'q*> + 3¢*) + m*(10s” = 215" ¢* 4+ 8s'q* — ¢°)
—5'(55'=3¢%) (s = ¢**JAg (m?) —4m?s' (m® —m*(s' = 9¢°) = m*(s? = 105'¢> + 3¢*) + (s' = ¢*)*)}.  (67)

dm?q*(2m* + m?>(5¢* — 4s') + (S - q%)(25' + ¢%))
Fals'q%) = 415{ (m* =2m?(s' + ¢*) + (s' — ¢*)?)?
2m*(¢®(m* +5') — ¢*(3m? = ') (m? + 35') 4+ 3¢*(m* = 5')(m* + 5')* — (m* = 5')*) x By(s',0, m?
+ s’(m _2m2(s +q) (S/ ) )2 BO( ,O, )
_AmgP(m® = ) (5m* + 2m(¢? = 25') = (s — ¢7)?)
(m* =2m*(s' + ¢*) + (s' — ¢*)*)*
2 =) =3 (s’ + ) P =3B = ) = (5 = PP )y o

Bo(q*.m*,m?)

Co(m?,q%,s',0,m*, m?)

+ S/(m4 _ 2m2(sl + qZ) + (sl _ q2)2)2
24m*g* (s — m?)
T T e e o

The corresponding expressions for the form factors F3+ and F5-, which do not contribute to the observables due to gauge
invariance, are given in Appendix D.
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2. On-shell limit and renormalization

In this section, we show that the form factors F;+, F»+, and F3+ reproduce the correct on-shell limit. The on-shell form
factor can be decomposed into two structures, according to

)Pu(8) = 1) [P () + (o 2, (69)

2

For s’ = m*, we find for the on-shell expressions of the form factors

1 4 1
F,+(m2,q2):1 ——yg+In ﬂﬂ +—5[240(m?) +2m*By(m*,0,m*) —3m*By(¢*,m*,m?)
4z | leuv m? m

+(4m4—2m2q2)C0(m2,q2,m2,0,m2,mz)]}
a 1 4r ,u 1 4z 1—|—1) v+
. ——VE‘HH +|—=ve+In
4 €uv €IR v—
1+0? v+1 v—1 v—1 v—1 v+1\ 1 v—1 v—1
Li —Li —1In? 1 In —In? -3l
+— [12( 21)) 12(21]) n<20>+n( 21}) <21})+2n(v+1>} Svn<v+1>},

(70)
o (0. 7) = e B B om?) = By, 0.} = L (] ()
2+mq 471_42 Oq7m7m 0m7’m _471_ v 'U"‘l’
F3:(m?, ¢*) = e {m — Ag(m?*) + m*By(m*,0,m*)} =0, (72)
7”1
where we defined
4 2
=l- (73)
q

F+(m?, ¢*) has an infrared divergence, which arises from Cy(m?, ¢>, m?,0, m*, m?).
We reproduce the on-shell Dirac form factor, which is given by

a 1 Amp® 1 Arp®\ 11+ 0° v+ 1
) = o) o) = { e ()| (5 "

uv €1IR v v—1

202 +1 v+ 1 vr 41 v+1 vr—1 1+ 2 v+ 1 v—1
1 1 1 Li —Li . 74
* v n(v—l) * 20 n(v—l "\ a2 * v 2\ 720 2\ 20 (74)

Moreover, we reproduce the Schwinger correction to the electron magnetic moment given by

k= —Fy(m?,0) = (75)

ﬂ .

In the on-shell subtraction scheme, the vertex counterterm is defined to fix the electron charge e at g> = 0. Only the Dirac
form factor F(g?) is UV divergent, and one finds at g*> = 0 the renormalization constant:

1 4 1 Am?
zlzl—Fl(O)zl—aH—yEHn( s )]+2{—}/5+1n< ™ >]+4}. (76)
4z | leuv m? €IR m?

This leads to the renormalized (on-shell) form factor:

Fi(¢*) = Fi(q*) — F(0). (77)
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3. Ward-Takahashi identity

For a further check of our one-loop expression for the half—off shell vertex, we check the Ward-Takahashi identity,
which reads

0¥ (K k) = =(Z(K') = 2(k)), (78)

where X (k) denotes the Fermion propagator. Contracting the vertex of Eq. (61) with the photon momentum ¢,,, we find

! a2 2 V) 2
a0 = A0 Py =)+ (S s = p | A0 [P = (- Lp ] 09

2m? 2m?

2

i k’ s’ —m? —q m
q," = ) o (Fyr + Fy-) + m 5 (F3+ + F5-) = 2F- _E[FW_FI-]

— 2 !

m[ (s —m? q s
+5 [(W) (Far = Fy) 4 3o (Fy = Fy) 4+~ (Fpo + Fl-)] . (80)

Plugging in the form factors [Egs. (65)-(68), (D1), and (D2)], we find

- 1 1
b = gm0 - Sauo)
¥4 €uv N
a 1 3 2 ! 2
+m-—13 —|———yp+In(4n)| +3 +—5Ac(m>) —4By(s'.0,m>) 5. (81)
¥ €uv m

This is indeed equivalent to the right-hand side of Eq. (78),
(k) — 2(K), (82)
considering the one-loop self-energy of the fermion, as can be seen by using Egs. (39) and (40).

4. Vertex diagrams

Having determined the half—off shell one-loop expressions for the vertex, we can now evaluate the two vertex diagrams
contributing to the Bethe-Heitler process, as shown in Fig. 7. The first diagram of Fig. 7 is given by

My, = L_’(P3)(ie)2i{ [Fﬁ(tllvo)}’” + Fa+(1,0) (=1 +2p3)" 2p3)ﬂ] [L+—ﬂ3 —hEm

2m 2m -~ (ps—p1)* —m’
1 —p1 +2p3)* B .
o [P 10,004 P 10.0) T2 ) e i (i T ). (69
[
Comparing this to the expression of M, given by D1 D1
Eq. (10), three additional Lorentz structures appear. The
interference of the first vertex diagram with the two tree-

level diagrams is given by ? ps > D3

4

ZZM (My,) Z VL H,,.  (84) P P

=1 P2

where

a<v1|) = Fi+(,0), (85)
P ! P Pl
2 Fi(1y,0) + Fy- (14, 0)

o) = ! , (36)

FIG. 7. Vertex diagrams contributing to the Bethe-Heitler process.
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and

a<v3f = Fp(1,0),

O Fo(1,0) + Fo-(1,0)

\7 2 ’
Ly 1 kl +m (ko +m) JHAm)
val = _ETI‘ ﬂ4 - 7/” Ya T 7Va k2 m2 " (ﬁ?) + m)}/ k% ) ’
o 1 k + m) K + <1,
Ly = _ETr (7’” Yt (kzz 2) 7”) (#5 +m)y*—y ]
: 1 (2 + m) § (K +m)
3y 2 3 1 v
LVfl :_ETI. (7/” a+ Ya kz_ >V )(ﬂ3+m)_k% m2 ’
1 (k +m) (K2 +m) sl
L4Vfl = _ETr (ﬂ4_m)< kzl Ya T 7Va k22 2 },ﬂ (]d3 +m)—3 14

Evaluating these four traces, we find for the first vertex diagram

where

Ty

EZMS(MVI) =5

i f i=1

Vi _ gy
T'=Ly,H,.

Ty = TSF,
2H,

(m* = 1)*(=sy =ty + m* + 1)
+ tsym?* = 8ttym? + 6stym?® + 2115 + syt3, — 1y + 3tsyty )}
H,

4(m* = 1) (=sy =ty +m* +1)
+ 10s>m* — 18 m* + sym* — 32M?sm* + 81M?tm* — 35stm* — 12M*um* + 12sum*

— S4tum®* — 59M?s;m* + 29ss,;m* + Tts;m* + 30us,;m* — 18M?t;m* + 18st,;m*

= 30ttym* = 15M*Pm?* + 125£2m* + 20tu>m?* + 2M?stm? — sstm? — ustm? — 2M*t3,;m*

{4m® = 2tm* + sym* — 8tym* — 32m? + 43,m>

+

{18M?mb — 18sm® + 36tm® — 18s5,;mb + 22M*m*

+ 2st3m? + 12t6m? + 2st5m* + 62M*tm® + 125> tm* — 54M>stm* + 15°2um® — T0M> tum?

