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Properties of the quark-gluon plasma (QGP) in the presence of the baryon chemical potential μB are
studied using the field correlator method (FCM). The nonperturbative FCM dynamics includes the
Polyakov line, computed via color-electric string tension σEðTÞ, and the quark and gluon Debye masses,
defined by the color-magnetic string tension σHðTÞ. The resulting QGP thermodynamics at μB ≤ 400 MeV
is in a good agreement with the available lattice data; neither the pressure nor the sound velocity shows any
sign of a critical behavior in this region.
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I. INTRODUCTION

The main result of heavy ion experiments, performed
over the last 15 years at the Relativistic Heavy Ion Collider
(RHIC) and then at the LHC, is the discovery of a new
form of matter [1–5] with its properties markedly different
from the pre–RHIC era predictions; see Refs. [6–15] and
references therein. Instead of the commonly assumed
picture of a weakly interacting quark-gluon plasma (QGP),
one possibly has a strongly coupled liquid subject to the
law of the relativistic hydrodynamics [16–18]. The proper-
ties of the produced matter drastically change during
several stages of evolution: from the stage of formation,
hydrodynamization, and thermalization toward the hadron
gas production. The wealth of the QCD matter phases is
reflected in the QCD phase diagram drawn in the (μ, T)
plane. However, the correspondence between the specific
(μ, T) domains of the phase diagram and the space-time
dynamics of the fireball should be considered with caution.
The reason is that the phase diagram describes the limit of
an infinite system in thermodynamic equilibrium.
From the theoretical viewpoint, the matter created in

heavy ion collisions should be described by the funda-
mental laws of QCD. For these reasons, the dynamics and
thermodynamics of QCD at finite temperatures is now the
focus of numerous investigations. At this moment, one of
the main sources of information is the lattice calculations.
The presence of strong interaction in QGP at zero baryon

density has been demonstrated in numerous studies
[19–24]. They show that the ratio of the QGP pressure
to the noninteracting case is less than 0.8 and remains
almost constant with increasing temperature.
Another striking discovery in this domain is the analysis

of the temperature transition, made in the 2þ 1QCD lattice
computations, which has shown a smooth crossover in the
temperature region T ¼ 140 ÷ 180 MeV [25].1

Despite dramatic progress, the question about the
structure of the QCD phase diagram at nonzero baryon
density remains open. This happens mostly because
lattice methods are strongly restricted to a domain of small
chemical potentials2 (Nc ¼ 3) due to the “sign problem.”
To circumvent this difficulty in the case of Nc ¼ 3, one can
use the Taylor expansion around zero chemical potential
[31,32] or use imaginary chemical potential[33]. Another
possibility is to decrease the number of colors to Nc ¼ 2,
where the sign problem is absent [34–37].
From all these facts, the need for analytic methods that

can help with investigation of QGP thermodynamics
and QCD phase diagram becomes obvious. In this paper,
we will focus on the field correlator method (FCM), which
is applicable in QCD at any chemical potential and any
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1This QCD crossover is a new phenomenon, possibly having
some analogues in the material sciences and in the ionization
and dissociation processes. The question of the existence of a
critical point at finite baryon chemical potential is still of intense
interest [26].

2We want to point out that another very important source of
information of QCD phase diagram is connected with neutron
stars physics [27]. LIGO and Virgo’s discovery of gravitational
waves from a neutron star [28] opened a new era of quark matter
studies. Possible discovery of quark stars will give much more
opportunities for studying the QCD phase diagram [29,30].
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temperature [38–43]. In this method, the nonperturbative
dynamics in confinement and deconfinement regions is
based on vacuum properties, described by gluonic field
correlators [38–52], and the key role is played by corre-
lators of color-electric fields DE and color-magnetic fields
DH, which provide color-electric confinement with the
string tension σEðTÞ and color-magnetic confinement
(CMC) with the string tension σHðTÞ. The latter, being
calculated from field correlators and on the lattice, grows
with T, σHðTÞ ∼ g4ðTÞT2 and ensures the strong interaction
at large T mentioned above. It is interesting to note that in
the FCM the crossover phenomenon is connected with the
gradual vanishing of the vacuum confining correlator
DEðzÞ [and the resulting string tension σEðTÞ] with the
growing temperature. The same phenomenon of the “melt-
ing confinement” can be observed in the SU(3) gluody-
namics [49], in which the string tension σðTÞ, measured on
the lattice [53–56] is also decreasing with T, but in the case
of SU(3), it cannot smoothly match the fast-growing gluon
pressure (in contrast to the slowly growing glueball
pressure due to large glueball masses greater than or
approximately equal to 2 GeV). As a result, one has a
weak first-order transition in SU(3) [49], while in the nf ¼
2þ 1 QCD with low mass mesons, the smooth matching of
pressure is achievable in the course of transition.
For proof of this picture, one can use the quark

condensate vanishing with T [19,23,57] in the same
way, as σðTÞ (see, e.g., Fig. 4 in Ref. [53] and Fig. 6 in
Ref. [55] with Fig. 4 in Ref. [19]), which is connected with
confinement via hq̄qi ∼ σ3=2 [58–60], and almost the same
reasoning can extend this connection to nonzero T.
One can see many important questions in QCD that

could be investigated by the FCM, and wewill focus on one
of them; the main task of this paper is to give a self-
consistent description of QGP at nonzero μB.
We shall use below the thermodynamic formalism

exploited before for the gluon plasma in [48–50], and
extended to the QGP case in Refs. [51,52].
The paper is organized as follows. In Sec. II, we

introduce the FCM in the case of finite temperature and
chemical potential. In Sec. III, we calculate the Polyakov
line in the case of (2þ 1)nf QCD. In Sec. IV, we extend the
FCM formalism to nonzero μB. In Sec. V, we compare our
results with lattice data at zero and finite baryon chemical
potential. Section VI is devoted to conclusions and the
outlook.

