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The semileptonic decays and two-body nonleptonic decays of a light baryon octet (7'g) and a decuplet (T';)
consisting of light u, d, s quarks are studied with the SU(3) flavor symmetry. We obtain the amplitude relations
between different decay modes by the SU(3) irreducible representation approach, and we then predict relevant
branching ratios by presenting experimental data within 16 error. We find that the predictions for all branching
ratios except B(E — A%z) and B(E* — Er) are in good agreement with present experimental data, which
implies that the neglected C, terms or SU(3) breaking effects might contribute on the order of a few percent
in 2— A7 and E* - Ex weak decays. We predict that B(E~ — 2% i,) = (1.13 £ 0.08) x 107,
B(E~ > A% p,) = (1.58 £0.04) x 1074, B(Q™ — E%p,) = (3.7+£ 1.8) x 1073, B(Z~ - %e7,) =
(1.35+£0.28) x 1071°, and B(E~ — Z077,) = (4.2 + 2.4) x 10710, We also study T,y — TsPs weak,
electromagnetic, or strong decays. Some of these decay modes could be observed by BESIII, LHCb, and other
experiments in the near future. Because of the very small lifetimes of £, Z*%~, £*%-~ and A%~ the branching
ratios of these baryon weak decays are only on the order of O(1072° — 10713), which is too small to be reached
in current experiments. The longitudinal branching ratios of Tsy — Tgpt " 0,(¢ = p, e) decays are also given.
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I. INTRODUCTION

A lot of semileptonic decays and two-body nonleptonic
decays of light octet baryons (such as E-—Xle7,,
= —)Aof_ljf, EO—>E+K_I;L0, Aoﬁpf_ﬂf, > - I’lf_ljf,
¥ - Ae 7, Tt = Alety,, n—pe v, Tt —pa’, Tt -
nat, 2 = na, A’ = pr~, A - na®, = - A%, and
29 - A%°) and a few light decuplet baryon decays (such as
Q - 5% 7, %, 2 2°, and A°K~) were measured a
long time ago by SPEC, HBC, OSPK, etc., [1]. The
sensitivity for measurements of A, X, E, and Q hyperon
decays is now in the range of 107-10~% at BESIII [2-5], and
these hyperons have also been produced copiously during the
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LHCb experiment [6,7]. Besides confirming information
obtained earlier by SPEC, HBC, OSPK, etc., the BESIII and
LHCDb experiments will provide new information on light
baryon decays. The precise measurements of these decays
are of great importance in determining the V — A structure
and quark-flavor mixing of charged current weak inter-
actions [8—10] as well as probing the nonstandard charged
current interactions [11,12].

Theoretically, the factorization does not work well for s,
d quark decays since s, d quarks are very light and cannot
use the heavy quark expansion. There is no reliable method
to calculate these decay matrix elements at present. In the
absence of reliable calculations, the symmetry analysis can
provide very useful information about the decays. SU(3)
flavor symmetry is one of the symmetries which have
attracted a lot of attention. The SU(3) flavor symmetry
approach, which is independent of the detailed dynamics,
offers an opportunity to relate different decay modes.
Nevertheless, it cannot determine the size of the amplitudes
by itself. However, if experimental data are enough, one
may use the data to extract the SU(3) irreducible ampli-
tudes, which can be viewed as predictions based on
symmetry. There are two popular approaches to SU(3)

Published by the American Physical Society
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flavor symmetry. One is to construct the SU(3) irreducible
representation amplitude by decomposing an effective
Hamiltonian. The other method is the topological diagram
approach, where decay amplitudes are represented by
connecting quark line flows in different ways and then
relating them through the SU(3) symmetry.

The SU(3) flavor symmetry works well in heavy hadron
decays—for instance, b-hadron decays [13-26] and c-
hadron decays [27-43]. The experimental data of some
semileptonic hyperon decays are well explained by the
Cabibbo theory [10], which assumes that the SU(3)
symmetry breaking effects are neglected. The SU(3) flavor
symmetry breaking effects are also studied in the hyperon
beta decays [44-47], where it is found that the SU(3)
symmetry breaking effects in these decays are small. In this
paper, we will systematically study Tg o — Ts¢ ¥, and
Tg 10 — TgP decays using the SU(3) irreducible represen-
tation approach (IRA). We will first construct the SU(3)
irreducible representation amplitudes for different kinds
of Tg and T, decays, second obtain the decay amplitude
relations between different decay modes, then use the

\/§A++ At It AT

1 + 0 2*0
To="7% A AT A || A
Yot )5/7*3 =0 %/*E
2 2

In this section, we focus on AS =0 and AS = 1 semi-
leptonic decays of hyperons, which decay through
d—ue v, and s —» uf" U, transitions, respectively. Since
AS =2 semileptonic decays are forbidden, we will not
study them in this work.

A. Tgy — Tgg? U, semileptonic decays

1. Theoretical framework

In the Standard Model (SM), the Feynman diagram
for Tgy — Tgp? U, decays is shown in Fig. 1, and the
amplitudes of Ty, — Ty~ ¥, can be written as [48]

A(Tgy = Tspt~0p)

Gr
= Y =Hyu (1= 75)v,eP (M) g4,
adit10,2v2 " o

(3)

where G is the Fermi constant, Az and Ay, are the helicity
components of the Tgp baryon and the virtual W boson in
the Tg, rest frame, 1}, is the helicity component of the
virtual W boson in the £v, rest frame, i1, and v, are Dirac
spinors, and €*/(1};,) are the polarization vectors of W in the
Zv, rest frame. The helicity amplitudes H,,, are

available data to extract the SU(3) irreducible amplitudes,
and finally predict the not-yet-measured modes for further
tests in experiments.

This paper is organized as follows. In Sec. II, the semi-
leptonic weak decays of the Tg |y hyperons are studied. In
Sec. III, we will explore the two-body nonleptonic decays of
hyperons which are through weak interaction, electromag-
netic, or strong interaction. Our conclusions are given
in Sec. IV.

II. SEMILEPTONIC DECAYS OF HYPERONS

The light baryons T'g (T';(), which are octets (decuplets)
under the SU(3) flavor symmetry of u, d, s quarks, can be
written as

A0 +
— 0 0
=l Y wwo ot [ O
= =0 _2A°
- - V6
0 20 w20 =40
A 7 z 7 =
— *— =0 *_ =k—
VATl B B (2)
X B 2 = 300
|
Hiﬂﬂw = H/‘I/Bﬂw - H?B/IW’
V(A V(A
HAB(AVZ = <T8B|J/4< >|T8A>€”(/1W), (4)
where J,‘,/ A is the vector (axial vector) current, and

¢’(Aw) are the polarization vectors of W in the Tg,
rest frame.

q" =s,d >
(Ts)teoln \ n / (T8) 1w
(T)linli ¢ > & (T8) 1wy
(T1o)" /qj - qu (T10)isn
FIG. 1. Feynman diagram for semileptonic weak decays
Tg10 = T3l0,.
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TABLE 1. The helicity amplitudes H) ) of Ty, — Tysf" 5, decays.

