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The escape problem is defined in the context of quantum field theory. The escape rate is explicitly
derived for a scalar field governed by fluctuation-dissipation dynamics, through generalizing the standard
Kramers problem. In the presence of thermal fluctuations, there is a nonvanishing probability for a classical
background field to escape from the well. Different from nucleation or quantum tunneling processes, the
escape problem does not require the minimum of the potential, where the field is initially located in a
homogeneous configuration, to be a false vacuum. The simple and well-known related problem of the
escape of a classical point particle due to random forces is first reviewed. We then discuss the difficulties
associated with a well-defined formulation of an escape rate for a scalar field and how these can be
overcome. A definition of the Kramers problem for a scalar field and a method to obtain the rate are
provided. Finally, we discuss some of the potential applications of our results, which can range from
condensed matter systems, i.e., nonrelativistic fields, to applications in high-energy physics, like for
cosmological phase transitions.
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I. INTRODUCTION

The problem of escaping a potential well has been an
active field of research over the last century and has
applications in several scientific disciplines, such as in
physics and chemistry. Classically, a particle put at rest at
the bottom of a potential well stays there if left undisturbed.
However, in any realistic physical system, we expect the
presence of fluctuation and dissipation dynamics, which,
for example, naturally emerge through the interactions of
the system with a thermal bath. Under these conditions,
an escape from the potential well might be allowed.
The derivation of the escape rate is called the Kramers
problem [1] and is, to a large extent, well understood for the
simplest systems, such as a classical point particle. One
should note that, in its original zero-dimensional (usual field
theory nomenclature for a point particle as a zero space and
one time dimensional field) formulation, the escape problem
is defined regardless of what is beyond the top of the energy
barrier. That is, one is interested in the probability per unit
time for the particle to escape the potential well, independ-
ently of what happens after this escape. To our knowledge,
however, no explicit extension of this problem to a relativistic

field has been done so far. Such an extension would be very
welcome for several possible applications in high-energy
physics and cosmology. For example, in the physics of the
early Universe, one is interested in describing cosmological
fields immersed in a hot medium. Fluctuation-dissipation
dynamics has been shown to have interesting applications in
the early Universe such as thewarm inflation paradigm [2,3]
and during a cosmological phase transition [4]. It, therefore,
follows to try to define and understand precisely the rate of
escape of such fields due to thermal fluctuations.
Computing the probability for a classical particle to

diffuse has always been of great interest, in particular in the
context of stochastic dynamics. Several methods have been
proposed over the years. Kramers, a pioneer in the field,
derived the so-called Kramers rate [1] using the flux-over-
population method based on ideas originally developed by
Farkas in Ref. [5]. Another way to obtain the escape rate is
achieved with the mean-first-passage-time (MFPT) formal-
ism using the adjoint Fokker-Planck (FP) operator [6].
However, this approach is more delicate to handle due to
complex boundary conditions. A third method consists of
finding the smallest positive, nonvanishing eigenvalue of
the FP operator. It has been shown that this eigenvalue is
directly related to the escape rate [7]. A comprehensive
review of these methods can be found in [8]. More recently,
in [9], it was shown that there is a universal equivalence
between these different approaches.
When regarding a field instead of a particle, the situation

changes significantly. A somewhat related problem in
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quantum physics is that of the study of quantum tunneling.
The decay rate of a field has been derived by Callan and
Coleman at zero temperature [10,11] and extended to finite
temperature by Linde [12] (also known as the nucleation
problem in finite temperature quantum field theory [13]).
The inclusion of gravitational effects has been studied by
Coleman and de Luccia in Ref. [14]. The formalism
describing a field subject to random forces is a developed
topic called stochastic field theory [15,16], but in spite of
this there has never been a precise and complete discussion
of the escape problem. One of the main difficulties is the
identification of the most suitable approach to be gener-
alized to a scalar field. Zinn-Justin in Ref. [16] briefly states
the problem and suggests deriving the smallest eigenvalue
and the use of instantons. This is indeed a possibility
but, unfortunately, it faces some analytical limitations
when deriving the rate. We find that the work of Langer
[17,18] in extending the flux-over-population method to a
2N-dimensional system appears as the most promising
approach to be used with a field.
The field theory aspect of the problem renders the

definition of an escape more difficult and less intuitive
than for a single point particle. In particular, the actual
shape of the potential beyond the potential well plays a role
in the computation of the rate for the field. However, as in
the zero-dimensional case, the Kramers problem can be
defined for both an initial true or false vacuum. Using the
ideas and the formalism of the flux-over-population method
extended to a field, we will propose in this work a definition
of the Kramers problem and explicitly evaluate the rate.
Along the way in this derivation, we will encounter some
familiar situations, such as the Hawking and Moss solution
[19]. We will also compare our final result for the escape
rate with the known result of nucleation rate due to thermal
fluctuations [12,13]. In particular, considering the well-
known result of Linde for the quantum tunneling rate at
finite temperature [12], we will show that, in the limit
where the temperature is sufficiently high for the thermal
fluctuations to dominate over the quantum fluctuations, the
nucleation rate is proportional to the escape rate. This is
remarkable since the two results are based on completely
different approaches. This result shows that, when the
system is initially in a false vacuum, the nucleation rate is
indeed a special case of the escape rate.
Apart from the formal interest in the computation of an

escape rate for a scalar field, the result has potentially many
applications. The process helps to give a thorough under-
standing of out-of-equilibrium situations, for example dur-
ing phase transitions. In particular, this process can influence
the formation of topological defects and potentially alter the
stability of the embedded configurations. In addition, the
escape rate is a well-suited mechanism for situations where
the field needs to probe several local minima. Such a
situation appears in string theory, with the string landscape,
and, also, in condensed matter physics, in the context of the

glass transition, just to cite some of the potential applica-
tions. Another interesting application can be to stochastic
inflation. Moreover, our derivation is formally identical to
the stochastic quantization, used in particular in lattice field
theory, where the origin of the stochastic forces is quantum
instead of thermal.Aprecise knowledge of a transition rate is
therefore of great interest in this context.
The aim of this paper is, therefore, to formulate a known

problem, the definition and the derivation of the Kramers
escape rate, to a physical situation where it has not been
applied yet, a scalar field theory. For this, we first need to
define the escape problem consistently in the context of field
theory. We then will obtain an explicit expression for the
escape rate in field theory. For our derivation we have
identified an alreadyknownmethod, the flux-over-population
method [1,17,18], which we show can be generalized to
attain the result we seek. The main result for the escape rate
in field theory is Eq. (3.69). Unsurprisingly, it has many
similarities to the expression for the particle case, but there
are also distinct differences, as will be evident from our
derivation and summarized below this main result. Once a
general expression for the rate is obtained, we also discuss
some techniques, such as the thin-wall approximation, in
order to obtain an analytical expression for the rate, when a
potential is specified. Beyond the actual result, the method
itself suggests an approach for several applications which
is, after all, as essential as the actual result for the rate.
The present paper is organized as follows. Section II

gives a brief review of the Kramers problem and the
methods necessary to compute the escape rate in the
simplest case of a point particle. We will focus on one
of the main approaches for the computation of the Kramers
rate, the flux-over-population method, which is the best
candidate to be generalized to a scalar field. Another
approach, the MFPT, not used here, is however discussed
in the Appendix. The MFPT provides a simple interpre-
tation of the escape rate as we will see. We also present the
proof of the equivalence of the two methods. Section III
first states the difficulties in the formulation of an escape
problem for a scalar field. We then review some basics of
stochastic field theory with the Langevin and the associated
FP equation. We then define and derive the escape rate for a
scalar field using the flux-over-population method. This is
the main result of this work. In Sec. IV we compare our
result for the escape rate with a closely related problem, that
of quantum tunneling dominated by thermal fluctuations,
and outline some of the similarities and fundamental
differences between the two cases. Section V discusses
some potential applications for our results. Finally, Sec. VI
has some concluding remarks.

II. RATE OF ESCAPE OF A CLASSICAL
POINT PARTICLE

To introduce the escape problem and the associated
computations, we consider the simplest and well-known
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example of a classical point particle in a metastable
potential, whose dynamics is subject to both a dissipative
and a stochastic force. The two equivalent formalisms,
based on the Langevin and the FP equations, are reviewed.
We then also review the flux-over-population and the
mean-first-passage-time methods, which are used to obtain
the escape rate, that is, the probability per unit time that the
particle crosses the top of the potential energy barrier (and,
therefore, escapes the metastable minimum).

A. Point particle in a metastable potential

We consider a classical point particle of mass m initially
located at a local minimum xA of the potential VðxÞ. For
simplicity, we assume only one direction of escape, which
may happen through the closest local maximum located at
xB on the right of xA. On the left of the local minimum, the
potential is assumed to rise and not to have any additional
extrema. The situation is depicted in Fig. 1. Beyond the
local maximum at xB, to the right the potential might have
another local or global minimum or be unbounded from
below; it does not matter. The height of the barrier isΔV. In
particular, the escape rate should be independent of the
shape of the potential beyond the top of the barrier to the
right of xB.
In a classical deterministic description, the particle

sitting at the local minimum stays there forever and an
escape from the potential well is not allowed. Its dynamics
is governed by Newton’s second law,

m
d2x
dt2

¼ −V 0ðxÞ; ð2:1Þ

where the prime denotes a derivative with respect to x. The
position xA at the local minimum of the potential is stable.
In other words, xA is an attractor. Under a small perturba-
tion, the particle comes back to the original position.
In the presence of a thermal bath or a fluid, in which the

particle is placed, the situation is altered by the two
competing effects intrinsic to fluctuation and dissipation

dynamics. The random forces, originating from the thermal
fluctuations, push the particle away from the initial position
and allow it to eventually climb the potential barrier. In
addition, the damping tends to slow down the particle and
makes the return to the equilibrium point xA more difficult.
Due to the combined effect of fluctuation and dissipation,
the system is not stable anymore and there is a nonzero
probability for the particle to escape from the well. In
particular, after a sufficiently long time, it is reasonable to
expect that the particle has almost surely (i.e., it has a
nonvanishing probability to have) passed over the barrier.
We are interested in the rate at which the particle escapes

from the potential well. The escape rate is closely related to
the inverse of the average time needed to pass, for the first
time, the localmaximumof the potential. This time is known
in the literature as the “mean first passage time” [6]. A naive
inspection indicates that the escape rate should only depend
on the damping coefficient, the strength of the noise, the
temperature, and the potential. In regards to the latter, in
particular, the rate depends on the height of the barrier and
the curvature at the minimum and at the maximum. Since
the escape is defined from the first passage at the top of the
barrier, the characteristics of the potential beyond the
maximum should not play any role.
One clarification on terminology is worth stating here.

For a classical point particle, the escape rate is different
from and should not be confused with a diffusion rate to the
next minimum. The diffusion rate is typically smaller than
the escape rate since, once the particle has passed over the
top, it must then go down the potential on the other side
and, eventually, reach the minimum. If the next minimum is
at lower energy, the diffusion rate is a decay rate. Let us
now formulate the escape problem.

