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Entanglement of the two scattered particles is expected to occur in elastic collisions, even at high
energy where they are in competition with inelastic ones. We study how to evaluate quantitatively the
corresponding entanglement entropy SEE. For this sake, we regularize the divergences occurring in the
formal derivation of SEE using a regularization procedure acting on the two-particle Hilbert space of
final states. A quantitative application is performed in proton-proton collisions at collider energies,
comparing the results of SEE with two different cutoffs and with a volume-regularization obtained by
a prescription fixing the finite two-body Hilbert space volume. A significant entanglement is found
which persists even at the highest available energies.
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I. INTRODUCTION

Entanglement is a significant phenomenon in quantum
theories and has been attracting many interests of
scientists in various research areas. In this paper we
are interested in the entanglement of scattering particles.
How much are the particles entangled due to the
scattering interaction? This is a simple and fundamental
question. A way to answer it is to evaluate the entangle-
ment entropy of the final state of particles. For this sake,
two-body elastic scattering appears to be a case study for
entanglement in the final state.
In Ref. [1] the entanglement in momentum Hilbert

space in the scattering process has been studied, and the
entanglement entropy of the final state of two particles
has been calculated in weak coupling perturbation by
applying the method developed by Ref. [2] for momen-
tum space entanglement. Reference [3] also has consid-
ered the entanglement in momentum Hilbert space for
the elastically scattering particles, but has formulated

nonperturbatively the entanglement entropy by the use of
S-matrix theory [4,5]. Reference [3], as a result, has
derived an adequate formalism for the entanglement
entropy and has suggested an entropy formula of the
two-particle final state after the elastic scattering. Addi-
tionally the entanglement entropy in this formula includes
the influential effect of inelastic processes which are
present in the overall set of the possible final states at a
given high energy.
However there is a problem of divergence in the

entanglement entropy, which is caused by the infinite
volume of the momentum Hilbert space in Refs. [1,3].
Indeed the formula in Ref. [3] is written in terms of not
only physical observables, i.e., the elastic and total cross
sections, but also the cutoff parameter for the infinite
volume. One of the subjects in this paper is, starting from
Ref. [3], to formulate a finite entanglement entropy
formula by identifying the physical origin of the diver-
gence in the entropy formula and using it to appropriately
regularize this divergence.
As mentioned above, the entanglement in scattering

process is a fundamental issue. For the sake of com-
pletion, we quote some works [6–10] related to this
issue, while being of a different focus than ours.
Reference [6] has computed the variation of entanglement
entropy in an elastic scattering of two interacting scalar
particles at one-loop perturbative level. Reference [7]
has studied the entanglement entropy and mutual infor-
mation in a fermion-fermion scattering. Reference. [8] are
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concerned with quantum measurement theory and rela-
tivistic scattering theory, and has studied the entangle-
ment entropy of an apparatus particle scattered off
and a set of system particles. Reference [9] has sugges-
ted another derivation of the momentum space entan-
glement entropy in the scattering at weak coupling.
Reference [10] has discussed the entanglement entropy
in a deep inelastic scattering.
In our study, having performed the regularization and

using the obtained formula, it is interesting to evaluate
the entanglement entropy for concrete particle scattering.
We thus apply our formalism in high energy proton-proton
scattering at Tevatron and LHC energies in order to
evaluate the entanglement entropy of two-body elastic
final states at the highest available energies.
The plan of our study is as follows: In Sec. II we

reformulate the entanglement entropy of scattering par-
ticles, starting from Ref. [3], in order to determine the
physical origin of the divergences one encounters and
to properly regularize them. In Sec. III, by using the
entanglement entropy formulas obtained for different
regularization procedures, we evaluate the regularized
entanglement entropy in proton-proton scattering. We
compare two different cutoff methods with the case of a
volume-regularization given by an adequate prescription
for the regularized Hilbert space volume without explicit
cutoff procedure. Section IV is devoted to a discussion
of the results, an outlook on further directions and a
conclusion.

II. FORMULATION OF
ENTANGLEMENT ENTROPY

In this section, we start by recalling the formal derivation
(see Ref. [3]) of the entanglement entropy. Then we
reformulate the derivation in order to focus on the diver-
gences one encounters. Our goal is to find the physical
origin of these divergences, identify the divergent factor
and propose the way to obtain a finite formula for the
entanglement entropy of the two outgoing particles.