H/‘{;fu)/ SU@3) IRA amplitudes Reparametrization

S = utl vy

V2H(E™ — X0/ 1) —(as + ax + az + ass) —As

V6H(E™ — A%~ 1) a1 + axn + as3 + 2434 — ass Az + 245

H(EY > =t¢-i,) az; +azp + aszz + dss Azl

V6H(A® = pt~i,) —(2a31 + 2a3, + 2a3; + a4 + ass) —(243 + Ay)

V2H(X' = pt~i,) a3y — dss Az

H(X™ = nt"0g) —(as — ass) —Asn

d—uev,:

V2H(X™ — X0e1,) —(az + an + ax + an) ~(245 = Ap)

V6H(X™ — Ae™1,) g1 + Ay + Ay — ay + 2ax Ay

V2H(Z? - Tte i,) Ay + dyy + do3 + Ao 245 —Ap

V6H(Zt = Aety,) a1 + ay + ax — ax + 2ay Ay

H(E™ — Z7,) —ay Ay — Ay

H(n — pev,) dy) +am + dpz + dp Ay
I.n'terms o.f the SI‘J/g)) IRA, the Vector. (axial vector) HY — VO_ (s + mp)f1 (@) — @ Fala).

helicity amplitudes H; ; =~ can be parametrized as 0 2

B

V(A ijln ijln
H, ) = a, HY(Tg) 00 (Tg) 1y + ayn HE(T) 7 (T)

+ a3 HY(T) " (Tg) 1 + anaHE(Ts) " (Tg)
+ a,sHY (Tg) ™ (Tg) 100 (5)

where HY = V4, 18 the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element, a,; = (a"i)/‘lig(fui (g*) are the non-

perturbative coefficients, and n =2(3) for g, = d(s).
The SU(3) IRA helicity amplitudes HX(A)

pAw
Tep?t U, decays are listed in the second column of
Table 1. And the helicity amplitudes can be simplified

by the redefinitions

Of T8A d

Anl = day + (%) + (%) + aps,

AnZ = dpg — dps. (6)

For convenience, we set A,, = Ay, — Ay, to replace Ay,
for the d — uf~0, transition. The reparametrization
results are given in the last column of Table I, in which
we can easily see the helicity amplitude relations between
different decay modes.

In addition, the helicity amplitudes can also be written in
terms of the Tgy — Tgp form factors

8%

[(my —mp)g1(q%) + ¢°92(4%)].

S
3
[ye]

20_[=11(g%) + (my + mp) f>(q*)].

Hfl =20, [-01(¢%) = (ma = mp)g2(q*)],

T

Hy = e = (4) + 4267
1 =Y (i, o) - Pl ()

5

where my p is the mass of Tg4 gp, the momentum transfer

q=pa—pp. Or = (my£mp)*—g* with m§§q2§

(m% —m3%), and the form factors f;(¢?) and g;(¢*) are

defined as [26]

(Tsp(Pp:A8)|Crub|Tsa(PasAn))
= ip(pp. 2p)f1(aD)r, + if2(4%)0,uq"
+ f3(a*) qulua(pas Aa),
(Tsp(Pp.48)|7,7° b Tsa(pa. An))
= iig(ps.48)191(4°)1, + 192(4°)0,9"
+ 93(q2)qﬂ]75MA(PA, Aa)- (8)

Either from parity or from explicit calculation, we have
the relations HY, , = HY, , HA, _, = —H/, . Note that
2 1 241 2 1 241
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TABLE II. The form factor ratios g;(0)/f,(0) and f,(0)/f;(0) come from PDG2018 [1] unless otherwise specified.

Decay modes 91(0)/£,(0) 12(0)/£1(0)
2 - 200, 1.22 +0.05 2.609°
2 - A%, 0.25 + 0.05 0.085"
20— 2/, 1.22 +0.05 2.0+0.9
A > pei, 0.718 £ 0.015 1.066"
30— pti, —0.340 + 0.017° —1.292°
Y > nf i, —0.340 £ 0.017 —0.97 +0.14
¥ - 307, 1[(1.2724 £ 0.0023) + (—0.340 + 0.017))* 0.534°
2 — Al i, (=0.01 £ 0.10)~! 1.490°
30 & ¥tes, —1[(1.2724 £ 0.0023) + (—0.340 £ 0.017)]* 0.531°
=t - Alety, (—=0.01 £ 0.10)"* 1.490°
2 — B, —0.340 + 0.017° —1.432°
n— pep, 1.2724 + 0.0023 1.855

*Values were obtained from the SU(3) flavor parametrization F and D given in Refs. [44,56] and the measured form factorratios in Ref. [1].

"Values were taken from Cabibbo theory [56].

Eq. (7) will be used to obtain more precise predictions in
the following S, case.

Then the differential branching ratios of Tgy — Tgp? Uy
decays can be written using the helicity amplitudes
oy pale? (1-m)

dB(TSA - Tng_ljf) _ G%’|qun

2

A3y, Aye®n for the s — uf~ U transition,
Ay, Ayye®x  for the d — ue™ D, transition. (11)

Note that A5, A3y, Ay, and A,, could be complex, and
we set Az (A, ) as real and add relative phase d4,, (95,,)

associated with As,(Ay,) in this work. From the

dq? 19273 m3 q amplitude relations between different decay modes
mfo given in the last column of Table I, we take B; =
X [Bl +2—q232}7 9) A%, for the E- — X070, decays, B; = |A3 +

with

By = [Hy|* + |H_y|* + |H%21|2 +H o P
By = [Hy|* + |H_yo* + [Hy |* + |H_,
£ 3(H P + [y ). (10)

The differential longitudinal branching ratios dB(Tg, —
Tsp? ;)] dg? can be obtained from dBB(Tgy — Tgpt"s)/
dq by setting |[H}, [?=|H__|>=0 in Egs. (9) and (10).

2

2. Input parameters

The theoretical input parameters and the experimental
data within the 1o error from Particle Data Group [1] will
be used in our numerical results. And two cases will be
considered in our analysis:

S;.—In the limit of m, =0, we neglect the B,

term in Eq. (9) as in Ref. [37] and treat SU(3) flavor

parameters (am)ﬁv}ffvz(qz) as constants without the g?

dependence; i.e., B; in Eq. (9) is constant. For
simplification, the helicity information of Az and Ay,
in B is ignored in this case. Then there are three
parameters:

076008-4

2Ae% |? for the 2= — A’/~5, decays, and B, =
|24, + Aspe’x|? for the A® — p£~ i, decays; B, for
the other decays is similar.