B. Langevin and Fokker-Planck descriptions

The Langevin and the FP formalisms are two equivalent
approaches used to describe a particle subject to random
forces that follow a Markov process. Both approaches are
presented here with a discussion of their strengths and
limitations.

1. The Langevin equation

The Langevin equation is obtained by the inclusion of
the random force, parametrized with a stochastic noise
ξðtÞ, and the damping term, all in the form of Newton’s
second law,

m
d2x
dt2

¼ −η
dx
dt

− V 0ðxÞ þ ξðtÞ; ð2:2Þ

where η is the damping coefficient. For simplicity, the noise
will always be assumed to be Gaussian throughout this
work. The average over the noise of an operator OðxÞ is
defined as

FIG. 1. Potential corresponding to the escape problem. The
position xA is the local minimum, where the point particle sits
initially, and xB the local maximum of the potential. The barrier
height is denoted by ΔV.
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hOðxÞiξ ≡
Z

d½ξ�OðxξÞ exp
�
−

1

2Ω

Z
tf

t0

dt0ξ2ðt0Þ
�
; ð2:3Þ

where xξ is the solution of the Langevin equation (2.2) for a
given realization ξ of the noise. Here, t0 and tf are the initial
and final times. The noise here satisfies the following
relations:

hξðtÞiξ ¼ 0; hξðtÞξðt0Þiξ ¼ Ωδðt − t0Þ; ð2:4Þ

where Ω parametrizes the strength of the noise. The
damping coefficient η is related to Ω by the Einstein
relation Ω ¼ 2ηkBT.
The Langevin equation is a stochastic differential equa-

tion for the random variable xξ and is, therefore, not
deterministic. Given that the randomness of the stochastic
force actually follows a well-defined probability distribu-
tion (in our case, a Gaussian white noise Markovian
process), the random variable xξ should also obey some
probability distribution ρðxÞ. The FP equation is the
equation whose solution is precisely this probability dis-
tribution ρðxÞ. In practice, given that it is a partial differ-
ential equation with well-defined coefficients and boundary
conditions, the FP equation is better suited for an analytical
treatment than the Langevin equation.

2. The Fokker-Planck equation

The idea behind the FP description is to consider the
evolution of the probability distribution of the quantities of
interest, in our case, the position and the velocity of the
particle. Due to the presence of random forces, each
realization is achieved with a certain probability. Even
though each individual particle dynamics realization is
nondeterministic, the evolution of the probability distribu-
tion is deterministic.
We are interested in the position and the velocity of the

particle as a function of time. The Langevin equation gives
a set of two first-order differential equations for the position
xðtÞ and velocity vðtÞ,

dx
dt

¼ v; ð2:5Þ

m
dv
dt

¼ −ηv − V 0ðxÞ þ ξðtÞ: ð2:6Þ

The FP probability distribution is defined as

Pðx; v; tjx0; v0; t0Þ≡ hδ½xξðtÞ − x�δ½vξðtÞ − v�iξ; ð2:7Þ

where the arguments xξðtÞ and vξðtÞ of the Dirac delta-
functions on the right are the solutions of the Langevin
equation [in the presence of the random force ξðtÞ] and x
and v the arguments of the probability distribution. P is the
averaged probability to find the particle at position x with

velocity v at time t, knowing the initial position x0 and
velocity v0 at time t0.
The probability distribution satisfies the FP equation1

∂
∂t Pðx; v; tjx0; v0; t0Þ ¼ −LFPPðx; v; tjx0; v0; t0Þ; ð2:8Þ

where LFP is the FP operator defined as

LFP ≡ ∂
∂x v −

1

m
∂
∂v ½ηvþ V 0ðxÞ� − Ω

2m2

∂2

∂v2 : ð2:9Þ

The FP equation is an ordinary differential equation for the
probability distribution P and, therefore, analytical meth-
ods can be applied.
In the large time limit, the system is expected to reach

equilibrium. The equilibrium probability distribution P0 is
a time-independent solution of the FP equation given by

P0ðx; vÞ ¼
1

Z
exp

�
−β
�
1

2
mv2 þ VðxÞ

��

¼ 1

Z
exp f−βEðx; vÞg; ð2:10Þ

where E is the energy of the nondissipative system and the
partition function Z is the normalization. Note that the
equilibrium distribution always formally exists as a solu-
tion of the FP equation; however, it does not necessarily
imply that the system possesses an equilibrium state. The
equilibrium distribution can be non-normalizable, in par-
ticular, if the potential is unbounded from below. The FP
formalism is fully equivalent to the Langevin approach and
provides the tools needed for an analytical derivation of the
escape rate.

C. Computation of the escape rate

Over the last century, several methods have been pro-
posed to estimate the escape rate.2 Since our final goal is to
consider a relativistic scalar field, we focus on the flux-over-
population method that appears as the most promising
candidate for such a generalization. For a better interpreta-
tion of the escape problem, we introduce, in the Appendix,
the framework of theMFPTand show its formal equivalence
with the flux-over-populationmethod, which proves that the
escape rate is indeed the inverse of the MFPT.

1. Flux-over-population method

The flux-over-population method has been introduced in
Ref. [5] and the explicit computation of the rate has been
achieved by Kramers in Ref. [1].

1Explicit details on the derivation and a discussion about the
properties of this equation can be found in Refs. [7,16].

2For a comprehensive review of these methods, see, e.g.,
Ref. [8].
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Let us consider the situation shown in Fig. 2. For
illustrative purposes, we have chosen an asymmetric
double-well potential. Similar reasoning applies to any
kind of potential as long as it possesses a local minimum in
the vicinity of a local maximum.3 The particle is initially
located at the minimum xA and the FP probability dis-
tribution at time t0 is a product of two Dirac delta-functions,

Pðx; v; t0jxA; 0; t0Þ ¼ δðx − xAÞδðvÞ: ð2:11Þ

The position-dependent parts of the initial and equilibrium
probability distributions are shown in Fig. 2, with the red
dashed-dotted line and the green dotted line, respectively.
During the time evolution, given by the FP equation (2.8),
the probability distribution goes from the red dashed-dotted
line to the green dotted line. In the large time limit, the
system has reached equilibrium and the probability dis-
tribution is given by Eq. (2.10). Therefore, there must be a
flux of probability at the maximum of the well. The origin
of this flux of probability is precisely the fluctuation and
dissipation dynamics discussed previously.
The idea behind the flux-over-population method relies

on the construction of a steady-state solution. The inclusion
of sources and sinks maintains a constant probability
current across the well. The role of the sources, located
to the left of the minimum at xSo in Fig. 2, is to supply
particles to the “A-well” and maintain a constant number
density inside the well. The particles thermalize and
eventually leave the well before being removed by the
sinks, located on the right of the maximum at xSi. Since the
total probability flux j is equal to the rate of escape k times
the population of the A-well, nA, the flux-over-population
method predicts

k≡ j
nA

; ð2:12Þ

as a solution for the escape rate.
The population of the A-well is given by the integration

over the probability density,

nA ¼
Z
A−well

dxdvPðx; vÞ; ð2:13Þ

which corresponds to the probability to be in the well, with
x ∈ ð−∞; xB� and v ∈ ð−∞;þ∞Þ. The flux at the barrier is

j ¼
Z þ∞

−∞
dvvPðxB; vÞ; ð2:14Þ

which is the probability to pass over the maximum with
some velocity.
The derivation of the rate requires two steps. First, the

probability distribution is obtained and then second the flux
and the number density are computed. The probability
density P is a solution of the FP equation (2.8) with the
particular boundary conditions dictated by the specific
steady-state situation under consideration. The ensemble
of particles is in equilibrium inside the A-well and the
probability density is given by Eq. (2.10). Since the sinks
remove the particles once they have passed the maximum,
we impose

Pðx > xSi; vÞ ≃ 0: ð2:15Þ

Finally, at the top of the barrier, there are no sources or
sinks and the potential VðxÞ is approximated as

VðxÞ≃VðxBÞ−
1

2
jV 00ðxBÞjðx−xBÞ2þO½ðx−xBÞ3�; ð2:16Þ

and, therefore, the steady-state FP equation (2.8) becomes

�
−

∂
∂x vþ

1

m
∂
∂v ½ηv − jV 00ðxBÞjðx − xBÞ�

þ Ω
2m2

∂2

∂v2
�
Pðx; vÞ ¼ 0; ð2:17Þ

at the vicinity of the top of the barrier xB.
The construction of Pðx; vÞ relies on the Kramers

ansatz [1],

Pðx; vÞ ¼ ζðx; vÞP0ðx; vÞ; ð2:18Þ

where P0 is the equilibrium distribution and ζ is chosen to
satisfy the boundary conditions:

lim
x→xA

ζðx; vÞ ¼ 1; ζðx > xSi; vÞ ¼ 0: ð2:19Þ

FIG. 2. Example case studied with the flux-over-population
method. The blue solid line is the potential VðxÞ. The red dashed-
dotted line is the particle’s initial position and the green dotted
line is the equilibrium FP probability distribution for the position.
The position xA is the initial location of the particle, xB the local
maximum, xC a second local minimum, xSo and xSi the positions
of the source and the sink respectively.

3The shape of the potential influences the form of the
equilibrium distribution; however, the existence of a probability
flux at the top of the potential is guaranteed.
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Applying the FP operator on the ansatz and using the
equilibrium distribution Eq. (2.10), we obtain the equation
for ζ,

�
−v

∂
∂x −

1

m
½ηvþ jV 00ðxBÞjðx − xBÞ�

∂
∂v

þ Ω
2m2

∂2

∂v2
�
ζðx; vÞ ¼ 0; ð2:20Þ

where we identify the adjoint FP equation

L†
FPζðx; vÞ ¼ 0: ð2:21Þ

In order to solve this equation, Kramers made the further
assumption in [1] that ζ depends only on u, a linear
combination of x and v, such that

u≡ ðx − xBÞ þ av: ð2:22Þ

From a purely mathematical point of view, this assumption
allows finding a solution of the differential equation (2.20)
that satisfies the boundary conditions (2.19). According to
Ref. [18], it can be shown that the form of solution ζðuÞ is
unique.
A physical interpretation for adopting the ansatz (2.20)

can be obtained by looking at the function ζðx; vÞ. From its
definition (2.18), ζ parametrizes the deviation from equi-
librium due to thermal activation in the vicinity of the
saddle point. The second boundary condition in (2.19)
implies that ζðx; vÞ should go to zero in the region of phase
space away from the saddle point (the “probability sink” at
x ≫ xB) and also should quickly vanish in the region of
positive velocities. Away from the saddle point, it is fair to
expect that the vanishing of the function ζðx; vÞ is con-
trolled by either ðx − xBÞ or v. The linear combination in
the Kramers assumption (2.22) is the simplest and most
straightforward way to implement this idea. The equation
for ζðuÞ then becomes

−
��

1þ a
m
η

�
vþ a

m
jV 00ðxBÞjðx− xBÞ

�
ζ0 þ a2

Ω
2m2

ζ00 ¼ 0;

