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The Bmeson semileptonic modes to ρð770Þ and a1ð1260Þ are useful to pin down possible non–Standard
Model effects. The four-dimensional differential B̄ → ρðππÞl−ν̄l and B̄ → a1ðρπÞl−ν̄l decay distributions
are computed in the Standard Model and in extensions involving new lepton-flavor universality violating
semileptonic b → u operators. The large energy limit for the light meson is also considered for both
modes. The new effective couplings are constrained using the available data, and several observables in
B̄ → ρðππÞl−ν̄l in which new physics effects can be better identified are selected, using the angular
coefficient functions. The complementary role of B̄ → ρðππÞl−ν̄l and B̄ → a1ðρπÞl−ν̄l is discussed.
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I. INTRODUCTION

The anomalies that recently emerged in the flavor
sector challenge both the experimental analyses and the
theoretical interpretations. In the tree-level b→cl−ν̄l
process, deviations of the ratios RðDð�ÞÞ ¼ BðB→Dð�Þτ−ν̄τÞ

BðB→Dð�Þl−ν̄lÞ
(with l ¼ e, μ) from the Standard Model (SM) expect-
ations have been observed by BABAR [1,2], Belle [3–6],
and LHCb [7–9]. The measurements can be summarized
as RðDÞexp ¼ 0.407� 0.039� 0.024 to be combined with
the new Belle result RðDÞexp ¼ 0.307� 0.037� 0.016
[10], and RðD�Þexp ¼ 0.295� 0.011� 0.008. These mea-
surements are 3.1σ away from the SM values quoted by
the Heavy Flavor Averaging Group (HFLAG) [11]:
RðDÞSM ¼ 0.299� 0.003 and RðD�ÞSM ¼ 0.258� 0.005.
The tension, noticed in Ref. [12], is significant since
the hadronic uncertainties largely cancel out in the ratios
of branching fractions [13]. The LHCb measurement

RðJ=ψÞ ¼ BðBþ
c →J=ψτþντÞ

BðBþ
c →J=ψμþνμÞ ¼ 0.71 � 0.17ðstatÞ � 0.18ðsystÞ

[14] also exceeds the SM expectation; however, in these
modes, the hadronic uncertainties are sizable [15–17].
Other anomalies have been detected in neutral current

b → s semileptonic transitions, in the ratios RKð�Þ ¼R q2max
q2
min

dΓ
dq2

ðBþ→Kð�Þμþμ−Þdq2R q2max
q2
min

dΓ
dq2

ðBþ→Kð�Þeþe−Þdq2
measured by LHCb and Belle.

The updated result for RK is RKþ ¼ 0.846þ0.060
−0.054 ×

ðstatÞ−0.016−0.014ðsystÞ for ½q2min; q
2
max� ¼ ½1.1 GeV2; 6 GeV2�

[18]. For RK�, the measurements RK�0 ¼ 0.66�0.11
0.07 ðstatÞ �

0.03ðsystÞ for q2 in ½0.045 GeV2; 1.1 GeV2� and RK�0 ¼
0.69�0.11

0.07 ðstatÞ � 0.05ðsystÞ for q2 in ½1.1 GeV2; 6 GeV2�
have been reported by LHCb [19]. Recent Belle mea-
surements, averaged over the neutral and charged modes,
are affected by larger errors: RK� ¼ 0.52�0.36

0.26 ðstatÞ �
0.05ðsystÞ for q2 in ½0.045 GeV2; 1.1 GeV2�, RK� ¼
0.90�0.27

0.21 ðstatÞ � 0.10ðsystÞ for q2 in ½0.1GeV2;
8GeV2�, and RK� ¼ 1.18�0.52

0.32 ðstatÞ � 0.10ðsystÞ for q2

in ½15 GeV2; 19 GeV2� [20]. For all the ratios, the SM
predictions are close to 1.
The anomalies in b → c and b → s semileptonic

modes seem to point to violation of lepton-flavor univer-
sality (LFU). This accidental SM symmetry is only broken
by the Yukawa interactions, while the lepton couplings to
the gauge bosons are independent of the lepton flavor.1

It is unclear if the deviations that emerged in angular
observables in B → K�μþμ− [22,23] and in the rate of
B0
s → ϕμþμ− [24] can have a connected origin.
In addition to these tensions, the long-standing differ-

ence in the determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVcbj from exclusive
modes, in particular B̄ → D�l−ν̄l, and from inclusive B̄ →
Xcl−ν̄l observables (width and moments) still persists in
new BABAR [25] and Belle analyses [26], with
jVcbjexcl < jVcbjincl. As an alternative to solutions
to the puzzle within the SM [27–30], a connection has
been proposed with the other b → c anomalies, within
a LFU violating framework [13,31]. The related
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experimental signatures have been studied, in particular, the
four-dimensional differential B̄ → D�ðDπ; DγÞl−ν̄l decay
distributions for the three lepton species have been scruti-
nized [32], following analyses that have pointed out the
relevance of such distributions [33–36].
It is worth wondering if similar deviations can appear in

semileptonic b → u transitions. These modes are CKM
suppressed with respect to the b → c ones; nevertheless,
high precision measurements are foreseen in the near future
by LHCb and Belle II. At present, there is a tension
between the exclusive measurement of jVubj, mainly from
the B̄ → πl−ν̄l decay width, and the inclusive determi-
nation from B̄ → Xul−ν̄l observables. New information is
available on the purely leptonic and on the semileptonic
B → π mode, and analyses within and beyond SM have
been carried out [37–45].
Other decay modes can be exploited to pin down

deviation from the Standard Model. In particular, for the
modes involving the vector ρð770Þ and the axial-vector
a1ð1260Þ mesons, the fully differential angular distribu-
tions when rho decays into two pions and a1 decays into ρπ
represent an important source of information, due to the
wealth of observables that can be analyzed. Such observ-
ables are all correlated and are able to provide coherent
patterns within SM and its possible extensions. The differ-
ent parities of the two mesons act as a filter for new physics
(NP) operators, which is one of the prime motivations for
their consideration. In addition, the a1 → ρπ mode has the
peculiarity that the longitudinal and transverse ρ polar-
izations are involved, increasing the plethora of observables
on which to focus the experimental analyses. Our NP
extension includes lepton-flavor dependent operators, and
the comparison with the effects of corresponding b → c
operators could shed light on the structure of the observed
LFU violating effects.
In Sec. II, we introduce the semileptonic b → u effective

Hamiltonian with the inclusion of new scalar, pseudoscalar,
vector, and tensor operators weighted by complex cou-
plings. Such operators affect the B̄ transitions to two leptons
and to πlν̄, and both channels can be exploited to bound the
effective coefficients. In Sec. III, we construct the fully
differential decay distributions for the B̄ → ρðππÞl−ν̄l and
B̄ → a1ðρπÞl−ν̄l modes, computing the sets of angular
coefficient functions in terms of the hadronic matrix
elements involved in the transitions. We also consider the
large energy limit for the light mesons, which allows us to
express the angular functions in terms of a small number of
hadronic form factors. In Sec. IV, we analyze several
observables in B̄ → ρðππÞl−ν̄l at a benchmark point in
the parameter space of the new couplings, to scrutinize their
sensitivity to the different new operators. In particular, we
focus on the angular coefficient functions and on combi-
nations forwhich the newoperatorswould exhibit the largest
effect. In Sec. V, we elaborate on the a1ð1260Þ mode; in
such a case, the uncertainties on the sets of hadronic form

factors are large and still need to be precisely assessed.
Nevertheless, we present a numerical analysis of a few
observables, to show the sensitivity of thea1mode toNP, but
the main focus is on the analytic results and on the outcome
of the large energy limit, to explain the complementarity
with the ρmode. The last section contains a discussion of the
interesting perspectives and the conclusions. In the
Appendixes, we collect the definitions of the hadronic
matrix elements and the expressions of the angular coef-
ficient functions for the two modes.