S,.—In order to obtain more precise predictions, we use

the helicity amplitudes in Eq. (7). The form factors for
the hyperon semileptonic decays are calculated in
various approaches—for example, quark and soliton
models, the 1/N, expansion of QCD, lattice QCD,
chiral perturbation theory, etc., [46,49-59]. In this
case, we choose the dipole behavior for the form factors
as [44,56]

Fi(0)

Fi(q*) :W’

(12)

where M = 0.97(1.25) GeV for the vector (axial vec-
tor) form factors f; (g;) in the s — u#~ U, decays, and
M = 0.84 +0.04(1.08 £+ 0.08) GeV for f; (g;) in the
d — ue”p, decays. For the form factor ratios
91(0)/£1(0) and f,(0)/f(0), they are preferentially
taken from experimental measurements. If no relevant
experimental measurements are available, they will be
taken from Cabibbo theory [56]. The form factor ratios
in Table II will be used in our results. As a result, the
branching ratios depend only on the form factor f,(0)
and the CKM matrix elemant V', . Then these three
parameters become
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TABLE III. The experimental data and the SM predictions with the 416 error bar of branching ratios of Tgy — Tgpfv,.
Observables Experimental Data [1] Br— 8, Br—3S8, Brl -8,
B(E™ — 20e7i,)(x1079) 87+1.7 8.12 £ 0.60 8.27 £ 0.58 5.23+0.35
B(E™ — AV i )(X10_4) 5.63 £0.31 1.21 £0.71 5.47 £0.15° 494 +0.14
B(E? - =te™7,)(x107%) 2.52 £0.08 2.52 +£0.08" 2.52 £0.08° 1.60 £ 0.06
B(A® - pe=i7,)(x107%) 8.32+0.14 8.32 £0.14" 8.32 £ 0.14" 6.05+0.13
B(Z% = pe~i,)(x10~ H) 2.41+0.32 2.46 +£0.32 2.01 £0.26
B(Z™ — ne=7,)(x1073) 1.017 £0.034 1.017 + 0.034" 1.013 £+ 0.030" 0.851 £0.034
B(E™ - 20 1,)(x107%) < 800 1.08 £ 0.09 1.13 £0.08 0.57 +£0.04
B(E™ - A% ) (X107 4 3. 53; 0.33 £0.19 1.58 £0.04 1.41 £ 0.04
B(E® - =ty )(><10 0) 2.33 £0.35 2.14+£0.14 2.18 £0.1 1.09 £ 0.08
B(AY = pui )(XlO 1.57 £0.35 1.35+£0.02 1.40 £ 0.02 0.94 £0.02
B(X0 - pui,)(x10713) 1.05+0.14 1.13£0.15 0.92 +0.12
B(Z™ - npi,)(x107) 45404 4534+0.15 4.76 +0.14" 3.99 £0.17
B(x~ - e 5,)(x107) S 4.36 £4.01° 1.35+0.28 1.11+0.23°
B(E~ — A% 7,)(x107%) 573 +0.27 5.73 +0.27° 5.73 +0.27" 3.18+0.15
B(X — Ste- )(x10-20) e 3.41 4+ 3.20° 0.97 +0.35" 0.80 +0.28"
B(Xt — AOe+y ) (x1077) 20£0.5 1.88 £0.11 1.86 £0.11 1.04 £ 0.06
B(E™ - % 7,)(x1079) <23 x10° 2.57 +£2.53° 0.42 4+ 0.24° 0.37+0.21°
B(n - pe_l/e) 100% 100%" 100%" (58.38 +0.03)%

Expenmental data giving the final effective constraints on the parameters.
®Predictions depending on the relative phase, which is not constrained well with the present data.

(b) In the S, case, we consider the g> dependence of the
form factors and use all relevant experimental data to
constrain the parameters A%, A%, and 6, . We get
A%, = 1.04+0.04,A%,=0.98+0.03,and |6A/37\ <28°,
and the branching ratio predictions are given in the third
column of Table III. We can see that the experimental
data of B(E~ = A% 7,,5° - e i,, A’ - pe 7,
X" - ne 7,2 — nu"p,) give the finally effective
constraints on the relevant parameters, and the SU(3)
IRA predictions in the S, case are quite consistent
with the present data within 1o error. We predict that
B(E~ - 2%75,) is on the 107° order of magnitude,
which is promised to be observed by the BESIII and
LHCb experiments.

The results of the six d — ue~ ¥, decay modes are as
follows:
Three branching ratios, B(X~ — A%~7,), B(Z" —
A%*v,), and B(n — pe~1,), are precisely measured

0, _ ..
AL Alye ™ for the s — uf~ D transition,

— sy
ASy, Ape 2

(13)

where A’ contains f(0) but without the ¢> depend-
ence, and the parametric relations of the helicity
amplitudes by A/, are similar to the ones by A,; listed
in the last column of Table 1. For example, we take
£1(0) = |AL,| for the = — X°¢70, decays, f(0) =
AL, 4 2A%,¢' % | for the :‘
F1(0) = | = (245, +A3ze 32)| for the A° —» pf=ij,
decays.

for the d —» ue~D, transition,

— A%~ i, decays, and

3. Numerical results

The results of the 12 s - uZ~v, decay modes are as
follows:
(a) Inthe S; case, first, we use the experimental measure-

(©)

ments of B(E’ - Zte~7,) and B(X™ — ne i,) to
obtain A3, and As,, second, we use the data of B (AO -
pe~D,) to constrain §,, , which varies in the region
[-180° 180°], and then we give the predictions of
relevant branching ratios. We get A3, = 5.87 £ 0.21,
Az, =2.57£0.06, and [6,,,| < 155.90°, and the pre-
dictions are listed in the second column of Table III. One
can see that when the branching ratio predictions satisfy
the data of B(E® —» Z*e7,), B(X~™ - ne™7,), and
B(A® - pe~7,), the predictions of B(E~ — Ae~7,)
and B(E~ — A%~1,) obviously deviate from their
experimental data.
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! — (!
which can be used to constrain on Agl) and Aéz) but
not on the relative phase § ()> SO We have quite large

22

errors in the predictions of B(X™ — X% 7,, X0 —
te 0,52 —» 5% 5,). We obtain Ay =
4.61+£0.01 and A,, =5.854+0.16 in the S, case
as well as A}, =4.50 £ 0.02 and A}, = 0.36 £ 0.36
in the S, case. The predictions for B(X~ — Xle~7,,
¥ - ¥te,,E” —» E%7,) in the S, case are ob-
viously different than that in the S; case. We predict
that B(X~ — X%~ 1,,E~ — E%7,) are on the order
of 10710 in the S, case, which should be tested in the
future experiments.
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The longitudinal branching ratios of the Tg4 —
Tgp? 0, decays are also predicted in the S, case, and
they are listed in the last column of Table III. Note that
the lifetime of X° is very small, so the relevant decay
branching ratios are also very small, and the same things
happen in the later 20~ £~ and A%~ semileptonic
decays.