A. Density matrix

Let us consider elastic scattering of two particles A and B
which have initial 3-momentum k⃗ and ⃗l respectively. Note
that in the high energy regime inelastic scattering together
with the elastic one have a large contribution. In fact, both
types of scattering are related through the unitarity rela-
tions. Using the generic entanglement formalism, the
statistical entanglement between the particles, A and B,
with final 3-momentum respective p⃗ and q⃗ is expressed
in terms of the entanglement entropy SEE as follows: One
starts with the overall density matrix ρ in the Hilbert space
spanned by two-body final states jp⃗; q⃗i≡ jp⃗iA ⊗ jq⃗iB.1
One defines a reduced density matrix as ρA ¼ trBρ, where
one sums over the states of particle B. Then the entangle-
ment entropy is given by SEE ¼ −trAρA ln ρA, or equiv-
alently by SEE ¼ limn→1SREðnÞ ¼ −limn→1

∂
∂n trAðρAÞn,

where SREðnÞ ¼ 1
1−n ln trAðρAÞn is the Rényi entropy.

The overall density matrix reads

ρ ¼ 1

N

Z
d3p⃗
2EAp⃗

d3q⃗
2EBq⃗

d3p⃗0

2EAp⃗0

d3q⃗0

2EBq⃗0
jp⃗; q⃗ihp⃗; q⃗jSjk⃗; ⃗lihk⃗; ⃗ljS†jp⃗0; q⃗0ihp⃗0; q⃗0j; ð2:1Þ

where S is the S-matrix operator projecting the two-body initial state jk⃗; ⃗lihk⃗; ⃗lj onto two-body final states. In Eq. (2.1), the
integration measure is the Lorentz invariant one d3p⃗

2Ep⃗
for on-shell particles and N is a normalization ensuring the condition

trAtrBρ ¼ 1. Tracing out ρ with respect to the Hilbert space of particle B, we obtain the reduced density matrix,

ρA ≡ trBρ ¼
Z

d3q⃗00

2EBq⃗00
hq⃗00jρjq⃗00i

¼ 1

N

Z
d3p⃗
2EAp⃗

d3q⃗
2EBq⃗

d3p⃗0

2EAp⃗0
ðhp⃗; q⃗jSjk⃗; ⃗lihk⃗; ⃗ljS†jp⃗0; q⃗iÞjp⃗ihp⃗0j: ð2:2Þ

Taking into account energy-momentum conservation and the kinematics of elastic scattering jk⃗; ⃗li → jp⃗; q⃗i with
jk⃗j ¼ j⃗lj ¼ jp⃗j ¼ jq⃗j, one obtains

ρA ¼ 1

N

Z
d3p⃗
2EAp⃗

δð0ÞδðEAp⃗ þ EBk⃗þ⃗l−p⃗ − EAk⃗ − EBk⃗Þ
2EAp⃗2EBk⃗þ⃗l−p⃗

ðhp⃗; k⃗þ ⃗l − p⃗jsjk⃗; ⃗lihk⃗; ⃗ljs†jp⃗; k⃗þ ⃗l − p⃗iÞjp⃗ihp⃗j; ð2:3Þ

1Although the complete relativistic quantum numbers of a particle state are denoted by momentum and spin (or helicity) as jp⃗; si, we
focus only on the momentum Hilbert space in this paper. We will give some comments on the helicity in Sec. IV.
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where hp⃗; q⃗jSjk⃗; ⃗li≡ δð4ÞðPð4Þ
pþq − Pð4Þ

kþlÞhp⃗; q⃗jsjk⃗; ⃗li with
the notation Pð4Þ for the center-of-mass energy-momentum
vector. The density matrix (2.3) is normalized by its unit
trace;

1 ¼ trAtrBρ ¼ trAρA ¼
Z

d3p⃗00

2EAp⃗00
hp⃗00jρAjp⃗00i

¼ 1

N

Z
d3p⃗

δð4Þð0Þδðjp⃗j − jk⃗jÞ
4jk⃗jðEAk⃗ þ EBk⃗Þ

jhp⃗;−p⃗jsjk⃗;−k⃗ij2;

ð2:4Þ

giving

N ¼ δð4Þð0ÞN 0;

