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We present a new approach to coherent parton showers in the decays of colored resonances, based on the
notion of “resonance-final” (RF) QCD antennae. A full set of mass- and helicity-dependent 2 → 3 antenna
functions are defined, with the additional requirement of positivity over the respective branching phase
spaces. Their singularity structure is identical to that of initial-final (IF) antennae in 2 → N hard processes
(once mass terms associated with the incoming legs are allowed for), but the phase-space factorizations are
different. The consequent radiation patterns respect QCD coherence (at leading color) and reduce to
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and eikonal kernels in the respective collinear and soft
limits. The main novelty in the phase-space factorization is that branchings in RF antennae impart a
collective recoil to the other partons within the same decay system. An explicit implementation of these
ideas, based on the Sudakov veto algorithm, is provided in the VINCIA antenna-shower plug-in to the
PYTHIA 8 Monte Carlo event generator. We apply our formalism, matched to next-to-leading order accuracy
using POWHEG, to top quark production at the LHC, and investigate implications for direct measurement of
the top quark mass. Finally, we make recommendations for assessing theoretical uncertainties arising from
parton showers in this context.
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I. INTRODUCTION

In the reconstruction of resonances produced at the Large
Hadron Collider, shower Monte Carlo (MC) event gen-
erators (see [1]) play an ongoing critical role. Despite this,
many are only formally accurate to leading-logarithm, such
that there remains a range of ambiguities in their precise
definition, for example, in the exact form of the splitting
kernels used to define emission probabilities and Sudakov
factors. This in some cases can lead to large theoretical
uncertainties in direct measurements, of which the most
notable example is the mass of the top quark. Nevertheless,
analogous to the notion of using “sensible” scale choices
for evaluating matrix elements of hard processes, some
ambiguities can be guided by the inclusion of well-
motivated physical properties. One such formally sublead-
ing property is that of coherence.
In kinematic limits that correspond to approximately on-

shell internal propagators, quantum field theory amplitudes
exhibit simple and universal factorization properties. These
are at the heart of both the treatment of (sequential)
resonance decays and bremsstrahlung corrections in

high-energy processes. Decay processes in the narrow-
width limit, as well as the collinear limits of bremsstrahlung
processes, are particularly simple (modulo spin correla-
tions) and can be obtained from (squared) Feynman
amplitudes which each involve only a single divergent
propagator structure. The soft limits, however, character-
ized by so-called eikonal factors, intrinsically involve a
coherent sum over several interfering amplitudes, each with
a different propagator structure.
In QCD, one starts from the leading-color (LC) approxi-

mation, which reduces the number of interfering amplitudes
that need to be considered to just two for a given gluon
becoming soft in a given color ordering. These are the two
amplitudes that contribute to the corresponding eikonal
factor. For the specific case of decays of colored resonances,
the radiation patterns are normally cast solely in terms of
emissions from the produced decay products. The reasoning
for this is that in the rest frame of the decaying particle the
contribution to the radiation patterns from the decaying
resonance itself can be neglected and that the distinction
between which particle radiates is anyway gauge dependent
and hence unphysical. Formally, one may partition the full
(coherent and gauge invariant) radiation pattern into a term
representing radiation from the decaying resonance and one
representing radiation from its decay product(s). This is
illustrated for top decay in Fig. 1. The former is subdominant
(depending on the details of the partitioning, it may even
turn out to be negative) and is neglected in most current
shower MC implementations we are aware of. It is worth
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emphasizing that matrix-element corrections (MECs) are
widely used (e.g., in PYTHIA and in POWHEG) to correct the
first emission to the full result; but in this work we wish to
address the issue of coherence in resonance decays more
generally and apply it to all emissions.
Noting that the antenna-shower formalism (see [2–4])

does not require a partitioning of the radiation pattern into
“radiators” and “spectators”, we derive a set of coherent
antenna functions for “resonance-final” (RF) color flows,
with full mass- and helicity-dependence. We note that these
functions exhibit the same singularity structures as corre-
sponding “initial-final” (IF) antenna functions derived
elsewhere [4,5], once general mass terms are allowed for
in the latter. Somewhat arbitrarily we also choose the
nonsingular terms to be the same for the IF and RF antenna
functions, with minor changes relative to [4,5] to ensure
that all of the IF and RF antenna functions remain positive
over all of their respective phase spaces. This makes them
straightforward to interpret in the probabilistic context of a
shower MC. We combine these antenna functions with a
recoil strategy (alternatively known as a “kinematics map”)
which preserves the four-momentum of the decaying
resonance (and hence in particular its invariant mass),
while imparting a (collective) recoil to the other final-state
particle(s) produced in the decay. We argue that this
approach should exhibit improved coherence properties
over the baseline PYTHIA shower model [6,7] and that it
represents an interesting alternative to other current shower
MC implementations. We also show that it combines quite
naturally with resonance-aware matching in the POWHEG

formalism [8–12].
Finally, we consider top quark production as a case

study for an application of our formalism. This is a
particularly well-motivated example, since it was recently
noted in [13,14] that the existing approaches of PYTHIA 8.2

[6,15–17] and HERWIG 7.1 [18–22] exhibit substantial
shape differences in their predictions for the differential
distribution of the reconstructed invariant mass of the top,
already at the level of the parton shower. This has potential
implications for the minimum uncertainty present in the

measurement of the top quark pole mass extracted through
direct methods. Reducing this uncertainty is desirable
since not only is the top quark mass an important
parameter for many beyond-the-Standard-Model exten-
sions, but also since the stability of the electroweak
vacuum is highly sensitive to its precise value [23].
The outline of the paper is as follows. In Sec. II we give a

review of existing treatments of resonance decays in
shower MCs. In Sec. III we provide details of our new
implementation of resonance decays within the VINCIA

antenna shower. In Sec. IV we describe resonance-aware
matching methods in POWHEG and how these may be used
alongside VINCIA. In Sec. V we present our results for top
quark production. Finally, we summarize in Sec. VI.

II. REVIEW OF EXISTING TREATMENTS OF
RESONANCE DECAYS

There are already a range of existing frameworks
available for the treatment of resonance decays, so before
describing our implementation we briefly review these
alternatives.
There are a number of components to a parton shower

in which there is some flexibility, that must be defined for
the shower to be fully specified. These include the precise
form of the splitting kernels in no-emission probabilities,
the recoil strategy employed, and the nature of the
evolution variables used (which determine how ordered
sequences of emissions are generated). One manner of
classifying the available options is via the method chosen
for organizing the singular limits across the set of functions
that represent the underlying color-connected objects
(each of which is deemed to radiate independently in the
leading-color approximation). As already noted, in the
global antenna-dipole shower framework [2–4,24–26], a
single antenna function contains the entire soft singularity
of two color-connected partons, but the collinear limit for
gluons is partitioned across two neighboring antennae.
In the “partitioned-dipole” class of showers, both collinear
and soft singularities are partitioned across neighboring
dipoles, and in the case of initial-final color flows, one
distinguishes between separate final-initial and initial-final
dipole ends (the sum of which is equivalent to a single
initial-final antenna in the antenna-shower framework).
Of this type there are two main variants.
The first is based on Catani-Seymour factorization, and

the form of the splitting kernels are those used in the Catani-
Seymour dipole subtraction method [27–29]. Such a shower
is the default used in the SHERPA event generator [30],
and more recently is also available as an option in HERWIG 7

[20,21,31]. Here the eikonal is carefully partitioned such that
coherence should be recovered after summing over all
dipoles. While this procedure is effective for massless
initial state particles, since mass corrections are typically
negative, the initial-final dipole end in resonance decays can
become negative. SHERPA and HERWIG offer slightly different

FIG. 1. The two lowest-order Feynman diagrams that contrib-
ute to t → bWg. In both cases, the incoming (outgoing) fermion
leg represents an on-shell t (b) quark, with mass mt (mb). In the
first diagram, p2

t� < m2
t . In the second diagram, p2

b� > m2
b.
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solutions to this issue. In SHERPA [32], the resonance is taken
to not radiate in decay; instead the entire singularity structure
is given to the colored particle in decay, in a manner akin to a
sector antenna shower [33]. All recoil is given to the
uncolored final-state decay product (e.g., in t → bW the
W always takes the recoil). In the HERWIG dipole shower [22]
the contribution from the initial-final dipole end is neglected
entirely; the recoil from the final-initial dipole end is shared
out between all the other decay products present (this is a
similar approach to our implementation, described in
Sec. III A). We note that currently the dipole shower option
for HERWIG is only available for strictly on-shell resonances.
Another variant of the partitioned-dipole shower is the

transverse-momentum-ordered shower implemented in
PYTHIA 8 [6,7,16,17]. Here, although the individual soft
limits for each radiator are reproduced with the vanishing of
the ordering variable, it is known that the partition across
initial-final dipoles does not preserve coherence [34].
Despite the lack of coherence, this can be corrected to
some extent through matrix-element corrections [15],
which is the default option. In addition, ordering in trans-
verse momentum allows for sufficiently compatible defi-
nitions such that the multiple-parton interactions (MPI) can
be interleaved with the primary parton shower [6,7].
PYTHIA 8 has two options for how recoils are performed
in resonance decays. The default option is that after the first
emission the nearest colored parton becomes the recoiler.
Alternatively it is possible to modify this behavior so that
the original uncolored decay product always take the recoil
(as in SHERPA).
As representative of the class of partitioned-dipole

shower we use PYTHIA 8.240 [17] for later comparisons
in Sec. V, in part because there is already available an
interface to recent versions of POWHEG BOX [10,12,13].
In addition since both VINCIA and PYTHIA share the same
modeling of nonperturbative physics such as hadronization
and underlying event (although they may differ in the
default tuned values of parameters controlling these proc-
esses), this better allows us to isolate differences that are of
perturbative origin.
An alternative to partitioning the singular limits is for each

splitting function to take the full singularity structure, and to
avoid overcounting via a phase space veto. In this class
coherence is guaranteed, since through the phase space veto
each emitter can no longer be considered independent. This
is the method employed by both sector antenna-showers
[33], in the virtuality-ordered shower in PYTHIA 6 [16], and in
traditional angular-ordered showers of which the q̃-shower
implemented in HERWIG 7 is an example [18]. In the latter,
the relative opening-angle between color-connected partons
is imposed as an ordering variable and must reducewith each
subsequent emission. A downside to angular-ordering is that
the phase space factorization is only approximate, resulting
in dead zones away from the singular limits. The q̃-shower
was extended to include resonance decays in [22]. As for

SHERPA, the uncolored decay product is again chosen as
the recoiler. We take the q̃-shower using HERWIG 7.1.4 as
representative of this class for later comparisons. Again, this
is partially motivated by the presence of an existing interface
to POWHEG BOX [13,14].