B. Ty —» Tg? v, semileptonic decays
The Feynman diagram for the 7',y — T3¢~ 0, decays is
also shown in Fig. 1. Similar to the Tgy — Tgp? Uy
semileptonic decays, the SU(3) IRA helicity ampli-
tudes Hﬁf‘; for Ty —» T3¢ D, decays can be parame-
trized as

V(A),IRA nii
Hﬂy(ﬂu)/ = ban];L(Tlo) j<T8)[ik]j7 (14)

where b, E(bn]);/;?;(qz), and where HY has been

defined below Eq. (5). The helicity amplitudes H}l/;fui

for different T, — T3¢0, decays are given in Table IV.
And the differential branching ratios of Tyg4 — Tl U,
decays can be written as

dB(Top = Tspt " 0y)

dq?
_ G%|qu,,|ZTA|ﬁB|q2 1 m% 2 B/ m% B/ 15
- 3843 m2 _? 1+ﬁ 2| ( )

with

TABLE IV. The helicity amplitudes H) of the T, —
Ty~ U, decays.

V()

H, 5. SU@3) IRA amplitudes
s> ul et

H(Q_ - Eof_ﬂf) b3,
3V2H (B — A7 7,) 3bs
V6H(E*~ = 3¢ 1,) b3,
V3H(EO - i) b
V3H(Z" = nt~o,) —b3;
V6H(X — pt~i,) —bs,
d— uep,:

V3H(E" = 2% 1,) b
2V3H(Z - Aoe_i o) 3by
V6H(Z~ - X0 7,) by
V6H(Z - Z*e*ue) by
H(A™ > ne™1,) —bs,
V3H(AY - pe=i,) —by

By = |Hy|* + |H_y + |Hy > + |H_y [
+[H_y |+ [H
= [Hy* + |H_ | + [Hy |* + [H_y [

+ Hoy P+ [Hyy P+ 3(1Hy P+ [H_[?). (16)
The S; case given in Sec. Il A will be considered in the
Ty — T3¢ U, semileptonic decays, where the SU(3),

parameters (b,,l);;(f;(qz) are treated as constant without

g* dependence. The only parameters are bs; for the s —
ut~v, transition and b,; for the d — ue v, transition,
respectively.

For the s — u#~i, transition, only B(Q~ — Z%~7,) has
been measured. The experimental datum is listed in the
second column of Table V. We use B(Q™ - E%~7,) to
constrain b3y, then give the predictions for other relevant
decay branching ratios. The results are given in the third
column of Table V. We obtain B(Q™ - E%7,) =
(3.7 £ 1.8) x 1073, which promises to be measured by
BESIHI and LHCb. For the d — ue~ 0, transition, no decay
mode has been measured yet. We use H(Q™ — E%e77,) =
H(A™ - ne™7,) by the U-spin symmetry, i.e., by; = —bs;,
to predict the branching ratios of the d — ue~v, transition,
which are listed in the third column of Table V, too.

In Table V, all branching ratios except for B(Q™ —
g% 5,, % 5,) are in the range of 107'% to 107" since
the lifetimes of the Z*%~, £*%~ and A%~ baryons are

very small.

TABLE V. The experimental data and the SU(3) IRA predic-
tions with the £1o error bar of B(T g — T3¢ ).

Observables Experimental Data[1] S

B(Q™ — E%,)(x1073) 56+28 5.6+2.8"
B(E™ - A% 1,)(x1071) e 6.6 +4.1
B(E™ — X0e7,)(x1071%) 22+14
B(E® - e i,)(x1071) 1.6 £0.9
B(Z*~ - ne™7,)(x1071) 1.6 £0.9
B(E* — pe~7,)(x10716) 9.3£55
B(Q™ — Z ‘”)(x10‘3) 3718
B(E*™ - A% i,)(x1071) 49=£30
B(E"™ — 2% 5,)(x1071) 1.6+ 1.0
B(E" - =t p,)(x1071) 1.0+0.5
B(Z*~ - npu~p,)(x1071) 12£07
B - pu 17”)(><10_16) 7.1+£42
B(E™ - 5% 7§ g)(><10 15) 36£22
B(Z* — A%ei7,)(x1071) 62+33
B(z*~ - 20e717,)(x1071) 27+14
Bz - e 7,)(x10716) 31+1.8
B(A™ = ne~5,)(x1071%) 49426
B(AY — pe=i,)(x1071) 1.7+£0.9

“Experimental data giving the final effective constraints on the
parameters.
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III. NONLEPTONIC TWO-BODY DECAYS OF
LIGHT BARYONS

In this section, we discuss the two-body nonleptonic
decays of the light baryons Tg ;y — TgMg, where Mg are
light pseudoscalar P and vector V meson octets under the
SU(3) flavor symmetry of u, d, s quarks:

+ K+

K~ EO —\/%7]8

S
+
S
N

KO . (18)

2
ooy

A. Weak decays of light baryons

In the SM, as shown in Fig. 2, there are two kinds of
diagrams for the nonleptonic s quark decays, the tree-level
diagram in Fig. 2(a) and the penguin diagram in Fig. 2(b).
The effective Hamiltonian for the nonleptonic s quark
decays at scales ¢ < m, can be written as [60]

10

G ViV
Her = 7%VudVZs Z [Zi(ﬂ) -
i=1

VoV

Yilu) | Qi) (19)

where V,, is the CKM matrix element, and z;(u) and y;(u)
are the Wilson coefficients. The four-quark operators Q; are

Y

(a)

Q1 = (d, ﬂ) —A(ﬁﬂs Jv_as

= (@) -5}y
QO35 = (ds)y- q;;(gq)vm’
Qs = (aﬁsa)v_Aq;S(q‘aqﬁ)m,
079 = %(a‘lsn_Aq%eq(qq)ViA,
Quo = %<&ﬂsa>v_Aq;Seq<qaqﬁ>m, (20)

where Q) , are current-current operators corresponding to
Fig. 2(a), 036 (Q7_109) are QCD (electroweak) penguin
operators corresponding to Fig. 2(b). In Eq. (19), the

magnetic penguin operators are ignored since their con-
th ts —
zi(p) = v yip) at p=

1 GeV on A% in the naive dimensional regularization

tributions are small. C;(u) =

scheme are [60]

C, =-0625, C,=1361, C;=0023,
C,=-0058, Cs=0009,  Cg=—0.059,
C;/a, =0.021,  Cg/a, = 0.027,
Co/a, = 0.036,  Cyo/a, = —0.015. (21)

Compared with tree-level contributions related to C| ,, the
penguin contributions are suppressed by smaller Wilson
coefficients C3 ;o and can be ignored in these decays.