N 0 ¼
Z

d3p⃗
δðjp⃗j − jk⃗jÞ

4jk⃗jðEAk⃗ þ EBk⃗Þ
jhp⃗;−p⃗jsjk⃗;−k⃗ij2; ð2:5Þ

where Eqs. (2.4) and (2.5) are expressed using the center-
of-mass frame. Note that the δð0Þ coming from the energy
conservation in Eq. (2.3) cancels the similar one in
Eqs. (2.5), leaving an overall δð3Þð0Þ due to the normali-
zation. We shall discuss later the potential divergence
related to this 3-dimensional δ-function.
One finally gets

ρA ¼ 1

N 0δð3Þð0Þ
Z

d3p⃗
2EAp⃗

δðp − kÞ
4kðEAk⃗ þ EBk⃗Þ

× jhp⃗;−p⃗jsjk⃗;−k⃗ij2jp⃗ihp⃗j; ð2:6Þ

where for further purpose we quote

p ¼ jp⃗j; k ¼ jk⃗j; p⃗ · k⃗
pk

¼ cos θ; ð2:7Þ

and θ is the center-of-mass scattering angle.

B. Entanglement entropy

By performing the product of the n density operators of
the form (2.6), one obtains the formal expression for the
entanglement entropy through the calculation of trAðρAÞn as

trAðρAÞn

¼
Z

d3p⃗δð3Þð0Þ
�
δðp − kÞ jhp⃗;−p⃗jsjk⃗;−k⃗ij2

N 0δð3Þð0Þ4kðEAk⃗ þ EBk⃗Þ

�
n
:

ð2:8Þ

The overall δð3Þð0Þ in the integration comes from taking the
trace over the A particle’s 3-momentum.
Let us now introduce the partial wave expansion of the

reduced S-matrix element [4,5],

hp⃗;−p⃗jsjk⃗;−k⃗i

¼ EAk⃗ þ EBk⃗

πk
·
X∞
l¼0

ð2lþ 1Þð1þ 2iτlÞPlðcos θÞ

¼ EAk⃗ þ EBk⃗

πk
· 2

�
δð1 − cos θÞ þ i

16π
Aðs; tÞ

�
; ð2:9Þ

where one used the known summation formula of Legendre
polynomials Pl,

δð1 − cos θÞ ¼ 1

2

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ; ð2:10Þ

together with the partial wave expansion of the scattering
amplitude,

A ¼ 16π
X∞
l¼0

ð2lþ 1ÞτlPlðcos θÞ; ð2:11Þ

and

sl ¼ 1þ 2iτl: ð2:12Þ

is the two-body S-matrix lth partial wave. It becomes clear
from Eq. (2.9) that the powers of δ-functions in Eqs. (2.5),
(2.6) and (2.8) give rise to divergences. In order to exhibit
these divergences for further regularization, we introduce
the divergent full phase-space “volume,”

V ≡ 2δð0Þ ¼
X∞
l¼0

ð2lþ 1Þ; ð2:13Þ

which we now prove that it is the key factor determining all
divergences we encounter in the derivation of the entan-
glement entropy.
Inserting the S-matrix element (2.9) into the expression

for N 0 in Eqs. (2.5), one obtains

N 0 ¼ EAk⃗ þ EBk⃗

πk

X∞
l¼0

ð2lþ 1Þjslj2: ð2:14Þ

With this expression one can reexpress Eq. (2.8) as
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trAðρAÞn ¼
Z

d3p⃗δð3Þð0Þ
�

δðp − kÞ
δð3Þð0Þ4πk2

jPlð2lþ 1ÞslPlðcos θÞj2P
lð2lþ 1Þjslj2

�
n

¼
Z

∞

0

dp2πp2

Z
1

−1
d cos θ

δðp − kÞ
4πk2

jPlð2lþ 1ÞslPlðcos θÞj2P
lð2lþ 1Þjslj2

�
δðp − kÞ

δð3Þð0Þ4πk2
jPlð2lþ 1ÞslPlðcos θÞj2P

lð2lþ 1Þjslj2
�
n−1

¼
�

δð0Þ
δð3Þð0Þ2πk2

�
n−1 Z 1

−1
d cos θ

�
1

2

jPlð2lþ 1ÞslPlðcos θÞj2P
lð2lþ 1Þjslj2

�
n
; ð2:15Þ

where we reduce the momentum integration to the scatter-
ing angle and factorize out a constant prefactor in the last
line of (2.15) between parentheses. This prefactor can be
expressed in terms of the (infinite) phase-space volume
(2.13), using the mathematical identity of δ-functions in
spherical coordinates with azimuthal symmetry,