ð2:23Þ

where the prime denotes a u-derivative. For consistency
with the assumption that ζ is a function of u only and in
order to obtain the correct behavior at the boundary, the
factor in front of ζ0 must be a linear function of u. Imposing
that

λu≡ −
��

1þ a
m
η

�
vþ a

m
jV 00ðxBÞjðx − xBÞ

�
; ð2:24Þ

the constants a and λ are found to be given, respectively, by

λ� ¼ −
η

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 00ðxBÞj

m
þ
�

η

2m

�
2

s
; ð2:25Þ

a ¼ −
m

V 00ðxBÞ
λ�; ð2:26Þ

where the two solutions for λ have opposite signs.
Solving for ζðuÞ by inserting Eq. (2.24) in the differential

equation and integrating twice gives

ζðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β½V 00ðxBÞ�2
2πηλþ

s Z
∞

u
dz exp

�
−β

½V 00ðxBÞ�2
2ηλþ

z2
�
;

ð2:27Þ

where λþ has been chosen to have an overall negative
exponent and, therefore, ζ to vanish for large positive x.
The factor in front of ζ has been chosen to satisfy the
condition that ζ goes to unity inside the A-well.
Having all elements at our disposal to compute the

probability flux j, we obtain the result

j ¼ 1

Z

�
λþ
β

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mjV 00ðxBÞj
p expf−βVðxBÞg; ð2:28Þ

where we have used integration by parts. The population nA
of the A-well is simply

nA ≃
1

Z

ffiffiffiffiffiffiffi
2π

βm

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

βV 00ðxAÞ

s
expf−βVðxAÞg; ð2:29Þ

where the potential has been expanded around the local
minimum in xA and the limit of integration for x safely
extended to infinity.
Taking the ratio of j and nA, the escape rate is found to be

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 00ðxBÞj

m þ ð η
2mÞ2

q
− η

2m

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðxAÞ
jV 00ðxBÞj

s

× exp f−β½VðxBÞ − VðxAÞ�g; ð2:30Þ

which is the famous result of Kramers. As expected, the
rate depends only on the parameters η (or equivalently Ω),
the temperature, the curvature of the potential at the initial
local minimum and the nearby maximum and the height of
the barrier. The height of the barrier ΔV ¼ VðxBÞ − VðxAÞ
can be seen as the activation energy.
It is important to notice that the shape of the potential on

the other side of the well does not influence the final result.
This is a consequence of the absorbing boundary condition
(2.15). Notice that this feature is crucial for a sound
definition of the escape problem. Indeed, for a potential
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well such as the one shown in Fig. 2, there is a minimum at
xC, which has a higher potential energy compared to the
starting well at xA. In this case, the total probability flow
over the barrier at xB will be made up of a sum of two
contributions: one escaping contribution (from xA to xC)
and a returning contribution (from xC back to xA). The
absorbing boundary condition (2.15) is a way to disen-
tangle the two contributions, keeping only the escaping part
of the probability flux over the barrier.
An alternative method to derive the escape rate is

achieved with the formalism of the mean first passage
time. This approach provides a simple interpretation of the
escape problem; it corresponds to the average time needed
to leave for the first time a specified domain. In practice, it
is difficult to solve for the MFPT; this is due, in particular,
to nontrivial boundary conditions. In the Appendix, we
provide more details on the formalism of the MFPT and
show the formal equivalence with the flux-over-population
method.

III. ESCAPE RATE FOR A SCALAR FIELD

The main objective of this work is the definition of the
Kramers problem in field theory. Using the knowledge
gathered from the classical point particle case, we first
describe the escape problem for a scalar field and then show
that the formulation of a meaningful definition is not
straightforward.
We introduce the two usual formulations for dealing with

the Kramers problem. The first is based on the Langevin
equation, which has a direct interpretation but is limited in
its analytical treatment. The second formulation is the one
based on the FP approach, whose derivation is more
involved, but is much more amenable to analytic treatment.
In this section we will also use ideas from the flux-over-
population method to define the Kramers problem, derive
explicitly the escape rate for a scalar field and then interpret
the results.

A. Defining the escape problem for a background
scalar field configuration

Let us consider a scalar field with a self-interaction
potential as shown in Fig. 3. We assume, for simplicity, that
the initial configuration is a homogeneous field sitting at a
local minimum ϕA. The interactions with extra degrees of
freedom (d.o.f.), for example a thermal bath, lead to
fluctuation and dissipation dynamics and potentially allow
for an escape from the potential well. Our goal is to
compute the rate per unit volume for the field to escape
from the well, due to thermal fluctuations.
Involving a field renders the definition of an escape more

difficult and less intuitive than treating the point particle,
zero-dimensional case, discussed previously. At equilib-
rium, the field populates both sides of the well (or has
completely decayed if the potential is unbounded from

belowbeyond thewell). Comparingwith the initial situation,
where the field configuration is homogeneously located at
ϕA, it is reasonable to assume the existence of a flow of the
probability density across the potential well. For this reason,
the flux-over-population method should apply. The naive
generalization of the point particle casewould be to estimate
the average time needed for the field to reach the top of the
potential ϕB for the first time at each point in space. As we
will learn, this case can be related to the Hawking-Moss
solution [19] in the early Universe. However, in our case,
where we are considering a Minkowski spacetime and the
volume can be infinite, this solution would lead to a
vanishing rate. We should, therefore, seek for another
definition of the escape configuration.
Before going into the details of our calculations, it is

important to comment on the difference between the escape
problem treated in this work with two other closely related
problems, the quantum tunneling and the nucleation
problem. Quantum tunneling, as its name implies, is a
consequence of the quantum fluctuations of the field. Such
fluctuations can connect two classically disconnected
values of the field, through a forbidden region in potential
energy, without giving the field any energy. This is what
happens in a quantum first-order phase transition.
Nucleation, on the other hand, is the mechanism that drives
first-order phase transitions with small degrees of meta-
stability (for example, small supercooling). It corresponds
to the formation (or “nucleation”) of bubbles of the stable
phase inside the metastable phase. Such bubbles grow and
complete the phase conversion. Differently from tunneling,
the process of nucleation is typically driven by thermal
fluctuations (even though for many systems quantum
fluctuations may also play a role). In this sense, it can
be said that, in nucleation, the potential energy barrier is
overcome with energy absorbed from the heat reservoir, in
contrast to tunneling. Lastly, the problem treated in this
work, the escape problem, does not necessarily require the

FIG. 3. Potentials corresponding to the escape problem. ϕA is
the initial local minimum. ϕB corresponds to the local maximum
of the potential. On the right-hand side of the maximum, there are
several possibilities, a false vacuum at ϕFV (dashed line), a true
vacuum at ϕTV (dotted line) or a potential that is unbounded from
below (dashed-dotted line) with VðϕU0Þ ¼ VðϕAÞ.
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presence of an initial false vacuum. If it is the case, the
escape problem can be seen as the first stage of the
nucleation problem, i.e., the generation of domains of field
configurations outside the initial minimum. In general, the
Kramers problem for a scalar field, defined in this work,
should be understood as the derivation of the probability for
the field to pass over the potential barrier in a finite region
of space. Due to thermal fluctuations (quantum fluctuations
could also be eventually be considered in a future work), a
field starting at a low minimum of potential energy can gain
energy from the heat reservoir and then “climb” the
potential well to reach and surmount an energy barrier.
Another distinctive feature of the escape problem is that it
does not regard the dynamics of the field after it finds itself
outside of the starting well. However, this issue is more
subtle for a field than for a point particle system, as we will
discuss below.
As stated in Ref. [16], it is sufficient that a finite part of

space has passed the barrier. At first sight, this statement
would give some freedom in the precise definition of the
escape problem. In particular, once the field has reached the
top at a spatial location, it can fall on the other side and
attract the neighboring points, with a gain in potential
energy, likely accompanied by an energy cost due to
inhomogeneities, i.e., a nonzero gradient term. This is a
crucial difference with the zero-dimensional, one-particle
case of the previous section. When considering a field, the
form of the potential beyond the maximum plays a role in
the escape problem. Indeed, the Laplacian term in the field
equation of motion connects neighboring points of space,
which tend to have close values of the field and are thus not
independent of each other. Therefore, if a given point of
space acquires a field value beyond the maximum of the
potential, this is in a way of saying it “communicated” to its
neighboring points. This is a distinctive trait of the field
system’s dynamics that differs from the single particle case.
It is then fair to expect that the two cases, where the initial
minimum is a true or a false vacuum, must be treated
separately. As we will learn shortly, these features naturally
emerge along the computation in a generalized flux-over-
population method and this approach allows for a satis-
factory definition of the escape problem. In particular,
a critical volume of space that experiences hopping is
precisely defined by the formalism. To perform this
analysis, we should first introduce some of the necessary
ingredients from stochastic field theory.

B. Stochastic field theory

Let us review here some of the basics of stochastic field
theory and introduce the relevant quantities needed for the
derivation of the escape rate.

1. The Langevin and Fokker-Planck equations

The dynamics of a classical field configuration under
random fluctuations and dissipation is an extremely

important subject in many different branches in modern
physics as far as the description of nonequilibrium fields is
concerned (for a thorough introduction and review, see, e.g.,
Ref. [20]). A natural characteristic when studying the
evolution of a system in interaction with an environment
is the presence of both dissipative and stochastic terms. For
instance, in the context of quantum fields, we might be
interested in the derivation of an effective equation ofmotion
for a given field background configuration which represents
some relevant characteristic of the system under study
(e.g., a vacuum expectation value taking the role of an order
parameter important in a phase transition problem).
Typically, this involves a selection of a relevant field mode,
inwhichwe are interested in the dynamics andwill represent
the physical system, while the remaining d.o.f. are taken as
an environment. The d.o.f. that are regarded as environment
can also include any other fields in the original model
Lagrangian (see for instance Ref. [20] for a review and
discussion about these types of equations and their deriva-
tion in the context of quantum field theory). In quantum field
theory, the preferred methodology used to study dynamical
effects in general is the closed time path formalism [21]. The
effective equation of motion for an interacting scalar field is
Langevin-like and includes an explicit fluctuation-dissipa-
tion relation (see, e.g., Refs. [22–26]). Generically, the usual
relativistic Klein-Gordon equation describing the dynamics
of the scalar field in a potential VðϕÞ is modified to take the
thermal fluctuations into account and becomes a Langevin
equation,

ð∂2
t −∇2Þϕðx⃗; tÞ þ ∂VðϕÞ

∂ϕ þ η _ϕðx⃗; tÞ ¼ ξðx⃗; tÞ; ð3:1Þ

where η is the dissipation coefficient and ξ is a Gaussian
white noise satisfying

hξðx⃗; tÞi ¼ 0;

hξðx⃗; tÞξðx⃗0; t0Þi ¼ Ωδ3ðx⃗ − x⃗0Þδðt − t0Þ; ð3:2Þ

where Ω parametrizes the strength of the noise and satisfies
the Einstein relation Ω ¼ 2η=β ¼ 2ηkBT. In the quantum
field theory context, both the potential and the dissipation
coefficient in Eq. (3.1) can be functions of the temperature
and on the details of the interactions in the full original
microscopic Lagrangian density, carrying, for example,
information on the interactions of the scalar field ϕ with
other field d.o.f. In the following,wewill assume a particular
fixed form for the potential and the dissipation coefficient. It
is straightforward to generalize the analysis for other forms,
for example, that include the dependence on the temper-
ature. Exploring the full quantum origin of the Langevin
equation for the expectation value of a field goes beyond the
scope of this work.We refer the interested reader to [20] and
references therein. Thus, for the rest of this work, we will
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simply assume the existence of a Langevin equation of the
form of Eq. (3.1).
As an important point of detail, when dealing with

integrals over the field space, we discretize the space by
adopting the following conventions:

ϕðx⃗; tÞ → ϕðxi; tÞ ¼ ϕiðtÞ;Z
d3x⃗ → a3

XN3

i¼1

;

δðx⃗ − y⃗Þ → δij
a3

; ð3:3Þ

such that

Z
d3x⃗δðx⃗ − y⃗Þ ¼ a3

XN3

i¼1

δij
a3

¼ 1; ð3:4Þ

where the volume V ¼ L3 ¼ ðN · aÞ3, with N being the
number of discrete sites in each direction and a the spacing
between two adjacent points. Taking into account the field
and its conjugate momentum, in a space of three dimen-
sions, we are considering a 2N3-dimensional system. For
simplicity, we have labeled the spatial points in the three
spatial directions with a single label i instead of ijk. For the
sake of clarity, we will also denote the Laplacian as ∇2

ijϕj.
The actual definition in discrete space is given by

∇2ϕijk ¼
1

a2
½ϕiþ1;j;k þ ϕi−1;j;k þ ϕi;jþ1;k

þ ϕi;j−1;k þ ϕi;j;kþ1 þ ϕi;j;k−1 − 6ϕi;j;k�; ð3:5Þ

where each direction of space has been explicitly labeled.
As usual when working with the Langevin equation like

in Eq. (3.1), the analytical treatment is limited by the
stochastic character of the equation. There is, therefore, a
need to introduce the FP formalism for the scalar field. The
Langevin equation (3.1) implies the following set of
equations for the field ϕ and the conjugate momentum π:

∂tϕiðtÞ ¼ πiðtÞ;
∂tπiðtÞ ¼ −ηπiðtÞ þ∇2

ijϕjðtÞ − V 0ðϕiÞ þ ξiðtÞ; ð3:6Þ

where the prime denotes a derivative with respect to the
field. The FP probability density is defined as

Pðϕ; π; tjϕ0; π0; t0Þ≡
	YN3

i¼1

δ½π̂iðtÞ − πi� · δ½ϕ̂iðtÞ − ϕi�



ξ

;

ð3:7Þ

where ϕ̂iðtÞ and π̂iðtÞ are solutions of the Langevin
equation (3.6) for a given noise realization ξ and ϕi and

πi are the arguments of the probability distribution P. The
stochastic average of an operator Oðϕ̂; π̂Þ is defined as

hOðϕ̂; π̂Þiξ ≡
Z YN3

i¼1

d½ξðtÞ�iOðϕ̂; π̂Þ

× exp

�
−
a3

2Ω

XN3

j¼1

Z
dt0ξ2jðt0Þ

�
; ð3:8Þ

where the integration measure is normalized to give
h1iξ ¼ 1. The probability density is a solution of the FP
equation,

∂
∂t Pðϕ; π; tjϕ0; π0; t0Þ ¼ −LFPPðϕ; π; tjϕ0; π0; t0Þ; ð3:9Þ

where the FP operator is defined as

LFP ≡ −a3
XN3

i¼1

�
−πi

∂
a3∂ϕi

þ ∂
a3∂πi ½ηπi −∇2

ijϕj þ V 0ðϕiÞ�

þΩ
2

∂2

a6∂π2i
�
: ð3:10Þ

2. The probability density current

Due to the conservation of probability, the FP equation
can be written in terms of a probability density current J,

∂tPðϕ;π;tÞ¼−a3
XN3

i¼1

∂
a3∂ϕi

Ji−a3
XN3

i¼1

∂
a3∂πi J̄i; ð3:11Þ

where the components Ji and J̄i of the current are defined as

Ji ≡ −
�
−πi − kBT

∂
a3∂πi

�
Pðϕ; π; tjϕ0; π0; tÞ; ð3:12Þ

and

J̄i ≡ −
�
½ηπi −∇2

ijϕj þ V 0ðϕiÞ� þ kBT
∂

a3∂ϕi

þ Ω
2

∂
a3∂πi

�
Pðϕ; π; tjϕ0; π0; tÞ; ð3:13Þ

for i ∈ ½1; N3�. The validity of this equation can be shown
explicitly by substituting in Eq. (3.11).

3. The equilibrium distribution

The FP equation admits an equilibrium solution P0

given by

P0ðϕ; πÞ ¼ Z−1 expf−βE½ϕ; π�g; ð3:14Þ

where Z is the normalization given by the partition
function
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Z ¼
Z YN3

i¼1

dϕidπi exp f−βE½ϕ; π�g; ð3:15Þ

and E½ϕ; π� is

E½ϕ; π� ¼ a3
XN3

i¼1

�
1

2
π2i þ

1

2
ð∇ϕiÞ2 þ VðϕiÞ

�
; ð3:16Þ

which corresponds to the energy function of the system in
the nondissipative limit.

4. The vector-matrix notation

Following the work of Langer [18], it is useful to
introduce a vector-matrix notation. The field and its
conjugate momentum are written in a 2N3-dimensional
vector as�

ϕ

π

�
¼
�
ϕiðtÞ
πiðtÞ

�
; where i ∈ ½1; N3�: ð3:17Þ

The deterministic limit of the Langevin equation is
expressed as

∂
∂t
�
ϕ

π

�
¼ −M ·

 ∂
a3∂ϕ
∂

a3∂π

!
E½ϕ; π�; ð3:18Þ

with M ¼ ðMijÞ being the 2N3 × 2N3 block matrix
defined as

M ¼ 1

a3

�
0 −1
1 η1

�
; ð3:19Þ

where 1 is the N3-dimensional unit matrix and the
multiplication · between two 2N3 × 2N3 matrices is
defined as

ðA · BÞij ≡ a3
X2N3

k¼1

AikBkj: ð3:20Þ

A similar rule applies to the scalar product. The FP
equation is given as

∂tPðϕ; π; tÞ ¼ −

 
1
a3

∂
∂ϕ

1
a3

∂
∂π

!
T

·

�
J

J̄

�
; ð3:21Þ

where ðJJ̄ÞT is the 2N3-dimensional vector corresponding
to the probability current,

�
J

J̄

�
¼−M ·

 
1
a3

∂E
∂ϕþ kBT

a3
∂
∂ϕ

1
a3

∂E
∂πþ kBT

a3
∂
∂π

!
Pðϕ;π; tjϕ0;π0; tÞ: ð3:22Þ

5. The continuum limit

We have been working in discrete space to simplify the
analytical computations. However, the continuum limit can
be taken at any stage of the derivation. For completeness,
let us state the main quantities as expressed in the
continuum limit. The FP equation reads

∂
∂tPðϕ;π; tjϕ0;π0; t0Þ¼−LFPPðϕ;π; tjϕ0;π0; t0Þ; ð3:23Þ

with

LFP ≡ −
Z

d3x⃗

�
−πðx⃗Þ δ

δϕðx⃗Þ

þ δ

δπðx⃗Þ ½ηπðx⃗Þ −∇2ϕðx⃗Þ þ V 0ϕÞ� þ Ω
2

δ2

δπðx⃗Þ2
�
;

ð3:24Þ

and the equilibrium distribution is given by

P0ðϕ; πÞ ¼ Z−1 exp f−βE½ϕ; π�g; ð3:25Þ

with

Z ¼
Z

DϕDπ exp f−βE½ϕ; π�g; ð3:26Þ

and

E½ϕ; π� ¼
Z

d3x⃗

�
1

2
πðx⃗Þ2 þ 1

2
ð∇ϕðx⃗ÞÞ2 þ VðϕÞ

�
ð3:27Þ

is the energy functional.

C. Computation of the rate

The computation of the escape rate for the scalar field
is a generalization of the zero-dimensional flux-over-
population method to stochastic field theory. The original
extension of the method to a 2N-dimensional system has
been performed by Langer in Refs. [17,18].

1. Setting up the problem

The flux-over-population method relies on similar ideas
as in the zero-dimensional case. The initial configuration is
a homogeneous and static field located at the local mini-
mum of the potential,

ϕiðt0Þ ¼ ϕA
i ; πiðt0Þ ¼ 0; ∀ i: ð3:28Þ

We assume that, for large negative values of the field, the
potential is diverging and, on the other side, there is a local
maximum located at ϕB, as shown in Fig. 3. The probability
density at time t0 is a product of Dirac delta-functions
peaked at ϕ ¼ ϕA and π ¼ 0,
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Pðϕ; π; t0jϕ0; π0; t0Þ ¼
YN3

i¼1

δ½πi� · δ½ϕi − ϕA�: ð3:29Þ

After a sufficiently long time, the system is expected
to be described by the equilibrium distribution given in
Eq. (3.14). At its early stages, the evolution of the system
implies an increasing probability to find the field on
the other side of the potential and, therefore, a flux of
probability at the barrier.
The probability current is expected to go along the

configuration with the minimal energy on the barrier ridge.
This defines the saddle-point configuration, which is found
by taking the variation of the energy function

δE ¼ a3
XN3

i¼1

πiδπi þ ½−∇2ϕi þ V 0ðϕiÞ�δϕi: ð3:30Þ

We directly observe that the initial configuration is an
extremum of the energy. The next configuration that
extremizes the energy is given by πSi ¼ 0 and ϕS

i that
satisfies the saddle-point equation,

∇2ϕS
i ¼ V 0ðϕS

i Þ; ð3:31Þ

and defines the saddle-point configuration. The exact form
of the solution ϕS is a priori not obvious. As stated in
Sec. III A, a simple solution is the homogeneous case where
the field is at the top of the potential ϕB, at each point of
space. This trivial solution of the saddle-point equation is
relevant in a situation where the volume of space in
consideration is finite. An example is the early Universe
where this solution corresponds to the Hawking-Moss
instanton [19], and the volume is a sphere of Hubble
radius. In our case, the volume of space might be arbitrarily
large. It is fair to assume that the rate of escape, which has
an exponential dependence on the volume of space that
experiences hopping, will be strongly suppressed when
considering a large or even infinite volume. We, therefore,
seek for a solution of the saddle-point equation where only
a finite region of the space escapes, as already suggested
in Ref. [16].
We might try to find a solution of Eq. (3.31) where the

field is homogeneously sitting at the initial position ϕA

everywhere except in some finite part, where it is climbing
the potential well. Using the rotational symmetry and
writing the saddle-point equation in spherical coordinates,
we obtain