II. EFFECTIVE b → ul− ν̄l NP HAMILTONIAN
AND IMPACT ON B MESON PURELY

LEPTONIC AND SEMILEPTONIC
PION MODES

New physics contributions to beauty hadron decays can
be analyzed within the Standard Model Effective Field
Theory. If the NP scale ΛNP is much larger than the
electroweak (EW) scale, all the new massive degrees of
freedom can be integrated out, obtaining an effective
Hamiltonian in which only the SM fields appear and
which is invariant under the SM gauge group. This
Hamiltonian contains additional operators with respect to
the SM, suppressed by increasing powers of ΛNP. The
contribution Oð 1

Λ2
NP
Þ includes dimension-6 four-fermion

operators [46].
To describe the modes B̄ → Mul−ν̄l with Mu a light

meson comprising an up quark, we consider the effective
Hamiltonian

Hb→ulν
eff ¼ GFffiffiffi

2
p Vubfð1þ ϵlVÞðūγμð1− γ5ÞbÞðl̄γμð1− γ5ÞνlÞ

þ ϵlSðūbÞðl̄ð1− γ5ÞνlÞ þ ϵlPðūγ5bÞðl̄ð1− γ5ÞνlÞ
þ ϵlTðūσμνð1− γ5ÞbÞðl̄σμνð1− γ5ÞνlÞgþH:c:;

ð1Þ

consisting in the SM term and in NP terms weighted by
complex lepton-flavor dependent couplings ϵlV;S;P;T . Vub

and ϵlV are independent parameters, since the product
Vubð1þ ϵlVÞ is not a mere redefinition of the SM Vub.
We assume a purely left-handed lepton current as in the
SM, an extensively probed structure. We exclude the quark
right-handed vector current, since the only four-fermion
operator of this type, invariant under the SM group, is
nonlinear in the Higgs field [47–49].2
The couplings of the NP operators in (1) are constrained

by the measurements, in particular on the purely leptonic
B− and semileptonic B̄ → πl−ν̄l channels. Indeed, the
B− → l−ν̄l decay width obtained from Hb→ulν

eff in Eq. (1)
reads

2Right-handed currents are investigated in Refs. [38,39,41].
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ΓðB− → l−ν̄lÞ ¼
G2

FjVubj2f2Bm3
B

8π

�
1 −

m2
l

m2
B

�
2
����
�
ml

mB

�

× ð1þ ϵlVÞ þ
mB

mb þmu
ϵlP

����
2

; ð2Þ

with the decay constant fB defined as

h0jūγμγ5bjB̄ðpÞi ¼ ifBpμ: ð3Þ

The EW correction to (2) is tiny. This mode is insensitive to
the NP scalar and tensor operators. The pseudoscalar
operator removes the helicity suppression, which is effec-
tive for light leptons, with a consequent stringent constraint
for the effective couplings ϵe;μP .
The semileptonic B̄ → πl−ν̄l decay distribution in the

dilepton mass squared q2, obtained from Eq. (1) para-
metrizing the weak matrix element in terms of the form
factors fiðq2Þ ¼ fB→π

i ðq2Þ as in Appendix A, is

dΓ
dq2

ðB̄ → πl−ν̄lÞ ¼
G2

FjVubj2λ1=2ðm2
B;m

2
π; q2Þ

128m3
Bπ

3q2

�
1 −

m2
l

q2

�
2

×

�����mlð1þ ϵlVÞ þ
q2ϵlS

mb −mu

����
2

ðm2
B −m2

πÞ2f20ðq2Þ

þ λðm2
B;m

2
π; q2Þ

�
1

3

����mlð1þ ϵlVÞfþðq2Þ þ
4q2

mB þmπ
ϵlTfTðq2Þ

����
2

þ 2q2

3

����ð1þ ϵlVÞfþðq2Þ þ 4
ml

mB þmπ
ϵlTfTðq2Þ

����
2
�	

; ð4Þ

with λ the triangular function. In this case, the pseudoscalar
operator does not contribute.
As in the Hamiltonian (1), in Eqs. (2) and (4), the

CKM matrix element Vub appears in the combination
Vubð1þ ϵlVÞ. The lepton-flavor dependence of the effective
couplings would manifest in different determinations
of Vub from channels involving different lepton species.

We discuss below how the experimental measurements
constrain the parameter spaces.
Continuing with the semileptonic mode to the pion,

in the large energy limit of the emitted pion, using
Eq. (A13) for the weak matrix element, the decay
distribution is expressed in terms of a single form factor
ξπ [50,51],

dΓ
dE

ðB̄ → πl−ν̄lÞ ¼
G2

FjVubj2λ1=2ðm2
B;m

2
π; q2Þ

64m2
Bπ

3q2

�
1 −

m2
l

q2

�
2

ξ2πðEÞ

×

�����mlð1þ ϵlVÞ þ
q2ϵlS

mb −mu

����
2

ðm2
B −m2

πÞ2
�
m2

B þm2
π − q2

m2
B

�
2

þ λðm2
B;m

2
π; q2Þ

�
1

3

����mlð1þ ϵlVÞ þ
4q2

mB
ϵlT

����
2

þ 2q2

3

����ð1þ ϵlVÞ þ
4ml

mB
ϵlT

����
2
�	

; ð5Þ

with q2 ¼ m2
B þm2

π − 2mBE. While the full kinematical

range for E is mπ ≤ E ≤ mB
2
ð1þ m2

π

m2
B
− m2

l
m2

B
Þ, Eq. (5) only

holds for large E ≃ mB
2
. This expression is useful if the

distribution is independently measured for the three
charged leptons, since the ratios

dRðπÞll0
dE

¼ dΓ
dE

ðB̄ → πl−ν̄lÞ=
dΓ
dE

ðB̄ → πl0−ν̄l0 Þ ð6Þ

are free of hadronic uncertainties in this limit, and
only involve combinations of the lepton-flavor dependent
couplings ϵl;l