III. ANTENNA SHOWERS IN RESONANCE
DECAYS

A. Resonance-final phase space factorization

Denoting a generic shower evolution variable by Q2, the
no-emission probability for an antenna evolved over the
interval ½Q2

1; Q
2
2� is given by the antenna Sudakov factor,

e−A, where

AðQ2
1; Q

2
2Þ ¼

Z
Q2

2

Q2
1

dΦant4παsCā: ð1Þ

Here Φant is the (three-dimensional) 2 → 3 antenna phase
space, ā is a color- and coupling-stripped antenna function,
and C is the appropriate color factor (for a discussion on the
conventions used, see [35]). The antenna function captures
the leading singularities of the relevant tree-level matrix
elements (but may also contain finite terms in addition).
The antenna phase space depends on a factorization of

the postbranching Lorentz invariant phase space,

dΦnþ1 ¼ dΦant × dΦn ð2Þ

in such way that the degrees of freedom of the branching
itself and the prebranching particles can be treated inde-
pendently. Unlike in traditional parton showers where
such phase space factorizations only hold in the soft and
collinear limits, Eq. (2) is exact.
We now consider the decay of a colored resonance

A → K þ fXg, where K is a final-state particle color-
connected to A, and fXg schematically denotes any other
decay products. (For example, in t → bW, the top quark
would be identified with A, the b quark with K, and the W
with X.) The phase space measure is simply [36]

dΦA→KþfXg ¼
1

8ð2πÞ2
λ1=2ðm2

A;m
2
AK;m

2
KÞ

m2
A

dΩK; ð3Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc is the
Källén function, and m2

A ¼ p2
A, m2

AK ¼ ðpA − pKÞ2 ¼
p2
X ¼ m2

X and m2
K ¼ p2

K. There are only 2 degrees of
freedom, representing the global orientation of the frame.
After a branching from the dipole stretching between

A − K, we denote the postbranching partons by a →
jkþ fX0g, where the prime on X0 emphasizes that an
overall recoil may be imparted to the X system. Defining
the invariant sjk ≡ 2pj · pk [as opposed to the m2

jk ¼
ðpj þ pkÞ2�, the phase space can be written as
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dΦa→jkþfXg ¼
1

ð4πÞ5
dsajdsjkdϕ

m2
A

dΩK; ð4Þ

where ϕ corresponds to a rotation of the branching plane
about the original orientation of K.
The antenna phase space measure is therefore

dΦant ¼
1

16π2
dsajdsjk

λ1=2ðm2
A;m

2
AK;m

2
KÞ

dϕ
2π

: ð5Þ

Implicit in the above derivation is the assumption that the
mass of the system of recoilers, p2

X ¼ ðPi∈fXg piÞ2 is
preserved; hence p2

X ¼ p2
X0 , and that this is equivalent to the

antenna mass. In addition we impose that the invariant mass
of the resonance is unchanged (a feature that is essential for
resonance-aware matching), leading to the identity,

sAK þ sjk þm2
k þm2

j −m2
K ¼ saj þ sak: ð6Þ

Finally it is presumed that j and k are produced on-shell.
We now turn to the subject of how the postbranching

kinematics are constructed from a given point specified by
saj, sjk, and ϕ, subject to the aforementioned constraints.
Such a prescription is called a recoil strategy or kinematic
map. It is easiest to set up the kinematics in the resonance
center-of-mass frame, such that

Ej ¼
saj
2ma

; ð7Þ

Ek ¼
sak
2ma

; ð8Þ

cos θjk ¼
2EbEg − sjk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

k −m2
kÞðE2

j −m2
jÞ

q : ð9Þ

At this stage there remains an ambiguity regarding rotations
ψ in the branching plane (about an axis perpendicular to the
dipole axis). We specify that X only recoils longitudinally
with respect to the dipole axis, and all transverse recoil is
shared between j and k. Finally we rotate by ϕ about the
dipole axis.
Following the above construction, we boost back to the

lab frame to recover the momentum of the resonance a.
Each particle in the system fXg receives its share of the
momentum by boosting each by pX − pX0.
We remark that the kinematic map described here is very

similar to the prescription recently implemented in [22].
Before concluding this section, we note that had we

instead selected a single particle R → r to act as a recoiler,
it no longer holds that the mass of the antenna is equivalent
to the mass of the recoiler (after the first emission).
Supposing we represent the decay as A → RK þ fXg and
a → rþ jþ kþ fXg before and after the emission, and
by definition neither Að¼ aÞ nor fXg recoil, factorization

implies we must preserve pR þ pK ¼ pr þ pj þ pk. Now
we also have that

p2
R ¼ ðpA − pXÞ2 þm2

K − 2ðpA − pXÞ · pK; ð10Þ
p2
r ¼ ðpA − pXÞ2 þm2

k þm2
j

− 2ðpA − pXÞ · ðpk þ pjÞ: ð11Þ
Thus it becomes impossible to simultaneously preservemR
and mAK without violating the factorization. It is undesir-
able to change either; for example in the case of top decays,
where a W is selected as the recoiler, the mass should be
distributed according to a Breit-Wigner that is very
precisely measured, so it would be inappropriate to give
it a large virtuality. On the other hand, sacrificing mAK is
tantamount to modifying the factorization Eq. (5): every-
where we must replace A → A − X and a → a − X. In
addition to modifying the volume of phase space, the
identity of the invariants is modified with respect to those
which appear in the singular part of the real emissionmatrix
elements. Thus a map in which a single particle recoils is
pathological from the perspective of the antenna formal-
ism. Nevertheless we have implemented such a map for the
sake of understanding its effect and for more equivalent
comparisons with PYTHIA.

B. Massive initial-final antenna functions

The final-final antenna functions used in VINCIA were
first derived in [35] and extended to include mass effects in
[37]. Massless initial-final and initial-initial antenna func-
tions were presented in [38]. Finally helicity antennae were
added in [5] for the massless case.
Here we shall define so-called “resonance-final” anten-

nae where both initial- and final-state partons may be
massive. These shall be expressed in terms of the dimen-
sionless invariants, defined as follows:

yaj ¼
saj

sAK þ sjk
; yjk ¼

sjk
sAK þ sjk

;

μ2a ¼
m2

a

sAK þ sjk
; μ2j ¼

m2
j

sAK þ sjk
;

μ2k ¼
m2

k

sAK þ sjk
: ð12Þ

The mass corrections act to regulate the collinear limit;
furthermore they contribute quite large negative corrections
away from the limit. In fact, if only the leading singular
terms are retained (for example, the Altarelli-Parisi splitting
kernels) these can become negative. However, by including
additional finite terms (that are required to vanish in the soft
and collinear limits) we can guarantee positive-definiteness
over the entire physical phase space.
The full list of helicity-dependent antenna functions may

be found in Appendix A. Their singular terms are obtained
from the massive helicity-dependent final-state antennae
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through crossing symmetry, while their nonsingular terms
have been modified to ensure positivity over the full RF and
IF branching phase spaces.
The singular parts of the unpolarized antenna functions

(defined as the sum of helicity-dependent antennae, aver-
aging over initial helicities) relevant for top quark decay
are, for qAqK → qagjqk,

aRFg=qq ¼
1

sAK

�ð1 − yajÞ2 þ ð1 − yjkÞ2
yajyjk

−
2μ2að1 − yjkÞ

y2aj
−
2μ2k
y2jk

�
; ð13Þ

for qAgK → qagjgk,

aRFg=qg ¼
1

sAK

�ð1 − yajÞ3 þ ð1 − yjkÞ2
yajyjk

þ ð1 − αÞ 1 − 2yaj
yjk

−
2μ2að1 − yjkÞ

y2aj

�
; ð14Þ

where α ∈ ½0; 1� parameterizes the partitioning of the col-
linear singularity of the final-state gluons,1 and for g → qq̄
splittings of the final-state gluon, qAgK → qaqjq̄k,

aRFq=gX ¼ 1

2m2
jk

�
y2ak þ y2aj þ

2m2
j

m2
jk

�
: ð15Þ

Both of the two emission antennae reduce to the
(massive) eikonal in the soft (yjk → 0, yaj → 0) limit,

aeik ¼
1

sAK

�
yak

yajyjk
−

μ2a
y2aj

−
μ2k
y2jk

�
: ð16Þ

These also reproduce the appropriate Altarelli-Parisi
splitting functions in the (quasi)collinear limit [39,40].
In addition to being used for coherent branchings in

decays of resonances, the same antennae are used for
backwards evolution of the initial state and are then labeled
IF antennae; in this case the initial-state partons are
restricted to be massless. This choice is to allow consis-
tency with the five-flavor massless scheme, since massive
initial partons require corrections to the PDFs.2