+ 30stum? — 44M*s;m* — 10s2s;;m* — 12us;m* + 42M?%ss;ym* + OM*ts;ym?> — Tsts;m>

+ 46M%us,m?> — 22sus;m* — 6tus;m> — 12M*t,;m* — 4s>t,m* + t>t,;m* — s%lt”m2

+ 16M2stllm2 - 2OM2tt”m2 + 8stt”m2 + 8M2ut”m2 - 8sut”m2 + 28tut”m2 - 8M2s”t”m2
4.0 202 4 2702

- 6”’”12[ + 3M2S”l‘%l - ss”t%l - 3tS”t121

+ 4ss”t”m2 + 12ts,,t”m2 + 4us”t”m2 + 2M2t?l - 2Sl?l - ZII?I -
+ 16M?st3, + 3M?t13, — 55113, + 4M?ut?, — dsuts;

- 2us”t121 - Mztzt” + 4St2f[l - 4t142f” - 2M2S121t” + Sslzltl[ + uslzlt” + 2M4ttll + 452””
- 10M2Stt[[ + tzutll + 6M2tut” + 2stutll - 20M4s”t” - 6S2511tll - 4M2S11tll + 22M2SSHIH
+ 7M2ts”t” - 9”Slltll + 18M21/£S”t” - IOSMS”t” - 10tus”t”},
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—2H,

Vv
T4 = {2m6 - 3tm4 + 2S”m4 —4t11m4 — t2m2 + 2t12[m2 - ttllm2 + S”t”mz + S”tlzl + S%lt”}

m?(m?* =) (=sy — ty +m* +1)
H,
" 4m* (m* —ty)(=sy =ty +m* + 1)
—4s?m* 4+ 82m* — shm* + 14M2sm* — 41M*tm* + 14stm* + 6M>um* — 6sum*

{=9M*m® +9sm® — 18tm® + 9s,;m° — 10M*m*

+27tum* 4+ 33M?s;;m* — 14ss,m* = 2ts;m* — 15us,;m* +9M*t,m* —9st;;m* + 15tt,m*
+6M*Pm? —4st>m? — 10tu> m* = 2M%s3m? + ssim? + usim? + M*t5m* — st3m?

—6tt5m? — sythm* = 26M*tm? — 4s2tm* + 20M>stm? — 612 um? + 32M> tum® — 12stum?
+20M*s;m? +4s2sym?* + 6u’sym? — 18M?ssym> — 3M?ts;ym? + 2stsym? — 22M>us ;;m?

+ 10sus;m?® + tusym? + 8M*tym* + 4s>t;y;m* = 262 t;ym? — s3,tym* — 12M? st m?
+16M>ttym? = 2sttym? — AM>ut,m? + dsutym?® — 14tutym> — 6M? sy tym* — 3ts t,m?

= 2usytym?® — M2t} + st + 13, -+ 2M* 13, — 2M? 13, — 3M? 115, — 2M?ut3, + 2suty, + 3tuty,

+ MPst3, 4 25585 + tsyty 4 us ity + 20wty + 2MP st 1+ sty + usyty + 2M4 ity
—AM?tuty +4M* sty + 2uP sty — 2MP syt — 3MPts ity — 6MPus ity + 2susy ity + 3tusyty; ).

The second diagram of Fig. 7 is given by

1 —H+
+113}?’1’71

(Pz - 2P4)"
Fyo(ty, t)y" + Fae (1, t) ———F—"
2m - (p3— P1)2 - mz} {

2m

My, <p3><ze>2wz{[

"‘ﬁ [Fl-(lm Ny* + Fy-(ty, 1) M] }v(p4) x (—i)e,(p1)a(p')(—ie)l,(t)u(p).

2m

The interference of the second vertex diagram with the two Born diagrams is given by

Z ZMO My,) = Z a’Li}"H,

i

where
aYZ = Fl*(tll» t),
v,  Fie(ty.t) + Fi-(1.1)
a,’ = 2 ,
V= Foe(ty, 1),
v,  For(ty,t) + Fo- (1, 1)
a,’ = 5 ,
and
T L[ (K, +m) (ko +m) K A+m)
Ly ——ETr _(154—”1) Y”ﬁ?a*‘?amyﬂ (#5 +m)y a-m |
v 1 (k + m) <k ) 4 1 U
L = =5 Tr | (Pa—m) (J/”ﬁmﬂa kf pendl VRO B
3w [ (K +m) (Ko +m) o +m) (=py)”
Ly = —ZTr _(ﬁzt —m) (}’”W}’a + Vamyﬂ (75 +m)y e—m m |
L[ (ki +m) (k, +m) 1 (=p4)¥
4y 1 2 a 4
LV:‘ ——ETI_(ﬂ4—m)<}/ﬂ k%— 2 Yat7Ya k%_mz " (ﬁ3+m)7 a m
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These leptonic tensor enter the calculation like before,

L 4 4
ZZMS(MVZ) = %Z a?ﬁ]‘?’z,
P i=1

where
re -,
-1y,
T3V2 = 2y {m*s; — 8m*t; — mtsy; + 6m> syt + 4m>13,

) 2 2
(m* —t)*(=sy =ty +m* +1)
—4m2tty + syty — tsyty + 4mS — dm*t + 2m2 %}
- s
2(m* = 1)*(=sy =ty +m* + 1)
2 2er 2 2 P, DU A2 a2 2
+m lS[] +2m St[l m Slltll —|—3m usy +3m S8 3m ll” 2M S”t” M tll M ttll + us,,tll +Stll

+ ssyty + tsyty + tuty + tt5 + 3m*M? — 3m*s + 6m*t + 9m>M?t — dm>st — 2m> 1> — Sm*tu},

{_tll + 3m2 + 4M2 - 2S -t - 2u}{—3m4s,, - 6m2M2s” - 2m2M2t”

—2H,
m*(m? = 1) (=sy =ty +m* + 1)
= 3mPtty + syty + shty — tsyty +2m® — m*t 4+ 2m* 2}
+ i

4m*(m* — 1) (=sy — ty +m* + 1)

— Tm*M?s;; — 4m>M?t;, + Sm?’ts;, + 4m>sty, + 4m’us;, — mzslzl +3m?ss; + 3M?tsy,

Va
T, =

{2m?s; — dm*ty — 2m* sy + m?syty; + 2m> 63,

{=ty +3m? +4M?* — 25 — t — 2u}{—4m*s

- Mzs”t” - 2M2S121 - M2[t” —2tusy — stsy + sty + ssyty — tsyty + MSIZI + SS121 + tzl”
+4m*M?* — dm*s + dm*t + Om>M?t — Sm®st — 4m* 1> — Am*tu — M?1* + u}.

(102)

(103)

(104)

(105)

(106)

The contributions of the crossed vertex diagrams can be calculated by using the crossing relations derived in Sec. III A. Note

that the replacement #; — u;; also affects the scalar form factors.