δð3Þðp⃗ − k⃗Þ ¼ δðp − kÞ
4πk2

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ: ð2:16Þ

In the cos θ → 1 limit we formally obtain for the inverse
prefactor in (2.15),

2πk2
δð3Þð0Þ
δð0Þ ¼ 1

2

X∞
l¼0

ð2lþ 1Þ ¼ V
2
: ð2:17Þ

All in all we can rewrite Eq. (2.8) as

trAðρAÞn ¼
�
V
2

�
1−n Z 1

−1
d cos θ½PðθÞ�n; ð2:18Þ

PðθÞ ¼ 1

2

jPlð2lþ 1ÞslPlðcos θÞj2P
lð2lþ 1Þjslj2

; ð2:19Þ

where, using the orthogonality property of Legendre
polynomials, PðθÞ is of norm

Z
1

−1
d cos θPðθÞ ¼ 1: ð2:20Þ

Substituting Eq. (2.12) into Eq. (2.19), one writes

PðθÞ ¼ δð1 − cos θÞ
�
1 −

2
P

lð2lþ 1Þjτlj2
V=2 −

P
lð2lþ 1Þfl

�

þ jPlð2lþ 1ÞτlPlðcos θÞj2
V=2 −

P
lð2lþ 1Þfl

; ð2:21Þ

where the fl are the partial wave components of the
inelastic cross section related to the elastic ones τl through
the unitarity relation, sls�l ¼ 1–2fl, or equivalently

fl ¼ 2ðImτl − jτlj2Þ: ð2:22Þ

Indeed, the standard expressions for physical scattering
observables in terms of partial wave components τl and fl
read

σtot ¼
4π

k2
X∞
l¼0

ð2lþ 1ÞImτl; σel ¼
4π

k2
X∞
l¼0

ð2lþ 1Þjτlj2;

σinel ¼
2π

k2
X∞
l¼0

ð2lþ 1Þfl ð2:23Þ

and

dσel
dt

¼ π

k4

����
X
l

ð2lþ 1ÞτlPlðcos θÞ
����
2

¼ jAj2
256πk4

; ð2:24Þ

where the Mandelstam variable t ¼ 2k2ðcos θ − 1Þ. We
finally find the following expression for PðθÞ;

PðθÞ ¼ δð1 − cos θÞ ·
�
1 −

σel
πV=k2 − σinel

�

þ 1

σel

dσel
d cos θ

·

�
σel

πV=k2 − σinel

�
: ð2:25Þ

Using Eq. (2.18), we write formally the entanglement
entropy as

SEE ¼ −lim
n→1

∂
∂n trAðρAÞ

n ¼ ln
V
2
−
Z

1

−1
d cos θPðθÞ lnPðθÞ:

ð2:26Þ

From Eqs. (2.25) and (2.26), we observe that the
divergences, in particular those due to the product of the
δ-functions contained in ½PðθÞ�n in the definition of
trAðρAÞn in Eq. (2.18), are related to the infinite phase-
space “volume” Vð¼ ∞Þ defined in Eq. (2.13). In this case
PðθÞ reduces to δð1 − cos θÞ and the entanglement entropy
is zero. However, It is physically obvious that at each
center-of-mass energy, only a finite (of order const × k2)
number of partial waves contribute to the final interacting
states. Indeed, in the formal calculation of the entanglement
entropy we performed, all two-body states in the Hilbert
space have been included for the summation of final states,
whether they come from the interaction or not. Therefore
we have to restore a projection of the two-body Hilbert
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space onto the set of interacting ones. We are thus led
to interpret the divergence due to δ-functions and the
“volume” V, as due to the infinite number of noninteracting
two-body states. Hence an appropriate regularization is
required.