As mentioned above, we choose (helicity-dependent)
nonsingular terms to ensure positivity of all of the antenna

functions over both the RF and IF phase spaces. At the
unpolarized level, these sum to

fRFg=qq ¼
1

sAK

�
−
μ2a
yaj

ðð1 − yjkÞ þ ð1 − yajÞÞ

þ μ2k
yjk

�
1

2
ð2 − yjkÞ

�
2þ y2aj

1 − yaj

��

þ 1

2
ð2 − yajÞð2 − yjkÞ

�
; ð17Þ

fRFg=qg ¼
1

sAK

�
μ2a
yaj

ðð1 − yajÞ − ð2 − yjkÞ2Þ

þ 3

2
þ yaj −

yjk
2

−
y2aj
2

�
; ð18Þ

and fRFq=gX ¼ 0.
In addition to the above “resonance-final” antennae, the

following additional initial-final antennae are required to
study resonance processes in hadron colliders (for example
pp → tt̄). For gluon emissions gAqK → gagjqk we have

aIFg=gq ¼
1

sAK

�ð1 − yjkÞ3 þ ð1 − yajÞ2
yajyjk

þ 1þ y3jk
yajð1 − yjkÞ

−
2μ2k
y2jk

�
1 −

yjk
4
ð3 − 3y2jk þ y3jkÞ

�
2þ y2aj

1 − yaj

��

þ 1

2
ð2 − yajÞð3 − yjk þ y2jkÞ

�
; ð19Þ

and for gA − gK → gagjgk we have

aIFg=gg ¼
1

sAK

�ð1 − yajÞ3 þ ð1 − yjkÞ3
yajyjk

þ 1þ y3jk
yajð1 − yjkÞ

þð1 − αÞ 1 − 2yaj
yjk

þ 3 − 2yjk

�
: ð20Þ

All other antennae may be found in [5,38].

C. Evolution variables

Having demonstrated the desired factorization we may
construct an ordering variable Q2

evol and complementary
splitting variable ζ through a change of variables from saj,
sjk. It is worth remarking that there is relative freedom in
the choice for these variables: all that is required of Q2

evol is
that it vanishes in the soft and collinear limits. The choice
for ζ must be linearly independent of Q2

evol and curves of
constant ζ should intersect those of constantQ2

evol once and
only once. While different choices of Q2

evol should all
produce the same result in the soft-collinear limits, they will
give rise to subleading differences, which in some cases can
be quite significant. For a more in-depth discussion on this

1Note that the singular part of the term proportional to α is
antisymmetric under interchange of the two final-state gluons,
j ↔ k; hence it cancels when summing over two neighboring
antennae. The default choice is α ¼ 0 and may be set with
Vincia:octetPartitioning.

2We note, however, that we could in principle use the above
antennae also for massive initial state partons, should a set of
massive PDFs become available; see e.g., recent developments in
[41,42].
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point we refer the reader to [35]. Since we take the Jacobian
associated with the transformation from (saj; sjk) to
(Q2

evol; ζ) explicitly into account, the choice of ζ variable
only affects the efficiency of the phase-space sampling and
not the final physical distributions.
In the context of interleaved showers [16] it is desirable

for the different shower components (e.g., RF and FF
antennae for resonance decays, and II, IF, and FF antennae
for hard processes) to use similar ordering variables, so that
the common sequence of decreasing values of the ordering
variables is physically meaningful as a globally decreasing
resolution scale. After the first emission in the decay of a
resonance, emissions from the RF antenna will compete
with emissions from FF antennae in the same decay system.
Our choice must therefore be consistent with VINCIA’s
pT-ordering variable for FF antennae, which is the same as
that used in ARIADNE [2,43],

ðpFF
Tj Þ2 ¼

sijsjk
sijk

: ð21Þ

For the case of gluon emissions we take

Q2
evol;emit ¼

sajsjk
sAK þ sjk

; ð22Þ

while for gluon splittings (to quarks with massmq) we have

Q2
evol;split ¼

ðsaj −m2
qÞðsjk þ 2m2

qÞ
sAK þ sjk þ 2m2

q
: ð23Þ

There is no requirement upon the choices for ζ to be
equivalent; therefore convenient choices are selected that

are simple and that allow for the definition of a separable
trial integral (as we discuss later in Sec. III D). We therefore
choose

ζevol;emit ¼
sjk þ sAK

sAK
ð24Þ

for emissions, and

ζevol;split ¼
sak
sAK

ð25Þ

for splittings.
In Fig. 2 we plot contours of constant of Q2

evol and ζ
in the yjk, yaj plane.

D. Trial integral

In the context of the Sudakov veto method [16], we
generate trial branchings by solving

r ¼ e−AtrialðQ2
max;Q2Þ ð26Þ

for Q2 given some random number r ∈ ð0; 1Þ. HereAtrial is
the trial integral, obtained by evaluating Eq. (1) for some
trial antenna function atrial, over a phase space volume
equal to or greater than the physical phase space.
The trial antennae must be an overestimate to the

physical antenna functions given in Sec. III B at every
point in phase space; namely they must capture the leading
singular behavior. They must also be simple enough such
that both Eq. (26) and its inverse are analytically calculable.
Starting with emissions, the change of variables is

given by

FIG. 2. Figure showing contours of equally spaced constantQ2
evol (long dashes) and ζ (short dashes) in the yjk, yaj plane for the case of

(a) resonance emissions and (b) resonance splittings. In the former we took mA ¼ ma ¼ 171 GeV, mK ¼ mk ¼ 4.8 GeV,
mX ¼ 80.4 GeV, mj ¼ 0 GeV. For the latter we took mA ¼ ma ¼ 171 GeV, mK ¼ 0 GeV, mX ¼ 0.6mA, mj ¼ mk ¼ 4.8 GeV.
The physical phase space is delineated by the solid grey line.
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dsajdsjk ¼ sAK
ζ

ζ − 1
dQ2

evoldζ: ð27Þ

For the trial antenna integral, we take

atrial;emit ¼ 2
sAK þ sjk
sajsjk

¼ 2

Q2
evol

: ð28Þ

This choice captures the leading double soft singularity; in
Fig. 3(a) we demonstrate numerically that it is a suitable
overestimate everywhere in phase space.
Putting everything together we get the following expres-

sion for the trial integral:

AtrialðQ2
max; Q2Þ ¼ 2CsAKðIðζmaxÞ − IðζminÞÞ

λ1=2ðm2
A;m

2
AK;m

2
KÞ

·
Z

Q2
max

Q2

dQ̃2

Q̃2

αsðQ̃2Þ
4π

; ð29Þ

where we note that we have averaged over the azimuthal
angle ϕ, and the integral over ζ is given by

IðζÞ ¼ ln ððζ − 1Þeζ−1Þ: ð30Þ

The trial integral for Q2 depends upon whether fixed or
one-loop running of αs is used,

3 but in either case this is
straightforward to perform and invert. Having generated a
trial Q2 we generate ζ by inverting

r ¼ IðζÞ − IðζminÞ
IðζmaxÞ − IðζminÞ

; ð31Þ

to give

ζðrÞ ¼ 1þW½eðIðζmaxÞ−IðζminÞrþIðζminÞ�; ð32Þ

whereWðzÞ is the Lambert W function that is the inverse to
zez (which we implemented according to the method
in [44]).
Moving onto g → qq̄ splittings, the change of variables

is now

dsajdsjk ¼ sAK
sAK þ sjk þ 2m2

q

saj −m2
q

1

x
dQ2

evoldζ; ð33Þ

where x is a dimensionless factor given by

x ¼ 1þ ðsjk þ 2m2
qÞðsak þm2

qÞ
ðsAK þ sjk þ 2m2

qÞðsaj −m2
qÞ
; ð34Þ

FIG. 3. Heat map showing the ratio of the physical unpolarized
antennae for resonance-final branchings (as given in Sec. III B and
Appendix A) to the trial antennae given in Sec. III D for (a) emis-
sions and (c) splittings. The peculiar shape of contours for the latter
is in part due to themultiplicative factor x in Eq. (35),whichwe plot
in (b). The masses used to generate these plots are as for Fig. 2.

3Even if two-loop running of αs is desired, one-loop running is
performed for the trial integral using the two-loop value of ΛQCD;
this overestimates the two-loop running result and is corrected by
including the ratio of αs in the accept probability.
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which exhibits the property of being everywhere positive,
and tends to unity in the collinear limit [as may be seen in
Fig. 3(b)]. A suitable choice for the trial antenna is therefore

atrial;split ¼
x

2ðsjk þ 2m2
qÞ
; ð35Þ

which captures the leading collinear singularity and exceeds
the physical antenna function everywhere in phase space. This
is demonstrated numerically in Fig. 3(c).
The trial integral is now given by