5. Leading contribution for small lepton masses

Taking the limit of small lepton masses m> — 0, keeping only the terms with either double-logarithmic dependence or
proportional to In(m?/s;;), we find that we can rewrite the interference of the sum of all four vertex diagrams with the tree-

level diagrams as

—t —t 2 . _ _ 2
e {mz <—”> —2In (—”) In <m—>} +C [1112 <ﬂ) —2In (ﬂ> In (’"—)]
Si Si Su Su Su Si
~ -1

where
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2H,

B = {—tzsll +2ts121 +5lS”l[l —45111121 - 35121tll - 3lztll + 3”[21 - t?l + 13}

(t=t)ty(=sy+1t—1;)
H,

- {12M4ts” —4M4S”t” - 8M4S121 _20M4ttll —7M2I2S”

At —ty)(=sy+1t—1ty)ty

- 18M2tus” + 6M2MS”tll +6MZIS121 —2M2Stlzl —7M2S[ltlzl - 6M2SISU _2M2S12]tll
+ 22M2Stt1[ +2M2SS1[[11 +6M2[S”[11 + 8M2MS121 + 8M2SS121 - 7M2t2t” +2M2Ml‘%l
+ 18M2tut” - 3M2t:;l + 20M2tt121 + 2S2tlzl - 8S2tt” - 2S2S121 +5t2MS” —2St2S” - 6St2t[[

+ 25t + 6tuts, —2uls b, + tus?l - 2sut121 — us,,t%l + 6stus; — 3us121t” —Ostut; —2sus;ty;

+ 2tus;ty; — st?, + sts,zl - sttlzl - 4ss,1t12, + ts”t%l - 3ss121t” + 8stsyt; — 2u2s121 —4sus,21 +281,

+ Puty =321, — 61Uty — Ttuts, — 165+ 12M* 2 = 12M? s> = 2M? £ — 12M?*Pu+ 45> + 458> + dsrPu+ 20 u + 41 u? },

(108)
H,t 2 2 2 2 2 _ 3,43
C= (l‘ — t”)z(_s” o t”)t” {—t Sy + sy + 2tS[[t[[ =Sty — 3t 1+ 3”1[ =1y +1 }
H,t
_4(1‘ : )2( s2 +[ " )[ {—8M4IS”+4M4S”I”+4M4S121+M4t121—6M4tt”+M2t2S”
— ) =Sy + 11— 1y)ty

+ SMZZMS” - ZMZMSZIIH — 2M2Sl%l - 4M2sll[[2[ + SMZSTS” - 2M28%ll” + 6M2Stl”

— 6MZSS”IH + 7M2lslll” — 4M2MSIZI - 4M2SS121 - 8M2t2t” + 6M2ZMIU — 2M2t?l + 8M2l‘l%l

+ 5265 — 252 tsy — 252ty + 2% sty + s%s5 — Pusy — 25125y — sty — 2tutsy + tus?

— dstusy — 2stuty + 2susyty — 2tusyty + stsy, + stsyty + utsy + 2sush + 2631, + 21uty;

— 265 = 2ttty — 2tuth + IMA? — 8M%st? — 2M2 13 — 10M?1u + 25% 1> + 2s1° + 4st?u + 2Pu + 3:2u*},  (109)
where B (C) are given by making the replacements #;, — uy, DY = _ ZD (111)
and u - —u —s —t+3M? in B (C), respectively. q

D. Vacuum polarization

1. Vacuum polarization at first order

We show the first order vacuum polarization diagram in
Fig. 8. The photon propagator can be written as

D*(q) = Dy (q) + Dy (9)yy(q) DYy (q),  (110)

where D{” is the leading order photon propagator

l—q

l

FIG. 8. Vacuum polarization diagram. The fermion loop can be
either electrons or muons.

and Il is the vacuum polarization, which is given at first
order in a by

iy [ A T (= m)y ([ +m)]
—iIT (Q)*_ezluz /(ZH)d [(l_k)z_mZHIZ_m2]
(112)

for the electron loop. Because of gauge invariance,
q, " = g, J1" = 0, and the vacuum polarization can be
decomposed as

*(q) = (-¢"q* + ¢"q")11(¢*), (113)
with TI(¢?) [37],
n__a 1 _ Az (2.8
H(q ) 3 LUV }/E+ln< m? > < 3)
Voo v+ 1
+5 (v 3)ln<v_1>], (114)

where v is defined in Eq. (73).
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P

.

P4
P2

/

p p

FIG.9. Vacuum polarization diagram contributing to the Bethe-
Heitler process. In the ratio of electron- vs muon-pair production
cross sections, this contribution drops out.

The UV divergence in Eq. (114) is removed by the
renormalization constant Zs,
(¢*) =1(¢*) = (Z3 - 1), (115)

which is fixed by requiring that the renormalized vacuum
polarization T1(¢?) has a pole with residue 1 at ¢*> = 0:
Zy=1+T11(g*> = 0). (116)

The renormalized vacuum polarization is then given by

fi(g?) = o [(vz —2) +26-2) ln<1;i— 11” (117)

The renormalized photon propagator is therefore given by

AT q"q'Tl(q’
= 1+ 11(¢g?)] +%.

D (q) (118)

Note that, due to gauge invariance, only the term propor-
tional to ¢"¥ contributes to a physical cross section.

We show the contributing vacuum polarization diagrams
in Fig. 9. The amplitude for the sum of both diagrams is
given by

Myp = T1(1) My, (119)
where TI(f) is given by Eq. (117) and M, is given
by Eq. (10).

Note that the correction due to the vacuum polarization is
the same for muon- and electron-pair production. It there-
fore drops out in the cross section ratio of lepton-pair
production, considered in this paper. This remains also true

P

el

p3
A k
D4
P2
p Y
FIG. 10. Lepton box diagrams contributing to the Bethe-Heitler
process.

when one considers muon and hadronic contributions to
vacuum polarization.

E. Lepton box diagrams and reproduction
of soft-photon result

In this section, we will present the calculation of the lepton
box diagrams, as shown in Fig 10. For the analytic calcula-
tion, we use QGRAF [38] to generate all diagrams in a
representation, which can be processed with the algebra
program Form [39]. To generate IBP identities, which are used
to express a set of integrals in terms of a smaller set of so-called
master integrals, we use the program Reduze 2 [40]. These
master integrals are either known analytically in the literature
or could be evaluated with the help of Feynman parameters.
We give a list of all master integrals in Appendix B.

In the general case with a finite lepton mass, the
calculation of the lepton box diagrams leads to very large
expressions. Nevertheless, we were able to extract the
analytical expressions with the setup described above.

Having calculated the leptonic tensor L*¥, we were able
to check gauge invariance by contracting with the external
photon momenta, i.e.,

PiL, =psL,, =0. (120)

uv uv

It turns out that this identity is only fulfilled once all
diagrams (self-energy, vertex, and box) and all counter-
terms are taken into account. Therefore, only the renor-
malized leptonic tensor is gauge invariant.

Here, we give the leading contribution stemming from
double logarithms, for the limit of small lepton masses
m? — 0, and show that we reproduce the correct asymp-
totic behavior for s; > 4m? which was derived in
Ref. [35]. In this case, the contribution to the cross section
can be written as
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ZZM (Mox)

{(c+c) [m (s”) ~2In (s”’) ln<

m—z)} +DIn? (‘—t")
S S

_ _ _ 2
—|—2Cln< )m( >+D1 2( ””) +2C1n <ﬂ> In (m—>
S S S Su Su
LyH, . m? L, /m?\ 1 (m*\[1 4y’
LW _B-_B|In[— LYH, |-In2(— ) —=In[— | |—— 1 121
+< 2 ) n<511>+ 0 WLH <511> 2n<s”> |:€IR et n< Su )H} (121

where B and C are defined in Eq. (107), while the other coefficients are defined as

H(? =2tyt+ 53, + 13) -H,

D p—
(t=su—tu)ty 4(t = sy — 1)1y

— 20°M? + 2sHM? + 2t M? — 8s*M? — Ais;M* —
+1426,M? + 45713 M?* — 105113, M?* — 8tuts, M>

12163 M* + 4s 13, M? + 257, M? — 10sts3,M* —
— 2]ISZZIIZIM2 —
— 6t3111M2 + 4S131111M2 =+ 14S[2111M2 — 13ISIZIIHM2 + 14[2MIHM2 =+ ]412S11111M2