The four-quark operators Q; can be rewritten as
(7:4*)(q;s), with g; = (u,d) given as the doublet of 2
under SU(2) symmetry by omitting the Lorentz-
Dirac structure. Since (7;¢*)(g;s) can be decomposed as
the irreducible representations (IR) of (2_ R2® 2_)s =
(2_[, D2, D 4)s, one may obtain

FIG. 2. Feynman diagrams for the s quark decays in the SM.
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O(2,), = () (@) + (ad)(ds),
O(2,), = (du)as) + (ad)(ds).
O} = 5 (au)(ds) -5 (Ad)(ds) + 5 (Au)(as),  (22)

and we have the relation O(4)}, =-0(4)3, = 0(4)},
using the traceless condition. Then Q;,, O3, and Q79
can be transformed under SU(2) symmetry as 2, @ 2, & 4,
2,/2,and 2, @ 2, @ 4, respectively,

2 = |
0, =04)}, + 50(217)2 - §O<2t)2’
1
0, = O}, ~3002,); + 2002,
05 = 0(2,),. 0, = 0(2)),,
0s = O'(2,),. Q6 = O'(2)),,
3 1 - 1 -
0, =30W, +30(3,),-300),
3 1 1
Qs _EO/<4){2 —50/(2 )2t5 O/( 2,25
3 1 - 1 -
Q9 = 50(4)%2 +50(2))2 =502,
3 | 1 -
Qi = 5 O4)f, - 50(21?)2 + 50(2’[)27 (23)
where O'(2,),, 0'(2,),, and O'(4)}, are operators related

to Q5 6.7.8» which have the same SU(3) structure as
0(2,)5. O(2,),, and O(4){, but different Lorentz-Dirac
structures.

By using the bases of the SU(2) symmetry, the effective
Hamiltonian in Eq. (19) can be transformed as

Gr -
Heff —V dVLlS[C4O(4) }2 + C2_,,O(2p)2

\/_
+CL0(4)1, + CIQPO'@;:

+ Cz‘[o(zt)z
), +C50'(2)),). (24)

with

_ 3
Ci=Ci+ G, +§(C9 + Cyp).

_ 2 1 1
G, chl —§C2 +C+5 (C9 —Ci),
_ 1 2 1
G, = _gcl +§C2 + Gy —§(C9 = Cio),
= 3
Ci=5(C +Gy),
= 1
Clz‘,, =Gs +§(C7 - Gy),
= 1
C5 = Ce— 2 (C;=Cy). (25)

From Eqg. (21), one can see that the contributions
from current-current operators related to C;, are much
larger than others related to C5 9. So we will con-
sider only current-current operator contributions in the
following analysis. After neglecting C; |, the effective
Hamiltonian in Eq. (24) can be rewritten as

Gr
V2

+C(H2) - HE) (26)

(H(2,) + H(2,))

b-)l»—

HR = ViuaVis {C [2H(4)

where C.. = (C, £+ C;)/2, and where H;;j is related to the
(4,4")(g;s) operators. From Eq. (21), one gets C3 /C*~
13.7%, so the C_ term related to H(2,) — H(2,) gives the
dominant contribution to the decay branching ratios. The
nonzero entries of H;g corresponding to current-current
operators in SU(2) flavor space are

H@E = HER =2, (27)

Note that H(4)3> = —1 contributes only to the penguin
operators, and we ignore it.

In Eq. (26), the 2 irreducible representation is a linear
combination of 2_1,,,, so we need only consider a single 2
when computing amplitudes from the invariants and the
reduced matrix elements [27].

The amplitudes of the Tg;9 — TgMg decays can be
written via the effective Hamiltonian in Eq. (19) as

A(Tg 10 = TsMyg) = (TsMg|Het| Ts.10)- (28)
These amplitudes may be divided into the S wave and
P wave amplitudes, which have been analyzed, for
instance, in heavy baryon chiral perturbation theory
[61-64], and by using a relativistic chiral unitary
approach based on coupled channels [65]. Moreover,
since ‘HIR is irreducible in SU(2) symmetry and the
initial and final state baryons (7T, Ty, Mg) are irre-
ducible in SU(3) symmetry, the amplitudes of Ty —
TgMg can be further written as
A(Tg 10 = TgMyg) =

(TgMg|HE|Ts 10) = A(O4) +A(O5).

(29)

1. Tg —» TgMg weak decays

Following Ref. [38], the Feynman diagrams for
Tg — TyMg nonleptonic s quark decays are displayed in
Fig. 3, and the SU(3) IRA amplitudes are
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Feynman diagrams of IRA for Tg ;7 — TgMg nonleptonic two-body decays with ¢" = s.

FIG. 3.
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where the coefficients a;, b;, c;, d;, e;, f; are constants which contain the Wilson coefficients, CKM matrix elements, and
information about QCD dynamics. Using the fact that H(4)% is symmetric in upper indices, b; and d; terms can be
simplified as

b3 - _blv b6 - —b4, bg — —b7, bz — bs — b8 — O,
dzzdl, d5 :d4, dg :d7, d3 d6 dg —0 (31)

In addition, using the facts that i, j are antisymmetric in ng]" and that i, j indices are arbitrary in e; terms, we have
as = —a,, a; = —ay, ag = ag, ag = as, e3 = —ey, e7 = —ey, eg = eg, eg =es. (32)
Finally, Eq. (33) can be simplified as

A(T3—=TsMyg)"** =a H(4 );l (T ) (Ts)[u]k(Ms)z +a2H(4)lk(T8)[U]n(TS)[tk]j(MS)l
k

+ayH(4)% (T) "I (Tg) 0 (M) +as H (4) % (Ts) " (Tg) ), (M) +ag H (4) ) (T) " (Tg) 0, (M)}
+ by H(4) % (T) M (Tg) i (M) + by H (4) % (Tg) i (Tg ) 1 (Mg )7 + by H (4) 2 (T) U (Tg) iy (Mg )
o H(4) (T M (Tg) i (M) 4o H (4) ¥ (T )i (Tg) 1 (M) + 3 H(4) K (T ) (T ) (Mg )"
ey H () F(Tg) M (Tg) g (M) 4 csH (4) K (T8) M (T ) g (Mig) "+ c6H (4) (T) " (Tg) 0 (Mg) !
+c7H(4) K (Tg) 0 (Tg) (M 8)7"+CSH(4)§ (T8) U (Tg) )i (M )1 4o H (4) K (T) U (T) 11 (M) !
+d H(A)F(T8) (T ) yuagy (M) 7"+ dy H (4)F(Tg) "V (T ) g, (Mg )7+ H (4) F (Tg) U™ (Tg) gy (M)
+€1H(z)k(T8)[lj]n(T8) (ijim (M)} +62H(2)k(T8> ”]"(Ts) (M)