AtrialðQ2
max; Q2Þ ¼ CsAKðζmax − ζminÞ

2λ1=2ðm2
A;m

2
AK;m

2
KÞ

·
Z

Q2
max

Q2

dQ̃2

Q̃2

αsðQ̃2Þ
4π

; ð36Þ

and ζ is sampled flatly,

ζ ¼ ðζmax − ζminÞrþ ζmin: ð37Þ

IV. RESONANCE-AWARE MATCHING
WITH POWHEG

In order to seriously assess theoretical uncertainties, for
example in the context of direct top mass measurements at
the LHC [45–53], it is clearly desirable to attain the highest
combined logarithmic and fixed-order accuracy that is
currently available for the production of resonances.
The matching of parton showers to next-to-leading order

accuracy through both subtractive (e.g., MC@NLO) [54]
and multiplicative (e.g., POWHEG) [8,9] methods for mas-
sive final states has been available for some time [55–57].
For an accurate reconstruction of resonances however, it is
important to correct not only the hardest emission in
production, but also in the decay of the resonance. It
was noted in [10] that a naive application of the POWHEG

method to decays (for example as attempted in [58]) in
which the kinematics map between the real-emission Φr
and the Born ΦB phase spaces that modified the virtuality
of the resonance would certainly fail. This conclusion
comes from the realization that differences in the virtuality
of the resonance between the Φr and ΦB kinematics that
exceed its width, spoil the cancellation between the virtual
and real-emission contributions to the cross section. Thus
the reweighting of the Born cross section could become
arbitrarily large, leading to considerable distortion of the
resonance peak. Such difficulties were also expected to be
present for subtractive matching methods, as these too
could modify the invariant mass of the resonance.
To resolve these issues, a so-called “resonance-aware”

matching method was proposed and implemented in
POWHEG BOX V2 [10]. This method performs the next-to-
leading order (NLO) calculation in the narrow width
approximation, but applies finite-width effects in an
approximate way. Essentially this involves generating fully
off-shell resonances for the Born phase space, and mapping

to an on-shell phase space to perform the POWHEG gen-
eration of real emissions, before finally mapping onto the
real emission phase space to recover the original resonan-
ces’ virtualities. The events are then reweighted to repro-
duce the correct off-shell NLO cross section. In addition
this method also includes spin correlations to NLO accu-
racy. As alluded to earlier, an essential requirement for
consistency with the NLO calculation is that the parton
shower must preserve the invariant mass of the resonance.
Recently the resonance-aware matching method was

extended to include exact width effects [11], before being
automated in the generator POWHEG RES and applied to the
process pp → bb̄lþl−νlνl̄ (bb4l) in [12]. In this
method, one must specify the resonance from which a
given emission originates. This is straightforward provided
there is a single resonance chain, but is not normally
possible where there are interfering resonant diagrams.
Nevertheless such topologies must be considered in order
to extend to exact width effects, as they are technically
necessary to preserve gauge invariance. Thus a modifica-
tion was required to perform the assignment of an emission
to a given resonance. The solution was the selection of a
given “resonance history” based on a partition of the
singular regions of phase space.
In [13] a comparison of the two resonance-aware

matching methods and the much earlier hvq implementa-
tion for observables relevant to the top mass measurement
was performed, using interfaces to PYTHIA 8.2 and the
angular-ordered q̃-shower in HERWIG 7.1. It was generally
observed that the differences between these two showers
for a given method much exceeded the differences resulting
from the different choices for the matching method. In the
following section where we consider similar observables,
we therefore choose to use POWHEG BOX V2 rather than the
more recent generator, as the former is notably faster and
we do not expect interference effects to affect our con-
clusions. We use the setting

allrad = 1

such that emissions are always generated in both the decay
and production of the resonance. (This is in addition to the
default setting,

nlowhich = 0

which controls whether or not emissions are generated in
decay at all.)
Where comparisons to PYTHIA 8.2 are HERWIG 7.1

performed we closely follow the prescription in [13].
For matching to VINCIA, the procedure we use is very
similar to that used for PYTHIA. It is necessary to ensure that
VINCIA does not perform an emission harder than the scale
of the emission generated by POWHEG. For emissions in
production this information is provided via the scalup
value in the Les Houches event file, so this must be used
as the starting scale in the shower. While for PYTHIA this
behavior is activated through the settings,
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TimeShower:pTmaxMatch = 1
SpaceShower:pTmaxMatch = 1

in VINCIA, the corresponding setting is :

Vincia:QmaxMatch = 1

In addition, the UserHooks class provided as part of
the bb4l package, that is employed for the vetoing of
radiation in resonance decays in PYTHIA, (this being
flexible enough also for use with ttbardec in
POWHEG BOX V2) was modified for use with VINCIA. The
algorithm therein is essentially the same, except for minor
modifications for interpreting the event record.

V. APPLICATIONS TO TOP QUARK PHYSICS

A. Validation of kinematic map

We shall here validate the kinematic map described in
Sec. III A. We consider the process eþe− → tt̄ →
bb̄lν̄ll̄νl at a hypothetical collider with

ffiffiffi
s

p ¼ 1 TeV.
As a measure of the impact of the kinematic map we
consider the difference in the three-momentum of the
W boson, jΔp⃗W j, before and after the first and second
emissions from resonance decay system. For VINCIA we
compare our default map, where the recoil is shared
between all particles in the resonance decay system, and
the choice where the W boson takes all the recoil; we also
compare against PYTHIA where the latter recoil strategy is
activated via the setting:

TimeShower:recoilToColoured = off.

Since we only care about the impact of the kinematic
map, we turn off matrix-element corrections in PYTHIAwith

TimeShower:MEcorrections = off

(VINCIA does not have built-in matrix element correc-
tions at the present time).
In order to have better control over the phase space

available for emissions in the decay, for these tests we set
the nominal width of both the t quark and W boson to be
zero so that they are all produced at their on-shell masses,
i.e., with no Breit-Wigner smearing. In addition we turn off
the shower prior to decay with

PartonLevel:ISR = off
PartonLevel:FSRinProcess = off

and veto final-final emissions that occur prior to the second
emission from the resonance-final dipole/antenna using
the UserHooks interface. Finally we turn off the QED
shower with

PDF:lepton = off
TimeShower:QEDshowerByQ = off
TimeShower:QEDshowerByL = off
TimeShower:QEDshowerByGamma = off
TimeShower:QEDshowerByOther = off

for PYTHIA, and

Vincia:doQED = off

for VINCIA.

A plot of the distribution in jΔp⃗W j reveals surprisingly
large differences between PYTHIA and VINCIA. This effect
already appears after the first emission, as can be seen from
Fig. 4(a); since there is only the W to absorb the recoil it
would be expected that both maps behave the same. While
this is true for the two maps in VINCIA, a notably harder
distribution is given by PYTHIA.

(a)

(b)

FIG. 4. Plots showing the distribution in the change in the three-
momentum of theW boson before and after the first emission (a),
and between the first and second emission (b), from the
resonance-final antenna in t → bWX decays.
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After the second emission, shown in Fig. 4(b), the
discrepancy between the two generators where the W
recoil strategy is employed is less severe, although now
PYTHIA exhibits an earlier drop off. The recoil spectrum for
VINCIA where the recoil is now shared between the W and
the first emission is softer, as would be expected.
In fact, the discrepancies in both plots can be explained

when the differences in how phase space is sampled, that
arise from slight differences in the Sudakov factors, is taken
into account. These sampling differences may be removed
by plotting the average jΔp⃗W j as a function of PYTHIA’s
evolution variable, pTevol [6]. (We describe how this is
calculated for VINCIA in Appendix B.) Since this variable is
a good representative for the hardness of the emission, it
should correlate well with the amount of recoil required;
by averaging, any bias due to different sampling in pTevol is
removed.
Indeed, as shown in Fig. 5(a) there is virtually no

difference between the generators after the first emission.
After the second emission, shown in Fig. 5(b), there is
agreement for the two generators for the (nondefault) case
when only theW takes the recoil; for VINCIA’s default map,
there is a softer recoil spectrum as would be expected, since
the recoil must now be shared with the first emission.
(Whereas for PYTHIA’s default map, the W receives no
recoil from the second emission.)
We note that PYTHIA does not populate the region of high

pTevol for the second emission. While the maximum value
for pTevol should be determined by the physical phase
space, it seems that the region corresponding to large sjk is
sampled less efficiently for PYTHIA. This produces the drop
off seen in Fig. 4(b).
Finally we show the distribution in the three-momentum

between the W boson at Born-level and postshower in
Fig. 6, including the default option for PYTHIA. Generally,
PYTHIA gives more recoil than VINCIA, and for the largest
recoils, both PYTHIA maps converge. This is consistent with
PYTHIA generating a harder first emission than VINCIA.
(This conclusion changes when matrix-element corrections
are turned on: now VINCIA gives a harder first emission.)
For both PYTHIA and VINCIA the W recoil map produces
slightly more recoil than the map without, although the
effect is more subtle in VINCIA.

B. Coherence

1. Coherence in production

It was noted in [34] that forpp̄ → tt̄ at theTevatron, parton
showers that exhibit coherence in initial-final dipoles, are
capable of producing nonzero forward-backwards asymme-
tries, defined (differentially in a generic observable O) as

AFBðOÞ ¼
dσ
dO jΔy>0 − dσ

dO jΔy<0

dσ
dO jΔy>0

þ dσ
dO jΔy<0

: ð38Þ

Conceptually, this occurs because the initial-final color
antennae span a much greater angle when the outgoing
top is going backwards relative to the direction of the
corresponding incoming colored parton (which tends to be
a valence quark at the Tevatron and hence correlated
with the beam direction) than when it is going forwards.
Initial-final antennae with forward-going tops hence do

(a)

(b)

FIG. 5. Plots showing the average change in the three-
momentum of the W boson before and after the first emission
(a), and between the first and second emission (b), from the
resonance-final antenna in t → bWX decays. This is shown as a
function of PYTHIA’s evolution variable, pT evol.
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not radiate as much as ones with backwards-going tops,
which shows up as a net positive asymmetry (more
forwards-going tops than backwards-going ones) at low
values of the transverse momentum of the tt̄ system,
pTðtt̄Þ, and a net negative one at high values.
We reproduce the analysis that was implemented in [34]

using RIVET [59], for pp̄ → tt̄ with
ffiffiffi
s

p ¼ 1.96 TeV. Here
we are concerned with coherence in production; thus for the
purpose of this analysis we prevent the top from decaying
and perform the analysis at Monte Carlo “truth”-level (that
is, we assume that we can perfectly identify all final state
partons). Nevertheless this still constitutes a good valida-
tion of the antennae given in Sec. III B as the same set are
used for both the initial-final and resonance final cases (albeit
with explicitly massless initial partons in the former).
In Fig. 7 we show the differential distribution of the

forwards-backwards asymmetry as a function of pTðtt̄Þ.
Notably PYTHIA 8 does not predict an asymmetry, remain-
ing close to zero and essentially flat across the range of
transverse momentum. On the other hand the coherent
showers, namely both the HERWIG 7 showers (angular-
ordered and Catani-Seymour dipole) and VINCIA qualita-
tively exhibit similar dependence of the asymmetry on
pTðtt̄Þ: the asymmetry is small and positive for small values
of pTðtt̄Þ, and becomes negative for larger pTðtt̄Þ. In the
bottom panel we show the ratio of the three coherent
showers to the HERWIG 7 angular-ordered shower. The
distribution for VINCIA has a very similar shape to the
HERWIG 7 dipole shower, starting with slightly higher
positive asymmetry for small pTðtt̄Þ, before dropping more
steeply to negative values and flattening off, relative to the
angular-ordered shower.