0
V;S;T .

III. FULLY DIFFERENTIAL ANGULAR
DISTRIBUTIONS FOR B̄ → ρ(→ππ)l− ν̄l

AND B̄ → a1(→ρπ)l− ν̄l
The main sensitivity to the new operators in (1), in

the modes B̄ → ρð→ππÞl−ν̄l and B̄ → a1ð→ρπÞl−ν̄l, is
in the four-dimensional differential decay distribution
in the variables q2 and in the angles θ, θV , and ϕ
described in Fig. 1. For the ρ mode, the distribution is
written as3

3Other angular structures appear in the differential distribu-
tions if a quark right-handed vector current is included in Eq. (1).
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d4ΓðB̄ → ρð→ ππÞl−ν̄lÞ
dq2d cos θ dϕ d cos θV

¼ N ρjp⃗ρj
�
1 −

m2
l

q2

�
2

fIρ1ssin2θV þ Iρ1ccos
2θV þ ðIρ2ssin2θV þ Iρ2ccos

2θVÞ cos 2θ

þ Iρ3sin
2θVsin2θ cos 2ϕþ Iρ4 sin 2θV sin 2θ cosϕþ Iρ5 sin 2θV sin θ cosϕ

þ ðIρ6ssin2θV þ Iρ6ccos
2θVÞ cos θ þ Iρ7 sin 2θV sin θ sinϕg; ð7Þ

with N ρ ¼ 3G2
FjVubj2Bðρ→ππÞ
128ð2πÞ4m2

B
. This expression, together with

the relation of the coefficient functions to the hadronic
matrix elements, has been computed in the narrow width
approximation, resulting in a factorization of the produc-
tion and decay amplitude of the intermediate vector meson.
The factorization is connected to the procedure adopted in
the experimental analyses to select the contributions of the
intermediate resonances [52].4 A ππ contribution consid-
ered as an improvement of the narrow width approximation

(NWA) has been investigated through the computation of
the B → ππ matrix elements in the kinematical regime of
small dipion invariant mass and large energy, concluding
that it represents a small effect [56–58].
For the a1ðρπÞ channel, it is useful to provide the

expressions for the modes where the final ρ is transversely
(ρ⊥) or longitudinally (ρjj) polarized, as specified in
Appendix B. The expression of the four-dimensional
distribution amplitude is

d4ΓðB̄ → a1ð→ ρjjð⊥ÞπÞl−ν̄lÞ
dq2d cos θdϕd cos θV

¼ N jjð⊥Þ
a1 jp⃗a1 j

�
1 −

m2
l

q2

�
2

fIa1
1s;jjð⊥Þsin

2θV þ Ia1
1c;jjð⊥Þð3þ cos 2θVÞ

þ ðIa1
2s;jjð⊥Þsin

2θV þ Ia1
2c;jjð⊥Þð3þ cos 2θVÞÞ cos 2θ

þ Ia1
3;jjð⊥Þsin

2θVsin2θ cos 2ϕþ Ia1
4;jjð⊥Þ sin 2θV sin 2θ cosϕ

þ Ia1
5;jjð⊥Þ sin 2θV sin θ cosϕ

þ ðIa1
6s;jjð⊥Þsin

2θV þ Ia1
6c;jjð⊥Þð3þ cos 2θVÞÞ cos θ

þ Ia1
7;jjð⊥Þ sin 2θV sin θ sinϕg; ð8Þ

with the subscripts⊥; jj referring to the two ρ polarizations.
The coefficients N jjð⊥Þ

a1 read N jjð⊥Þ
a1 ¼ 3G2

FjVubj2Bða1→ρjjð⊥ÞπÞ
128ð2πÞ4m2

B
.

The separation of the ρ polarizations is an experimental
challenge, which is justified in view of the different
sensitivity of the angular coefficient functions to the NP
operators. The unpolarized case is recovered by combining
the expressions for the transverse and longitudinal ρ
polarization. The NWA has been adopted also for the
computation of the distribution (8) with the derivation of
the relations of the angular coefficient functions in terms of
B → a1 matrix elements. This is a more debatable pro-
cedure than for the ρ channel. Its motivation relies on the
assumption that the experimental analyses can constrain the
ρπ invariant mass in a narrow range around the a1 peak,
separating the production and decay process of the inter-
mediate resonance. Going beyond such a limit would
require considering the ρπ invariant mass distribution, with
the B → a1 form factors extrapolated to different values of
such a mass, with uncontrolled uncertainties. On the other
hand, considering the three pion final state would include

FIG. 1. Kinematics of the decay mode B̄ → ρðππÞl−ν̄l.
4Studies of the Bl4 mode are in Refs. [53–55].
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contributions from several resonances of various spin
parity, affected in different ways from the NP operators
when produced in semileptonic B modes.
The angular coefficient functions Iρi and Ia1i in Eqs. (7)

and (8) can be written as

Ii ¼ j1þ ϵV j2ISMi þ jϵXj2INP;Xi þ jϵT j2INP;Ti

þ 2Re½ϵXð1þ ϵ�VÞ�IINT;Xi þ 2Re½ϵTð1þ ϵ�VÞ�IINT;Ti

þ 2Re½ϵXϵ�T �IINT;XTi ; ði ¼ 1;…6Þ;
I7 ¼ 2Im½ϵXð1þ ϵ�VÞ�IINT;X7 þ 2Im½ϵTð1þ ϵ�VÞ�IINT;T7

þ 2Im½ϵXϵ�T �IINT;XT7 ; ð9Þ

with X ¼ P in case of ρ and X ¼ S in case of a1. The
coefficient functions ISMi , INPi , and IINTi , expressed in terms
of helicity amplitudes, are collected in Tables II–IX of
Appendix B, together with the relations of the helicity
amplitudes to the hadron form factors.
Examining the angular coefficient functions and their

expressions, several remarks are in order:
(1) With the exception of I7, all angular coefficient

functions do not vanish in SM and are sensitive to
ϵV . Apart from such a dependence, we can identify
structures useful to disentangle the effects of the
other S, P, and T operators. In B → ρlν̄l, the
functions Iρ1s; I

ρ
2s; I

ρ
2c; I

ρ
3; I

ρ
4; I

ρ
6s do not depend on

ϵP, as it can be inferred from Table III, and are
sensitive only to the tensor operator. We denote these
structures as belonging to set A, while set B
comprises the remaining ones. An analogous sit-
uation occurs for the corresponding quantities in
B → a1ðρjjπÞlν̄l, which do not depend on ϵS
(Table VI), while in B → a1ðρ⊥πÞlν̄l, the functions
Ia11c;⊥; I

a1
2s;⊥; I

a1
2c;⊥; I

a1
3;⊥; I

a1
4;⊥; I

a1
6c;⊥ are insensitive to

the scalar operator (Table VII).
(2) In the absence of the tensor operator, the ρ and a1

modes give complementary information on the pseu-
doscalar P (in the ρ channel) and scalar S (in a1)
operators, together with the purely leptonic mode
(sensitive to P) and B → π mode (sensitive to S).