+eyH(2)H(T5) M (Tg ) 1 (M) 4 s H (2) (T )i (Tg) 1 (Mg )+ e H (2)* (T5) " (T) 1 (M52
+ 1 H Q) (T) " (Tg) iy (M) 4 2 H (2)K(T5) n(TS)km]z(MS) +f3H (2 (Ts) M (Tg) i (M)
+f4H(2 )k(Tz;)[mJ(Ts)k, (M) + fsH (2)*(Ts) "I (Tg) (0 (M) 7+ f6H (2)* (T (T) 10 (M)
+f7H2) (Tg) U (Tg) iy (M) 4 fs H (2)(T) V(T ) i (M) + foH (2)K (T )M (Tg) 10 (M) 7

(33)

In Table VI, we list the IRA amplitudes of the T3 — TPy weak decays, which include the H(4)1?, H(4)3?, and H(2)?
terms. The corresponding 7y — TgVg weak decays have the same relations as the Ty — TgPg weak decays. If only
considering the dominant contributions from H(2)? and redefining the parameters

Ay =2(es+es) + (fat+ f5+f1+ fs),

Ay =2(es+e) + (fs + fo + fs + fo),

Ay =2(es+e5) = (fa—fs+ f1—[3).

Ay =4(er +exteq) +2(es —es) = 2f1 +2f2+ fa+ fs—f7-f3).

As =2(e; + ey + eq +2e5 + eg) = (f1 +2f2 + f3) + (f7 +2f5 + fo), (34)
the IRA amplitudes can be greatly simplified, as listed in the last column of Table VI, in which we can easily see the

relations of different decay amplitudes.
The branching ratios of Ty — TgPg can be written as

TA|me|

B(Tgy = TgpPs) = Ram?

|A(Tgs — TspPsg)|* (35)

For more accurate results, we will consider the mass difference in the amplitudes [66]
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TABLE VI. The SU(3) IRA amplitudes of the Ty — T3P weak decays.
B Simplified
Amplitudes H(4)12 H(4)%* H(2)? amplitudes
V2A(Zt = pa) —2(as + ag) —2(by + by) 2(as + as) 2(es +eg) + fa A
+(cq +2¢5 + cg) +fs+f7+ 13
+(C‘7 + 26‘8 + Cg) - 2(d4 + d7)
A(Z" - nz") (€4 = cg+¢7 = o) +2(dy + dy) —2(by + by) fa—Fe+f1—1fo A — Ay
A(X™ - nn™) —2(as + ag) — 2(by + b7) —(e5+ ¢+ cg +c9) —2(es + e6) —Ay
+2(dy + dy) —(fs+ fe+ fs+ fo)
V2A(Z0 = pr) 2(as + ag) = 2(by + by) cptestertoe 2es +eg) +fatfs+fr1+ s A
—(cq = c6 + 7= cg) —2(dy + d7)
ZA(EO - nﬂ'o) —2(615 + 06) + 2(b4 + b7) 2(615 + 06) + 2(b4 + b7) 2(65 + 86) A3
+(cq +2¢5 + ¢6) —(c4 —c6+ 7= c9) —(fa—fs+f1-1s)
+(c7 + 25 + ¢g) = 2(dy + dy) —2(d, + d7)
V6A(A® = pr™) —4(ay + ay + ay) — 2(as — ag) 21+ 200+ ¢y —4(e; + ey +eq) —2(es — e) A4
=2(2by + by — by) tCs—c7—c¢y +2f1 +2f2+ fat fs—f1-fs)
+(2¢1 = 2¢3 + ¢4 — 6 — 7 + C9)
+2(2d, + dy — dy)
2V3A(A® - na®)  —4(ar +ay + ag) — 2(as — ag) 4(a; + ar + ay) 4(er + ey +eq) +2(es5 — ) Ay
=2(2by + by — by) +2(as — ag) —Qfi+2fa+fatfs—f1-1s)
—2(c1 +2¢3 + ¢3) +2(2b) + by — b7)
—(€q +2¢5 + ¢) + (7 + 2¢5 + ¢9) (=2¢1 +2¢3— ¢4
+2(2d, +ds — dy) +¢6 + ¢7 = C9)
~2(2d, + dy — dy)
V6A(E~ = A7) 2(a; + ay + a4 + 2as + ag) —(e1 +2¢5 +¢3) 2(e; + ey + ey +2e5+ ¢) As
+(e7 + 25 + ¢9) =(fi+2f2+13)
+(f7+2fs + fo)
2\/§A(EO - AO”O) 2(0] +a,+ay + 2a5 + 06) —Z(Gl +a, +ay —2(6‘1 +e, +eq4+ 265 + 6‘6) —A5
2(c1 +2¢p 4 ¢3) = 2(c7 + 2c5 + ¢9) +2as + ag) +(f1+2f2+ f3)
—(f7+2fs+ fo)
2
A(Tgy — TgpPsg) %pcmNBNA’ (36) ATt - pr°) = —g(A% —Ay),
5 2
1
with AZT - nrt) = 5(2A% +4y),
V2
1 AX" - nr™) = —— (A1 — A;),
Pem = W \/(mi - (mB + mP)2><mf21 - (mB - mP)z)’ 3 : :
A A(Z = pr) = A,
NA = v/ ZmA, 12
AZ? = na¥) = = (A1 + 24;). 38
i . (50 — na) = 3 (4 + 24 39
B 2my ' There are three real parameters (As, A%ei¢13) in Eq. (38).

The experimental measurements with a +1¢ error bar
of the Ty — T3Py weak decays are listed in the second
column of Table VII. There are four real parameters
(Aq, Azei‘/’A,A3) for five X — pz,nz decays; one can
obtain A; =248 +£0.01, A, =1.74+0.01, and |¢4]| <
45.35° by using the data of B(X" — pa°, nat, 2~ — nz™).
Furthermore, B(X° — pz~) could be obtained in terms
of A;. In addition, the five £ — nzx, pzr decay modes also
have the isospin relations

Using the data of B(Z* — pa°, 2 - nat, 27 - nr™),
one can get B(X’ —» pr~) and B(X° - nz’), which are
listed in the last column of Table VII. We can see that SU(3)
IRA and isospin relations give consistent predictions
for B(X° — pz~).

For A° — pr, na decays, there is only one parameter,
Ay We first get the value of |A4] from the data of
B(A® — pz~), then, further considering the experimental
data of B(A® — nz), we finally give the predictions of
B(A® - pz~,na’) in the third column of Table VIL
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TABLE VII. The experimental measurements and the SM predictions with a =16 error bar of branching ratios of the T3 — TgPg weak

decays.