Finally we note that it is also possible to produce an
integrated asymmetry. One might expect that unitarity
should imply the asymmetry integrates to zero, since the
shower starts from the LO Born cross section (which does
not have an asymmetry) and the inclusive cross section is
preserved. However because recoils in the shower can
change the relative ordering of the tt̄ pair, there can be
sufficient migration between bins of rapidity to produce
an integrated asymmetry. For VINCIA this is at the level of
7%, in line with the other coherent showers (and compared
to 6% predicted by the first nontrivial leading-order QCD
prediction that yields an asymmetry).

2. Coherence in decay

We proceed now to consider coherence in decay of the
resonance. In Fig. 8 we evaluate the antenna function in
Eq. (A2) for t → bW anduse its value as the radial coordinate
in a polar plot. The polar angle corresponds to the opening
angle between the b quark (after branching) and the gluon
emission in the center-of mass frame of the top, with the
original b quark oriented at 0°. We do this for fixed values of
the energy of the gluon (again, in the top center of mass
frame), evenly spaced on a logarithmic scale.
We indicate the value of the energy using the color, with

paler yellow corresponding to soft emissions, and darker
purple corresponding to harder emissions. In Fig. 8(a) we
plot the logarithm of the antenna function, multiplied
by sAK to give a dimensionless value. We can clearly
see that both soft and quasicollinear emissions are
logarithmically enhanced, with the suppression in the
forwards direction corresponding to the well-known mass
“dead-cone” effect [60].

FIG. 6. Plot showing the distribution in the change in three-
momentum between the W boson at Born-level and postshower.

FIG. 7. Plot showing the forwards-backwards asymmetry as a
function of the transverse momentum of the tt̄ system for the
1.96 TeV Tevatron pp̄ collider.
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In Fig. 8(b) we instead show the ratio of the antenna
function to the Altarelli-Parisi splitting function Pg→gqðzÞ=
Q2 (taking Q2 ¼ sjk and z ¼ sak=sAK). For quasicollinear
emissions (i.e., in the forwards direction) for all emission
energies, the ratio tends to one (the slight deviation from this
inside the mass-cone corresponds to the two results tending
mutually to zero at slightly different rates due to the presence
of additional finite terms for the antenna function). However
in the away region we see that the (coherent) antenna pattern
is strongly suppressed relative to that of the (incoherent)
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi kernel. This is
therefore quite a good visualization of the impact of
coherence in decay.

C. B-jet profiles

We can systematically investigate the combined effect of
the kinematic map and of coherence by examining the
impact upon the shape of b-jets in tt̄ production at the LHC.
Specifically we consider the jet-profile [61], defined as

ρðrÞ ¼ 1

Δr
1

Njets

X
jets

p⊥ðr − Δr=2; rþ Δr=2Þ
p⊥ð0; RÞ

: ð39Þ

This variable represents the proportion of the jet’s trans-
verse momentum that is carried by the particles inside an
annulus of radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔyÞ2 þ ðΔϕÞ2

p
, with (bin) width

Δr. It is thus a measure of how the momentum is distributed
throughout the jet. Where more wide-angle radiation is
produced, this should give rise to a broader jet profile.
Our treatment, implemented using RIVET, is similar to the

analysis in [61]; however we only consider the two hardest
b-tagged jets. (This corresponds to the jet containing a
b quark at parton level, and a b hadron for particle-level
analysis, that is, we do not trace the history of identified
particles through the event record.) We take

ffiffiffi
s

p ¼ 13 TeV;
jets are constructed using the anti-kT algorithm [62] with
R ¼ 0.6, as implemented in FASTJET [63].
In Fig. 9 we show the distribution in ρðrÞ as given by

VINCIA and PYTHIA for a slice of jet transverse momentum
pT ∈ ½50; 100� GeV, where the simulation of QED, under-
lying event and hadronization has been turned off. The
shaded bands corresponds to varying the cutoff scale for
each shower in the interval Qcut ∈ ½0.5; 1� GeV4 (and the
central line corresponds to Qcut ¼ 0.75 GeV).
By default PYTHIA includes MECs; in Fig. 9(a) these

have been turned off, such that the splitting kernels are just
the basic Altarelli-Parisi ones. Here VINCIA has a signifi-
cantly more narrow b-jet profile than PYTHIA. We find that
this can be in part, but not fully, accounted for by PYTHIA’s
alternative recoil strategy where the W always takes the
recoil. (Both choices of recoil strategy in VINCIA perform
similarly, and therefore here we only show the default
option.) When a colored parton inside the b-jet receives the
recoil, this has more potential to “kick” particles around
inside the jet cone than a strategywhere theW boson receives
all or most of recoil, thereby broadening the spectrum. We
interpret the remaining difference as due to coherence. In the
center-of-mass frame, VINCIA’s coherent antenna pattern
suppresses emissions in the backwards direction; after
boosting this should be manifest as a suppression of wide-
angle radiation, giving rise to narrower jets.

(a)

(b)

FIG. 8. Plots showing the antenna function aRFg=qq for t → bW in
the top quark center-of-mass frame. The polar angle corresponds
to the opening angle between the b quark (after branching) and
the gluon emission; in Fig. 8(a) the radial coordinate corresponds
to log10ðaRFg=qqsAKÞ while in Fig. 8(b) it corresponds to the ratio to
the Altarelli-Parisi splitting function. The different contours
correspond to different gluon energies, equally spaced on a
logarithmic scale.

4This corresponds to varying Vincia:cutoffScaleFF,
Vincia:cutoffScaleII, and Vincia:cutoffSca-
leIF for VINCIA, and TimeShower:pTmin and Space-
Shower:pTmin in PYTHIA. In principle we should also vary the
regularization scale SpaceShower:pT0Ref, but since the
effects described here are dominated by the final state shower,
we expect the impact to be fairly minimal.

HELEN BROOKS and PETER SKANDS PHYS. REV. D 100, 076006 (2019)

076006-12



In Fig. 9(b), we include MECs for PYTHIA; now the
alternative kinematic map fully accounts for the difference
between VINCIA and default PYTHIA. From this we conclude
that VINCIA’s antenna functions perform very similarly to
PYTHIA with MECs. To put this another way, including
MECs in PYTHIA effectively recovers the missing coher-
ence in the radiation pattern while the difference caused by
the different recoil strategies persists.
In Fig. 10 we show the same distribution, now with

hadronization and underlying event included. Although

there is a significant broadening of the profiles, including
some suppression in the central region, the same qualitative
differences remain (albeit reduced in size—note the change
in scale). It should be noted that although MPI and
hadronization are in all cases handled by PYTHIA, the
default values used for those models by VINCIA [38] are in
general different from those in the Monash tune [64] used
by PYTHIA 8.2. However, we do not find that our results
change qualitatively even if VINCIA is forced to use the
Monash parameters.

(a)

(b)

FIG. 10. As for Fig. 9 but now with hadronization and under-
lying event included. Results are shown without (a) and with (b)
MECs.

(a)

(b)

FIG. 9. Distribution of the jet profile [as defined in Eq. (39)] given
by VINCIA and PYTHIA for a slice of transverse momentum: pT ∈
½50; 100� GeV at parton-level (prior to hadronization andunderlying
event). Results are shown without (a) and with (b) MECs.
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The choice of kinematic map can be regarded as a
theoretical uncertainty, which may have an impact on the
reconstructed top mass (studied in more detail below) as
well as on the efficiency of b-taggers used by ATLAS and
CMS. However, given the stability of our observations to
nonperturbative effects we suppose that it might be physi-
cally measurable; in situ measurements of b-jet profiles
such as those in [65] may provide insight into which
kinematic map is most physical and provide constraints for
tuning and uncertainty evaluations. We do not retune here,
but merely note that when we repeat the analysis of [65]
using RIVET, we do observe the same qualitative results.
This is demonstrated in Fig. 11, in which we show the b-jet
profile measured by ATLAS for jets of transverse momenta
pT ∈ ½70; 100� GeV, for the default tunes of PYTHIA and
VINCIA. Despite the experimental uncertainties being fairly
large, VINCIA’s narrower jet profile appears to agree better
with the data than PYTHIA’s broader one. (However a
stronger conclusion could be drawn if more data were to
be collected.)
Finally we comment that both existing b-jet substructure

measurements [66] and measurements of the distribution of
the angular separation between the reconstructed top quark
and additional jets [67] made by CMSmay also be sensitive
to the choice of kinematic map. Thus a systematic study of
such observables may help constrain which choice is more
physical; however, we defer such a phenomenological study
to further work.