(3) There are angular coefficient functions that depend
only on the helicity amplitudes H�, not on H0 and
Ht. These affect observables corresponding to the
transversely polarized W, hence to transverse ρ in
B → ρlν̄l and transverse a1 in B → a1lν̄l. Such
observables depend on ϵT , not on ϵP (in the ρ mode)
or ϵS (in the a1 mode).

(4) In the large energy limit of the light meson, the form
factors parametrizing the B → ρða1Þ weak matrix
elements can be written in terms of two form factors,
ξρ⊥ðξa1⊥ Þ and ξρjjðξa1jj Þ, defined by the relations (A14)
and (A15). In this limit, several angular coefficients
depend only on the form factor ξ⊥; others involve

both ξ⊥ and ξjj. The coefficients depending only on
ξρ;a1⊥ ðEÞ are:
(a) in the B → ρð770Þ mode: Iρ1s; I

ρ
2s; I

ρ
3 and Iρ6s ;

(b) in the B → a1ð1260Þ mode:
(i) for final ρ longitudinally polarized, Ia1

1s;jj;
Ia1
2s;jj; I

a1
3;jj, and Ia1

6s;jj,
(ii) for ρ transversely polarized, Ia11c;⊥; I

a1
2c;⊥;

Ia13;⊥, and Ia16c;⊥.
When a single form factor is involved, ratios of coefficient
functions are free of hadronic uncertainties (in the large
energy limit).
The conclusion is that, measuring the differential angular

distribution and reconstructing the angular coefficient func-
tions, it is possible to define sets of observables particularly
sensitive to different NP terms in (1). This would allow us to
determine the new couplings ϵli and carry out tests, e.g., of
LFU, comparing results obtained in the μ and τ modes.

IV. CONSTRAINTS ON THE EFFECTIVE
COUPLINGS AND B̄ → ρl− ν̄l OBSERVABLES

We want to present examples of the possible effects of
the NP operators in (1) in B̄ → ρl−ν̄l, identifying the most
sensitive observables. For that, we constrain the space of
the new couplings using the available data and a set of
hadronic quantities. More precise experimental measure-
ments or more accurate theoretical determinations of the
hadronic quantities, when available in the future, will
modify the ranges of the couplings, but the strategy and
the overall picture we are presenting will remain valid.
The couplings ϵμV; ϵ

μ
P; ϵ

μ
T are constrained by the mea-

surements BðB̄0 → πþl−ν̄lÞ ¼ ð1.50� 0.06Þ × 10−4 and
BðB̄0 → ρþl−ν̄lÞ ¼ ð2.94� 0.21Þ10−4 [59], together
with BðB− → μ−ν̄μÞ ¼ ð6.46� 2.2� 1.60Þ × 10−7 (and
90% probability interval ½2.0; 10.7� × 10−7) [60]. For e
and τ, the results for the purely leptonic modes
are BðB− → e−ν̄eÞ < 9.8 × 10−7 and BðB− → τ−ν̄τÞ ¼
ð1.09� 0.24Þ × 10−4 [59]. The upper bound BðB̄0 →
πþτ−ν̄τÞ < 2.5 × 10−4 has also been established [61]. We
use the B → π form factors given in Appendix C, obtained
by interpolating the light-cone sum rule results at low q2

computed in Refs. [62,63] with the lattice QCD results at
large values of q2 averaged by HFLAG [64]. For the B → ρ
transition, we use the form factors in Ref. [65], which
update previous light-cone sum rule computations [66]
and extrapolate the low q2 determination to the full
kinematical range.
In the case of μ, the parameter space for the NP

couplings, displayed in Fig. 2, is found by imposing that
the purely leptonic branching ratio (BR) is in the range
½2.0; 10.7� × 10−7 and that the semileptonic B̄ → π and
B̄ → ρ branching fractions are compatible within 2σ with
measurement. The benchmark point shown in Fig. 2 is
chosen in the region of the smallest
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χ2 ¼
X3
i

�
Bth
i − Bexp

i

ΔBexp
i

�
2

ð10Þ

for the three modes, varying jVubj in ½3.5; 4.4� × 10−3.
Specifically, in the region of smallest χ2, we have selected
the points in the parameter space having ϵlV ¼ 0 and all the
other ϵlA ≠ 0, with A ¼ S, P, T. Our benchmark point is the

one minimizing χ2. We set ϵlV ¼ 0 to maximize the
sensitivity to the other NP couplings.
For the τ modes, due to the smaller number of exper-

imental constraints, we consider a limited parameter space
setting ϵτV ¼ 0 and ϵτS ¼ 0 from the beginning. The region
for ϵτP in Fig. 3 (left panel) is constrained by imposing the
compatibility of BðB− → τ−ν̄τÞ with measurement. We

have checked that BðB−→μ− ν̄μÞ
BðB−→τ− ν̄τÞ lies within the experimental

FIG. 2. Allowed regions for the couplings ϵμV , ϵ
μ
P, ϵ

μ
S, and ϵ

μ
T . The colors distinguish the various couplings. The stars correspond to the

benchmark points, chosen in the region of minimum χ2: ðRe½ϵμV �; Im½ϵμV �Þ ¼ ð0; 0Þ, ðRe½ϵμP�; Im½ϵμP�Þ ¼ ð−0.03;−0.02Þ,
ðRe½ϵμT �; Im½ϵμT �Þ ¼ ð0.12; 0Þ, and ðRe½ϵμS�; Im½ϵμS�Þ ¼ ð−0.04; 0Þ, with jVubj ¼ 3.5 × 10−3.

FIG. 3. Allowed regions for the couplings ϵτP and ϵτT . The stars correspond to the benchmark points chosen setting ϵτV ¼ 0 and ϵτS ¼ 0:
ðRe½ϵτP�; Im½ϵτP�Þ ¼ ð0.01; 0Þ and ðRe½ϵτT �; Im½ϵτT �Þ ¼ ð0.12; 0Þ.
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range when ϵμV and ϵμP are varied in their ranges. The region
for ϵτT (right panel) is obtained by imposing the exper-
imental upper bound for BðB̄0 → πþτ−ν̄τÞ together with the
limit for Rπ ¼ BðB̄0→πþτ− ν̄τÞ

BðB̄0→πþμ−ν̄μÞ. In the wide resulting region, we

set the range for ϵτT, with the parameters for the muon fixed
at their benchmark values; then, we fix a benchmark point
to provide an example of NP effects.
We can now compare observables in the SM and NP. The

angular coefficient functions Iρ1s, I
ρ
2s, I

ρ
2c, I

ρ
3, I

ρ
4, and Iρ6s,

independent of ϵP, are shown in Fig. 4, setting ϵμT at a
benchmark point. The zero in Iρ2sðq2Þ is absent in the SM
and appears in NP. The other coefficient functions are
drawn in Fig. 5, and also in this case, there is a zero in
Iρ6cðq2Þ which is absent in the SM. The function Iρ7 vanishes
in the SM and is only sensitive to the imaginary part of the
NP couplings; it is shown in Fig. 6. The angular functions

for the τ modes are in Figs. 7 and 8; Iτ7 vanishes since at the
chosen benchmark point all the NP couplings ϵτ are real.
Also in this mode, the coefficient Iρ6c has a zero not
appearing in the SM.
The measurement of the angular coefficients functions

allows us to determine the new couplings. Let us consider
the ratios

Rρ
2s=1sðq2Þ ¼

Iρ2sðq2Þ
Iρ1sðq2Þ

; ð11Þ

Ra1;jj
2s=1sðq2Þ ¼

Ia1
2s;jjðq2Þ
Ia1
1s;jjðq2Þ

; ð12Þ

and Ra1;jj
2s=1s ¼ Ra1;⊥

2c=1c. In the SM, Rρ
2s=1s is form factor

independent. In NP, it is still form factor independent in

FIG. 4. B̄ → ρðππÞμ−ν̄μ mode: angular coefficient functions Iρi ðq2Þ in set A, for the SM and NP at the benchmark point. A zero in
Iρ2sðq2Þ appears in NP.