II. FIELD CORRELATOR METHOD
AT FINITE TEMPERATURE

The FCM is a very powerful tool for describing physics
of QCD (see Ref. [61] for a recent review), which allows us
to formulate “confinement” or in other words to obtain the
area law of the Wilson loop in terms of the vacuum
background fields, with the field correlators DE and DH

ensuring color-electric and color-magnetic confinement
with the string tensions σE and σH. As a result, all hadron
masses are defined in this method only by fermion masses
and string tension σE.
All gluon fields Aμ in QCD in the framework of the

background perturbation theory [62] can be divided into
vacuum background part Bμ and perturbative part aμ,
Aμ ¼ Bμ þ aμ, with Bμ contributing to σE and σH, while
aμ is treated in the background perturbation theory with the
perturbative coupling constant αsðQÞ, defined by the scale
parameter ΛQCD.
For the hadron spectrum in QCD and for the QCD

thermodynamics, the basic role is played by the back-
ground fields Bμ, while aμ yield perturbative corrections.
On the other hand, in high momentum processes with
Q2 ≫ M2

B ¼ 2πσ ¼ Oð1 GeVÞ), the basic role is played
by the perturbative fields aμ. The boundary M2

B found in
Ref. [63] separates both types of dynamics, and σ itself
defines the scale ΛQCD [61]. In this sense, the fields Bμ and
aμ can be associated with the regions Q2 ≤ M2

B and
Q2 > M2

B, respectively.
In thermodynamics at temperatures T ≤ MB, the basic

dynamics is given by the background fields Bμ, which
define both color-magnetic confinement (yielding CMC
Debye screening) and Polyakov line interactions. In what
follows, we shall concentrate on these contributions, taking
into account gluon exchange corrections. The fundamental
role in FCM is played by the quadratic gluonic field
correlator. It consists of two terms, D and D1,

Dμνλρ ¼ g2tra < FμνðxÞΦðx; yÞFλρðyÞΦðy; xÞ
>¼ ðδμλδνρ − δμρδνλÞDðx − yÞ

þ 1

2

� ∂
∂μ

ðxλδνρ − xρδνλÞ þ ðμλ ↔ νρÞ
�
D1ðx − yÞ:

ð1Þ

Here, the parallel transporterΦðx;yÞ¼P expðigR xy duνAνðuÞÞ,
and the fields Fi4 and F4i refer toDE andDE

1 correlators, and
Fik refers to theDH andDH

1 correlators. One can obtain string
tension via DE and DH:

σE;H ¼ 1

2

Z
DE;Hd2z: ð2Þ

At zero temperature, σE ¼ σH. Let us discuss in more
detail the basic principles of the FCM at finite temperatures.
We must take into account that at finite temperatures the
confinement-deconfinement transition occurs. In our for-
malism, that means that the electric string (or color-electric
correlator DE) has to vanish. But there are no restrictions
on the value of color-magnetic correlator (or alternatively
on the existence of color-magnetic string tension σH).
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As shown by analytic [64] and lattice studies, σH grows
quadratically with temperature. As a result, for T > Tc,
there is no confining string between color charges, but there
is still nonperturbative interaction between them, i.e., color-
electric (CE) interaction, contained in the Polyakov line
LðTÞ, and the color-magnetic (CM) confinement in a
spatial projection of the Wilson loop. Analysis of physics
of QGP in terms of the FCM made in Refs. [44–47,65,66]
also confirmed the important role of Polyakov loops for
the description of thermodynamic of GP and QGP. In
Refs. [48–52], also, the CMC interaction was taken into
account, providing a self-consistent dynamical picture in a
good agreement with lattice data. As for CMC, it is the
main interaction in QGP, operating above the transition
temperature, as was observed in lattice data [67], in which
the CMC correlators htrFikðxÞΦðx; yÞFikðyÞi have been
measured; see also Ref. [68], in which σH was studied on
the lattice, and Ref. [64], in which σH was estimated in
the FCM.
It was found in Ref. [69] that CMC does not support

white bound states in qq̄ and gg systems at zero temper-
ature; however, it can create the screening mass MðTÞ of
isolated quarks and gluons [48–51,64], which grows with
temperature so that the ratio MðTÞ

T is constant up to the
logarithmic terms.
As was shown in Refs. [44–52], the most convenient for

description of QCD thermodynamics is the T-dependent
path integral (worldline) formalism, in which the pressure
can be written in the form[44,47,49] (see Appendix A for
details of the derivation)