Observables Experimental Data [1] SU@3) IRA Isospin relations

Bt - pa)(x1072) 51.57+£0.30 51.57 £0.30" 51.57 +0.30°
B(Zt — nat)(x1072) 48.31 £0.30 48.31 +0.30° 48.31 +0.30°

B(Z™ — na™)(x1072) 99.848 £ 0.005 99.848 + 0.005" 99.848 + 0.005"

B(Z? = pr)(x10719) e 4.82 +£0.49 4.82 +0.50

B(E* - na®)(x10710) 2414027

B(AY = pr)(x1072) 63.9+0.5 64.19 +£0.21°

B(A® - nz)(x1072) 35.8+£0.5 35.42+0.12°

B(E= - A%7)(x1072) 99.887 £ 0.035 99.887 + 0.035"

B(E° - A%°)(x1072) 99.524 4+ 0.012 80.016 + 3.746"

Expenmental data have been used to give the effective constraints of the parameters.
Expenmental data have not been used to constrain the parameters.

One can see that the data of both B(A° — pz~) and
B(A® - nz°) give the effective bounds on the parameter
(A° - pr~,na) are in
agreement with the present data. Note that, if only consid-
ering the experimental constraint from B(A° — pz~), the
prediction of B(A® — pz~) given in the third column of
Table VII would be the same as the experimental datum. The
slight difference between the prediction and the datum comes

from the experimental constraint of B(A? — nz?).
ForZ~ — A%z~ and 2° — A%z° decays, there is only one
parameter As. We use the data of B(E~ — A%z7) to obtain
|

A(T 10— TsMg)"™ =a H(4),5(T10)" (Ts) i) (Ms)] +a2H (4) 5 (T10)" (Ts) 13 (M)}
+byH(4) 3 (T10)"(Ts) i (M) T +byH(4) 1% (T10)" (Tg) (i (M) 7+ b3 H (4) 5 (T10)" (T'g) iy (Mg )
+ & H(4)H(T10)" (Ts) )i (M) ] +-CoH(4)F(T10)" (Ts) iy (M)} +E3H (4) K (T10)" (T'8) i (M3) !
+d i H(4)F(T10)" (Tg) gy (M) + do H (4)F(T10)" (T) s (M3) 7+ d3 H (4) K (T'10)" (T ), (M5) "
+&H(2)K(T10)" (Ts) ;M) +22H (2)X(T10)" (Tg) )i (M3}
+F1H2) (T10)"(T8) (i (M3) ]+ F2H(2) (T10)" (T8) )y (M) + F3H (2)* (T10)" (T'3) i (M'3) 7
(39)
Considering the fact that H(4)% and (T',)"" are symmetric in upper indices, we have the relations
a = a, b, =0, by = —b,, d, = d,, d; =0, ey =é. (40)
Then Eq. (39) can be simplified as
A(Tyg = TsMg)"®4 = @ H(4)K(T10)"(Ts) );(Ms)[" + byH(4) % (T10)" (T) s (Ms) "
+ ELH(4) (T 10)" (T) s (M) + EH (4) K (T 1) (T5) (1,0 (M5!
+ &3 H ()M (T10)" T (Tg) (M) + dy H(4)F(T10)" (T gy (Ms)7"
+ & HQ2)f (TIO)m/(TS)[im]j<M8)m+f1 (2 )k(Tlo)Mj(Ts)[ki]m(MS)71
+ foH(2 )k(TIO)m](TS)[km]z(MS) + f3H(2 )k(Tlo)mj(Ts)[im]k(MS)T- (41)

|As], E%— A%z°). We obtain B(E° — A%7°%) =
(80.016+43.746) %, which is about 16% smaller than its data.
The reason could be that the neglected C, term or SU(3)
breaking effects might give a contribution of a few percent to
B(E= - A%~) and B(E° — A%z°).

2. Tyy — TgMg weak decays

Feynman diagrams for the 7,y — TgMjg nonleptonic
decays are also displayed in Fig. 3, and the SU(3) IRA
amplitudes are

The IRA amplitudes for the T, — TgPg weak decays are listed in Table VIII, and the IRA amplitudes for the Ty — TgVy

weak decays have similar relations. If neglecting the H(4)3? terms and the c; terms in H(4)12

, and redefining the parameters
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TABLE VIII. The SU(3) IRA amplitudes of the 7, — TsMg weak decays.
Amplitudes H(4)P2=1 H(4)3 =-1 H(2)?=1 Simplified amplitudes
A(Q™ - E%7) 2a, 2¢, A,
V2A(Q - E-20) -2a, 2a, 2¢ Ay
V6A(Q~ — A°K") fi+2fr+ 13 A3
3\/24(5*_ —>A0ﬂ'_) 6d] 26_1 +62+C_3 651 +]?1 +2f2 +f3 3A1 JrA}
VBA(E*™ - X077) 2a, —4b, =0 28, - fi1+13
V6A(E*™ - 27a°) —2a, 2da; = 2by +c3—¢; 2, - fi1+ /3
\/gA(E*O N 2+ﬂ.—) 2&1 +C3—Cy 26_1 Al
V3A(E® > 77t 6= G 2by fi—1f3
6A(E*0 - A%70) —6d; +2(2¢, + ¢, + ¢3) 6a, 6e, + f, + 2f2_+ 13 34, + A,
2V3A(E?C - 597%) 2a, — 4b, —2a, =2e, - fi+f3
V3A(E*™ - nK~) 2b, 2d, —f2—=13
V3A(Z* - nr) —2a, + 2b, —C) = 3 +2d, =28~ f,~ f
A =2(a, + &), B(E*® - A%z°) depends on the relative phase between A,
Ay =2(=d; + &) and A;.
Ay =2(f1 +2f2 + f2), (42)

the six decay amplitudes can be given in simpler forms,
which are shown in the last column of Table VIIIL
Furthermore, we have the relation A(E*~ — X0z7) =
A(E* - £72°) if considering only the dominant H(2)?
contributions.

The branching ratios of 7'j; — TgPg can be obtained in
terms of the IRA amplitudes

TA|pcm|

B(T s = TspPs) = 67m2
A

|A(T10a = TspPg))*,  (43)

and the mass difference in A(T g4 — TggPg), which is
similar to Eq. (36), is also considered.