FIG. 5. B̄ → ρðππÞμ−ν̄μ mode: angular coefficient functions (set B) Iρ1cðq2Þ (left), Iρ5ðq2Þ (middle), and Iρ6cðq2Þ (right) for te SM and
NP at the benchmark point.
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the large energy limit, where Iρ2s and Iρ1s depend on ξρ⊥. As
shown in Fig. 9, the ratio (11) has a zero in the NP, not in
the SM, of which the position q20;ρ has a weak form factor
effect and depends only on jϵμT j. In the large energy limit,
we have

jϵμT j2 ¼
q20;ρ
16m2

B

λðm2
B;m

2
ρ; q20;ρÞ þ 2m2

Bm
2
ρ

λðm2
B;m

2
ρ; q20;ρÞ þ 2q20;ρm

2
ρ
: ð13Þ

Analogously, for the ða1Þjj mode [and for ða1Þ⊥ consider-
ing R2c=1c], we have

jϵμT j2 ¼
q20;a1
16m2

B

λðm2
B;m

2
a1 ; q

2
0;a1

Þ þ 2m2
Bm

2
a1

λðm2
B;m

2
a1 ; q

2
0;a1

Þ þ 2q20;a1m
2
a1

: ð14Þ
FIG. 6. B̄ → ρðππÞμ−ν̄μ mode: angular coefficient function
Iρ7ðq2Þ in NP with the pseudoscalar operator at the
benchmark point.

FIG. 7. B̄ → ρðππÞτ−ν̄τ mode: angular coefficient functions Iρi ðq2Þ in set A for the SM and NP at the benchmark point.

FIG. 8. B̄ → ρðππÞτ−ν̄τ mode: angular coefficient functions (set B) Iρ1cðq2Þ (left), Iρ5ðq2Þ (middle), and Iρ6cðq2Þ (right) for the SM and
NP at the benchmark point.
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The positions of the zeros in two modes are related, see
Fig. 10, and their independent measurement would provide
a connection with the tensor operator.
Another suitable quantity is the angular coefficient

function Iρ6c shown in the right panel of Fig. 5 in the
SM and NP, which is sensitive to ϵV , ϵP, ϵT . At our
benchmark point, ϵV ≃ 0; hence, we keep only the ϵP and
ϵT dependence:

ðIρ6cÞjϵV≃0 ¼ ð−2Hρ
t Þ
�
4Hρ

0m
2
l − Re½ϵT �HNP;ρ

L ml

ffiffiffiffiffi
q2

q

þ 4Re½ϵP�Hρ
0

ml

mb þmu
q2

−HNP;ρ
L Re½ϵPϵ�T �

ðq2Þ3=2
mb þmu

�
: ð15Þ

Considering the q2 dependence of the helicity amplitudes
in Appendix B, we have the following possibilities:

(i) No NP, i.e., ϵP ¼ ϵT ¼ 0. In this case, Iρ6c ¼
−8Hρ

t H
ρ
0m

2
l does not have a zero, as shown in Fig. 5

(right panel).

(ii) NP with ϵT ¼ 0 and ϵP ≠ 0. This gives ðIρ6cÞjϵT≃0 ¼
ð−8Hρ

t H
ρ
0mlÞ½ml þ Re½ϵP� q2

mbþmu
�, with a zero at

q20 ¼ −
mb þmu

ml

1

Re½ϵP�
: ð16Þ

This position is form factor independent; its meas-
urement would result in a determination of Re½ϵP�.
In the left panel of Fig. 11, we show Iρ6c enlarging the
region where the zero is present for the benchmark
Re½ϵP�, and in the middle panel, we display q20 vs
Re½ϵP� in the whole range for the coupling.

(iii) NP with ϵP ¼ 0 and ϵT ≠ 0, and ðIρ6cÞjϵP≃0 ¼
ð−2Hρ

t Þ½4Hρ
0m

2
l − Re½ϵT �HNP;ρ

L ml

ffiffiffiffiffi
q2

p
�. The zero

is present if Re½ϵT � > 0. The position has a form
factor dependence, as shown in Fig. 11 (right panel).

(iv) NP with both ϵP ≠ 0 and ϵT ≠ 0. In this case, both
real and imaginary parts of ϵP and ϵT are involved.
One can notice from Fig. 5 that it is possible to have
two zeros, nearly coinciding with those found in the
previous two cases.

Integrating the four-dimensional differential decay
distribution, several observables can be constructed:

(i) q2-dependent forward-backward (FB) lepton asym-
metry,

AFBðq2Þ ¼
�Z

1

0

d cos θ
d2Γ

dq2d cos θ

−
Z

0

−1
d cos θ

d2Γ
dq2d cos θ

�

dΓ
dq2

; ð17Þ

which is given in terms of the angular coefficient
functions as

AFBðq2Þ ¼
3ðIρ6c þ 2Iρ6sÞ

6Iρ1c þ 12Iρ1s − 2Iρ2c − 4Iρ2s
: ð18Þ

FIG. 9. Ratio Rρ
2s=1s in (11) the modes B̄ → ρðππÞμ−ν̄μ (left) and B̄ → ρðππÞτ−ν̄μ (right), in the SM and NP with the tensor operator at

the benchmark point. The dashed lines correspond to the large energy limit result (extrapolated to the full q2 range).

FIG. 10. Relation between the position of the zeroes q20 of
the ratios (11) and (12) for the B → ρ and B → a1 modes,
respectively.
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(ii) Transverse forward-backward (TFB) asymmetry, the
FB asymmetry for transversely polarized ρ, reading
in terms of the angular coefficient functions as

AT
FBðq2Þ ¼

3Iρ6s
6Iρ1s − 2Iρ2s

: ð19Þ

For l ¼ μ, the asymmetries AFB and AT
FB are shown

in Fig. 12, and for l ¼ τ, they are shown in Fig. 14.
In the case of NP, the zero of AFB in the τ mode is
shifted. Moreover, AT

FB is very sensitive to the new
operators, and in the case of τ, it has a zero not
present in the SM. This is related to Iρ6s, with a zero
in NP and not in the SM.