Pgl ¼ 2ðN2
c − 1Þ

Z
∞

0

ds
s

X
n¼1;2…

GnðsÞ: ð3Þ

Here, s is the proper time, and for GnðsÞ, one can obtain

GnðsÞ ¼
Z

ðDzÞωon expð−KÞt̂rahWa
ΣðCnÞi; ð4Þ

where K ¼ 1
4

R
s
0 dτðdz

μ

dτ Þ2 and Wa
ΣðCnÞ is the adjoint Wilson

loop defined for the gluon path Cn, which has both
temporal (i4) and spacial (ij) projections and t̂ra is the
normalized adjoint trace. When T > Tc, the correlation
function between CE and CM fields is rather weak [44]:

hEiðxÞBkðyÞΦðx; yÞi ≈ 0: ð5Þ

At this point, when averagingWa
ΣðCnÞ in (4), one should

take into account that the paths of gluons at n0 ≠ 0 are not
closed, and there is a free piece of n temporal steps, which
should be connected by the gluon path to form a closed
contour of the Wilson loop, with the area law in the vacuum
confining field. Therefore, one can add before vacuum
averaging a piece along the time axis, which closes the
gluon trajectory from n0 to n ¼ 0 and back from nq ¼ 0 to

n ¼ n0 (which is an identical operation yielding a factor 1).
In this way, one obtains a product of a closed contour and a
Polyakov line from 0 to n0, and the vacuum averaging
yields the expression for the factorized Wilson loops [49],

hWa
ΣðCnÞi ¼ LðnÞ

adj ðTÞhW3i; ð6Þ

with LðnÞ
adj ≈ Ln

adj for T ≤ 1 GeV. One can integrate out the

z4 part of the path integral ðDzÞωon ¼ ðDz4ÞωonD3z, with the
result

GðnÞðsÞ ¼ GðnÞ
4 ðsÞG3ðsÞ;

Gn
4ðsÞ ¼

Z
ðDz4Þωone−KLðnÞ

adj ¼
1

2
ffiffiffiffiffiffiffiffi
4πs

p e−
n2

4T2sLðnÞ
adj : ð7Þ

This factorization holds also for quarks and will be used
below (with the change of the adjoint representation to the
fundamental one).
The resulting gluon contribution is

Pgl ¼
2ðN2

c − 1Þffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
G3ðsÞ

X
n¼1;2;…

e−
n2

4T2sLn
adj;

G3ðsÞ ¼
Z

ðD3zÞxxe−K3dht̂raWa
3i: ð8Þ

The direct appearance of LðnÞ
adj ðTÞ in the thermodynamic

potential is an important feature of the present nonpertur-
bative formalism based on the FCM. It was derived before
in Ref. [44], in which the CMC was not taken into account,
and the origin of LðnÞ was associated only with the
correlatorDE

1 [65]. As will be shown below, the mechanism
of the Polyakov loop is much more complicated, and we
shall compute LðTÞ in a different way.
At this point, we are coming to the problem of the CMC

and its contribution to the gluon dynamics.
As is well known [66], the CMC generates the non-

perturbative Debye mass MDðTÞ, connected to the CM
string tension σHðTÞ, which is proportional to T2,

σHðTÞ ¼ const g4ðTÞT2;

as it was found on the lattice [68] and nonperturbatively in
the Appendix of Ref. [64]. The exact calculation of G3ðsÞ,
which should give the explicit dependence on MDðTÞ, is,
however, difficult, and therefore one can use approxima-
tions explained in Appendix B.
The inclusion of color-magnetic interaction leads to the

generation of a nonperturbative Debye massMD for gluons
and quarks. For gluons Madj ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σHðTÞ

p
, one can take it

into account by an approximate expression for the third
Green’s function [49], which is derived in Appendix B,
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G3ðsÞ ¼
1

ð4πsÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

adjÞs
sin hðM2

adjÞs

s
: ð9Þ

It should be mentioned that the resulting gluon pressure (8)
is in good agreement with the lattice data [49].
In the noninteracting case, i.e., σH ¼ 0 and Ladj ¼ 1, one

obtains the ideal gas pressure:

Pgl ¼ P0 ¼
ðN2

c − 1Þ
45

π2T4: ð10Þ

For quarks, one can write the expression in the same
form as in (8), but with the quark mass term e−m

2
qs:

Pf¼
X

q¼u;d;s

Pq;

Pq¼
4Ncffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
e−m

2
qsS3ðsÞ

X
n¼1;2;…

ð−Þnþ1e−
n2

4T2sLn
f ð11Þ

S3ðsÞ ¼
1

ð4πsÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

fÞs
sin hðM2

fÞs

s
;

M2
adj ¼

9

4
M2

f; Ln
f ¼ ðLn

adjÞ4=9: ð12Þ

And again in the case of massless noninteracting fermions,
one obtains

Pf ¼ NcNf
7T4

180
: ð13Þ

The full pressure reads as

Ptot ¼ Pf þ Pgl: ð14Þ

Integrating over proper time interval ds in (11) and
replacing the square root term in (12) by an approximate
exponential term [50,52], one obtains

Pf ¼
X

q¼u;d;s

Pq;

PqðT; μÞ
T4

¼ 2Nc

π2
X
n

ð−Þnþ1

n2
LnK2

�
M̄n
T

�
M̄2

T2
; ð15Þ

whereM¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

fþM2ðTÞ
4

q
,MðTÞ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
σsðTÞ

p
, a ≈ 2 [51,66].