C. Volume-regularization

As we pointed out in the previous subsection, the first
term in Eq. (2.25) comes from the part of the two-body
Hilbert space of the final states which does not correspond
to the interacting states at the given energy. In an ideal
cutoff independent way to avoid such noninteracting
modes, we are led to note that the volume V could be
regularized to Ṽ so that the first term vanishes, i.e.,

Ṽ ¼ k2σtot
π

; P̃ðθÞ ¼ 1

σel

dσel
d cos θ

¼ 2k2

σel

dσel
dt

: ð2:27Þ

We call it the volume-regularization assumption.
From the second equation in Eqs. (2.27), and recalling

the normalization condition (2.20), one realizes that P̃ðθÞ
can be interpreted as the physical probability of interaction.
The relations (2.27) lead the formal entanglement entropy

(2.26) to the volume-regularized entanglement entropy,

S̃EE ¼ −
Z

0

−∞
dt

1

σel

dσel
dt

ln

�
4π

σtotσel

dσel
dt

�
: ð2:28Þ

However currently we do not know yet which could be an
effective regularization of the partial wave components
leading to the volume-regularization without modifying
the observables. The volume-regularization can thus be
called ideal, since it only depends on measurable observ-
ables, and not on any cutoff. In the following sections, we try
some concrete regularization methods, in order to obtain an
approximation of the ideal determination (2.28) of the
entanglement entropy and compare it with the one obtained
from Eq. (2.28).

III. EVALUATION OF THE REGULARIZED
ENTANGLEMENT ENTROPY

A. Cutoff regularization

We shall make use of the impact parameter b and the
corresponding representation of observables, which corre-
spond to a description of high-energy scattering observ-
ables, appropriate to our goal. The scattering amplitude
(2.11) by the partial wave expansion is rewritten in the
impact-parameter representation as

A ¼ 16π
X∞
l¼0

ð2lþ 1ÞτlPlðcos θÞ

¼ 32πk2
Z

∞

0

bdbτðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ; ð3:1Þ

where Jn is the well-known Bessel function of order n. In
other words, τðbÞ is defined by this equation.
In actual physics experiments, τl for large l, i.e., τðbÞ for

large b (because of bk ∼ l), does not contribute to the
scattering amplitude. Therefore we are led to a regulariza-
tion truncating the large b modes by introducing a cutoff
function cðbÞ satisfying limb→∞cðbÞ ¼ 0, so that the
amplitude becomes

Â ¼ 32πk2
Z

∞

0

bdbcðbÞτðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ: ð3:2Þ

This prescription gives an approximation of physical
Hilbert space. Following this scattering amplitude, the
differential elastic cross section becomes

dσ̂el
dt

¼ 4π

����
Z

∞

0

bdbcðbÞτðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ
����
2

; ð3:3Þ

and the total, elastic and inelastic cross sections become

σ̂tot ¼ 8π

Z
∞

0

bdbc2ðbÞImτðbÞ; ð3:4Þ

σ̂el ¼
Z

0

−∞
dt

dσ̂el
dt

¼ 8π

Z
∞

0

bdbc2ðbÞjτðbÞj2; ð3:5Þ

σ̂inel ¼ 4π

Z
∞

0

bdbc2ðbÞfðbÞ: ð3:6Þ

Since the relation σ̂tot ¼ σ̂el þ σ̂inel is preserved by the
regularization, fðbÞ is written in terms of τðbÞ as fðbÞ ¼
2ðImτðbÞ − jτðbÞj2Þ. This expression in the impact param-
eter space corresponds to Eq. (2.22).
Under the cutoff approximation, the volume of the

regularized Hilbert space Ṽ is

Ṽ ≈ V̂ ¼ k2

π
σ̂tot: ð3:7Þ

and the entanglement entropy (2.28) is

ŜEE ¼ −
Z

0

−∞
dt

1

σ̂el

dσ̂el
dt

ln

�
4π

σ̂totσ̂el

dσ̂el
dt

�
: ð3:8Þ

It is important to note that P̃ðθÞ in Eq. (2.27) keeps to be
a finite probability distribution verifying positivity and unit
norm even under the cutoff approximation, i.e.,

P̂ðθÞ ¼ 2k2

σ̂el

dσ̂el
dt

; ð3:9Þ
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since Eq. (3.5) leads to

Z
1

−1
d cos θP̂ðθÞ ¼

Z
0

−∞
dt

1

σ̂el

dσ̂el
dt

¼ 1: ð3:10Þ

1. Step-function cutoff

In order for a concrete evaluation of the entanglement
entropy, we, for instance, employ a step-function as the
simplest cutoff function:

cðbÞ ¼
�
1 ðb ≤ 2ΛÞ
0 ðb > 2ΛÞ : ð3:11Þ

The scattering amplitude (3.2) becomes

Â ¼ 32πk2
Z

2Λ

0

bdbτðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ: ð3:12Þ

This cutoff truncates the modes whose impact parameter is
larger than the maximal impact parameter 2Λ. Since the
impact parameter b is related with angular momentum l by
b ¼ l=k, l has an upper bound L defined by 2Λk≡ L.
Therefore one can also recognize the scattering amplitude
as Â¼16π