(iii) Observables sensitive to the ρ polarization. We
consider the differential branching ratio for longi-
tudinally (L) and transversely (T) polarized ρ as a
function of q2 or of one of the two angles θ, θV :
dBLðTÞ=dq2, dBLðTÞ=d cos θ and dBLðTÞ=d cos θV .
These observables are depicted for l ¼ μ and for
l ¼ τ in Figs. 13 and 15, respectively.

Among all these quantities, the ones corresponding to
transversely polarized ρ depend only on ϵT , as stressed in
the legends of the corresponding figures.
Integrating the distributions, we obtain in the SM the

longitudinal and transverse polarization fractions and the
branching fractions:

FLðB̄→ρμ−ν̄μÞjSM¼0.52�0.15

FTðB̄→ρμ−ν̄μÞjSM¼0.48�0.11

BðB̄0→ρþμ−ν̄μÞjSM¼ð3.37�0.52Þ×10−4×

� jVubj
0.0035

�
2

;

ð20Þ

FLðB̄→ ρτ−ν̄τÞjSM ¼ 0.50� 0.13

FTðB̄→ ρτ−ν̄τÞjSM ¼ 0.50� 0.12

BðB̄0 → ρþτ−ν̄τÞjSM ¼ ð1.80� 0.25Þ× 10−4×

� jVubj
0.0035

�
2

:

ð21Þ

For the B → π mode, we have

BðB̄0 → πþμ−ν̄μÞjSM ¼ð1.5�0.1Þ×10−4×

� jVubj
0.0035

�
2

BðB̄0→ πþτ−ν̄τÞjSM ¼ð0.92�0.06Þ×10−4×

� jVubj
0.0035

�
2

:

ð22Þ

The ratios

Rπ ¼
BðB̄→ πτ−ν̄τÞ
BðB̄→ πl−ν̄lÞ

; Rρ ¼
BðB̄→ ρτ−ν̄τÞ
BðB̄→ ρl−ν̄lÞ

ð23Þ

FIG. 11. B̄ → ρðππÞμ−ν̄μ mode: coefficient function Iρ6cðq2Þ (left) and position q20 varying ReðϵPÞ with ϵT ¼ 0 (middle panel) and
ReðϵTÞ with ϵP ¼ 0 (right).

FIG. 12. B̄ → ρμ−ν̄μ mode: forward-backward lepton asymmetry (17) and (19) in the SM and NP at the benchmark point.
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FIG. 13. B̄ → ρμ−ν̄μ mode: distributions dB̃L=dq2, dB̃L=d cos θ, and dB̃L=d cos θV (first line) and dB̃T=dq2, dB̃T=d cos θ, and
dB̃T=d cos θV (second line), with B̃ ¼ B=Bðρ → ππÞ, in the SM and NP at the benchmark point.

FIG. 14. B̄ → ρτ−ν̄τ mode: asymmetries (17) and (19) in the SM and NP at the benchmark point.

FIG. 15. B̄ → ρτ−ν̄τ mode: distributions dB̃L=dq2, dB̃L=d cos θ, and dB̃L=d cos θV (first line) and dB̃T=dq2, dB̃T=d cos θ and
dB̃T=d cos θV (second line), with B̃ ¼ B=Bðρ → ππÞ, in the SM and NP at the benchmark point.
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are modified by the new physics operators in (1). The
results in the SM and NP are collected in Table I, with
the errors obtained by considering the uncertainties in the
hadronic form factors. The deviations are correlated when
the new operators are included in the effective Hamiltonian,
and, as shown in Fig. 16, large effects are possible in
corners of the parameter space of the new effective
couplings.
Concerning Rπ in the SM, the value Rπ ¼ 0.641ð17Þ is

obtained using lattice form factors at large q2 [67], the
range [0.654, 0.764] is found in Ref. [68], Rπ ¼ 0.7
together with Rρ ≃ 0.573 is found using form factors
computed in perturbative QCD [69], and Rπ ≃ 0.731 and

Rρ ≃ 0.585 are quoted in Ref. [70]. The effect of a new
charged Higgs reduces the SM result for Rπ and Rρ [71].
Considering a single NP operator per time, values for Rπ up
to about four are obtained in Ref. [68], the range [0.5, 1.38]
is found in Ref. [69], while the inclusion only of the

FIG. 16. Correlation between Rρ and Rπ in Eq. (23) with only
the tensor operator added to the SM effective Hamiltonian. The
colors correspond to the different signs of ReðϵμTÞ and ReðϵτTÞ in
the full range of the parameter space. The red and brown points
are the SM and NP results at the benchmark point, respectively.

TABLE I. Ratios Rπ and Rρ in Eq. (23) in the SM and in NP at
the benchmark point.

SM NP (benchmark point)

Rπ 0.60� 0.01 0.75� 0.02
Rρ 0.53� 0.02 0.49� 0.02

FIG. 17. B̄ → a1ðρjjπÞμ−ν̄μ mode: angular coefficient functions in (8) for the SM and NP at the benchmark point, using the form
factors in Ref. [82]. The bandwidths are due to the uncertainty in the set of form factors.
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pseudoscalar and scalar operators in the effective
Hamiltonian gives Rπ ∈ ½0.5; 1.2� [49].

V. REMARKS ABOUT THE
MODE B̄ → a1ð1260Þl− ν̄l

As for B̄ → ρðππÞl−ν̄l, the channel B̄ → a1ðρπÞl−ν̄l
can be numerically analyzed in the SM and in the NP
extension (1) using the same benchmark points for the
couplings ϵlV;S;T and the expressions for the angular
coefficient functions in terms of the form factors.
Exclusive hadronic B decays into a1ð1260Þ have been
analyzed at the B factories considering the dominant a1 →
ρπ mode. In particular, B0 → a1ð1260Þ�π∓ have been
scrutinized by the BABAR and Belle collaborations to
carry out measurements of CP violation [72–74].
Observation and measurements of the semileptonic B̄ →

a1 mode are within the present experimental reach, in
particular at Belle II. The theoretical study of B̄ → a1l−ν̄l
requires an assessment of the accuracy of the hadronic
quantities. The B̄ → a1 form factors have been evaluated by
different methods [75–84], but a comparative evaluation

of the uncertainties has not been done so far. To present
numerical examples, we use the set of form factors in
Ref. [82], for which the uncertainty of about 20% is quoted.
The angular coefficient functions, for the μ and τ modes
and for both the ρ polarizations, are depicted in Figs. 17,
18, 19, and 20. In general, the hadronic uncertainties
obscure the effects of the NP operators, confirming the
necessity of more precise determinations. Nevertheless,
there are coefficient functions in which deviations from SM
can be observed, namely, Ia1

2s;jjðq2Þ, Ia16c;jjðq2Þ (Fig. 17) and
Ia12c;⊥ðq2Þ (Fig. 19) for the μ channel and Ia1

1s;jjðq2Þ, Ia16s;jjðq2Þ
(Fig. 18) and Ia11c⊥ðq2Þ, Ia16c⊥ðq2Þ (Fig. 20) for the τ mode.
On the other hand, the forward/backward lepton asymmetry
shows sizeable deviations from SM in the case of τ, as
shown in Fig. 21.