{9t3M4 + 10ts121M4 + 9ttlle4 - 18t2S11M4 - 14t2tllM4 + 18[S”t”M4

10tus?,M?
103uM? + 383 s;M? + 16st>s,;M?* + 20t%us;M?>
- ZOSISHIHMZ - 16tus”t”M2

+2st% + 2578 — sts3, + tusy, + 20786, + 25165, + 2tuty + 363u? + 35253, + 3tu’s?, + 3s%ts?, + 4stus?,

=386 + 21’83, + 3s%183,

2t2ut121 + 4stutll + 3t2s,,t” + 3sts,,t” + 4tus”t + 21 + dstu — 4st3s;, — 4s*t%s),

- 6t2M2S[1 - 3t us; — 8St usy; + 2t4tl[ - 2St3tll - 4S t2tll - 4t2u2t11 + tzsut” + B[MSHIH - 6St I/tt” - 3t S”t”

+ 3st2s”t” + 4tu2s”t” + 6S2IS”[” - 312MS11t11 + 8stus”tl,} -C,

(122)

and D is given by making the replacements t;, — u;; and u — —u — s — t + 3M? in D.
By adding the contribution of self-energy, vertex, and box diagrams, i.e., Eqs. (57), (107), and (121), all mixed double-
logarithmic terms involving the factor In(m?/s;) drop out in the sum. Furthermore, the contribution proportional to

In(m?/s;;) and In?(m?/s;;) factorizes in terms of the tree-level amplitude, such that we can write

(o) = (o) G (5) +1]

where p is the scale associated to the infrared divergence of
the soft-photon loops. The dependence on y cancels, once
one takes real photon corrections into account.

We are thus able to reproduce the correct double-
logarithmic behavior for the virtual corrections, which
we derived in Ref. [35] in Eqs. (46) and (47), in the limit
of f — 1, corresponding to s, > 4m?.

Furthermore, in Ref. [41], the radiative corrections to the
dilepton-pair photoproduction cross section were studied in
the approximation of a small lepton mass. The correction is
shown in Eq. (B1) of that paper. We compared our
analytical result after expansion in m? and found exact
agreement. To make the comparison, we had to make the
identifications (kinematical quantities on the left were
introduced in Ref. [41])

0% - sy
q* —>t
p- = —ty+m?

ﬁJr - —M” + mz. (124)

_yE+ln<4:1ﬂ )%21 2(3;) +21 (’;’;)} (123)

[

Note that the L and H( functions of Ref. [41] are given
analytically by

) n?
L(x) = —Lip(-x) - T
2 1 m?
Hy(Q?) = —§n2 + E1n2 <—S”>

() ren(4)]

F. Integration over lepton angles

For an experiment that only measures the recoiling
proton, we have to 1ntegrate the differential cross section
over the lepton angles dle ", as shown in Eq. (22). To
perform the integration, we have to express the kin-
ematic invariants f; and u in terms of the lepton
angles 6;; and ¢, defined in the rest frame of the
dilepton pair,
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= %(Zm2 +1—sy)+ g (b cos Oy + by cos gy sin0y)),
u:% 2m? +3M* — s — 1)

- g (acos @y + by cosb; + bycosysinby), (126)
where

a= \/(S — sy —M?)? —4AM>sy,

b, = (s —M* —s;)s + (s — M? 4 s)t
a b

by =/ (su— 1)> - by.

The integration over the lepton angles 6;; and ¢; was
done numerically in Mathematica.

(127)

G. Sommerfeld enhancement

One potentially important contribution, beyond a first
order calculation, in the kinematical region just above the
dimuon threshold is due to the Sommerfeld enhancement.
The Sommerfeld enhancement is a nonperturbative modi-
fication of the scattering cross section of slowly moving
charged particles due to a static Coulomb potential.
Because of the small velocities of the produced particles
just above threshold, it is typically considered in non-
relativistic quantum mechanics. The enhancement of the
cross section is given in Ref. [42],

_na 1
Bl1—e7’

with # given by Eq. (13). In the case of nonrelativistic
particles, the enhancement can become important, and we
therefore have to estimate the effect for production of
muon pairs.

Equation (128) can be interpreted as a resummation
of Coulomb photons to all orders. Since we calculated
radiative corrections perturbatively at first order in o, we
have to subtract that from the enhancement. In Ref. [35],
we have found that the virtual correction in the soft-photon
limit is given by

—a(1+p . (2B 1 1-p
5‘”"7( ; >{2L‘2<ﬂ+1> i (m) _”2}’

S(B) (128)

(129)
which satisfies the asymptotic behavior for  — 0,
a
Sgp = —. 130
=5 (130)

We checked numerically that the full one-loop result, as
calculated in this work, has the same asymptotic behavior

in this limit. Equation (130) therefore gives the Sommerfeld
enhancement at first order in a. Indeed, expanding
Eq. (128), we find

T
S(B) =1+ % +0(a?),

which shows that we reproduce the correct f — O limit in
our full one-loop calculation. To estimate the effect of
higher orders, we have to subtract the one-loop contribution
from the Sommerfeld effect:

(131)

ommerie — — _”_a
ST ) = ()~ 1 =52

(132)
In the range s; > 0.06 GeV?, this gives a correction to
the cross section below 2 x 104" For the aimed precision,
this effect is therefore negligible. The enhancement is
present only very close to the muon-production threshold
when f — 0. Moreover, the QED perturbation theory is
not well defined in this limit. Only higher order calculations
as well as all order resummation can be applied for
s, < 0.047 GeV? when the error of our calculation reaches
the permille level. However, the lepton-pair production
cross section is suppressed near the threshold, and the
effect on the ratio ([og(u"u™)](sy) + [oo(eTe™)](su))/

oo(ete)](sY) considered in this work is negligible.

IV. NUMERICAL CALCULATION OF
VIRTUAL PHOTON CORRECTIONS

The numerical calculation of the virtual photon correc-
tions were mostly done in Mathematica, using the packages
FeynArts, FormCalc, FeynCalc, and Looptools [43,44].

To obtain the Ileptonic tensor, we calculated the
cross section of a truncated two-to-two scattering with
an off-shell photon and an on-shell photon as incoming
particles in dilepton production. This simplifies the calcu-
lation significantly since it can use the automated tech-
niques to generate cross sections in FeynArts and FormCalc.
Furthermore, one can directly apply the existing regulari-
zation and renormalization scheme from regular two-to-two
scattering processes provided by FormCalc.

After obtaining the expression for the leptonic cross
section, one can use the polarization vectors for the photons
to construct the leptonic tensor structure. The renormaliza-
tion constants are provided numerically within FormCalc in
the on-shell scheme and are given in terms of one- and two-
point functions and derivatives of these. After renormali-
zation, the result can be tested to be UV finite by
varying p°.

After obtaining the expression for the leptonic cross
section, one can use the polarization vectors for the photons

'"The Sommerfeld enhancement in the Coulomb field of the
proton has the same order of magnitude and also scales as 1/f.
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FIG. 11. Diagrams with real photon emission from the lepton
lines of the Bethe-Heitler process. In the soft-photon limit, the
diagram with the photon attached to the internal (off-shell)
fermion line does not contribute.

to construct the leptonic tensor. We created a PYTHON
script to replace all the photon polarization vectors
into tensorial form in the format of FeynCalc notation.
Note that after the contraction with the hadronic tensor the
scalar result is still infrared divergent. One then has to
include the soft-photon bremsstrahlung. For the regulari-
zation of infrared divergences, FormCalc introduces a photon
mass. Cancellation of infrared divergences between the
real and virtual corrections was tested by varying the
photon mass.

Using the numerical result, we were able to check the
analytic expression at a given phase-space point.