To include the effects of the baryon chemical potential,
we should do the substitution in (11):

Ln
f → Ln

f cos hðμn=TÞ: ð16Þ

III. POLYAKOV LINE CALCULATIONS

As we saw, the thermodynamics of QGP in the FCM is
defined by two main ingredients: the non-perturbative
screening masses MðTÞ are calculated via σHðTÞ and
known both analytically and on the lattice [66,68]. This
part is especially important at high T due to the growth of
σHðTÞ. Another important ingredient is the Polyakov line L
with the dynamics defined by the field correlators DE and
DE

1 [65]. The Polyakov line was introduced in Refs. [44–
47] as a main dynamical ingredient of qgp, and it is
associated with the correlator D1ðxÞ, which produces
the interaction term V1ðr; TÞ, with a nonzero asympto-
tics VE

1 ð∞; TÞ so that the Polyakov line is written as

LðTÞ ¼ exp ð− V1ð∞;TÞ
2T Þ.

However, more careful analysis done in Ref. [70] has
revealed that there are three sources of the Polyakov line in
the nonperturbative correlators (1): two of them are due to

FIG. 1. The Polyakov line as a function of T=Tc,Tc ¼ 160 MeV. The gray band corresponds to LHL within the accuracy limits of
aðTÞ. The solid black line is the ideal LFCM used below in the paper.
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the correlator DEðxÞ, and one is due to DE
1 ðxÞ, which also

generates the perturbative part of LðTÞ. We relegate the
detailed analysis of these sources to Appendix C and
Ref. [70], and here we only conclude that the main part
of the contribution ofDE

1 ðxÞ ½VE
1 ð∞; TÞ� is canceled by that

of the saturated part ofDEðxÞ and the resulting contribution
can be associated with the confining interaction of the static
charge of the Polyakov line with a picked-up antiquark,
which create the heavy-light system with massMHLðTÞ, so
that one can continue the previous definition of LðTÞ as

LðTÞ ¼ exp

�
−
V1ð∞; TÞ

2T

�
→ exp

�
−
MHLðTÞ

T

�
:

One of the ways to calculate L is to evaluate it via the
heavy-light mass MHL [71]. Here, we are using, as in
Ref. [71], the mass MHLðTÞ, which is T dependent due to
the temperature-dependent string tension σEðTÞ, studied
repeatedly on the lattice [53–55], with the relation
MHLðTÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
σEðTÞ

p
. To find σEðTÞ explicitly, one can

use a connection between σE and the quark condensate
hq̄qi found in Refs. [60,61], which can be associated with
the T-dependent quark condensate, since in the FCM
approach the latter is produced by the scalar confinement
[58–61]. Indeed, the lattice data on σðTÞ [53–55] and
q̄qðTÞ [19,23,57] show similar behavior.
We take the CE string tension in the massless quark

limit related to the chiral condensate [60] as jhq̄qðTÞij ¼
const ðσðTÞÞ3=2. Introducing a dimensionless parameter
aðTÞ as σðTÞ ¼ σð0Þa2ðTÞ, one has

jhq̄qiðTÞj ¼ jhq̄qið0Þja3ðTÞ: ð17Þ

As a result, one has MHLðTÞ ¼ MHLðT0Þ aðTÞ
aðT0Þ and

LðTÞ ¼ exp ð−MHLðTÞ
T Þ. The numerical data are shown in

Fig. 1. The error band in Fig. 1 corresponds to the accuracy
of aðTÞ in the lattice data in Ref. [23], and the solid black
line is our “ideal” FCM line LFCMðTÞLFCM, which on one
hand is close to the error band and on the other hand, as will
be seen below in the paper, yields good agreement with
lattice data.

IV. QCD THERMODYNAMICS AT FINITE
BARYON CHEMICAL POTENTIAL

One of immediate tests of the FCM thermodynamics
is the behavior of the QGP pressure (Fig. 2), the scale

FIG. 2. The ratio of the pressure to T4 as a function of T=Tc. The gray band is the lattice data of Borsanyi et al. [20], and the striped
band is the lattice data from Bazavov et al. [23].

FIG. 3. The ratio of the anomaly ðI ¼ ϵ − 3PÞ to T4 in QGP as
a function of T=Tc. The gray band is the lattice data of Borsanyi
et al. [20].
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anomaly (Fig. 3), and the speed of sound (Fig. 4), in which
LFCMðTÞ and the CMC Debye mass are taken into account,
in comparison with lattice data for zero and the extension to
nonzero baryon chemical potential. One can see that our
predictions are in good agreement with lattice data at
μ ¼ 0.3

At this point, we extend our results to a finite baryon
chemical potential. We will use the definition of the baryon
chemical potential the same way as in Ref. [51], i.e., μB ¼
3μq (we will not include a separate chemical potential for
the strange quark). There is the possibility of comparison of
our predictions with the Taylor expansion of μ [32]. We use
the following assumption: according to Refs. [46,73],
at small densities, μB ≤ 300–400 MeV, we can neglect
the influence of the baryon chemical potential on the
Polyakov line.
The summation over n in (15) can be done if one uses the

integral representation

KνðzÞ ¼
ðz
2
ÞνΓð1

2
Þ

Γðνþ 1
2
Þ
Z

∞

0

e−z cosh tðsinh tÞ2νdt: ð18Þ

As a result, one obtains as in Ref. [51]