∂2

∂r2 ϕ
S þ 2

r
∂
∂rϕ

S ¼ V 0ðϕSÞ; ð3:32Þ

where, for simplicity, we are working in the continuum
limit. The boundary conditions are

lim
r→∞

ϕSðrÞ ¼ ϕA;
∂
∂rϕ

S

����
r¼0

¼ 0; ð3:33Þ

where the second condition has been introduced to make
sure the left-hand side of the saddle-point equation (3.32) is
finite at the center of the coordinates. The equation can be
interpreted as the equation of motion of a fictitious point
particle, in an inverted potential −V and with a damping
term. The overshoot/undershoot technique of Coleman [10]
shows that a solution only exists if the original minimum is
a false vacuum. We should then consider separately the
cases where the initial minimum is a false (given by the
dotted and dashed-dotted lines shown in Fig. 3) or a true
(e.g., the dashed line shown in Fig. 3) vacuum.
In the case of a false vacuum at ϕA, the saddle-point

solution satisfying Eq. (3.32) exists and it is well under-
stood. Let us consider the two limiting cases. If the
potential is unbounded from below, by continuity, there
must be a field value ϕ0 > ϕU0, where the fictitious particle
starts at r ¼ 0 with zero velocity and reaches ϕA at infinite
radius. Moreover, it has been shown in Ref. [27] that ϕ0 is
of the order of ϕU0. In the presence of a true vacuum at ϕTV ,
the existence of a solution is ensured by the overshoot/
undershoot argument. If Vðϕðr ¼ 0ÞÞ > VðϕAÞ, the ficti-
tious particle does not have enough potential energy to
climb the inverted potential up to ϕA; this is an undershoot.
On the other hand, if ϕðr ¼ 0Þ is close enough to ϕTV , the
fictitious particle can stay near the true minimum until the
damping term becomes negligible, since it is suppressed by
r, and then it will overshoot. By continuity, there is a field
value to start at r ¼ 0 that satisfies Vðϕðr ¼ 0ÞÞ < VðϕAÞ
and ϕðr ¼ 0Þ < ϕTV such that the fictitious particle ends at
ϕA at infinite radius. By these arguments, the saddle-point
configuration is uniquely defined as well as the region of
space that experiences hopping. Moreover, it has been
shown by Coleman in Ref. [28] that the Hessian matrix of
the energy evaluated for this configuration has only one
negative eigenvalue. In the presence of an initial false
vacuum, the escape rate is therefore analogous to the rate of
nucleation of a critical bubble of true vacuum, due to
thermal fluctuations, but now with in addition the damping
explicitly taken into account.
One of the main differences with nucleation is that the

escape problem can be defined for an initial true vacuum at
ϕA. However, a proper definition of the escape rate in this
case requires additional care. On the one hand, by compar-
ing the initial and the equilibrium distributions, it is fair to
assume that there is a probability flow at the potential
barrier and, therefore, it should be possible to define an
escape. On the other hand, the undershoot argument forbids
the existence of a solution of the saddle-point equation. We
will come back to this issue at the end of this section, in
Sec. III C 7, and make some propositions for a well-defined
escape problem. For the moment, we simply assume that
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the initial position ϕA is a false vacuum and proceed
with the computation of the escape rate. Note that the fact
that the escape rate depends on the initial minimum being
global or local is a clear difference with the point particle
case discussed in Sec. II. For a field, the shape of the
potential beyond the barrier plays a role in the evaluation of
the escape rate.
The flux-over-population method relies on the following

assumptions:
(i) No sources or sinks lie in the neighborhood of the

saddle-point configuration. This allows us to write
the FP equation (3.9) near the saddle point as

a3
XN3

i¼1

�
−πi

∂
a3∂ϕi

þ ∂
a3∂πi

�
ηπi þ a3

XN3

k¼1

�
−
∇2

ik

a3
þ V 00ðϕS

kÞδik
a3

�

× ðϕk − ϕS
kÞ
�
þ Ω

2

∂2

a6∂π2i
�
Pðϕ; πÞ ¼ 0; ð3:34Þ

using the expansion of the energy near the saddle
point

E½ϕ; π� ¼ E½ϕS; πS� þ 1

2
a6
XN3

i;j¼1

ðϕi − ϕS
i Þ

×

�
−
∇2

ij

a3
þ V 00ðϕS

i Þδij
a3

�
ðϕj − ϕS

j Þ

þ 1

2
a6
XN3

ij¼1

ðπi − πSi Þ
δij
a3

ðπj − πSj Þ þ � � � :

ð3:35Þ

In the spirit of the vector-matrix notation defined
above, we introduce the matrix ðeSijÞ

ðeSijÞ ¼ −
1

a3

�
−∇2

ij þ V 00ðϕS
kÞδij 0

0 1

�
; ð3:36Þ

which corresponds to the negative of the Hessian
matrix of the energy evaluated at the saddle-point
configuration. In the context of field theory, the
Hessian matrix is usually referred to as a fluctuation
operator.

(ii) Inside the well, near the minimum where the field is
located initially, the system is thermalized,

Pðϕ ≃ ϕA; π ≃ πAÞ ≃ P0ðϕ; πÞ; ð3:37Þ

where P0 is the equilibrium distribution.
(iii) Beyond the saddle point, the probability density is

strongly suppressed due to the presence of the sinks.

2. The derivation of the probability density

The computation of the flow of the probability current
and the number density relies on the solution Pðϕ; πÞ of the
FP equation with the boundary conditions given above.
This solution is derived using the Kramers ansatz,

Pðϕ; πÞ ¼ ζðϕ; πÞP0ðϕ; πÞ; ð3:38Þ

where ζðϕ; πÞ must be fixed to satisfy the boundary
conditions,

ζðϕ ≃ ϕA; π ≃ πAÞ ¼ 1; ζðϕ > ϕS; πÞ → 0: ð3:39Þ

The equation for ζðϕ; πÞ is found by insertion in the FP
equation. In particular, near the saddle point, one finds

a3
XN3

i¼1

�
−πi

∂
a3∂ϕi

þ
�
−ηπiþ a3

XN3

k¼1

�
−
∇2

ik

a3
þV 00ðϕS

kÞδik
a3

�
ðϕk −ϕS

kÞ
� ∂
a3∂πi

þΩ
2

∂2

a6∂π2i
�
ζðϕ;πÞ ¼ 0: ð3:40Þ

With the same arguments as in the zero-dimensional
point particle case and following the Kramers original
proposal, it is assumed that ζðϕ; πÞ depends on a linear
combination u of the ϕi and πi,

ζðϕ; πÞ ¼ ζðuÞ; ð3:41Þ

with

u ¼ a3
XN3

i¼1

½Uiðϕi − ϕS
i Þ þ Ūiðπi − πSi Þ�; ð3:42Þ

where Ui and Ūi are the coefficients associated with ϕi and
πi, respectively. Similar arguments as the ones stated after
Eq. (2.22) for the zero-dimensional point particle case
justify this form of solution ζðuÞ. The following ansatz for
ζðuÞ,

ζðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πkBT

p
Z

∞

u
dz exp

�
−

z2

2kBT

�
; ð3:43Þ

satisfies the boundary conditions. To compute the coef-
ficients Ui and Ūi, we substitute ζðuÞ in Eq. (3.40) and
obtain
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a3
XN3

i¼1

�
ðUiþηŪiÞπi

− Ūia3
XN3

k¼1

�
−
∇2

ik

a3
þV 00ðϕS

kÞδik
a3

�
ðϕk−ϕS

kÞ

þηŪ2
i a

3
XN3

k¼1

Ukðϕk−ϕS
kÞþηŪ2

i a
3
XN3

k¼1

Ūkðπk−πSkÞ
�
¼ 0:

ð3:44Þ

At first sight, this equation seems unpromising.
Fortunately, it can be written in a simple form using the
vector-matrix notation that has been introduced previously.
Defining the ð2N3Þ vectors ðUŪÞT and ðϕ − ϕSπ − πSÞT
such that

u ¼ ðUŪÞ ·
�
ϕ − ϕS

π − πS

�

¼ a3
XN3

i¼1

½Uiðϕi − ϕS
i Þ þ Ūiðπi − πSi Þ�; ð3:45Þ

with the scalar product being defined as in Eq. (3.20), the
equation for the parameters Ui and Ūi becomes

ðUŪÞ ·MT · ðeSijÞ ·
�
ϕ − ϕS

π − πS

�
¼ λðUŪÞ ·

�
ϕ − ϕS

π − πS

�
;

ð3:46Þ

where the scalar λ is defined as

λ≡ ðUŪÞ ·M ·

�
U

Ū

�
¼ a3

XN3

i¼1

ηŪiŪi: ð3:47Þ

The matrix equation (3.46) leads to the eigenvalue equation
for ðUŪÞ,

ðUŪÞ ·MT · ðeSijÞ ¼ λðUŪÞ; ð3:48Þ

and the other term ðUŪÞT is a left eigenvector of the matrix
MT · ðeSijÞ with eigenvalue λ. Combining the definition of λ
and the eigenvalue equation, we find the normalization
condition

1 ¼ ðUŪÞ · ðeSijÞ−1 ·
�
U

Ū

�
: ð3:49Þ

The eigenvalue λ is positive by definition. The positivity is,
in fact, a direct consequence of the overall negativity of the
exponent of ζðuÞ. This negative exponent has been chosen
in order to satisfy the boundary condition imposed by
the method, namely the suppression of the probability

distribution beyond the saddle point, and λ is the only
positive eigenvalue of the matrix MT · ðeSijÞ. Recall that
ðeSijÞ is defined as the negative of the Hessian of the energy,
evaluated exactly at the saddle point.

3. The probability density current and flux

Once we have obtained the probability density P ¼ ζP0

we are ready to compute the associated probability density
current defined in Eqs. (3.12) and (3.13). After some
algebra, we find

JζP0 ¼
ffiffiffiffiffiffiffiffi
kBT
2π

r
M ·

�
U

Ū

�
exp

�
−

u2

2kBT

�
P0; ð3:50Þ

and the probability flux j is given by

j¼ a3
X2N3

i¼1

Z
u¼0

dSiJiðϕ;πÞ

¼ λ

2πZ

ffiffiffiffiffiffiffiffi
kBT
2π

r
expf−βE½ϕS;πS�g

×
Z

DϕDπ

Z
dkexp

�
ikðUŪÞ ·

�
ϕ−ϕS

π − πS

��

× exp

�
β

2

�
ϕ−ϕS

π − πS

�T

· ðeSijÞ ·
�
ϕ−ϕS

π − πS

��
: ð3:51Þ

We can diagonalize the matrix ðeSijÞ by introducing the
rotation S ¼ ðSijÞ in field space to obtain

�
ϕ − ϕS

π − πS

�
¼ S · ξ; ð3:52Þ

iku¼ ikðUŪÞ · S† · S ·
�
ϕ−ϕS

π − πS

�
¼ ikŨ · ξ; ð3:53Þ

where we have defined the vector Ũ as S · ðUŪÞT and

�
ϕ − ϕS

π − πS

�T

· ðeSijÞ ·
�
ϕ − ϕS

π − πS

�
¼ a3μ1ξ21 − a3

X2N3

l¼2

μlξ
2
l ;

ð3:54Þ

where all the scalars μl are defined as positive.4 The only
positive eigenvalue of ðeSijÞ is μ1; all the other eigenvalues
are −μl. Hence, we finally can write the flux j as

j ¼ λ

2πZ
e−βE½ϕS;πS�j detð2π=βÞ−1EðSÞj−1

2; ð3:55Þ

4For the moment, we ignore the possibility of vanishing
eigenvalues. We shall come back to them shortly.
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where the matrix EðSÞ ¼ −ðeSijÞ is the Hessian of the energy
at the saddle point, and that has only one negative
eigenvalue. Since this negative eigenvalue appears with a
negative sign, it is the magnitude of the determinant that
enters the formula. The successive integrations have been
performed in the following order, first over all the modes l
larger than 1, then over k and finally over ξ1.