V. SOFT-PHOTON BREMSSTRAHLUNG

Having evaluated all one-loop virtual corrections, we
have to take into account the radiation of real undetected
photons to get an infrared finite cross section. We calculate
real radiation only in the soft-photon limit and show the
contributing diagrams in Fig. 11. Note that the diagram,
where the photon is attached to the internal lepton line, does
not contribute in the soft-photon limit. Denoting the
momentum of the photon by k, the squared matrix element
is given by

\M(rp = 7 p)

p p

- P3 Py
ZMyp—>l+lp2—e2[ - }
M P(-en) | L2 -2

: { Pau —ﬂ} (133)

p3-k P4'k'

To calculate the contribution to the cross section, one then
has to integrate over the undetected soft-photon energy
up to a small value AE,, determined by the experimental
resolution.

Because of the energy-momentum conserving &
function, *(p; +p — p3 — ps— p' — k), the integration
domain has a complicated shape in the laboratory system.
The integration can be carried out in the rest frame S of the

real (p;) and virtual (p,) photons, which is also the rest
frame of the dilepton pair and soft photon, defined by
P1+ Pr=Dps+ ps+k=0. (134)
In such a frame, the dependence of the integral with respect
to the soft-photon momentum becomes isotropic. For the
differential cross section, we then need to evaluate

do _ do e’ / ﬁ
dtds” s;R_ dtds” 0(27[)3 \I;|<AEs2kO

mt o om? 2(pspa)
[<p3k>2+<p4k>2 <p3k><p4k>]’ (135)

where the integration is performed in the frame S.

The integrals are infrared divergent and can be carried
out analytically after dimensional regularization. They have
been worked out, e.g., in Ref. [45]. For the kinematics in
system S, where the soft-photon momentum

k| < |P3l. |Pal. (136)
with the lepton 4-momenta
0 0 S - -
P3 = Pg = T’ P3 = — P4, (137)

we obtain

do do
= SR+ 6.r), 138
(dtdsll> s;R <dtds”>0( siR + S’R) ( )

where 81, is the infrared-divergent contribution due to real
photon emission,

a1+ p I+p
5-2[()w(i2)- 1

« |:L—yE+ln<4 ”)] (139)
€1IR m
and dgg is the corresponding finite part:
_-a 4AE? 1+42 1-p
o= () [ (5 (55)
+-— ln< >
() k() 2 (5]
1+p 1+p ’
(140)

The maximum value of the undetected soft-photon
energy AE, is defined in the system S. One can reexpress
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it in terms of the detector resolutions. We consider the case
of detecting the recoil proton only. The energy E’ and angle
0, of the scattered proton are measured in the laboratory
frame. The missing mass M, of the system is defined by

M?niss = (p3 + P4 + k)z = Su + 2jwmissEsv (141)
E. :Mlgniss_sll (142)
’ 2lumiss

where E; denotes the soft-photon energy.
The missing mass M, is experimentally determined
from the quantity
Mrzniss = (pl +p- p/)2
1+7
T

:4M1<Ey cosf, —E, —M>, (143)
where 7 is determined from the laboratory proton momen-
tum by Eq. (23) and 6, is the experimentally measured
recoil proton scattering angle in the laboratory frame.

For the process without radiation, this angle is given by
Eq. (25), which can be equivalently obtained from
Eq. (143) by the replacement M2, = — s

miss

1+
sy = 4MT<EM/ ——cos 0 lno raa — E, — M). (144)

Combining Eqgs. (143) and (144), we can express the
soft-photon energy of Eq. (142) approximately as

2ME,\/7(1 + 1)
E, = v v [COS 9[,/ — COS 6p’|no rad}'

145
T (145)

Consequently, the experimental recoiling proton angular
resolution, denoted as AHPI, determines the maximum
value AE; of the undetected soft-photon energy, which
enters the radiative correction of Eq. (140), as

_ 2ME,\/7(1 + 1)
Si

AE, sin0,A0,.  (146)

VI. TOTAL RESULT AND EXPONENTIATION OF
THE SOFT-PHOTON CONTRIBUTION

Adding the virtual one-loop corrections and the real soft-
photon correction, we find a cancellation of all infrared
divergences. The full result can be written as

do do
<dtds”) (dtdsll>0{ + [ 1-loop + s,R]}

do
= 14 6ex)s
(ddeu)o(  dexp)

where 6y,0p 1s the finite part of the one-loop virtual
corrections. In the limit s; > 4m?, one obtains from
Eq. (123) the approximate result to double logarithmic
accuracy:

a(l m? 1. (m?
o) ~——<—In?|— —In[{— ) ;. 148
tloop ”{2 ! <Szz) +2 n(s”>} (148)

As shown in Ref. [35], we can exponentiate the double
logarithmic part of &, which in the soft-photon limit is
given by

2 —
Oexp R —% {ln <42§S> +In (—} n [';)}

X [1 + (1 ;Lﬂﬁ2> 1n<:;/;)] (149)

For s;; > 4m?, this becomes

4AE? 2
5soﬁz—9{1n< “){l—i—ln(m—)}}.
7 S S

By accounting for the exponentiation of large double-
logarithms in m? /s, the full one-loop correction of the
cross section is therefore given by

(147)

(150)

do do al + p? 1-p
— . Fedot 1 S - In2
@mM> <meo ¢ X{‘*P”m+n 4p “<1+ﬁ

a1+ [ 28
_E( ; Lb(

do
= 1+ 0uyry).
<dtdszl)o( T Gexp)

1+p

)+ 5 (155)])

(151)

Note that in Eq. (151) we have to subtract the leading double-logarithmic term —a/z(1 + $2)/(48)In%((1 = B)/(1 + B))
from the virtual one-loop corrections and add the terms from the real soft-photon corrections that cannot be exponentiated,
cf. Ref. [35]. In the limit s, > 4m?, Eq. (151) is given by
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do do .
— .Fe soft
dtdS” dtdS” 0
all m?\
14 |6 om () -
X{ " |: 1_L00p+”<2n (Sll) 3):|}’

(152)

in which the correct leading logarithm dependence from
Eq. (123) is reproduced.

Furthermore, it was shown in Ref. [46] that the nor-
malization factor F' arises due to the physical assumption
that in an experiment the sum of all soft-photon energies is
smaller than AE, instead of requiring that each soft-photon
energy is individually smaller than AE,. Its leading
correction from unity is given by

& 1+ p* 1-5\1?
F‘“ﬂ”( 2% )h‘(lw)] o

Although we account for the factor F explicitly, its
deviation from unity is quite small: for s; =0.077 GeV?,
approximately —2.4 x 1073 for electrons and —8.5 x 1076
for muons.

(153)

VII. PROTON-LINE CORRECTIONS

Besides the one-loop leptonic corrections, we also
estimate the one-loop hadronic corrections. As the latter
are much smaller than their leptonic counterparts at low
energies, due to the much larger proton mass, we will
estimate the hadronic corrections in the soft-photon
approximation. We have to account for the soft brems-
strahlung from the proton line, box graphs with protons and
proton vertex correction, as shown by the diagrams
in Fig. 12.

First, we consider the interference of graphs with
bremsstrahlung from the proton and lepton lines. The
parity transformation,

00— r-0, ¢ - P+,

(154)
corresponds to the interchange of the lepton and antilepton.
When calculating the cross section correction due to the
interference of graphs with the radiation from the proton
line and the soft bremsstrahlung from the lepton lines, the
parity transformation of Eq. (154) swaps the bremsstrah-
lung vertex between final particles in the dilepton pair.
Such transformation results in the overall sign change due
to the opposite electric charge of the lepton and antilepton.
Consequently, the cross section contribution from the
interference of lepton and proton bremsstrahlung has a
symmetry property:

Ao~ (m = 0, + ) = —dal T (0,4).  (155)

The same arguments are valid for the interference of the
tree-level graphs with the contribution of the corresponding
box proton diagrams:

—-pl 1 —=pll_
dolpol" (= 0.+ 1) = —doli " (0. ).