1

T4
PqðT; μÞ ¼

Nc

π2
ðξðþÞ

1 þ ξð−Þ1 Þ ð19Þ

with

ξð�Þ
1 ¼1

3

�
M̄
T

�
4
Z

∞

0

u4duffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p h
1þexp

�
M̄
T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
þV1

2T� μ
T

�i:
ð20Þ

Changing the integration variable,

M̄
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
¼ zþ M̄

T
: ð21Þ

The expression (15) can be brought to the form

PqðT; μÞ
T4

¼ fþðT; μÞ þ f−ðT; μÞ; ð22Þ

f�ðT; μÞ ¼
Nc

3π2

Z
∞

0

dzðz2 þ 2z M̄
T Þ3=2

1þ exp ðzþ M̄
T þ V1ðTÞ

2T ∓ μ
TÞ
; ð23Þ

where it is taken into account that L ¼ exp ð−V1ðTÞ=2TÞ.
The expression (22) has no singularities at real μ, but f�

may get a singularity for imaginary chemical potentials for

ImðμÞ ¼ πT due to the vanishing of the denominator in
(23) at z ¼ − M̄

T − V1ðTÞ
2T .

Hence, one can conclude that in the normal situation
with real μ and Lf the singularity in Pðμ; TÞ is absent; this
conclusion implies that there is no critical point TcðμÞ in the
domain of small baryon chemical potentials and the
analytic structure is affected only by complex singularities.
From this point of view, it seems that our consideration
could be extended without any changes to large enough
values of the chemical potential and temperatures
T ≤ 1 GeV if we take M̄ and L independent of μ.
To test ourselves, we have calculated the pressure at

μB ¼ 100, 200, 300 MeV and μB ¼ 400 MeV. As will be
seen in the next section, there is reasonable agreement
between our predictions and lattice data, without significant
changes in the QGP state with growing μB.

V. RESULTS AND DISCUSSION

Below, we show our results for the pressure and the
sound velocity in comparison with the lattice data. As was
discussed above, we obtained the Polyakov line expression
via connection with the heavy-light meson mass, derived
from the quark condensate using Eq. (17). The exploited
form of the Polyakov line LFCM is shown in Fig. 1 together
with the dark region LHLðTÞ derived from the quark
condensate. One can see that LFCM is close to the LHL
within its accuracy region.
The data for MfðTÞ and MadjðTÞ ¼ 3

2
MfðTÞ are taken

from the exponential approximation of the square root
expression in Eqs. (9) and (12), which was taken as
MfðTÞ ¼ 1.6

ffiffiffiffiffiffi
σH

p
, which is near the Debye mass value,

obtained in Ref. [66], and ensures the high-temperature
behavior of PðTÞ, which is impossible to reproduce without
this CMC contribution.
One can see in Fig. 2 the comparison of our FCM result

for PðTÞ with the lattice data [47,50] for the zero baryon
density. The resulting curves coincide within their accuracy
limits.
Even more appealing is the agreement of our FCM

results for the pressure for μB ¼ 0.1 · 0.2 · 0.3 GeV in
Fig. 5, respectively, with the lattice data of Ref. [32] for
the same values of μB. One can conclude that at low μB,
μB ≤ 0.4 GeV the FCM results predict a smooth behavior
of PðT; μBÞ without any hint of a singular point, and this is
in agreement with the analytic structure of PðT; μBÞ
displayed in Eqs. (22) and (23). At the same time, these
results agree with the similar conclusions of the lattice
studies [32]. The slight disagreement with the lattice data
μB ¼ 400 MeV (black solid line) in Fig. 6 could be
connected with renormalization of the Polyakov line at
finite baryon densities; for example, in Fig. 6, we also show
the pressure (gray solid line) with the Polyakov line, that is
scaled similarly as in Ref. [74]. One should notice that the

3We extended our results to rather high temperatures, just
because we wanted to test our basic principles. The same is true
for the speed of sound in gluodynamics [72].
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lattice results for the pressure in Ref. [32] were obtained in

the first order of the square of the chemical potential.
The square of the speed of sound, which for nonzero μ

and in the isentropic condition can be written as (see
Appendix D for details of derivation)

c2s ¼
n2 ∂2P

∂T2 − 2sn ∂2P
∂T∂μ þ s2 ∂2P

∂μ2

ðεþ pÞ
�
∂2P
∂T2

∂2P
∂μ2 −

�
∂2P
∂T∂μ

�
2
� ; ð24Þ

where we have defined

s ¼ ∂P
∂T ; n ¼ ∂P

∂μ ; εþ P ¼ Tsþ μn: ð25Þ

We show in Fig. 7 the speed of sound in the range
μB ¼ ½0; 300� MeV, where the width of the line is equal to
the difference c2sðμB ¼ 300Þ − c2sðμB ¼ 0Þ. So, from the
FCM point of view, the domain of low chemical potentials
μB < 400 MeV is safe and could be described by Taylor

FIG. 4. The square of the speed of sound in QGP as a function of T=Tc. The gray band is the lattice data of Borsanyi et al. [20], and the
striped band is the lattice data from Bazavov et al. [23].

FIG. 5. The ratio of QGP pressure to T4 as a function of T=Tc for μB ¼ 100, 200, 300, 400 MeV. The gray bands are the lattice data of
Borsanyi et al. from Ref. [32] at corresponding values of μB.
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expansion in baryon chemical potential μB because in this
range this series converges, and the radius of convergences
is defined by the μ

T ¼ �iπ Roberge-Weiss point in Eq. (23).