At present, only three Q~ decay modes have been
measured:

B(Q~ — E%7)(x1072) = (23.6 £ 0.7) x 1072,
B(Q~ — E %) (x1072) = (8.6 £ 0.4) x 1072,

B(Q~ = A°K™)(x1072) = (67.8 £0.7) x 1072, (44)
We obtain |A;| = 8.544+0.19, |A,| =7.47+£0.23, and
|A3] =5.36 £ 0.08 from the data of B(Q~ — E%z7),

B(Q~ — E72Y%), and B(Q~ — A°K~), respectively. Then
we predict that

B(E* — A%~) = (1.06 + 0.90) x 1072,
B(E - £t77) = (5.96 £ 0.58) x 1074,
B(E - A%%0) = (5.02 +4.06) x 10713, (45)

where the prediction for B(Z*~ — A%z~) depends on the
relative phase between A, and A, and the prediction for

B. Electromagnetic or strong decays of light baryons

The light baryons T, can also decay through electro-
magnetic or strong interactions. The Feynman diagram of
the electromagnetic or strong (ES) decays of T, is shown
in Fig. 4. In this case, we need only consider the SU(3)
symmetry between the initial and final states. The SU(3)
IRA amplitude of the Ty — TgMg ES decay is

A(Tyg = TgMg)™ ™% = By (T10)"*(Ts) y;(Mg)-  (46)

There is only one parameter ;| for this IRA amplitude. The
IRA amplitudes of all of the ES T, — TgPg decays are
given in Table IX.

For these ES decays, only three branching ratios are
measured; they are given in Table X. We first get |3, | from
the data of B(X* — Xx), then also consider the experi-
mental constraint from B(X* — Ax), and finally give the

Tm — Tg]\/jg : /31

FIG. 4. Feynman diagram of the IRA for the 7', — TsMg ES
decays.
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TABLE IX. The IRA amplitudes of the 7|, — TsPg ES decays
under the SU(3) flavor symmetry.

Amplitudes SU@3) IRA amplitudes
VBA(ZH = X0zt P
VBA(ZH — Xta0) P
2V6A(Z0 — x020) 0
VBA(Z = =tx7) P
VA - = 7t) -/
V6A(Z = =20) P
V6A(Z~ = 077) P
3V2A(Z = Azt) =3
6v2A(Z0 — A%70) 6/
3V2A(Z — A7) 3p
V6A(E® — 2070) P
V3A(E® - E-xt) 5
V6A(E*™ - E720) b
V3A(E* = E%7) P

predictions of other specific branching ratios. Our SU(3)
IRA predictions are given in Table X, where one can see
that, within 1o error, the experimental result of B(X* —
Ar) can effectively constrain |f;]. In addition, when the
IRA predictions are consistent with the data of B(X* — Zx)
and B(X* — Ax), the prediction of B(E* — Er) is slightly
larger than its experimental result, which might imply
that the SU(3) breaking effects could give visible contri-
butions to B(E* — Ex). Nevertheless, the prediction and

TABLE X. Branching ratios of Ty — TgPg ES decays within
lo error.

Branching ratios Experimental Data SU@3) IRA
Bz - 207%)(x1072) 5.34 £0.50
Bzt — =+ 0)(x10—2) e 6.59 & 0.61
B(z*o Y 0)(X10 ) 0
B0 — =ta7)(x1072) e 6.20 +£0.78
B(ZW - =~ :r*)(xlO 2) 4.71 £0.59
B(E*‘ - X72%)(x1072) 5.40 £ 0.60
B(Z* — 2077)(x1072) 5.66 +0.63
B(Z* — =) (x1072) 11.7£ 1.5 11.24 £0.28
Bz — AOz)(x1072) 86.14 £ 7.62
B — A%20)(x1072) 91.68 + 11.36
B(Z* — A%z7)(x1072) e 84.44 £ 8.96
B(Z* - A%7)(x1072) 87.0+ 1.5 87.00 + 1.50°
B(E* - 2929)(x1072) 48.22 £6.55
BE? - E rﬁ)(x]O 2) 76.23 +£10.32
B(E*~ - E72%)(x1072) 43.05 £ 11.01
B(E~ - =0 )(><10 2) e 94.33 +£24.12
B(E* - ~n)(x10 ) 100 131.01 4 24.40°

*Experimental data have been used to give the effective
constralnts on the parameters.

Experlmental data have not been used to constrain the
parameters.

experimental data of B(E* — Ex) can be consistent within

1.30 error. And moreover, the decay width predictions of
20 - Z7 and E*~ — Erx in the chiral quark-soliton model
are also slightly larger than their experimental data [67].

Note that the ES Ty — T3Py decays and the ES Ty —
TgK decays are not allowed by the phase space since the
sum of the final hadron masses is larger than the mass of the

initial state.

IV. SUMMARY

Light baryon decays play a very important role in testing
of the SM and searching for new physics beyond the SM.
Many decay modes have been measured, and some decays
can be studied at BESIII and LHCb experiments now.
Motivated by this, we have analyzed the semileptonic
decays and two-body nonleptonic decays of light baryon
octets and decuplets by using the irreducible representation
approach to test the SU(3) flavor symmetry. Our main
results can be summarized as follows:

(a) Semileptonic light baryon decays.—We have found
that all branching ratio predictions of octet and
decuplet baryons through s — uf"0, and d—
ue~ U, transitions with SU(3) IRA in the S, case are
quite consistent with the present experimental mea-
surements within 1o error. We have predicted that
B(E - 2% 5,) and B(Q™ — E% ,) are on the
order of magnitudes of 107% and 1073, respectively,
and that B(X~ - X%~ 1,,E~ — E%~7,) are on the
order of 107'°, These decays promise to be observed
by the BESIII and LHCb experiments or other future
experiments. However, other branching ratios, which
are in the range of 107 to 107'%, may not be
measured for a long time. Moreover, the longitudinal
branching ratios of decays of Tgy — Tgpf ¥, have
also been predicted in this work.

(b) Nonleptonic two-body light baryon decays.—We
have obtained the relations of different decay am-
plitudes by the SU(3) IRA and isospin symmetry. In
Tg — TgPg weak decays, we have found that SU(3)
IRA predictions of the branching ratios of X, A
baryons are consistent with the present experimental
data, B(X° —» pz~,nza") are on the order of 107!°
by the SU(3) IRA or isospin symmetry, and the
neglected C, terms or SU(3) symmetry breaking
effects might give a contribution of a few percent
to the two branching ratios of Z — Az. In the
To — TgP weak decays, we have predicted that
B(E*" - A%7), B(E? - A%Y%, and BE" -
Y*z~) are on the order of 107!2, 10713, and
10714, respectively. In the T,y — Tg¢Pg ES decays,
when the IRA predictions are consistent with the
data of B(X* — Zz) and B(X* — Ax), the prediction
of B(E* — Ex) is slightly larger than the experi-
mental data, which implies that the SU(3) symmetry
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breaking effects could give visible contributions to
B(E* - Ex). In addition, we have given all of the
specific branching ratio predictions for these 7'y —
TgPg ES decays.

Although flavor SU(3) symmetry is approximate, it can
still provide us with very useful information about these
decays. According to our predictions, some branching
ratios will be accessible to the experiments at BESIII
and LHCb. Our results in this work could be used to test
the SU(3) flavor symmetry approach in light baryon decays
in future experiments.
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