D. Parton shower+ fixed order comparisons

Later in this section we will assess the impact of shower
ambiguities on distributions relevant to the reconstruction

of the top quark mass. We compare between VINCIA,
PYTHIA 8.240 and HERWIG 7.1.4 (using the angular-ordered
shower), where all parton showers have been matched to
NLO accuracy with POWHEG BOX V2 according to the
method described in Sec. IV. Specifically the same input
events were used for all parton showers, and hence the
inclusive cross section should be identical in all cases.
Furthermore, for all results that follow (both here and in
Sec. V E) the masses of the top and bottom quark were
fixed across all generators to mt ¼ 171 GeV and mb ¼
4.8 GeV respectively.
As a validation of the matching to NLO, we reproduced

an ATLAS analysis which measured differential lepton
distributions in dileptonic tt̄ production at

ffiffiffi
s

p ¼ 8 TeV
[68], that was implemented in RIVET. The distributions in
this study were found to be relatively insensitive to the
choice of parton shower, but NLO accuracy is required for a
reasonable description of data. In Fig. 12 we compare the
NLOmatched results to data, as well as a leading order plus
parton shower prediction from PYTHIA 8 for the distribu-
tions in the sum of transverse momenta of the two leptons,
and the difference in azimuthal angle between the leptons.
The distributions are normalized to the cross section to
highlight the difference in shape in going from leading
order to next-to-leading order. The leading order predic-
tions show large shape differences with respect to data,
while the NLO matched predictions are consistent with
both data and each other. The level of variation is consistent
with that seen in the original analysis [68].
We proceed to investigate the effect of the parton shower

in distributions that pertain to the top mass measurement.
For Figs. 13 to 18, the setup of our analysis is intended to be
similar to that performed in [13], since it is worthwhile to
reproduce the large differences observed therein. Specifically
we consider pp̄ → tt̄ → beþνeb̄μ−ν̄μ at

ffiffiffi
s

p ¼ 8 TeV. We
require at least two b-jets with pT > 30 GeV and jηj < 2.5
constructed using the anti-kT algorithm with R ¼ 0.5. The
leptons are required to have pT > 20 GeV and jηj < 2.4.
In addition, the neutrino was required to have pT > 5 GeV
and jηj < 2.4 (relative to [13] where no cut was placed on the
neutrino). Again, the analysis is performed at the
Monte Carlo “truth”-level, using only the correct pairing
of the lepton and b-jet and assuming we can perfectly
reconstruct the neutrinos’ momenta.
Using bj to denote a reconstructed b-jet, we start by

analyzing the invariant mass of the top decay system
composed of bjlþνl. In Fig. 13 we show the differential
cross section (matched to NLO using POWHEG as described
above) at parton level, prior to hadronization but including
underlying event. There are considerable shape differences
between the three generators shown. HERWIG gives rise to
a distribution shifted towards lower masses, while PYTHIA 8

is shifted towards higher masses. VINCIA is hybrid between
the two, giving an overall broader spectrum. Given the
significant differences that arise here, we now make some

FIG. 11. Distribution of the b-jet profile as measured by
ATLAS in [65] for tt̄ production at

ffiffiffi
s

p ¼ 7 TeV.
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concerted effort to disentangle the different driving forces
of these shape differences.
As a start, it is possible to isolate the primary differences as

arising from two different sources, namely the resonance
decay shower, and from underlying event, as we demonstrate
in Fig. 14. First removing the underlying event in Fig. 14(a)

we find that qualitatively VINCIA and HERWIG give similar
distributions relative to PYTHIA 8, althoughHERWIGpredicts a
somewhat softer spectrum; however all converge towards
larger invariant masses. When in addition we compare
VINCIA and PYTHIA with the parton shower turned off in
the decay of the resonances as shown in Fig. 14(b), we
observe that VINCIA and PYTHIA are now in strong agreement.
We conclude that while differences in MPI modeling are
largely responsible for driving differences at larger invariant
masses, differences towards lower invariant masses arise
from the resonance decay. The latter occurs due to differing
amounts of out-of-cone radiation from the b-jet, as we now
examine in further detail.
Turning off both initial- and final-state radiation in

production (as well as underlying event) to focus on the
resonance-decay shower,we consider the impact of the recoil
strategy employed, starting at leading-order accuracy. We
compare the default options for PYTHIA and VINCIA to the
option where the W boson takes all the recoil from every
emission (as described in Sec. VA) in Fig. 15(a). (We also
show a larger range on the x-axis to make the effects easier
to see.) When placed on an equal footing in this manner, we
find that PYTHIA and VINCIA perform similarly—if anything
PYTHIA now has a slightly broader spectrum, shifted to lower
invariant masses.
The effect of the recoil strategy on PYTHIA is fairly

dramatic. We interpret this as being due to the phase space
available for branching being limited by the invariantmass of
the dipole, in which the choice of recoiler plays a vital role.

FIG. 13. Plot showing the differential cross section as a
function of the invariant mass of the bjlþνl in dileptonic top
pair production at the LHC with

ffiffiffi
s

p ¼ 8 TeV. Parton shower
predictions matched to NLO accuracy using POWHEG BOX V2 are
compared. Results are shown prior to hadronization, but includ-
ing underlying event (MPI).

(a)

(b)

FIG. 12. Differential cross section with respect to the transverse
momentum of the lepton pair, (a), and the azimuthal angle
between the lepton pair, (b), as measured by ATLAS [68] in
dileptonic tt̄ production at

ffiffiffi
s

p ¼ 8 TeV. Comparisons are shown
between generators matched to NLO accuracy using POWHEG

BOX V2, and LO accuracy using PYTHIA standalone.
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TheW is anticollinear to the dominant direction for radiation
and hence offers a relatively large phase space, in particular
for wide-angle radiation, while colored partons (as in the
default choice of recoiler) tend to be more collinear and
hence have smaller phase spaces from the second emission
onwards. Thus by default, PYTHIA has a lower capacity to
produce the kind of hard, out-of-cone radiation that has the
potential to reduce the reconstructed invariant mass (even if
the branchings that do occur result in slightly broader jets).
By comparison, VINCIA’s two recoil strategies perform

similarly, because even in the default option the phase space
for the RF antenna after the first emission is still set by
the “crossed top” system which contains the W, and the W
continues to take some of the recoil.
These differences become even more pronounced when

PYTHIA’s matrix-element corrections are switched off, as
shown in Fig. 15(b). This is the consistent with the finding

(a)

(b)

FIG. 14. As for Fig. 13 but with (a) underlying event turned off,
and (b) also with the resonance decay shower turned off.

(a)

(b)

FIG. 15. Plots showing the leading-order differential cross
section as a function of the invariant mass of the bjlþνl system
in dileptonic top pair production at the LHC with

ffiffiffi
s

p ¼ 8 TeV.
The effect of the resonance decay shower is compared between
PYTHIA and VINCIA for two choices of kinematic map. In
(b) PYTHIA’s matrix-element corrections have been switched off.
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of Sec. V C that matrix-element corrections are effectively
correcting for coherence and reduce the amount of out-of-
cone radiation. We conclude that the region of low invariant
mass is driven by a combination of the recoil strategy, and
formally subleading corrections in the splitting kernels.
We find that MECs primarily influence the first branch-

ing, and we see no effect from modifying TimeShower:
MEafterFirst to only turn off corrections after the first
emission. On the other hand, alternative recoil strategies
only affect secondary (or later) emissions, and thus we
expect the latter to persist when matching to NLO, as we
now investigate.
We compare both the default option where POWHEG may

generate the hardest emission in decay, to the case where
this behavior is turned off entirely by using

nlowhich = 1.

In the latter case, the parton shower is always responsible
for generating the hardest emission in decay, and otherwise
the two are identical. However, when MECs are applied in
PYTHIA the only difference between the shower and
POWHEG should be virtual corrections, which should not
significantly affect the shape of the distribution. The naive
expectation then is there should be little effect from
modifying nlowhich. In fact, the contrary is true, as
demonstrated for PYTHIA 8 in Fig. 16(a).
In going from nlowhich = 1 to nlowhich = 0 for the

default kinematic map, there is a change in normalization
which is consistentwith addingvirtual corrections.However,
while for nlowhich = 1 there remains a significant effect
from activating the alternative recoil strategy by switching
TimeShower:recoilToColoured = off, this flag
has no effect for nlowhich = 0.
For VINCIA, on the other hand, the effect of employing

the W recoil strategy is consistent with the picture at
leading order, regardless of whether POWHEG corrects the
first emission in decay, as shown in Fig. 16(b).
This surprising observation has an explanation in how

PYTHIA interprets the recoilToColoured flag. When
the dipoles in the resonance decay system are set up prior to
the commencement of the shower, if there exists any
unconnected color tag for a parton i in the final state, a
recoiler j is simply selected from the available set of final
state particles, by minimizing the invariant,

ðpi þ pjÞ2 −m2
j ¼ 2pipj: ð40Þ

It is only after PYTHIA has performed an emission that the
recoilToColoured flag is inspected. If at this stage the
current recoiler is uncolored, if recoilToColoured =
on then only colored recoilers are considered in a first step
and uncolored ones only allowed if no colored ones are
available.
For internal events, or when nlowhich = 1, the system

is simply fb;Wg, and theW must be selected as the recoiler
for the dipole involving the b quark. It is only for secondary

emissions that recoilToColouredmay have an impact
(as also noted in Sec. VA).
However, when nlowhich = 0 and the system now

contains an additional gluon, there is an ambiguity for
the dipole between this gluon and the resonance in which
recoiler to select. In the majority of events, the above
invariant is minimal for the b quark rather than for the

(a)

(b)