4. The zero modes

Due to the translation invariance of the saddle-point
solution, there are three eigenvalues in the associated
determinant that are exactly zero and, therefore, must be
treated separately upon the Gaussian integration. For
simplicity and in order to agree with the literature, we
perform the analysis in the continuum space. First of all, let
us show that ∂ x⃗ϕ

S, ∂ y⃗ϕ
S and ∂ z⃗ϕ

S are zero-modes.
Considering ∂ x⃗ϕ

S we have

½−∇2 þ V 00ðϕSÞ�∂ x⃗ϕ
S ¼ −∂ x⃗∇2ϕS þ V 00ðϕSÞ∂ x⃗ϕ

S

¼ −∂ x⃗V 0ðϕSÞ þ V 00ðϕSÞ∂ x⃗ϕ
S

¼ −V 00ðϕSÞ∂ x⃗ϕ
S þ V 00ðϕSÞ∂ x⃗ϕ

S

¼ 0: ð3:56Þ

To remove the zero-modes, we follow the procedure
described in [18] and [11]. First of all, the determinant
has its zero-eigenvalues removed and becomes

j detð2π=βÞ−1½−∇2 þ V 00ðϕS
i Þ�j

→ j det0ð2π=βÞ−1½−∇2 þ V 00ðϕS
i Þ�j; ð3:57Þ

with the prime denoting the removal of the vanishing
eigenvalues. Then, the integration over the zero-modes
∂ x⃗ϕ

S, ∂ y⃗ϕ
S and ∂ z⃗ϕ

S becomes an integration over dx⃗, dy⃗
and dz⃗, giving an overall volume factor V. Finally each
change of variable from the zero-modes to ∂ x⃗ϕ

S, ∂ y⃗ϕ
S and

∂ z⃗ϕ
S to dx⃗, dy⃗ and dz⃗ leads to a Jacobian. For example, for

the mode ∂ x⃗ϕ
S we have

�Z
d3x⃗

�∂ϕS

∂x
�

2
�
1=2

: ð3:58Þ

The Jacobian is identical for each zero-mode since

Z
d3x⃗

�∂ϕS

∂x
�

2

¼
Z

d3x⃗

�∂ϕS

∂y
�

2

¼
Z

d3x⃗
�∂ϕS

∂z
�

2

; ð3:59Þ

where we used the rotation-symmetry of the saddle-point
solution. We then have

Z
d3x⃗

�∂ϕS

∂x
�

2

¼ 1

3

Z
d3x⃗ð∇ϕSÞ2: ð3:60Þ

Hence, there is an overall factor multiplying the rate
coming from the Jacobian and given by�

1

3

Z
d3x⃗ð∇ϕSÞ2

�
3=2

: ð3:61Þ

A quick dimensional check tells us that removing the three
eigenvalues from the determinant increases the dimension
by 3=2. The overall volume factor has a dimension of −3
and the Jacobian 3=2, exactly compensating the removal of
the zero-eigenvalues.

5. Population inside the well

The last missing piece is to account for the population
inside the well. This is obtained using the condition that the
system be thermalized near the minimum of the potential
and by expanding the energy function around the configu-
ration ðϕA; πAÞ,

E½ϕ; π� ¼ E½ϕA; πA� ð3:62Þ

þ1

2
a6
XN3

i;j¼1

ðϕi−ϕA
i Þ
�
−
∇2

ij

a3
þV 00ðϕS

i Þδij
a3

�
ðϕj−ϕA

j Þ

þ1

2
a6
XN3

ij¼1

ðπi−πAi Þ
δij
a3

ðπj−πAj Þþ���: ð3:63Þ

The population nA inside the well is found to be given by

nA ¼
Z

DϕDπP0

¼ 1

Z
e−βE½ϕA;πA�½detð2π=βÞ−1EðAÞ�−1

2; ð3:64Þ

where the matrix EðAÞ is the Hessian of the energy of the
initial configuration at ϕA and all eigenvalues are positive.

6. The escape rate expression

The ratio of the flux j over the number density nA, taking
into account the zero-modes, gives the escape rate k for a
scalar field per unit volume,

k
V
¼ λ

2π

�
1

3
a3
XN3

i¼1

ð∇ϕS
i Þ2
�
3=2

×

�
det½ð2π=βÞ−1EðAÞ�
jdet0½ð2π=βÞ−1EðSÞ�j

�
1=2

e−β½EðϕS;πSÞ−EðϕA;πAÞ�: ð3:65Þ

Let us consider the different contributions to the rate. In the
exponent in Eq. (3.65) we have
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EðϕS; πSÞ − EðϕA; πAÞ

¼ a3
XN3

i¼1

1

2
ð∇ϕS

i Þ2 þ VðϕS
i Þ − VðϕA

i Þ; ð3:66Þ

which corresponds to the activation energy, i.e., the differ-
ence between the energy of the saddle-point configuration
with respect to the initial configuration. Since the initial
configuration is homogeneous and only a difference of
potential energy enters the rate formula, we can safely shift
the potential to have VðϕA

i Þ ¼ 0. The determinants in
Eq. (3.65) can be written as

det½ð2π=βÞ−1EðAÞ� ¼ det½ð2π=βÞ−1ð−∇2 þ V 00
AÞ�; ð3:67Þ

where V 00
A is the second derivative of the potential at the

initial minimum and

j det0½ð2π=βÞ−1EðSÞ�j
¼ j det0ð2π=βÞ−1½−∇2 þ V 00ðϕSÞ�j; ð3:68Þ

where the field configuration entering the operator is the
saddle-point solution.
Substituting the above equations into Eq. (3.65), we then

find that the escape rate per unit volume in the continuum
limit is

k
V
¼ λ

2π

�
β

6π

Z
d3x⃗ð∇ϕSÞ2

�3
2

×

�
det½−∇2þV 00

A�
jdet0½−∇2þV 00ðϕSÞ�j

�1
2

e−β
R
d3x⃗½1

2
ð∇ϕSÞ2þVðϕSÞ�; ð3:69Þ

which, in conjunction with our derivation, is the main
result of this paper. The constant λ appearing in the above
result is sometimes referred to as the dynamical prefactor
and the ratio of determinants as the statistical prefactor
[8,13,18,29]. The explicit expressions of these factors
depend on the saddle-point configuration ϕS. It should
be noted that Eq. (3.69) has many similarities to the
corresponding expression for the particle case Eq. (2.30).
This should not be too surprising since escape rates are
usually in the form of a statistical and a dynamical prefactor
multiplying an exponential of the free energy associated
with the escape. The difficulty lies in specifying the
different prefactors and the free energy of the escape
configuration. In particular, the dynamical prefactor λ in
Eq. (3.69) does not take such a simple form as in Eq. (2.25).
The ratio of determinants and the Jacobian associated with
the zero modes, which both form the statistical prefactor,
are common in field theories. Finally, it of course must be
kept in mind that the expression in the exponential arises
from an integral over the whole field configuration.
Methods specific to such a system and not just a point
particle need to be utilized when evaluating, as is evidenced

by the saddle-point configuration used above, which would
not be possible for the point particle case.
We choose to present here the most general form of the

escape rate. An explicit estimation of the rate, in particular
the prefactors and the exponent, is possible once a potential
has been specified. A discussion about the methods to
estimate the rate in a practical case, for example the thin-
wall approximation, is given in Sec. IV B.

7. The initial stable minimum

The last case left to consider is when ϕA in Fig. 3 is
a true vacuum. As described above, the saddle-point
equation (3.32) does not have any solution. However, in
the presence of fluctuation and dissipation dynamics, it is
fair to assume, in any given realization of the noise, that the
field starts to climb the potential and probes the other side
of the well, even if it will likely come back to the original
side. Moreover, as noted already, the comparison between
the initial probability distribution, which is a Dirac delta
function peaked at ϕA at each point in space, and the
equilibrium distribution, that probes both sides of the well,
implies a flow of probability through the maximum of the
potential. These two arguments suggest that the escape
problem for an initial true vacuum might still be defined.
The rate will simply indicate how likely it is to have a
region of space that passes the barrier. Let us formulate
some propositions for a meaningful definition for this case.
The first possibility for treating the present case is to

consider a finite volume V of space and use the saddle-point
solution ϕS ¼ ϕB at each point in the volume. The
activation energy will be given by E ¼ VΔV. This is the
simplest generalization of the zero-dimensional case but it
is dependent on the volume in consideration. Moreover, it
can lead to an underestimate of the rate since, instead of
waiting at the top of the potential, the field can fall on the
other side and attract the neighboring points without any
additional energy.
The method of reactive flux, described, for example, in

the review [8], might be helpful in the derivation of the
escape rate for an initially true minimum. At equilibrium,
the ratio of particle densities in the wells is equal to the ratio
of the rates between the two minima. Since the equilibrium
distribution and the rate from a false to a true vacuum are
known, the transition rate from an initial true vacuum can
be extracted. It is reasonable to assume that, at equilibrium,
the activation rate derived with the method of reactive flux
will be smaller than the true escape rate. However, this
method also allows us to study further the approach to
equilibrium by defining a relaxation rate, from an initial
out-of-equilibrium distribution.
Alternatively, we can consider an approximated case,

where, in Fig. 3, the false minimum on the right-hand side
is replaced by a true minimum, due to a modification of the
potential beyond the maximum. For example, a minimal
situation could be a new true minimum, almost degenerate

FORMULATING THE KRAMERS PROBLEM IN FIELD THEORY PHYS. REV. D 100, 076005 (2019)

076005-15



with VðϕAÞ. A saddle-point configuration is well defined
and the rate is given by Eq. (3.69). Moreover, the saddle-
point configuration will naturally define the typical size of
the region of space that experiences hopping. As in the
previous case, the escape rate might be underestimated.
However, it is fair to expect that the main contribution to the
escape time is given by the climbing of the potential well,
which corresponds to the part of the potential that is not
modified.
The last possibility is the construction of a saddle-point

configuration using an analytic continuation. It was not
possible to obtain a solution of Eq. (3.32), where the field is
at ϕFV at r ¼ 0 and respecting the boundary condition
(3.33). One can imagine giving an initial imaginary
velocity to the field, which would then allow for the climb.
This kind of solution has been studied in the context of
tunneling [30–34]. However, this goes beyond the scope of
this work, and we leave it for a future analysis.