P
L
l¼0ð2lþ1ÞτlPlðcosθÞ. Simultaneously the

cutoff regularizes the infinite volume V of the full Hilbert
space as

V̂ ¼ 2k2
Z

2Λ

0

bdb ¼ 4k2Λ2: ð3:13Þ

Then the condition (3.7) determines Λ such that

4πΛ2 ¼ σ̂tot: ð3:14Þ

Under the cutoff (3.11) we write the differential cross
section (3.3), the total cross section (3.4) and the elastic
cross section (3.5) as

dσ̂el
dt

¼ 4π

����
Z

2Λ

0

bdbτðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ
����
2

; ð3:15Þ

σ̂tot ¼ 8π

Z
2Λ

0

bdb ImτðbÞ; ð3:16Þ

σ̂el ¼ 8π

Z
2Λ

0

bdbjτðbÞj2: ð3:17Þ

2. Gaussian cutoff

By concrete comparison with the step-function cutoff, let
us consider a Gaussian cutoff function;

cðbÞ ¼ exp

�
−
1

2
·
b2

4Λ2

�
; ð3:18Þ

corresponding to an impact-parameter width 2Λ. Then the
differential cross section (3.3), the total cross section (3.4)
and the elastic cross section (3.5) become

dσ̂el
dt

¼ 4π

����
Z

∞

0

bdbe−
b2

8Λ2τðbÞJ0ðb
ffiffiffiffiffi
−t

p Þ
����
2

; ð3:19Þ

σ̂tot ¼ 8π

Z
∞

0

bdbe−
b2

4Λ2ImτðbÞ; ð3:20Þ

σ̂el ¼ 8π

Z
∞

0

bdbe−
b2

4Λ2 jτðbÞj2: ð3:21Þ

Since (3.7) shows that the Hilbert space volume is
regularized in the same way as the total cross section,
the regularized Hilbert space volume under the Gaussian
cutoff (3.18) becomes

V̂ ¼ 2k2
Z

∞

0

bdbc2ðbÞ ¼ 4k2Λ2; ð3:22Þ

and the condition (3.7) is written as

4πΛ2 ¼ σ̂tot: ð3:23Þ

This condition has the same expression as the one (3.14) in
the step function cutoff.

B. Application: The diffraction peak approximation
in proton-proton scattering at high energy

We concentrate on the proton-proton scattering, because
we can use the experimental data given by the Tevatron
(at

ffiffiffi
s

p ¼ 1800 GeV) and the LHC (at
ffiffiffi
s

p ¼ 7000, 8000,
13000 GeV), of which data are listed in Table I. Note that
the difference between p̄-p and p-p scattering at the
Tevatron and LHC energies is not expected to be relevant
in our study and thus has been neglected.
Since we must know the differential cross section dσel

dt as a
function of t in order to evaluate the entanglement entropy
(3.8), here we assume the diffraction peak model, which is
described by the following scattering amplitude:

TABLE I. Experimental cross sections by Tevatron and LHC,
central values.
ffiffiffi
s

p
[GeV] σtot [mb] σel [mb] Refs.

1800 72.1 16.6 [11,12]
7000 98.58 25.43 [13]
8000 101.7 27.1 [14,15]
13 000 110.6 31.0 [16]
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Aðs; tÞ ¼ isσtote
1
2
Bt; ð3:24Þ

where B is the slope parameter. We assume sufficiently
high energy, so that s ≈ 4k2. The differential elastic cross
section is

dσel
dt

¼ σ2tot
16π

eBt; ð3:25Þ

and the elastic cross section is

σel ¼
Z

0

−∞
dt

dσel
dt

¼ σ2tot
16πB

: ð3:26Þ

Therefore the slope parameter B can be written in terms of
σtot and σel as

B ¼ σ2tot
16πσel

: ð3:27Þ

From Eq. (3.1) and (3.24), τðbÞ is calculated,

τðbÞ ¼ 1

32πk2

Z
∞

0

ffiffiffiffiffi
−t

p
d

ffiffiffiffiffi
−t

p
Aðs; tÞJ0ðb

ffiffiffiffiffi
−t

p Þ

¼ i
σtot
8πB

e−
b2
2B: ð3:28Þ

1. Step-function cutoff

In terms of Eq. (3.28) we write down the truncated
differential cross section (3.15),