VI. CONCLUSIONS

The present paper is devoted to the effects of small
baryon chemical potential μB ≤ 400 MeV in the dynamics
of QGP.
It is an extension of the study of QCD thermodynamics

at vanishing baryon density and is in the line of the series of
papers [44–52] in which the QCD thermodynamics is
worked out on the basis of the FCM.
We have exploited above the FCM thermodynamics to

calculate the QGP pressure at finite baryon density in the
temperature range 1 < T=Tc < 2, where Tc ¼ 160 MeV.
Our basic dynamics was defined by two factors:

the Polyakov line that is connected with LHLðTÞ ¼
expð−MHL=TÞ and the CMC in the exponential form with

the CMC quark mass MD ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σHðTÞ

p
, where c ¼ 1.6 is

close to the qq̄ Debye mass in Ref. [66] with c ¼ 2.
We have used for the heavy-light mass MHLðTÞ calcu-

lated from the T-dependent string tension σEðTÞ, defined
from the quark condensate hqq̄ðTÞimeasured on the lattice.
The Polyakov line LFCM exploited in the paper is close to
the accuracy limits L ¼ expð−MHLðTÞ=TÞ.
We have demonstrated that the resulting pressure

PFCMðT; μÞ is in good agreement with lattice data of the
Budapest-Wuppertal [20,32] and Hot QCD groups [23] in
both cases for zero and nonzero chemical potentials. We
have also calculated changing in the speed of sound that
one could compare with Fig. 7 in Ref. [32].
From this point of view, our analytic equations (8)

and (22) can be considered as an analytic counterpart of
the corresponding lattice data.
All this implies the absence of a critical point in the

studied range of T and μB from the point of view of the
FCM method.

FIG. 6. The ratio of QGP pressure to T4 as a function of T=Tc for μB ¼ 400 MeV with LFCM (black line) and with the Polyakov line
that is scaled similarly as in Ref. [74] (dashed line). The gray band is the lattice data of Borsanyi et al. from Ref. [32].

FIG. 7. The width of solid line is the changing of the square of the speed of sound in the range μB ¼ 0–300 MeV.
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It should be noted, however, that we have used both MD
and MHL independent of μB in the range μB < 400 MeV.
The interesting region of high μB, μB > 1 GeV, is

possibly hiding a completely different picture, with a
singular behavior of pressure and sound velocity, as was
found in Ref. [75]. However, this phenomenon is strongly
connected with a possible dependence of LðμÞ and MDðμÞ
recently studied on the lattice in Ref. [73]. These results are
planned for the next paper.
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APPENDIX A: THE FCM FORMALISM IN
THERMODYNAMICS

To start the FCM approach in the thermodynamics, one
can consider gluons and quarks in the background vacuum
fields, which can contain both color-electric and color-
magnetic fields. Separating perturbative and vacuum
gluonic fields, Aμ ¼ Bμ þ aμ, one can calculate the gluon
and quark propagators in the lowest order in aμ and take
their vacuum average, as was done in Ref. [76]. In this way,
one obtains the free energy and pressure in the lowest order
of the standard perturbation theory, but with the full
account of the averaged vacuum fields, given by correlators
DðxÞ and D1ðxÞ in (1). Thus, the free energy of gluons can
be written via the gluon propagator in the form [76]

1

T
F0ðBÞ ¼

1

2
ln detGðBÞ − ln detð−D2ðBÞÞ

¼ tr

	
−
1

2

Z
∞

0

ζðsÞ ds
s
e−sGðBÞ

þ
Z

∞

0

ζðsÞ ds
s
e−sD

2ðBÞ


; ðA1Þ

where GðBÞ is the gluon propagator andD2ðBÞ is the ghost
propagator in the background field

Gab
μν ¼ −D2ðBÞabδμν − 2gFc

μνðBÞfacb; ðA2Þ

ðDλÞca ¼ ∂λδca − gfbcaBb
λ ; ðA3Þ

while ζðsÞ is the standard regularizing factor, ζðsÞ ¼
lim d

dt
M2tst
ΓðtÞ jt¼0, the exact form of which is inessential and

is not written in what follows.
Our final results require the vacuum field average of (1)

and the introduction of the temperature T. The vacuum
averaging is to be done with quadratic combinations of
fields Bμ in the exponent in (1), and to this end, one can use
the cluster expansion [77]

hexpfðBÞiB¼expfhfðbÞiBþ
1

2
½hf2ðBÞiB−hfðBÞi2B�þ���g;

ðA4Þ
which converges well, as shown in Ref. [41], due to the
small vacuum correlation length λ≲ 0.2 fm.
Next is the problem of the gluon (quark) Green’s

function in the external field, which can be represented
as the path integral with the phase factor, containing the
external field explicitly—this is called the Fock-Feynman-
Schwinger representation [76] and has the following form
in the simplest case of the ghost Green’s function:

ð−D2Þxy¼
D
xj
Z

∞

0

dsesD
2ðBÞjy

E
¼
Z

∞

0

dsðDZÞxye−KΦ̂ðx;yÞ:

ðA5Þ

Here,

K ¼ 1

4

Z
s

0

dτ

�
dzμ
dτ

�
2

; Φ̂ðx; yÞ ¼ exp ig
Z

x

y
BμðzÞdzμ;

ðA6Þ

the integral is taken along the trajectory of the ghost
y < zμðτÞ ≤ x, and ðDzÞxy implies the path integral