IV. DISCUSSION OF THE RESULT

Let us present here a comparison between the result we
have obtained for the escape rate, given by Eq. (3.69), and
the related problem of quantum tunneling at a sufficiently
high temperature, where thermal effects dominate. The
similarities between the two results provide some insights
about the methods needed for an explicit evaluation of the
escape rate, once a potential has been specified.

A. Comparison with quantum tunneling
at finite temperature

Quantum tunneling of a scalar field is a well-studied
problem and plays a significant role in the study of first-
order phase transitions and in the stability of false vacua.
The problem has been solved for quantum field theory by
Callan and Coleman at zero temperature [10,11] and later
extended to finite temperatures by Linde [12]. The result of
Ref. [12] is particularly interesting for the current analysis
since, for sufficiently high temperatures where the thermal
fluctuations dominate over the quantum fluctuations, it
recovers the result of Langer for classical nucleation
[17,18]. In this regime, it is fair to expect some similarities
between the tunneling and the escape rates.
The quantum tunneling rate per unit volume, at finite

temperature and when thermal fluctuations are dominant, is
given by

ΓðTÞ
V

¼ T

�
S3ðϕS; TÞ

2πT

�3
2

�
det½−∇2 þ V 00

A�
jdet0½−∇2 þ V 00ðϕSÞ�j

�1
2

× expf−S3ðϕS; TÞ=Tg; ð4:1Þ

where the action S3 is defined as

S3ðϕ; TÞ≡
Z

d3x⃗

�
1

2
ð∇ϕÞ2 þ Vðϕ; TÞ

�
; ð4:2Þ

and ϕS is a solution of

∂2

∂r2 ϕ
S þ 2

r
∂
∂rϕ

S ¼ V 0ðϕS; TÞ; ð4:3Þ

where Vðϕ; TÞ is the temperature-dependent effective
potential.
Comparing with the escape problem, and assuming

identical potentials,5 we immediately notice that the
field configurations entering the two rates are the same,
Eq. (3.32) for the case of the escape problem and Eq. (4.3)
given above. This similarity implies that the ratio of
determinants and the exponential term are identical in
the escape rates [Eq. (3.69)] and in the tunneling rates
[Eq. (4.1)], respectively. Using the argument of Coleman
[10,35], that the action S3 is invariant under an infinitesimal
scale transformation of the solution ϕS, we obtain

S3ðϕ; TÞ ¼
1

3

Z
d3x⃗ð∇ϕÞ2; ð4:4Þ

which is precisely the term given by the Jacobian in the
escape rate problem.
The crucial difference between the escape and the

quantum tunneling rates lies in the prefactors. In particular,
the escape rate predicts a factor of λ=2π replacing the
temperature. We interpret this difference as follows. First of
all, the escape problem, even if closely related, is not
defined exactly as the transition rate due to tunneling
effects. A comparable, but not identical, rate should
emerge. Moreover, to derive the escape rate, we used the
framework of stochastic field theory, where the strength of
the noise and the damping appear explicitly. One naturally
expects the damping to play a role in the final result, in
particular within the dynamical prefactor λ in Eq. (3.69).
On the contrary, the temperature that appears in the
prefactor of (4.1) is an approximation which relies on
dimensional grounds. In the approach of Ref. [12], the
properties characterizing the medium, for example the
viscosities, are not taken into account. When the properties
of the medium are considered [13,36,37], a dynamical
prefactor is expected in the rate.
It is however remarkable that the two rates computed

with different methods, the stochastic field theory for the
escape problem and the path integral formalism of quantum
field theory for tunneling, have so much in common. The
escape rate only takes into account the thermal fluctuations
and is valid for arbitrarily small temperatures. It is a strong
support for Eq. (3.69) that the tunneling rate, in the limit
where the thermal fluctuations dominate, mostly recovers
the escape rate.

5To be more precise, we assume that the potential of the escape
rate VðϕÞ is equal to the effective potential Vðϕ; TÞ at a fixed
value of T.
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B. Towards an explicit evaluation of the escape rate

In general, once a potential has been specified, a
complete derivation of the escape rate, Eq. (3.69), requires
numerical methods, as for example in Ref. [38]. However,
exploiting the similarities with the quantum tunneling rate,
we can use the techniques developed for the latter to
provide some guidance on the explicit derivation of the
escape rate. This holds even if the derivations of both rates,
as stated before, are based on completely different methods,
path integrals for tunneling and a stochastic approach for
the escape rate. Let us consider the exponent, the dynamical
and statistical prefactor terms appearing in our final result
Eq. (3.69), separately. Recall that, in general, it is sufficient
to know the order of magnitude of the prefactors, the rate
being mainly dictated by the exponential.

1. The exponent term

The evaluation of the exponent term in Eq. (3.69)
requires the solution of the saddle-point equation (3.32),
which, in general, is obtained numerically. However, two
cases have been identified where an analytical treatment is
possible [12,27]. In the thin-wall approximation, the
potential has two minima that are almost degenerate.
The saddle-point configuration has the form of a bubble
of true vacuum. Going along the radial direction, ϕSðrÞ is
initially almost constant and close to ϕTV . This corresponds
to the interior of the bubble. The field solution then
bounces to ϕA, which defines the wall of the bubble.
The critical radius of the bubble is found by minimizing the
energy. It has been shown in [12,27] that the exponent
becomes

Z
d3x⃗

�
1

2
ð∇ϕSÞ2 þ VðϕSÞ

�
¼ 16π

3ϵ2

�Z
ϕA

ϕTV
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p �
3

;

ð4:5Þ

where ϵ is the difference between the false and true vacua,
and the integral on the right-hand side is evaluated in the
limit where ϵ vanishes. The other situation where an
analytical treatment is possible is when the potential
difference between the false and true vacua is much larger
than the barrier height. The potential can be approximated
by a cubic or a quartic polynomial function in the field,
leading to exact solutions.

2. The statistical prefactor

The exact evaluation of ratios of determinants in field
theory is, in general, an involved task. Recent discussions
on some analytical approaches to this problem can be found
in [39–41]. For the evaluation of the escape rate just as for
the tunneling case, as stated in [12,27], it is sufficient to
have only a rough estimate of this prefactor. Dimensional
analysis shows that the square root of the ratio of
determinants has dimension m3 corresponding to the

removal of the three eigenvalues in the denominator.
Therefore, we can write

�
det½−∇2þV 00

A�
jdet0½−∇2þV 00ðϕSÞ�j

�1
2

∼Oðϕ3;ðV 00Þ3=2;r−3;T3Þ; ð4:6Þ

where the quantities on the right-hand side (apart from the
temperature) should be understood as mean values. In
general, ϕ3, ðV 00Þ3=2, and r−3 are of the same order of
magnitude and should be compared with the temperature to
find the dominant contribution. This is different from the
case of quantum tunneling at a finite temperature, where
the temperature is expected to dominate in the statistical
prefactor.

3. The dynamical prefactor

The dynamical prefactor λ has been defined in Eq. (3.48)
as the unique positive eigenvalue of the matrix MT · ðeSijÞ.
The eigenvalue equation for λ can be written as

� ∂2

∂r2 þ
2

r
∂
∂r − V 00ðϕSÞ

�
vðrÞ ¼ λðλþ ηÞvðrÞ: ð4:7Þ

We observe that λ has a dependence on the dissipation
coefficient η. As usual, an analytical solution of the
eigenvalue equation is not possible, in particular, since it
requires the knowledge of the saddle-point configuration
ϕSðrÞ. There exists, however, certain situations where an
approximate result might be obtained, for example in the
thin-wall approximation discussed above. Useful discus-
sions on this problem can be found in Refs. [13,29,36,37].

V. POSSIBLE APPLICATIONS

Here we will identify some suggested applications for
the derived result for the escape problem in field theory. In
fact, there can be applications in any situation involving a
phase transition. In high-energy physics this could be in the
context of cosmology as well as in heavy-ion collision
experiments, and at low energy in condensed matter
systems. In all these cases one can find applications where
the escape problem defined here plays a relevant role. A
particular interest is to look at scenarios where the escape
rate provides an alternative mechanism to quantum tunnel-
ing. We also identify problems where the methods, devel-
oped here in order to derive the escape rate, provide an
alternative approach. Since the aim of the current analysis is
a formal definition and a solution of the Kramers problem,
we restrict to a general description of these applications. A
deeper analysis is left for future works.
a. Phase transitions and topological defects.—A con-

crete situation where the escape rate becomes significant is
in the study of out-of-equilibrium systems, in particular,
during a first-order phase transition. Our analysis is well
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suited to investigate the approach to equilibrium. We can
imagine, for example, the situation of an initially quadratic
effective potential that is developing another local mini-
mum. The second minimum is, at first, a false vacuum
before becoming the true vacuum of the potential. The
escape rate provides the necessary tools to study the
evolution of the FP probability distribution between
the old and the new equilibrium distributions.
Phase transitions are often associated with the formation

of topological defects [42,43]. Fluctuation and dissipation
dynamics can influence their creation, in particular in a
second-order phase transition, where the height of the
potential barrier is suppressed at the beginning of the
transition. These effects might also play an important role
in crossover transitions. In the special case of embedded
defects [44–47], the possibility for the field to escape would
have some consequences on the stability of the configu-
ration. Examples of realistic stable embedded defects are
known [48]. The escape rate should, therefore, be related to
the destruction probability of such a stable embedded
configuration.
b. Landscape of metastable minima.—One of the most

interesting features of the escape problem is the hopping of
the field over the potential barrier. Naively, considering a
potential with two minima that are almost degenerate, the
escape rate between the false and the true vacua should not
be sensibly different from the rate between the true and the
false vacua. For these reasons, the escape rate could be
relevant in theories that contain several nondegenerate
minima, in particular, in order to compute the probability
for a finite part of space to evolve from one minimum to the
next. One can imagine, for example, a situation with two
possible directions to diffuse. In one of them, there is a
large potential barrier but a minimum at a lower energy
beyond the well. In the other direction, the potential barrier
is smaller but the next minimum is at a higher energy.
Quantum tunneling could only be applied to the first case
but the escape mechanism is applicable in both cases.
Such a situation arises in string theories, which contain

many metastable vacua [49]. This framework is called the
string landscape [50]. The question of how a vacuum is
selected is of particular interest. Our mechanism precisely
allows for the hopping from one vacuum to the next one.
Moreover, the Hagedorn temperature [51,52], usually
associated with string theories, could be the origin of the
fluctuation and dissipation dynamics. Such an analysis
might require a generalization of our work to take into
account gravitational effects.
An active field of research in condensed matter

physics concerns the glass transition [53], corresponding
to a phase transition between a liquid and a glassy state.
The phenomenology of glassy systems can be described by
an N-body system in a potential with several metastable
minima, called the potential energy landscape [54,55]. The
escape rate provides a mechanism to probe the different

minima. A generalization of our analysis to a nonrelativistic
field would be needed in this case.
c. Stochastic inflation.—The stochastic formulation of