(156)

Integrating over the lepton-pair angles, the leading
proton box contributions, and the bremsstrahlung
interference between lepton and proton lines yields
exactly zero.”

In the following, we estimate the proton vertex
correction as the difference between the calculation with
proton form factors corrected by the one-loop QED
renormalized on-shell vertex of Egs. (71) and (77) vs.
the tree-level result.

As the vertex diagrams have an IR divergence, we
also need to account for the soft bremsstrahlung from
the proton line. We denote the momentum of the outgoing
photon by k. The corresponding matrix element has the
following form:

\M(yp = yd" 7 p)P

= [M(yp = I*I7p)[(=¢?) [p—,—
e P
pk p k]

In the rest frame of the dilepton pair, in which the
dependence of the phase-space integral on the photon
momentum direction is isotropic, the soft-photon contri-
bution factorizes in terms of the BH cross section as

<da> __(da) e2/ &k
dtds; ) ¢ r didsy ) o (27)* Jiij<aE, 2k°
PP e Pl

p'k p’.k p-k p/.k’

where the integration is performed up to a small value
of the soft-photon energy AE,, determined by the exper-
imental resolution. The resulting correction is evaluated in
the rest frame of the dilepton pair [35] and can be expressed
as [37.,47]

(157)

(158)

do do =
(dtdsll> R - (d[ds”)o(as;pR + 8gpr)s  (159)

TR

with the infrared-divergent contribution &g,

*This property was first mentioned in Ref. [41].
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N, N

L D3 D3 > D3
%
4 A
Pa P4 P4
P2
p p! p p! p p!

n

Y2 Y2 P4

FIG. 12. One-loop radiative corrections to the yp — I/~ p process. Upper diagrams: box graphs with protons; lower right diagram:
the proton vertex correction; and two lower left diagrams: soft bremsstrahlung from the proton line. The graphs with an interchange of
final leptons are not shown.

—al1 1+ 1 4rp 2
P L L N 1 4M=s
R w [21711(1—77) ]LIR et n<M2 ﬂ ﬁp:\/l_(s—kt—Mz)z’ (162
(160)
_Jio M 163
where ¥ = 24/7(1 +7)/(1 4 27), and the corresponding By = - (s — sy — M2)¥ (163)

finite part &,
The soft-photon integral I(f3,,,,?) can be expressed as

5 —a{l <4AE§> {1—1— 11 (1—1‘1)]
. =— n - _ _ _ _ _
YR M? 20 \1+7o 1B,y 0)=9(By.By.0)+9(By.Bpy.0)+ [0 =0,
_ 164
-1 y.7) (164)
() ()
28, \1+p, 28,y \1+pB, 7
1 1 1 vV1-
(161) B P — A
BBy )= 3512 145, A 1-4,
P
The initial (8,) and final (3,) proton velocities in the
lepton-pair c.m. frame are given by +16p < =Pl (165)
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FIG. 13. Comparison of first order QED corrections to
the cross section, including soft-photon bremsstrahlung

with AE; = 0.01 GeV (solid lines), with the calculation in the
soft-photon approximation (dashed lines). The vertical dashed
red line indicates the muon-pair production threshold at
s~ 0.045 GeV2,

We provide an alternative expression for the integral / in
Appendix E.

Note the exact cancellation of the infrared divergences
between the soft bremsstrahlung of Eq. (160) and the
infrared part of the proton vertex correction coming from
2F (t) with the renormalized form factor of Eq. (77), using
the identification

, (166)
with v defined in Eq. (73).

VIII. RESULTS AND DISCUSSIONS

In Fig. 13, we show the radiative corrections to the cross
section in the kinematical range of s; between 0 and
0.08 GeV? and compare with our previous result in the
soft-photon approximation. The muon threshold is at s; =
4m? ~ 0.045 GeV? (vertical dashed red line in Fig. 13). We
observe that the corrections for electrons are negative of
order 10%, while the corrections for muons are positive of
order 1%. The difference between the full one-loop calcu-
lation and the soft-photon approximation comes from terms
that are not proportional to the double logarithmic form
In?(m?/s;;)?. The latter terms are in agreement with pioneer-
ing works on QED radiative corrections of Refs. [48—50].

In Fig. 14, we show the effect of the full one-loop
radiative corrections on the ratio defined in Eq. (27).

- soft—photon‘

1.16 --- soft-photon EXP Pt A
e -
ol R
7 .
-==- full one-loop e 7
s e
115 e
e I full one-loop EXP ,.-2~ o
e -~
i L7 o
+: — tree level %l -
’E\ 1.14
1
+:L _"’,/
3 27
¥ L2
) s
o 1.13 5
B’ ,/I}/ /

E,=0.5 (GeV)

~t=0.03 (GeV?)

AE=0.01 (GeV)

0.065

0.070
si (GeV?)

0.075 0.080

FIG. 14. Effect of the one-loop radiative correction on the ratio
(do(ete™) 4+ do(utu™))/do(ete™), comparing with the soft-
photon result of Ref. [35].

The exponentiation has a considerably smaller effect on
the full one-loop calculation than on the soft-photon
approximation. Furthermore, the soft-photon approxima-
tion clearly overestimates the effect of radiative corrections
in this calculation.

Taking radiative corrections into account, the ratio of
Eq. (27) is now given by

R(S”,S?[)

[oo (' 1) (14+8")](sy) +[o0(ee™) (146°)](sy)
[oo(ete™)(146°)](sh)

s

(167)

which depends on the measured invariant lepton mass s;;
and the reference point s?,, to which the cross section is
normalized. 6¢ and ¢" are given by Eq. (151). One chooses
5% < 4m?, such that the reference measurement is below
the muon-pair-production threshold, and only electron
pairs are created.

In Fig. 15, we show the differential cross section ratio R
of Eq. (27), including full one-loop QED corrections with
AE; = 0.01 GeV. The radiative corrections to R are of the
order of 1%. The red curve in Fig. 15 shows the scenario in
which lepton universality is violated by G%/G% = 1.01,
which is an effect of order 0.2%. Following Ref. [33], we
use 31 bands around the curves, with the experimental
resolution 1 = 7 x 10™*. One sees from this plot that the
inclusion of radiative corrections is indispensable, since the
ratio of cross sections, defined in Eq. (27), is shifted to
higher values by more than the 31 band. The statement that
lepton universality can be tested with a confidence level of
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FIG. 15. Ratio of cross sections between electron- and
muon-pair production at tree level (dotted blue curve) with
account of full one-loop QED corrections estimated using AE, =
0.01 GeV (green curve) with corresponding 34 bands, with
standard deviation A = 7 x 107, The dashed red curve denotes
the scenario in which lepton universality is broken with
G%/G% = 1.01, including the one-loop radiative corrections.

three standard deviations remains true if one adds radiative
corrections as can be seen in Fig. 15.

We estimate the resulting correction on the proton side as
a sum of soft bremsstrahlung (see Sec. VII) and renormal-
ized vertex correction for the pointlike particles with the

0 ;
— e*e” prod '
=0.0001| e brod
Lo}
-0.0002
| E,=0.5 (GeV)
-t=0.03 (GeV?)
-0.0003 ' AE=0.01 (GeV)
0 0.02 0.04 0.06 0.08

si (GeV?)