FIG. 16. Plots showing thedifferential distribution of the invariant
mass of the bjlþνl system in dileptonic top pair production at the
LHCwith

ffiffiffi
s

p ¼ 8 TeV,with PYTHIA (a) and VINCIA (b)matched to
NLO accuracy using POWHEG BOX V2. Comparisons of alternative
settings of nlowhich combined with different choices of kin-
ematic map are made.
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W boson (since the gluon tends to be more collinear with
the b thanwith theW), and the former is therefore selected as
the recoiler. Furthermore, once the b-quark has been selected
as the recoiler, it is impossible for recoilToColoured to
have any effect for subsequent emissions. This explains why
the corresponding results in Fig. 16(a) for nlowhich = 0
are identical: PYTHIA treats both the same.
Physically the impact of selecting the b-quark in place of

theW boson, is as follows. Since the gluon tends to be more
collinear with the b than with the W, the former choice
results in a smaller phase space for radiation and produces
much less out-of-cone radiation than the latter. Thus the
former results in a narrow invariant mass distribution, and
this is precisely what is observed in Fig. 16(a).
Therefore, it is not that there is no effect from varying the

recoil strategy for the resonance decay shower in PYTHIA

when nlowhich = 0, but rather that at present there is no
mechanism by which such a variation may be performed.
We plan to implement such an option in PYTHIA in a follow-
up to this work.
To conclude our discussion and make contact with the

distribution in Fig. 13 we compare PYTHIA and VINCIA at
leading order for different choices of kinematic map, now
with the full shower and including MPI, in Fig. 17. The
kinematic map still has an impact towards lower invariant
masses, but MPI dominates towards larger invariant
masses: the results converge for all choices of map and
shower (albeit slightly more slowly for theW recoil map in
PYTHIA). For the default choices of map, the relative size of
differences between VINCIA and PYTHIA is fairly similar in
LO and at NLO.
We note that for HERWIG 7 the broadening effect from

MPI is slightly smaller than in PYTHIA and VINCIA (which

we see by comparing Figs. 13 and 14a. We deem it beyond
the scope of this paper to study MPI effects in detail but
note that an eventual follow-up study could well include
in situ measurements of the underlying event in top events
such as the one by CMS [69].
Finally we comment upon the bump in the peak region

that is only present for HERWIG 7, that has also been
observed elsewhere [13,70]. It was recently noted [70]
that this bump is not present for HERWIG 6.5 [71]; the
authors of [70] ascribe it to differences in the ordering
variable between the two versions, and a potential cutoff
mismatch between the shower and POWHEG. We use the
same matching settings as in [13] so we would be afflicted
by the same mismatch.

E. A more realistic analysis

In the previous section we discussed in detail the
consequences of alternative parton showers for the differ-
ential distribution of the invariant mass of the b-jet, charged
lepton and neutrino system, mbjlνl , in the dilepton channel
for tt̄ production. The dilepton channel is a particularly
clean arena in which to perform a measurement of the top
quark, primarily because the charged leptons carry infor-
mation about the top quark kinematics without suffering
from hadronic uncertainties (such as the jet energy scale).
However in dilepton production, in practice we cannot
reconstruct the momenta of the neutrinos. Thus in direct
measurements of the top quark mass it is standard practice
in both CMS [49,50] and ATLAS [45,46] to instead
measure the invariant mass of the b-jet and charged lepton,
mbjl, and extract the top quark mass by performing a fit of
shower Monte Carlo event generators. In particular, the
distribution ofmbjl exhibits a kinematic endpoint (to which
it falls sharply) that is sensitive to the value of the
top quark mass. Thus in order to determine the impact
of differences in physics modeling between different
generators we now consider this observable and examine
the sensitivity of the endpoint.
We start by considering this observable at parton-level,

namely prior to hadronization, using the same analysis
setup as in the previous section. At this stage we still
perform a “truth”-level analysis, identifying the “correct”
pairings of the b-jet and the lepton based on their respective
charges. The differential cross section in the invariant mass
of the bjlþ system is shown in Fig. 18 without (a) and
with (b) MPI.
In the former, we observe that the sensitivity of the low-

mass region to the kinematic map has been greatly reduced,
to the level of a few percent, as may be seen by comparing
the two options available for VINCIA. The primary location
that is sensitive to the kinematic map is the endpoint itself:
VINCIA falls off more quickly than PYTHIA. An effect that is
qualitatively similar, although larger at the 10% level, is the
difference of HERWIG with respect to PYTHIA (the former

FIG. 17. As for Fig. 13, but at leading order accuracy.
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also falling off more quickly). This is consistent with the
observation that the mass peak for HERWIG in Fig. 14(a)
also falls off more quickly.
After the inclusion of MPI, the relative difference induced

by changing the kinematic map is reduced, while the
difference with respect to HERWIG persists. This is consistent
with the picture seen in Fig. 13, where VINCIA and PYTHIA

converge in the high-invariant-mass region, while HERWIG

remained qualitatively different. This perhaps implies that the
modeling of MPI is the dominant uncertainty in the location

of the endpoint. However we emphasize that it is difficult to
disentangle the two physics effects since the sensitivity to
both has essentially been “squeezed” into a single kinematic
region. We therefore repeat that dedicated studies of the
underlying event in top-pair events, such as [69], may be
relevant to constrain the ambiguity associated with the MPI
component.
We now proceed to perform a particle-level analysis.

Although the setup is similar to that of Sec. V D we deem it
inappropriate to overly interpret results based on perfect
reconstruction from the event record. In particular, we no
longer assume we can find the correct pairings of the b-jet
and charged lepton. Instead, the invariant mass for each
possible b-jet-lepton pairing (from the hardest two of each)
is calculated, and the set of pairings for which the average
invariant mass is minimal is chosen (this is the method used
in [46]).
The cut-selection used was chosen to be similar to that

used in [68], and the analysis was implemented in RIVET.5

The event was required to have two b-jets and two
opposite-sign charged leptons with different flavors. The
b-jets were constructed with the anti-kT algorithm with
R ¼ 0.4, and were required to have pT > 25 GeV and
jηj < 2.5. The charged leptons were dressed with any
radiation from photons with a radius of ΔR ¼ 0.1. Both
charged leptons were required to have pT > 25 GeV and

(a)

(b)

FIG. 18. Plots showing the differential cross section as a
function of the invariant mass of the bjlþ system, without (a)
and with (b) MPI. The setup is the same as Fig. 13.

FIG. 19. Plot showing the differential cross section as a
function of the invariant mass of the bjμ system, in dileptonic
top pair production at the LHC with

ffiffiffi
s

p ¼ 8 TeV, with the parton
shower matched to NLO accuracy. Results are shown at particle
level.

5Furthermore, we made use of the corresponding public
analysis ATLAS_2017_I1626105 where possible to keep
the implementation as similar as possible.
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jηj < 2.5. Jets were vetoed if there was a charged lepton
within a radius of ΔR ¼ 0.2, and leptons within a radius of
ΔR ¼ 0.4 from an accepted jet were vetoed.
In Fig. 19 we show the lepton-jet invariant mass for the

pairing that includes the muon. Qualitatively, the results
are fairly similar to Fig. 18(b), however the entire distribution
is shifted down in mass, and the spectrum is broader. It is
therefore not surprising that the region over which HERWIG

exhibits differences with respect to PYTHIA is also broader,
although reaching a similar maximal relative difference of
about 10%.The largest differences remain in the regionof the
endpoint, with the low invariant mass region continuing to
exhibit relatively little sensitivity to the different shower
models. We emphasize that this is precisely the region that is
fitted to extract a measurement of the top quark mass and is
therefore relevant for theoretical uncertainties.
Finally, we also considered the “stransverse mass”

variable, mT2;bb, originally defined in [72] and calculated
using in-built functions in RIVET [73,74], that has been used
in direct top mass measurements by CMS [50]. We see a
similar level of difference to Fig. 19, so we do not consider
it enlightening to reproduce here.

VI. SUMMARY AND OUTLOOK

We have implemented resonance decays for VINCIA, an
antenna-shower plugin to PYTHIA 8. Like traditional
angular-ordered showers, the antenna-shower formalism
has coherence built in as a fundamental tenet (even
without azimuthal averaging), but does not suffer from
dead zones arising from approximate phase-space fac-
torizations. Unlike the dipole-shower formalism where
the soft limits are partitioned across two radiators, we can
utilise the positive-definiteness of the massive eikonal
and construct our antenna functions such that they are
positive-definite everywhere.
Based on arguments stemming from the antenna factori-

zation, we argue for a more democratic treatment of recoils
from branchings in resonance decays, namely that recoils
are shared among all final-state particles in the decay system.
In addition we have implemented an alternative, but less
theoretically sound, recoil strategy to allow for closer com-
parisons with PYTHIA 8 and HERWIG 7, in which the original
uncolored child in the decay system continue to receive all
recoil.
We have used our formalism to help disentangle the causes

of significant shape differences observed between generators
for the reconstructed invariant mass spectrum of the top
quark. Although coherence plays a role, we find that matrix-
elements corrections are essentially sufficient to restore these
effects. We find that the differences are primarily driven by
(a) the choice of recoil strategy, and (b) underlying event.
Since both of these effects arise from ambiguities that are
purely subleading, we regard the differences as indeed
representative of the theoretical uncertainty. Our recommen-
dation therefore is that variations of these aspects of event

generation should be performed in order to obtain trust-
worthy uncertainties, in particular where comparisons to
event generators are used to extract measurements. We
presume this should have some impact upon the uncertainty
on the top quark mass measurement (although we do not
attempt to estimate this here).
We comment here that our results may be dependent

upon the exact choice of radius used in the definition of the
b-jet. Increasing the jet radius may decrease the impact of
wide-angle radiation, but on the other hand may increase
contamination from MPI. Investigating this dependence
was beyond the scope of this work; however it is likely that
such a study could prove worthwhile. Additionally,
nowhere did we consider the impact of spin correlations.
This is a worthwhile topic for consideration in its own right.
Finally, we note that while the focus of this paper has been
on QCD radiation, our treatment has been combined with
recent work by Kleiss and Verheyen on antenna-based
multipole QED showers [75], so that VINCIA includes both
QCD and (fully coherent) QED shower branchings within a
single interleaved framework.
It should be clear that further developments to parton

showers are required, since it is at this stage of generation
at which uncertainties arise. In the context of resonance
decays, further developments of VINCIA are underway on
matrix-element corrections, sectorized showers, electro-
weak corrections, and finite-width effects (to account for
the interference between production and decay). The main
long-term goal for us remains improvements to the per-
turbative accuracy of the parton shower itself.
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APPENDIX A: MASSIVE HELICITY-DEPENDENT
INITIAL-FINAL ANTENNA FUNCTIONS