dσ̂el
dt

¼ σ2tot
16πB2

�Z
2Λ

0

bdbe−
b2
2BJ0ðb

ffiffiffiffiffi
−t

p Þ
�

2

ð3:29Þ

and compute the truncated cross sections (3.16)
and (3.17),

σ̂tot ¼ σtotð1 − e−
2
BΛ

2Þ; σ̂el ¼
σ2tot
16πB

ð1 − e−
4
BΛ

2Þ: ð3:30Þ

Then the condition (3.14) determining Λ becomes

4πΛ2

σtot
¼ 1 − e−

2
BΛ

2

: ð3:31Þ

By using the data in Table I, we numerically calculate the
cutoff parameter Λ, the truncated cross sections (3.30) and
the entanglement entropy (3.8), and the results are shown in
Table II.

2. Gaussian cutoff

The differential cross section (3.19) truncated by the
Gaussian cutoff with Eq. (3.28) is written down as

dσ̂el
dt

¼ σ2tot
16π

�
1þ B

4Λ2

�
−2

exp

�
B

1þ B
4Λ2

t

�
: ð3:32Þ

In the same way we calculate the truncated cross sec-
tions (3.20) and (3.21), so that

σ̂tot ¼ σtot

�
1þ B

2Λ2

�
−1
; σ̂el ¼

σ2tot
16πB

�
1þ B

4Λ2

�
−1
:

ð3:33Þ

The condition (3.14) fixes Λ as

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot
4π

−
B
2

r
: ð3:34Þ

Furthermore one can write down the entanglement entropy
(3.8) as

ŜEE ¼ 1 − ln
4πBð1þ B

2Λ2Þ
σtotð1þ B

4Λ2Þ : ð3:35Þ

The numerical evaluation of the cutoff, the total and elastic
cross sections and the entanglement entropy are shown in
Table III.

3. Comparison with volume-regularization

In order to compare the cutoff regularizations with the
volume-regularization, let us try to evaluate the entangle-
ment entropy S̃EE in Eq. (2.28) by the volume-regulariza-
tion. Although we do not know how to concretely realize
the volume-regularization, we compute S̃EE by the use of

TABLE II. The cutoff (Λ), the cross sections (σ̂tot, σ̂el) and the
entanglement entropy (ŜEE) in the step-function regularization.
The slope B is calculated by Eq. (3.27) from the experimental
data of σtot and σel.ffiffiffi
s

p
[GeV] Λ [fm] σ̂tot [mb] σ̂el [mb] ŜEE B [GeV−2]

1800 0.6550 53.91 15.54 1.193 16.00
7000 0.7988 80.18 24.54 1.192 19.52
8000 0.8192 84.34 26.31 1.197 19.50
13000 0.8659 94.23 30.32 1.212 20.16

TABLE III. The cutoff (Λ), the cross sections (σ̂tot, σ̂el) and the
entanglement entropy (ŜEE) in the Gaussian regularization.
ffiffiffi
s

p
[GeV] Λ [fm] σ̂tot [mb] σ̂el [mb] ŜEE

1800 0.5121 32.96 10.41 0.6009
7000 0.6359 50.81 17.30 0.7539
8000 0.6555 53.99 18.79 0.7965
13000 0.6983 61.28 22.10 0.8621
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dσel
dt given by Eq. (3.25) with Eq. (3.27) in the diffraction
peak model. Then the entanglement entropy (2.28)
becomes

S̃EE ¼ 1þ ln
4σel
σtot

: ð3:36Þ

Evaluating this in terms of the data in Table I, we show the
results in Table IV. The entanglement entropy monotoni-
cally increases according as the center-of-mass energy
becomes higher.
The truncated cross sections in Table II by the step-

function cutoff give a closer approximation to the exper-
imental data in Table I better than those in Table III by the
Gaussian cutoff. As shown in Fig. 1, actually the entangle-
ment entropy obtained from the volume-regularization
appears to be framed by the step-function one (above)
and the Gaussian one (below).