FIG. 16. First order radiative correction factor §, due to
radiative corrections on the proton side. The vertical dashed
red line indicates the muon-pair production threshold at
s, ~0.045 GeV2,
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B ' . B

.-+~ virtual correction, e*e
0.0000 —m8M — "~ real correction

--- total proton-side correction, e*e”

-0.0001
he]
-0.0002
-0.0003
~0.0004| AEs=0.01(GeV) \.\.
Ey=0.5 (GeV), s = 0.077 (GeV?) '\.\_\
-0.0005 .
0.02 0.03 0.04 0.05 0.06
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FIG. 17. First order radiative correction factor 6 on the proton
side as a function of 7, with AE, = 0.01 GeV.

on-shell form factors of Eqs. (71) and (77). We choose the
detector resolution AE; = 0.01 GeV. Both real and virtual
contributions are almost independent of the lepton mass
and s, in the region 0.045 GeV? < 5, < 0.08 GeV?. For
the kinematics shown in Fig. 16 (with t = —0.03 GeV?),
the total hadronic radiative correction amounts to o~
—(1.5-2) x 10 in that range. The hadronic correction
factor depends significantly on the momentum transfer
t. We show this dependence for s;; = 0.077 GeV? and the
photon-beam energy E, = 0.5 GeV in Fig. 17. The result-
ing correction to the cross section is up to —3 x 10™#<
0 < 0. We see from Fig. 17 that the proton vertex correction
to the unpolarized cross section and the soft bremsstrahlung
contributions from the proton line are both of order 1074,
but with opposite signs, resulting in an even smaller
correction to the ratio of pair-production cross sections.
Consequently, our approximation of the proton as a point
QED particle is reliable for the envisaged precision of
around 7 x 10~* on the ratio of cross sections, which is
required for a test of lepton universality.

IX. CONCLUSION

In this paper, we calculated the first order QED correc-
tions to the Bethe-Heitler process in the yp — [Tl p
reaction, keeping the full lepton mass dependence. This
reaction may serve as a test of lepton universality as the
authors in Ref. [33] pointed out, and such an experiment is
presently in the planning stage at MAML

The ratio of dilepton production cross sections above and
below p™u~ threshold shows a sensitivity of 0.2% when the
difference between the larger proton charge radius from
electron scattering is used vs the smaller proton radius that
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results from the muonic hydrogen spectroscopy. Since the
full one-loop radiative effects induce a correction around
1% on this same ratio, its inclusion is indispensable in this
comparison.

The calculation was done in two independent setups, the
results of which were found to be in perfect agreement.
Furthermore, our calculation reproduces the correct leading
logarithms of the soft-photon approximation and is in
agreement with Ref. [41] in the limit of small lepton masses.

We also showed that hadronic corrections are negligible
at the required level of precision, due to the cancellation of
box-type graphs after integration over the lepton angles.

In a next step, we plan to extend our study to the reaction
with an off-shell photon in the initial state, since the
anticipated experiment at MAMI is designed to use a
virtual photon.
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APPENDIX A: CONTRACTION OF THE
HADRONIC TENSOR H,, WITH THE
TREE-LEVEL LEPTONIC TENSOR L%

In this Appendix, we give the explicit expression for the
contraction between the hadronic tensor H,, and the tree-
level leptonic tensor Lf. It is given by

{3m*sy — m*ty + 3mPtsy — mEsyty — m*sh — m*63,

+ 3mPtty + 2585 4 syt — tsyty + Pty + 65, — 2t + m® — 5m*t — 3m?*}

H,

+
2(m? = 1)*(m* = sy + 1= 1)

{16M?m® — 12sm® + 20tm® — 12s5,;m% + 18M*m*

+ 10s’m* — 16£2m* — slzlm4 —28M?*sm* + 63M?tm* — 23stm* — 8M*um* + 8sum*

— 32tum* — 49M?s;;m* + 21ssym* + 11tsym* + 20us;m* — 28M?*t,m* + 16st,m*
—16ttym* + dsytym* — 1IM?2m? + 12s£*m?* + 12tu>m? + 2M?stm? + ss3m?

+ usim?® + 16M?*15m? — 4stym? + 4tt5,m* + 46M*tm?* + 125°tm> — 46 M stm?

+ 112um? — 46M?*tum? + 22stum? — 36M*s;;m?* — 10ss;;m* — 8us;m? + 38M?ss;;m?
+ TM?tsym? — 11stsym? + 34M*us;m? — 18sus;ym® — 8tus;m> — 20M*t,;m?

- 12s2t11m2 + lltztllmz + slzltllmz + 32M2stllm2 - 44M2tt11m2 + 8stt11m2 + 8M2ut,lm2

- 8sut”m2 + 20[ut11m2 + 24M2s”t11m2 - 4SS11[1[m2 - 4tsUth2 - 4MS1[tllm2 - 4M2t?l

+ 2MAE, + 25212 = 38213, — AMP st + 13MP 11, — stt?, — dtuts, — TMP syt — syt + tsyth

+ 3M2t2t” - 4S[2t” - 4tu2t” - 2M2Slzlt” - sslzltll - uslzltll - 14M4tt11 - 4S2U” + 14M2Sttll

- 3t2Mt1[ + 14M2tut11 - 6SZMI1[ + 4M4S”t” + 2S2S”t” - 6M2SS”t”

+ Mztsllt” + 3Sf511f11 - ZMZMS”t” —|— ZSMS”t”}.

(A1)
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The full tree-level contribution H,, L’ is given by the sum
of the two contractions of the direct lepton-tensor H,,L{’,
and the crossed lepton-tensor H,, L, with the hadromc
tensor H,,, which can be derlved by making the replace-
ments t; — u; and u— —u—s—t+3M>+2m? in
Hy Loy

APPENDIX B: MASTER INTEGRALS

Here, we give analytical expressions for all scalar master
integrals that are needed for the calculation. The integrals
Ag(m?) and B(s;;, m*, m?) are needed up to order e, since
they get multiplied by a factor proportional to % stemming
from the IBP identities. All other integrals are needed only
up to order €°.

All integrals, except for Cy(t;, t, m>,0, m?, m?), can be
found in http://qcdloop.fnal.gov/. General expressions for
three-point functions can be found in Ref. [53].

We give the analytical results in the physical region,

Sy > 4m2, (Bl)
|

TLER ... PHYS. REV. D 100, 076013 (2019)
t <0, (B2)
t; <0, (B3)

in terms of real-valued logarithms and dilogarithms in this
region. We use the kinematical quantities:

4m?
Pe=1/1- " (B4)
J=\J=2u(m? 1)+ B+ (m2 =1 (BS)

Note that the A, B, and C functions used in Secs. III B and
III C always refer to the finite part, i.e., the coefficient in
front of €” of the expansion, given in this Appendix.

In the following, we use the notation ji* = y? 2% with
e =2 —D/2. To get the integral appearing in a calculation
with the usual prefactor 1/(27)? one has to multiply our
results by the factor i/(47x)>.

The tadpole up to order € is given by

2 2 2

1 m? P s m 1 m
The two-point functions are given by
2 2
Bo(t”,O,m ) *+2 <m2> + < 2m >a (B7)
H m= =1y
1 m? +p
v o) ol )
o(su ) c 2 i ~ 5,
4+—2—21n +p ——n e (L
12 i 24,
m2 +ﬂs 1 +ﬁs 1 +ﬁs sy 1
oGz (*”) 2 < “) = ") ()
) \1-p,) 27 \1-§, -7, "\ 25,
. ﬁs _ﬁs
+inf, [2 ( ) < i — B8
! 1+ 5, 2p, (B8)
1 pi—1
By(t =- 2 — . B9
o) =G| <>+ﬂf =) ®)
The three-point functions are given by
I 1 1-p 2 p—1
t,s;,0,m?*, m*, m?) = im+In( ——1 In?(o— B10
Coltsu 0.5, ) 2511—f{{m+n<1+ﬁsu>} o <ﬂ,+1>}’ (B0
—1 71'2 . tll
C (0 mz’t”’m m 0) m2 _ t” {F—le (W) }, (Bll)
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1(1 —t —t
C t ’t’ 2’0’ 2a 2 = _1 2 7” 1 2 —ll
oltn .m0 ) /1{2n <m2—t—tu+/1 LR P
11 2 —tu L, mz_t_tll+/1 mz—l‘u —m2+t—l‘11+/1
2 -mc+t—ty+1) 2 me—t+t;+4 m me—t+t;+4
+ln(2)ln< 215(=m* +1=1;+2) )—llnz <_m2tll—ffllﬁt+tfzz+m4+/1m2—m2t>
(m2—t+t1;+/1)2(m2—t—tu+/l) 2 _tll(2m2+tﬂt—t)
—lln2 —m2ty + 1ty P, + 1ty + m* -+ Am? —m*t L m’ =1+ 2+1y
2 —t(2m* =1, — 1) g 21,
—m?+t+ A+t ty(2m?> —t—t
L (AT I g i 211( " fz)
2tu —m® +tm* — Am” +tym” — ity — iy,
_Li —m4—|—tm2—|—/1m2—|—tllm2—tt”—tt”ﬂt _Li tu(Zmz—l‘—l—tﬂ,)
’ ry(2m? =1 —1f;) 2\t o = m® 4 1ym® =11+ 11,8,