ðDzÞxy ¼
YN
m¼1

d4ζðmÞ
ð4πεÞ2

d4p
ð2πÞ4 e

ipð
P

m
ζðmÞ−xþyÞÞ; ðA7Þ

where ζðmÞ is the elementary piece of the path.
In a similar way, the gluon propagator has the same repre-

sentation (A5) but with an additional factor in (A5) multiply-
ing Φ̂ðx;yÞ;Φ̂ðx;yÞ→ Φ̂ðx;yÞ×expð−2igR s0 dτF̂BðzðτÞÞÞ≡
Φ̂Fðx;yÞ.
The next step is the introduction of the temperature T

within the Matsubara formalism.
In the path integral, the latter implies the only replace-

ment, ðDzÞxy → ðDzÞwxy, where the upper index w means
the winding path integral, which comes from x to the final
point y for the sequence of time intervals, nβ≡ n=T,

ðDzÞwxy ¼
YN
M¼1

d4ΔzðmÞ
ð4πεÞ2

X
n¼0;�1;…

×
d4p
ð2πÞ4 e

ipð
P

m
ΔzðmÞ−ðx−yÞ−nβδμ4Þ: ðA8Þ

As is seen in (A8), the term with n ¼ 0 would yield the
T-independent contribution to the pressure, contradicting
the free gluon gas result, and should be omitted in what
follows. The sum over n ¼ �1, �2 gives the twice of the
sum over n ¼ 1; 2; 3;…. As it is, only closed trajectories
with x ¼ y are entering in the free energy (pressure).
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As a result, the pressure PglV3 ¼ −hF0ðBÞi can be
written as follows:

Pgl¼T
Z

∞

0

ds
s
d4x
V3

ðDzÞwxxe−K
�
1

2
trhΦ̃Fðx;xÞi−htrΦ̃ðx;xÞi

�
:

ðA9Þ

As is clear in (A9), the difference in the square brackets
contains two effects: 1) the ghost reduction of the gluon
degree of freedom and 2) the gluon spin interaction
corrections, since the operator F̂μν entering in Φ̂F has
the representation

−2iF̂μν ¼ 2ðSBð1Þ þ Sð1Þεð1ÞÞμν; ðA10Þ

where Sð1Þ is the gluon spin operator and Bð1Þ and εð1Þ are
the background color-magnetic and color-electric fields.
Therefore, neglecting at the first step the spin-dependent

contribution, one can replace the term in the square
brackets simply by the adjoint Wilson loop, and as a
result, one obtains the representation, given below in (1). It
is easy to understand the form (1), considering the free case
with vacuum fields Bμ ≡ 0. In this case, as demonstrated in
the Appendix of Ref. [76], one obtains from the square
brackets in (A9) ð1

2
· 4 − 1ÞðN2

c − 1Þ ¼ N2
c − 1 and

PglðB ¼ 0Þ ¼ φðB ¼ 0Þ ¼ ðN2
c − 1ÞT

4π2

45
: ðA11Þ

Summarizing, the final result for the gluon pressure can
be written in the form Eq. (3) [44,47,49].

APPENDIX B: COLOR-MAGNETIC
CONFINEMENT CONTRIBUTION

TO S3ðsÞ AND G3ðsÞ
As one can see in (8), G3ðsÞ [S3ðsÞ] contains the

contribution of the adjoint (fundamental) loops, which
are subject to the area law, ht̂riW3i ¼ expð−σi areaðWÞÞ
i ¼ fund, adj. The kinetic term is in K3d in (8), so both
G3ðsÞ and S3ðsÞ are proportional to the Green’s functions
of two color charges, connected by a confining string, from
one point x on the loop to another (arbitrary) point, e.g., the
point u on the same loop. As is shown in Ref. [51], one can
represent G3ðsÞ in the spectral sum form,

G3ðsÞ ¼
1ffiffiffiffiffi
πs

p
X

ν¼0;1;2;::

ψ2
νð0Þe−2m2

νs; ðB1Þ

wheremν are eigenvalues of the Hamiltonian of two adjoint
charges, connected by the string, and ψνðxÞ is its eigen-
function in two dimensions.
As was discussed in Ref. [51], the spectral sum in (B1)

does not converge well, especially at large T, therefore one
should calculate the combined effect of all terms. A simple

example is given by the free case: σi ¼ 0. In this case,
one has

Gð0Þ
3 ðsÞ¼ Sð0Þ3 ðsÞ¼ 1ffiffiffiffiffi

πs
p

Z
d2p
ð2πÞ2 e

−2p2s¼ 1

ð4πsÞ3=2 : ðB2Þ

In this case, one obtains the results for Pgl and Pq, which
have been found before in Ref. [46],

Pð1Þ
gl ¼ 2ðN2

c − 1ÞT3

π2
X

n¼1;2;::

LðnÞ
adj

n4
;

Pð1Þ
q ¼ 4NcT4

π2
X

n¼1;2;::

ð−1Þnþ1LðnÞ
f φðnÞ

q ; ðB3Þ

where φðnÞ
q is

φðnÞ
q ¼ n2m2

q

2T2
K2

�
nmq

T

�
: ðB4Þ

One can see in (B3) the Stefan-Boltzmann limit—
for Ladj ¼ Lf ¼ 1.
There are two ways the CM confinement can be taken

into account, suggested in Ref. [51]. Considering the
oscillator interaction between the charges, one obtains