inflation was introduced by Starobinsky [56,57] as a
framework to study the dynamics of a quantum scalar field
during inflation. The field is split into two parts, the long-
wavelength part (coarse grained) and short-wavelength
quantum fluctuations. The backreaction of the quantum
fluctuations on the coarse grained part is parametrized as a
stochastic noise. The equation of motion of the inflaton
becomes a Langevin equation. The framework is particu-
larly relevant in the computation of correlation functions of
the inflaton field [58].
In general, the noise is assumed to be homogeneous and

the problem reduces to the zero-dimensional case described
in Sec. II. This approach considers only the fluctuations
that can lift an entire Hubble sphere. If, on the other hand,
we imagine that the backreaction coming from the quantum
fluctuations is inhomogeneous, the formalism developed
for the escape rate is particularly useful. One can also think
about different regions of space that evolve along different
directions in the inflationary potential.
d. Stochastic quantization.—The stochastic approach of

quantum mechanics was first proposed by Nelson in [59]
and then extended to fields by Parisi and Wu in [60]. The
main idea relies on the fact that the generating functional of
Euclidean field theories is related to the equilibrium limit of
a statistical system coupled to a heat reservoir. The temper-
ature of the heat bath is chosen to match the Planck
constant. The evolution of the system plus reservoir is in
a fictitious time and the equilibrium is reached when this
extra time direction goes to infinity. This method for
modeling quantum field theory is particularly useful for
numerical simulations, such as in lattice field theory [61].
The stochastic field theory introduced for the derivation

of the escape rate is formally equivalent to the formalism
describing stochastic quantization. The only difference is
the dimension of space. The formalism described in
Sec. III B can be seen as a three-dimensional Euclidean
field theory coupled to a heat bath, whereas the stochastic
quantization considers a four-dimensional Euclidean field
theory and an extra time dimension. In the language of
stochastic quantization, in particular, using the identifica-
tion ℏ ¼ kBT, we can directly write the escape rate as

k
V
¼ λ

2π

�
S4

2πℏ

�
2
�

det½−□þ V 00
A�

jdet0½−□þ V 00ðϕSÞ�j
�1

2

e−S4ðϕSÞ=ℏ; ð5:1Þ

where

S4ðϕÞ≡
Z

d4x⃗

�
1

2
ð∇ϕÞ2 þ VðϕÞ

�
; ð5:2Þ

and ϕS is the saddle-point configuration. If the system is
initially in a false vacuum, the quantum escape rate (5.1)
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defined for quantum fluctuations gives a quantum nucle-
ation rate, which should be equivalent to quantum tunnel-
ing in the usual quantization. A similar treatment as in
Sec. IVA should be performed to compare this result with
the quantum tunneling rate at zero-temperature, computed
in Refs. [10,11], and to study how the two results agree. We
leave the analysis of the quantum escape rate open for
future works.

VI. CONCLUSION

In this work, we have proposed a definition and a
solution of the Kramers problem for a scalar field theory.
Using the framework of stochastic field theory, we have
studied the probability for a scalar field to escape a
potential well due to thermal fluctuations. The field theory
character of the problem complicates the definition of the
escape configuration. Unlike the zero-dimensional point
particle case, we have learned that the shape of the
potential, beyond the local maximum, influences the rate.
Two situations have been identified that need to be treated
separately, when the initial minimum corresponds to a true
or a false vacuum. Using a generalization of the flux-over-
population method to a field, we have derived a full
solution of the escape problem from a metastable vacuum
and stated some directions to address the case of an initial
true vacuum.
The main result of our analysis is the expression of the

escape rate, Eq. (3.69). A comparison with the quantum
tunneling rate, in the limit where the thermal fluctuations
dominate, shows that the two rates have much in common.
These similarities provide strong support for our result, in
particular, since both rates are computed from different
approaches. The rates are, however, not identical. This is
not surprising, since the two problems, even if related, are
not exactly the same. In particular, the escape rate explicitly
takes damping effects into account. Nevertheless, the well-
studied framework of quantum tunneling provides some
useful techniques for an explicit evaluation of the escape
rate, once a potential is fixed. In this work, we have taken
specific advantage of that. It is remarkable that the
derivation presented in this paper also encompasses the
Hawking-Moss instanton. This solution naturally emerges
from the flux-over-population method and can be studied
within the framework presented here.
Beyond the formal interest of the Kramers problem in

field theory, we have identified several concrete situations,
in cosmology, particle physics and condensed matter phys-
ics, where the escape rate is relevant. Out-of-equilibrium
scenarios, for example during a transition between two
nondegenerate vacua, are natural candidates. In cosmology,
phase transitions and the formation of topological defects, as
well as stochastic inflation, are various applications. The
string landscape and the glass transition present a favorable
environment for an escape mechanism. On a more formal
level, the analogy with the stochastic quantization might

shed new light on both the interpretation of the escape
problem and on the meaning of the stochastic approach of
quantum mechanics. A deeper analysis of these directions
will require further work.
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APPENDIX: MEAN FIRST PASSAGE TIME

1. Definition of the MFPT over the barrier

An alternative derivation of the escape rate is achieved
with the method of the mean first passage time. The first
passage time (FPT) is defined as the time the particle takes
to leave a domain D for the first time. In our case, it
corresponds to the time needed for the particle initially at
xA to pass over the maximum at xB as depicted in Fig. 1.
Since the forces acting on the particle are random and the
dynamics not deterministic, the FPT is different for each
realization. One can, however, define the MFPT as the
average of the FPT and estimate the escape rate as its
inverse.
A formal definition of the problem relies on the

introduction of the survival probability Sðtjx0; v0; t0Þ. It
corresponds to the probability that the particle is still in D
after a time ðt − t0Þ, while being initially at position x0 with
velocity v0. In our case, the domain is the A-well where
x ∈ ð−∞; xSi�, where the upper limit of the domain, xSi, is a
point chosen to be near, but beyond, the maximum, to
ensure the passing of the particle. The survival probability
is defined as

Sðtjx0; v0; t0Þ ¼
Z
D
dxdvPðx; v; tjx0; v0; t0Þ

¼ Prob½Tðx0; v0Þ > ðt − t0Þ�

¼
Z

∞

ðt−t0Þ
dtfðtjx0; v0Þ; ðA1Þ

where Tðx0; v0Þ is the FPT starting at x0 with initial
velocity v0 and fðtjx0; v0Þ is the probability distribution
for Tðx0; v0Þ. The above relation is motivated by the
following reasoning. The probability to be in the domain
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at time t is the same as the probability of having a first
passage time larger than ðt − t0Þ.
From Eq. (A1), we deduce the following relation

between Sðtjx0; v0; t0Þ and fðtjx0; v0Þ:

fðtjx0; v0Þ ¼ −
∂Sðtjx0; v0; t0Þ

∂t : ðA2Þ

The moments hTni of the FPT are defined as

hTni≡
Z

∞

t0

dtðt − t0Þnfðtjx0; v0Þ

¼ n
Z

∞

t0

dtðt − t0Þn−1Sðtjx0; v0; t0Þ; ðA3Þ

and, in particular, the MFPT τ reads

τ≡ hTi ¼
Z

∞

t0

dtSðtjx0; v0; t0Þ

¼
Z

∞

t0

dt
Z
D
dxdvPðx; v; tjx0; v0; t0Þ: ðA4Þ

We understand this expression for τ in the following way.
The averaged first passage time is the sum of all the
probabilities to be in the domainD at any time t larger than
t0. If the particle is never in D, the integrand vanishes and
so does the MFPT. If, on the other hand, the particle is
always in the domain, the integral over the probability
distribution is normalized to 1 and the time integral
diverges, leading to an infinite MFPT.
Using the adjoint FP equation, it is possible to find an

explicit solution for the MFPT,

L†
FPτ ¼

Z
∞

t0

Z
D
dxdvL†

FPPðx; v; tjx0; v0; t0Þ

¼ −
Z
D
dxdvPðx; v; tjx0; v0; t0Þ

���∞
t¼t0

¼ 1; ðA5Þ

where we assumed that the probability to be in the
domain for t going to infinity vanishes, and we used
Pðx; v; t0jx0; v0; t0Þ ¼ δðx − x0Þδðv − v0Þ. To find the
mean first passage time, it is sufficient to solve L†

FPτ¼1

with the boundary condition τ ¼ 0 on ∂D. Despite the
apparent simplicity of the equation describing the MFPT,
the computation turns out to be rather involved in practice.

2. Formal equivalence between the MFPT
and the flux-over-population method

A formal relationship between the flux-over-population
and the MFPT methods has been shown in Refs. [8,9]. We
have learned in the previous section that the MFPT
τDðx0; v0Þ is defined by the equation

L†
FPτDðx0; v0Þ ¼ 1; ðx0; v0Þ ∈ D; ðA6Þ

and the boundary condition τDðx0; v0Þ ¼ 0 for x0 ∈ ∂D.
The Green’s function gðx; vxjy; vyÞ for the FP operator on
D is defined as

LFPðx; vxÞgðx; vxjy; vyÞ ¼ kδðx − yÞδðvx − vyÞ; ðA7Þ

for ðx; vxÞ ∈ D, and

gðx; vxjy; vyÞ ¼ 0; x ∈ ∂D: ðA8Þ

The Green’s function might be interpreted as a stationary
probability distribution, since it is a time-independent
solution of the FP equation at every point of the phase
space but ðy; vyÞ. This point might be seen as an additional
point source of strength k. Moreover, the boundary D acts
as a sink. The conservation of probability implies that the
source strength is related to the probability to be absorbed
per unit time, i.e.,

k ¼
Z
D
dxdvLFPðx; vxÞgðx; vxjy; vyÞ

¼
Z
∂D

dSiJiðx; vxjy; vyÞ; ðA9Þ

where Ji is the probability current density defined from the
FP equation,

LFPðx; vxÞgðx; vxjy; vyÞ ¼
∂
∂x Jx þ

∂
∂vx Jv: ðA10Þ

After a multiplication of the Green’s function with the
MFPT and the integration over the domain D, we obtainZ

D
dxdvτDðx;vxÞLFPðx; vxÞgðx; vxjy; vyÞ

¼ k
Z
D
dxdvτDðx;vxÞδðx − yÞδðvx − vyÞ; ðA11Þ

andZ
D
dxdv½L†

FPðx; vxÞτDðx; vxÞ�gðx; vxjy; vyÞ ¼ kτDðy;vyÞ:

ðA12Þ

Hence, the MFPT becomes

τDðy; vyÞ ¼
R
D dxdvgðx; vxjy; vyÞR
∂D dSiJiðx; vxjy; vyÞ

; ðA13Þ

which is precisely the inverse of the flux-over-population
formula for the escape rate (2.12), with a source located at y
inside the well.
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The escape rate derived with the flux-over-population
method is formally equivalent to the inverse of the MFPT.
The latter provides a simple interpretation of the escape
problem. The escape time, given by the inverse of the
escape rate, is similar to the average time needed for a

particle to leave a domain. However, the MFPT faces
some practical difficulties when solving for the rate, in
particular, beyond the overdamped limit. The flux-over-
population method is better suited to obtain an analytical
solution.
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