L_ —m4—|—tm2+/1m2+tllm2—tt”—|—tt”ﬁ,
— 11 .
2 t11(2m2 -1+ lﬁ,)

(B12)

We also need the following four-point function:

1 1 1—p,
Do(mz,O, t,m2, t”,s”,O,mz, mz,mz) T P —— {— [iﬂ—l—ln <—”>}
sllﬁs,,(tll_mz) € 144,

g7 e 5 | () ()
(i) o5 o () - 50
a2 (G ()
() (g, ) )| G
(gt G )
o (2 0y g (U oy (P D01

(ﬂt+1)(1+ﬁs,,) ( +ﬁs”) 2ﬂt_ﬁs,,)

+2Li, <—(ﬂ ! 2+(ﬁ1,)(+ﬁ ﬁt 1)> } (B13)

)

APPENDIX C: MASTER INTEGRALS FOR SMALL LEPTON MASS

Here, we give the master integrals in the expansion for small m?, keeping only terms proportional to In(m?).
The two-point functions are given by

1 —t m?
Bo(t;,0,m?) ==+2—In[—2) =In{ = |, Cl1
o(ty, 0,m?) e+ n<m2> n<ﬁ2> (C1)
1
Bo(sll,mz,mz):—+[2+iﬂ ln( ﬂ -|—8|:( =2 — m)ln( 121>
€ s fi
1 72
-1 4+ 2im——— 2
+2n(ﬂ>+ + 2irx 12} (C2)
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The three-point functions are given by

1 s —t
Col0. 1, s> 2, m?) = ———— | 2® + 2imIn—% — In> =% + In> — | C3
0(0, ¢, 55, m*, m*, m*) 20— sp) [ﬂ' + 2izx nm m2+nm2 (C3)
C(O m2. t,. m2. m2 0)21 £2+11n2;[11 (C4)
0 ) s Ll 5 5 tll 3 2 m2 s
1 —t —t ty—t
Colt,m2, tym?,m?,0) = ~——— |In? —5 —In2 2 _4Lj, (“L=0) | Cs
ottt 0) 2(f—fzz)[n m " m? 2 ty (C5)

The four-point function for small lepton mass is given by

11 1 —t t 2
Do(mz,O,t,l‘u,Su,O,mz,mz,mz):——[ﬂ In <slé>] +—{ln<s—l;> {—21n<sn )+21n<—£)—|—ln(’?—2> —Ziﬂ]
ESty m Suty m Sit Sy H
—t t 1
+In (S” ) {—ZIn (——) +2In (-—2> +2m} +2In? <S—’;> +2Li2( o >
S S m m S”—t
sy —1 t m? t 572
In?(2—) =2izln( =L ) —izln( = | —In?( —— | == }. C6
o ( Siu > mn( S o I " m? 6 (ce)

APPENDIX D: ADDITIONAL FORM FACTOR F;

The third pair of half—off shell form factors entering Eq. (61), which do not contribute to physical quantities, is given by

a 1

Es’(m4 —2m?s' —2m*q® + 5" = 25'q* + q*)?

x {=4m?s'(m* = 5')(q*(m* = 55') + 4(m* = 5)* + q*) Bo(q*. m*, m?)

+2m?[m® — m®(10s’ + 3¢°) + m*(4s" + ¢*)(s' + 3¢*) + m*(18s" — s2¢*> — 65'q* — ¢°)

—s'(s" = ¢*) (135" = 105'q* + 3¢™)|Bo (s, 0, m?) + dm>s'(m* — s")[8m® — m* (145’ + 5¢)

+m? (45 — 65'q> + 4¢*) + (s' — ¢*)* (25" — ¢*)|Co(m?, g%, 5", 0, m*, m?)

—2[m® = 3mb (65’ + ¢*) + m*(28s"> + 115'¢> + 3¢*) — m* (65" — 115¢> + 85'q* + ¢°)

= 5'(55' = 3¢%)(s' = ¢*)*Ag(m?)

+4m?s' (9m® — m* (175" + 7¢%) + m?*(7s? — 65'q> + 5¢*) + (s — ¢*)*) }, (D1)

Fy- (s, 412) =

a 1

@s’(m4 —2m?s' = 2m?q® + s - 25'q> + ¢*)?

X {=4m?s'[2m® + 2m*(s" + 7¢*) + m*(—10s" + 8s'q*> — 13¢*) + 3(s' — ¢*) (25" — ¢*)]

X Bo(q?, m*, m?) + 2m?[m8 — m®(8s" + 3¢%) + m*(—14s" + 55'q> + 34*)

—m?q*(29s? —4s'q*> + ¢*) + 5'(s" — ¢*) (215" = 165'q*> + ¢*)]|By(s’,0, m?)

+ 4m?s'[6m® + m®(4s’ + 13¢°) + m*(=24s"” + 35'q*> — 22q*)

+m?(12s” = 135%q* — 8s'q* + 11¢°) + (s’ — q2)2(2s’2 +5'q* = 2¢%)]|Co(m?, ¢, 5',0, m>, m?)
+2[-m® + 3mb(4s' + ¢*) + m*(18s”> + 23s'q* — 3q*)

+ m?(=20s" + 455" ¢> — 305'q* + ¢°) — 5'(9s' — 7q2)(s' — %)% A(m?)

+ 8m2s' (5m® + m*s’ + m* (=557 + 55'q*> = 3¢*) — (s' — ¢*)*) }. (D2)

Fy(s'.q*) =
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APPENDIX E: SOFT-BREMSSTRAHLUNG
INTEGRAL

The soft-bremsstrahlung integral I of Eq. (161) can be
expressed as [37]

i l—ﬂpﬂpcosé’pp/ - 1-p, (EI)
ﬂyl_ﬁ 1+ﬁy

with the notation

-1 1—y
Br=—2by+—2B, (E2)

11 =pyp,cos0,y

1
[=———"P" <<—2 In2 + Eln (sinh?a — sinh2¢1)> In

+21In <e‘

. (sinha + sinh ¢, ) e* —eM
—2Li) | —————— L P
e ( 2sinh a kb e + et

2 |ﬂp _ﬂp’

— In (sinh a + sinh ¢y ) In

sinh a —
4sinh?a

with

‘Ep _Ep’|

sinh ¢,

ﬂi/ — PpBy cost,,

where the relative angle between the initial and final
protons 6, in the dilepton-pair rest frame is given by

1 1_ﬁ2 1_/2
-y 7 " 1. (®
-

p:ﬁp’ﬂp V1 2

cosf,,

The integration in Eq. (E1) was performed in Ref. [37].
The resulting integral can be expressed as

sinh @ + sinh ¢;

sinh @ — sinh ¢,
L et eh n cosh a + cosh ¢,
e+ e ) cosha— coshe,

)2] e K%) T ~ b < ¢2]>, (E4)

2
=Py + BBy cosb,,

cosha =

—r sinh¢p; =
B,P,ysing,

BpPp sind,y ’

sinh ¢, = (ES)

BpPp sind,,
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