For the sake of completeness, here we detail all massive
initial-final antenna functions which have been changed
relative to [5,38]. Aside from the addition of mass effects
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(obtained from crossing symmetry of massive final-final
antennae [37]), some finite terms have been added in order
to ensure all individual helicity antenna functions are
positive-definite everywhere.
For compactness of notation, we define the dimension-

less helicity antenna function,

ãhAhK;hahjhk ≡ sAKaðhAhK → hahjhkÞ: ðA1Þ

1. QQemitIF

The helicity-averaged antenna function for qAqK →
qagjqk is

a ¼ 1

sAK

�ð1 − yajÞ2 þ ð1 − yjkÞ2
yajyjk

−
2μ2a
y2aj

�
ð1 − yjkÞ

�
1 −

yaj
2

�
−
yaj
2

ð1 − yajÞ
�

−
2μ2k
y2jk

�
1 −

yjk
4

ð2 − yjkÞ
�
2þ y2aj

1 − yaj

��

þ 1

2
ð2 − yajÞð2 − yjkÞ

�
: ðA2Þ

The individual helicity contributions are

ãþþ;þþþ ¼ 1

yajyjk
−

μ2a
y2aj

−
μ2k

ð1 − yajÞy2jk
; ðA3Þ

ãþþ;þ−þ ¼ ð1 − yajÞ2 þ ½ð1 − yjkÞ2 − 1�ð1 − yajÞ2
yajyjk

−
μ2að1 − yjk − yajÞ2

y2aj

−
μ2kð1 − yajÞð1 − yjkÞ2

y2jk
; ðA4Þ

ãþþ;−−þ ¼ μ2ay2jk
y2aj

; ðA5Þ

ãþþ;þþ− ¼ μ2ky
2
aj

ð1 − yajÞy2jk
; ðA6Þ

ãþ−;þþ− ¼ ð1 − yajÞ2
yajyjk

−
μ2að1 − yajÞ

y2aj
−
μ2kð1 − yajÞ

y2jk
; ðA7Þ

ãþ−;þ−− ¼ ð1 − yjkÞ2
yajyjk

−
μ2að1 − yjkÞ2

y2aj
−
μ2kð1 − yjkÞ2
y2jkð1 − yajÞ

;

ðA8Þ

ãþ−;−−− ¼ μ2ay2jk
y2aj

; ðA9Þ

ãþ−;þ−þ ¼ μ2ky
2
aj

y2jkð1 − yajÞ
: ðA10Þ

2. QGemitIF

The helicity-averaged antenna function for qAgK →
qagjgk is

a ¼ 1

sAK

�ð1 − yajÞ3 þ ð1 − yjkÞ2
yajyjk

þ ð1 − αÞ 1 − 2yaj
yjk

−
2μ2a
y2aj

�
ð1 − yjkÞ −

yaj
4

½1þ ð2 − yjk − yajÞ2�
�

þ 3

2
þ yaj −

yjk
2

−
y2aj
2

�
: ðA11Þ

The individual helicity contributions are

ãþþ;þþþ ¼ 1

yajyjk
þ ð1 − αÞ 1 − 2yaj

yjk
−

μ2a
y2aj

; ðA12Þ

ãþþ;þ−þ ¼ ð1 − yajÞ3 þ ð1 − yjkÞ2 − 1

yajyjk

−
μ2að1 − yjk − yajÞ2ð1 − yajÞ

y2aj

þ 3 − y2aj ðA13Þ

ãþþ;−−þ ¼ μ2ay2jk
y2aj

ðA14Þ

ãþ−;þþ− ¼ ð1 − yajÞ3
yajyjk

−
μ2að1 − yajÞ2

y2aj
; ðA15Þ

ãþ−;þ−− ¼ ð1 − yjkÞ2
yajyjk

þ ð1 − αÞ 1 − 2yaj
yjk

−
μ2að1 − yjkÞ2

y2aj

þ 2yaj − yjk ðA16Þ

ãþ−;−−− ¼ μ2ay2jk
y2aj

: ðA17Þ

3. GQemitIF

The helicity-averaged antenna function for gAqK →
gagjqk is

a ¼ 1

sAK

�ð1 − yjkÞ3 þ ð1 − yajÞ2
yajyjk

þ 1þ y3jk
yajð1 − yjkÞ

−
2μ2k
y2jk

�
1 −

yjk
4
ð3 − 3y2jk þ y3jkÞ

�
2þ y2aj

1 − yaj

��

þ 1

2
ð2 − yajÞð3 − yjk þ y2jkÞ

�
: ðA18Þ
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The individual helicity contributions are

ãþþ;þþþ ¼ 1

yajyjk
þ 1

yajð1 − yjkÞ
−

μ2k
y2jkð1 − yajÞ

; ðA19Þ

ãþþ;þ−þ ¼ ð1 − yajÞ2 þ ½ð1 − yjkÞ3 − 1�ð1 − yajÞ2
yajyjk

−
μ2kð1 − yajÞð1 − yjkÞ3

y2jk
; ðA20Þ

ãþþ;−−þ ¼ y3jk
yajð1 − yjkÞ

; ðA21Þ

ãþþ;þþ− ¼ μ2ky
2
aj

y2jkð1 − yajÞ
; ðA22Þ

ãþ−;þþ− ¼ ð1 − yajÞ2
yajyjk

þ 1

yajð1 − yjkÞ
−
μ2kð1 − yajÞ

y2jk
;

ðA23Þ

ãþ−;þ−− ¼ ð1 − yjkÞ3
yajyjk

−
μ2kð1 − yjkÞ3
y2jkð1 − yajÞ

; ðA24Þ

ãþ−;−−− ¼ ãþþ;−−þ; ðA25Þ

ãþ−;þ−þ ¼ ãþþ;þþ−: ðA26Þ

4. XGsplitIF

The helicity-averaged antenna function for XAgK →
Xaq̄jqk is

a ¼ 1

2m2
jk

�
y2ak þ y2aj þ

2m2
j

m2
jk

�
: ðA27Þ

The helicity contributions are

aXþ;X−þ ¼ 1

2m2
jk

�
y2ak −

m2
jyak

m2
jkð1 − yakÞ

�
; ðA28Þ

aXþ;Xþ− ¼ 1

2m2
jk

�
y2aj −

m2
jyaj

m2
jkð1 − yajÞ

�
; ðA29Þ

aXþ→Xþþ ¼ m2
j

2m4
jk

�
yaj

ð1 − yajÞ
þ yak
ð1 − yakÞ

þ 2

�
: ðA30Þ

APPENDIX B: METHOD FOR CALCULATING
PYTHIA’s ORDERING VARIABLE

In PYTHIA the evolution scale for final-final dipole
branchings is defined as follows:

p2⊥;evol ¼ zð1 − zÞQ2: ðB1Þ
For light branchings aR → ða�r →Þbcr (for radiator a and
recoiler r → R), we have

Q2 ¼ m2
a� ¼ ðpb þ pcÞ2; ðB2Þ

and z ¼ zphys is the energy fraction of the daughter b in the
rest frame of the a − R dipole system, that may be
calculated as

zphys ¼
pb · ðpb þ pc þ prÞ

ðpb þ pbÞ · ðpb þ pc þ prÞ
: ðB3Þ

For branchings involving massive quarks q (having mass
mq) these variables are slightly modified. For gluon
emission off a massive quark, one calculates zphys accord-
ing to Eq. (B3) and define

z ¼ 1 −
1 − zphys

β
ðB4Þ

and

β ¼ 1 −
m2

b

m2
a�
: ðB5Þ

Further Q2 is defined as

Q2 ¼ m2
a� −m2

a ¼ ðpb þ pcÞ2 − p2
a: ðB6Þ

Note that this is nearly—but not quite—the virtuality of a�
becausema is not required to be the on-shell mass of particle
a. In particular, this is true for resonances such as top quarks.
These variables result from the choice of generating pc
according the massless kinematics and scaling this by β.
For gluon to massive quark g → qq̄ splittings Q2 is

unchanged relative to the massless case, but for the splitting
variable we have

z ¼ 1

2

�
1þ 1

β̃
ð2zphys − 1Þ

�
; ðB7Þ

where

β̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
q

m2
a�

s
: ðB8Þ

These variables result from the choice of generating the
transverse momentum of the quark, antiquark pair accord-
ing the massless kinematics, and scaling by β̃.
To calculate the above in general for VINCIA requires

some method of assigning the roles of radiator and recoiler.
One way to do this is based on the invariants; however in
the case of emission from resonance-final antennae, we
always interpret the final state particle as the radiator, since
this is closest to what PYTHIA does. In addition, regardless
of whether the recoil is given to a single particle or shared
between several, we use the collective recoil for evaluating
the above expressions.
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