IV. DISCUSSION, CONCLUSION, AND OUTLOOK

In our study, we have evaluated the entanglement
entropy SEE for the two particles elastically produced in
a high-energy collision. For this sake, we have used a
regularization procedure, in order to get rid of the diver-
gences appearing in the formal derivation of SEE. These
divergences happen to be related to the infinite “volume” of
the full two-particle Hilbert space, be there coming from
the interaction or not. It can be regularized by considering
the finite two-particle Hilbert space actually spanned by
elastic collisions at a given energy. For the discussion we
have first introduced a formulation of a finite entanglement
entropy S̃EE using the formal definition supplemented with
a regularized Hilbert space volume, which is defined by

projecting out the volume of phase space spanned by the
noninteracting final states responsible of the divergence.
We then considered two explicit cutoff definitions, one
using a step-function and the other with a Gaussian.
Summarizing our results, we found the following:
(i) The volume-regularized formulation provides an

expression of the entanglement entropy in terms
of physical observables (2.28);

S̃EE ¼ −
Z

0

−∞
dt

1

σel

dσel
dt

ln

�
4π

σtotσel

dσel
dt

�
:

(ii) In search of an adequate quantitative cutoff pro-
cedure defining the finite physical Hilbert space,
we considered the case of proton-proton elastic
scattering at the Tevatron and LHC energies. In a
diffraction peak approximation as a simple example,
we have compared the numerical results for the
regularized entanglement entropy ŜEE in two differ-
ent cutoffs, and we also compared them with the
result for the entanglement entropy S̃EE [see
Eq. (3.36)] from the volume-regularization.

(iii) Since a cutoff dependence appears for the observ-
ables in the formula (2.28) and modifies their
contribution to the entanglement entropy, the effect
of the cutoff is to replace the observables in
Eq. (2.28) with their expressions with the cutoff
as ŜEE in Eq. (3.8). The step-function cutoff appears
to give a better approximation of the real observables
than the Gaussian one. However, the result for the
entanglement entropy S̃EE boils down to a framing of
the volume-regularized entropy by the step-function
one (above) and the Gaussian one (below).

(iv) The trend of the overall results for S̃EE clearly
demonstrates a nonzero entanglement entropy show-
ing that a non-negligible entanglement is generated
in a high-energy elastic collision, even in the
presence of a large sector of inelastic reactions.
Indeed, the entanglement entropy is different from
zero and stays around unity, while increasing
slightly with the center-of-mass energy. For in-
stance, in the diffraction peak approximation, the
volume-regularization gives Eq. (3.36);

S̃EE ¼ 1þ 2 ln 2þ ln

�
σel
σtot

�
;

which allows one to relate the entanglement entropy
simply to the ratio σel

σtot
. Higher is the ratio, larger is

the entanglement entropy, which seems physically
sound. Moreover, it is known that this ratio stays
experimentally around 1=4, and thus S̃EE ∼ 1.

As an outlook, it would be useful to find a better cutoff
procedure, which would leave the observables unchanged

TABLE IV. The entanglement entropy in the volume-
regularization.

ffiffiffi
s

p
[GeV] S̃EE

1800 0.9176
7000 1.031
8000 1.063
13 000 1.114

FIG. 1. The entanglement entropy in three different regulariza-
tions with respect to the center-of-mass energy.
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or only slightly changed by the regularization procedure.
For example, an optimization calculation could be intro-
duced to define the cutoff less arbitrarily as those we chose
in our present study. Then the full set of experimental
observables could be safely introduced in the calculation
of S̃EE, without cutoff dependence and diffraction peak
approximation.
We have considered the entanglement entropy in the

momentum Hilbert space. However the relativistic state
of a particle also have a quantum number of spin (or
helicity). Therefore one can consider the entanglement
entropy in the momentum and spin Hilbert space, i.e.,
fjp⃗; siAg ⊗ fjq⃗; s0iBg. In a similar way as what we studied
in this paper, such entropy will be formulated by the use of

the S-matrix with respect to the helicity, which was studied
in some literature [17,18]. Especially in high energy
scattering of hadrons, where Pomeron exchange is dom-
inant, the s-channel helicities of the particles are mostly
conserved, and thus adding the spin boils down to extend
our analysis to elastic scattering of quantum states with
given momentum and given s-channel helicity.
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