GOSC
3 ðsÞ ¼ 1

ð4πÞ3=2 ffiffiffi
s

p M2
adj

shM2
adjs

; ðB5Þ

and SOSC3 ðsÞ is obtained from (B5), replacing Madj by Mf.
Here, Madj ¼ 2

ffiffiffiffiffi
σs

p ¼ mDðTÞ, where mDðTÞ is the Debye
mass, calculated in Ref. [66] in good agreement with
lattice data.
A more realistic form is obtained when one replaces the

linear interaction σsr →
σs
2
ðr2γ þ γÞ, varying the parameter γ

in the final expressions, imitating in this way linear inter-
action by an oscillator potential. Following Ref. [49], one
obtains

Glin
3 ðsÞ ¼ 1

ð4πsÞ3=2
�

M2
adjs

shðM2
adjsÞ

�1=2

;

Slin3 ðsÞ ¼ Glin
3 ðsÞjMadj→Mf

: ðB6Þ

Finally, substituting these expressions in (8) and (11), one
obtains the equations for Plin

gl and P
lin
q , containing the effects

of CM confinement, which will be used in what follows.
However, to simplify the square-root expressions, one can
use forM2s≲ 1 the approximation with the square root term
replaced by the exponential, ð M2s

shM2sÞ1=2 ≈ exp ð−M2s
4
Þ, which

has a reasonable accuracy for T < 1 GeV.
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APPENDIX C: NONPERTURBATIVE
CONTRIBUTION TO THE POLYAKOV LINE

The contribution of DE
1 ðxÞ and DEðxÞ to the qq̄ðggÞ

interaction can be written in terms of local potentials
VDðrÞ, Vsat

D ðrÞ, VE
1 ðrÞ, VcðrÞ, and VssðrÞ, which will be

neglected below. Here, VDðrÞ ¼ σr, VcðrÞ ¼ − 4αs
3r , and

Vconf
D ðr; TÞ ¼ 2r

Z
1=T

0

dνð1 − νTÞ
Z

r

0

dξDE
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ ν2
p �

ðC1Þ

Vsat
D ðr; TÞ ¼ 2

Z
1=T

0

dνð1 − νTÞ
Z

r

0

ξdξDE
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ ν2
p �

ðC2Þ

Vsat
1 ðr;TÞ¼

Z
1=T

0

dνð1−νTÞ

×
Z

r

0

ξdξDE
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þν2

p �
−VCoul

1 ðr;TÞ: ðC3Þ

The contributions of VE
1 and Vsat

D are strongly compen-
sated as shown in Ref. [70], so one is left with VDðrÞ and
VcðrÞ; the latter is effective mostly at large T, when L is
close to unity. Therefore, one should take into account the
potential VDðrÞ ¼ σr, which gives rise to the heavy-light
bound state with the mass MHL and L ¼ exp ð−MHL

T Þ. At
this point, it is important to fix the renormalization
procedure of the contributing confinement and Coulomb
interaction, which is similar in the lattice data of Ref. [78]
and in our case and yields almost similar results for LðTÞ,
as is seen in Ref. [70].

APPENDIX D: DERIVATION OF EQ. (24) FOR
THE SOUND VELOCITY AT FINITE μ

Below, we are interested in the sound velocity cs at fixed
isentropy s=nB, c2s ¼ ð∂P∂εÞs=nB ; s

nB
≡ s̄,

∂P
∂ε
����
s̄
¼

∂P
∂T dT þ ∂P

∂μ dμ
∂ε
∂T dT þ ∂ε

∂μ dμ
; s̄ ¼

∂P
∂T =μ
N

¼ const: ðD1Þ

Taking into account the isentropic condition

d

�
s
nB

�
¼0¼d

 ∂P
∂T
∂P
∂μ

!
¼
d
�
∂P
∂T
�
∂P
∂μ−

∂P
∂Td

∂P
∂μ�

∂P
∂μ
�
2

¼
∂P
∂μ
�
∂2P
∂T2dTþ ∂2P

∂T∂μdμ
�
−∂P

∂T
�

∂2P
∂μ∂TdTþ ∂2P

∂μ2 dμ
�

�
∂P
∂μ
�
2

¼0;

ðD2Þ
one obtains the relative change of T and μ ÷ dT

dμ,

dT
dμ

¼
∂2P
∂μ2

∂P
∂T −

∂2P
∂μ∂T

∂P
∂μ

∂2P
∂T2

∂P
∂μ −

∂2P
∂μ∂T

∂P
T

¼ a
b
: ðD3Þ

As a result, one obtains from (D1) (dividing the
numerator and denominator by Dμ)

c2s ¼
∂P
∂T aþ ∂P

∂μ b
∂ε
∂T aþ ∂ε

∂μ b
; ðD4Þ

where a and b are given in (D3).
Now, taking into account that s ¼ ∂P

∂T, n ¼ ∂P
∂μ,

εþ P ¼ Tsþ μn, one obtains the final form, given in
the text:

c2s ¼
n2 ∂2P

∂T − 2sn ∂2P
∂T∂μ þ s2 ∂2p

∂μ2

ðεþ PÞ
�
∂2P
∂T2

∂2P
∂μ2 −

�
∂2P
∂T∂μ

�
2
�
:

ðD5Þ
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