In the ratio Ra1 ¼ BðB̄→a1τ−ν̄τÞ
BðB̄→a1l−ν̄lÞ, the form factor uncertainty

is mild. We obtain, in the SM and for NP at the benchmark
point,

RSM
a1 ¼ 0.44� 0.07; RNP

a1 ¼ 0.67� 0.12: ð24Þ

FIG. 18. B̄ → a1ðρjjπÞτ−ν̄τ mode, angular coefficient functions with the same notations as in Fig. 17.
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The individual branching fractions in the SM, in this model
of form factors, are BðB̄ → a−1 μ

−ν̄μÞ ¼ ð3.0� 1.7Þ × 10−4

and BðB̄ → a−1 τ
−ν̄τÞ ¼ ð1.3� 0.6Þ × 10−4 [82].

We can now summarize the synergies between the
various considered modes to provide possible evidences
of NP in semileptonic b → u transitions:

(i) The presence of the tensor structure in the effective
Hamiltonian can be established independently of the
presence of the other operators, looking at deviations
of the observables that depend only on ϵT . These are
the observables involving transversely polarized ρ
and a1. Moreover, it is possible to tightly constrain
jϵT j looking at the zero of the ratios defined in
Eqs. (11) and (12). A correlation between the
position of the zero in the ρ and a1 modes should
be observed, as in Fig. 10.

(ii) If a pseudoscalar operator is present, without other
NP structures, deviations should be observed in
leptonic B decays and in the semileptonic decay
to ρ, not in semileptonic decays to π and a1.
Determining the position of the zero in Iρ6c allows

us to constrain Re½ϵP�. Zeros should not be present
in Ia1

6c;jj.
(iii) If a scalar operator is present, without additional NP

structures, deviations should be observed in semi-
leptonic B decays to π and a1. In particular, a zero
would be present in Ia1

6c;jj, not in Iρ6c.
(iv) The simultaneous presence of all the operators

would manifest in a more involved pattern of
deviations. However, such deviations are correlated
in the two modes, and the pattern of correlation can
be used to assess the role of the various new terms
in (1).

(v) Precise measurements of modes with final τ provide
new important tests of LFU. The determination of Rρ

and Rπ would give information on the relative sign
of Re½ϵμT � and Re½ϵτT �, as shown in Fig. 16. In the a1
channel, deviations are also expected. However, in
this case, the reconstruction of the modes with τ is
challenging; for example, using the three prong
channel for the τ reconstruction implies considering
a final state comprising six light mesons.

FIG. 19. B̄ → a1ðρ⊥πÞμ−ν̄μ mode, angular coefficient functions with the same notations as in Fig. 17.
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VI. CONCLUSIONS

The questions raised by the anomalies in b → c semi-
leptonic modes call for new analyses on the CKM sup-
pressed semileptonic b → u modes, for which precise
measurements are expected. We have considered an
enlarged SM effective Hamiltonian including additional
D ¼ 6 operators and looked for the impact of the new terms

on B̄ → ρðππÞl−ν̄l and B̄ → a1ðρπÞl−ν̄l. We have con-
structed the four-dimensional differential distribution for
both the modes, finding that they are sensitive to different
NP operators. The different quantum numbers of light
mesons in the two processes act as a selection on the
contributions of the NP terms; therefore, the two modes
provide complementary information about the role of the

FIG. 20. B̄ → a1ðρ⊥πÞτ−ν̄τ mode, angular coefficient functions with the same notations as in Fig. 17.

FIG. 21. B̄ → a1l−ν̄l mode: FB lepton asymmetries for l ¼ μ (left) and τ (right).
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new operators in Eq. (1). This motivates their consider-
ation. We have constrained the parameter space of the
effective coupling constants from current data on purely
leptonic and semileptonic B modes into a pseudoscalar
meson and considered the impact on B̄ → ρl−ν̄l. Among
the various observables, we have found that a few angular
coefficients present zeros that do not appear in the SM, the
observation of which would represent support toward the
confirmation of NP effects. We have defined integrated
decay distributions, useful for comparing the modes into μ
and τ, with the aim of further testing LFU. In the
perspective of precision analyses, the theoretical error
connected to the hadronic matrix elements represents a
sizable uncertainty needing to be reduced, in particular for
the a1 mode. The combination of different determinations
based on QCD (QCD sum rules and lattice QCD), obtained

in their respective domains of validity, can be a strategy for
reducing the theoretical uncertainty. The large energy limit,
in which the number of hadronic form factors is reduced,
also represents a way to analyze these two modes. The
possibility of finding deviations from the SM fully justifies
the careful scrutiny of such promising processes.
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APPENDIX A: HADRONIC MATRIX ELEMENTS

For the Mu ¼ πþ meson, the weak matrix elements are
written in terms of form factors as follows,

hπðp0ÞjūγμbjB̄ðpÞi ¼ fB→πþ ðq2Þ
�
pμ þ p0

μ −
m2

B −m2
π

q2
qμ

�
þ fB→π

0 ðq2Þm
2
B −m2

π

q2
qμ

hπðp0ÞjūbjB̄ðpÞi ¼ fB→π
S ðq2Þ

hπðp0ÞjūσμνbjB̄ðpÞi ¼ −i
2fB→π

T ðq2Þ
mB þmπ

½pμp0
ν − pνp0

μ�

hπðp0Þjūσμνγ5bjB̄ðpÞi ¼ −
2fB→π

T ðq2Þ
mB þmπ

ϵμναβpαp0β; ðA1Þ

where ϵ0123 ¼ þ1. The relation fB→π
S ðq2Þ ¼ m2

B−m
2
π

mb−mu
fB→π
0 ðq2Þ holds.

For Mu ¼ ρþ, the various matrix elements, expressed in terms of form factors (with ϵ the ρ polarization vector), read

hρðp0; ϵÞjūγμð1− γ5ÞbjB̄ðpÞi ¼ −
2VB→ρðq2Þ
mB þmρ

iϵμναβϵ�νpαp0β

−
�
ðmB þmρÞ

�
ϵ�μ −

ðϵ� · qÞ
q2

qμ

�
AB→ρ
1 ðq2Þ− ðϵ� · qÞ

mB þmρ

�
ðpþp0Þμ −

m2
B −m2

ρ

q2
qμ

�
AB→ρ
2 ðq2Þ

þ ðϵ� · qÞ2mρ

q2
qμA

B→ρ
0 ðq2Þ

	
; ðA2Þ

with the condition AB→ρ
0 ð0Þ ¼ mBþmρ

2mρ
AB→ρ
1 ð0Þ − mB−mρ

2mρ
AB→ρ
2 ð0Þ, and

hρðp0; ϵÞjūγ5bjB̄ðpÞi ¼ −
2mρ

mb þmu
ðϵ� · qÞAB→ρ

0 ðq2Þ ðA3Þ

hρðp0; ϵÞjūσμνbjB̄ðpÞi ¼ TB→ρ
0 ðq2Þ ϵ� · q

ðmB þmρÞ2
ϵμναβpαp0β þ TB→ρ

1 ðq2Þϵμναβpαϵ�β þ TB→ρ
2 ðq2Þϵμναβp0αϵ�β ðA4Þ

hρðp0; ϵÞjūσμνγ5bjB̄ðpÞi ¼ iTB→ρ
0 ðq2Þ ϵ� · q

ðmB þmρÞ2
ðpμp0

ν − pνp0
μÞ þ iTB→ρ

1 ðq2Þðpμϵ
�
ν − ϵ�μpνÞ

þ iTB→ρ
2 ðq2Þðp0

μϵ
�
ν − ϵ�μp0

νÞ: ðA5Þ
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For Mu ¼ aþ1 , we use the decomposition:

ha1ðp0; ϵÞjūγμð1− γ5ÞbjB̄ðpÞi ¼
2AB→a1ðq2Þ
mB þma1

iϵμναβϵ�νpαp0β

þ
�
ðmB þma1Þ

�
ϵ�μ −

ðϵ� · qÞ
q2

qμ

�
VB→a1
1 ðq2Þ

−
ðϵ� · qÞ

mB þma1

�
ðpþp0Þμ −

m2
B −m2

a1

q2
qμ

�
VB→a1
2 ðq2Þ þ ðϵ� · qÞ2ma1

q2
qμV

B→a1
0 ðq2Þ

	
ðA6Þ

with the condition VB→a1
0 ð0Þ ¼ mBþma1

2ma1
VB→a1
1 ð0Þ − mB−ma1

2ma1
VB→a1
2 ð0Þ, and

ha1ðp0; ϵÞjūbjB̄ðpÞi ¼ 2ma1

mb −mu
ðϵ� · qÞVB→a1

0 ðq2Þ ðA7Þ

ha1ðp0; ϵÞjūσμνbjB̄ðpÞi ¼ iTB→a1
0 ðq2Þ ϵ� · q

ðmB þma1Þ2
ðpμp0

ν − pνp0
μÞ

þ iTB→a1
1 ðq2Þðpμϵ

�
ν − ϵ�μpνÞ þ iTB→a1

2 ðq2Þðp0
μϵ

�
ν − ϵ�μp0

νÞ ðA8Þ

ha1ðp0; ϵÞjūσμνγ5bjB̄ðpÞi ¼ TB→a1
0 ðq2Þ ϵ� · q

ðmB þma1Þ2
ϵμναβpαp0β

þ TB→a1
1 ðq2Þϵμναβpαϵ�β þ TB→a1

2 ðq2Þϵμναβp0αϵ�β: ðA9Þ

In the large energy (large recoil) limit for the light
meson, the weak matrix elements can be expressed in terms
of a smaller number of form factors. We define E ¼
m2

Bþm2−q2

2mB
as the light meson energy in the B rest frame

and m as the light meson mass. The B 4-velocity is defined
from p ¼ mBv, and n− is a lightlike 4-vector along p0:
p0 ¼ En−. In the large recoil configuration, for E ≃ mB

2
, the

light quark u carries almost all the momentum of the light
meson, p0

uμ ¼ Eðn−Þμ þ kμ, with the residual momentum
k ≪ E. Using, e.g., an eikonal formulation of the weak
current, this allows us to express the form factors in terms

of universal functions ξiðEÞ [50,51]. For B → π, a single
form factor ξπðEÞ parametrizes the matrix elements,

hπðp0ÞjūγμbjB̄ðpÞi¼2EξπðEÞðn−Þμ
hπðp0ÞjūσμνqνbjB̄ðpÞi¼2iEξπðEÞ½ðmB−EÞðn−Þμ−mBvμ�:

ðA10Þ

For B → ρ, there are two independent form factors, ξρ⊥ðEÞ
and ξρjjðEÞ,

hρðp0; ϵÞjūγμbjB̄ðpÞi ¼ 2iEξρ⊥ðEÞϵμναβϵ�νðn−Þαvβ
hρðp0; ϵÞjūγμγ5bjB̄ðpÞi ¼ 2Efξρ⊥ðEÞ½ϵ�μ − ðϵ� · vÞðn−Þμ� þ ξρjjðEÞðϵ� · vÞðn−Þμg
hρðp0; ϵÞjūσμνqνbjB̄ðpÞi ¼ 2EmBξ

ρ
⊥ðEÞϵμναβϵ�νvαðn−Þβ

hρðp0; ϵÞjūσμνγ5qνbjB̄ðpÞi ¼ −2iEfξρ⊥ðEÞmB½ϵ�μ − ðϵ� · vÞðn−Þμ� þ ξρjjðEÞðϵ� · vÞ½ðmB − EÞðn−Þμ −mBvμ�g; ðA11Þ

and two independent ξa1⊥ ðEÞ and ξa1jj ðEÞ for factors are also involved for a1,

ha1ðp0; ϵÞjūγμγ5bjB̄ðpÞi ¼ −2iEξa1⊥ ðEÞϵμναβϵ�νðn−Þαvβ
ha1ðp0; ϵÞjūγμbjB̄ðpÞi ¼ −2Efξa1⊥ ðEÞ½ϵ�μ − ðϵ� · vÞðn−Þμ� þ ξa1jj ðEÞðϵ� · vÞðn−Þμg

ha1ðp0; ϵÞjūσμνqνγ5bjB̄ðpÞi ¼ 2EmBξ
a1⊥ ðEÞϵμναβϵ�νvαðn−Þβ

ha1ðp0; ϵÞjūσμνqνbjB̄ðpÞi ¼ −2iEfξa1⊥ ðEÞmB½ϵ�μ − ðϵ� · vÞðn−Þμ� þ ξa1jj ðEÞðϵ� · vÞ½ðmB − EÞðn−Þμ −mBvμ�g: ðA12Þ
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Comparing Eqs. (A1)–(A8) with Eqs. (A10)–(A12), the
relations among the form factors and their large energy
limit expressions can be worked out. For B → π, they are

fB→πþ ðq2Þ ¼ mB

2E
fB→π
0 ðq2Þ ¼ mB

mB þmπ
fB→π
T ðq2Þ

¼ ξπðEÞ; ðA13Þ
for B → ρ, they are

mB

mB þmρ
VB→ρðq2Þ ¼ mB þmρ

2E
AB→ρ
1 ðq2Þ ¼ ξρ⊥ðEÞ

mρ

E
AB→ρ
0 ðq2Þ ¼ mB þmρ

2E
AB→ρ
1 ðq2Þ

−
mB −mρ

mB
AB→ρ
2 ðq2Þ ¼ ξρjjðEÞ

TB→ρ
1 ðq2Þ ¼ 0

TB→ρ
2 ðq2Þ ¼ 2ξρ⊥ðEÞ

TB→ρ
0 ðq2Þ ¼ 2ξρjjðEÞ; ðA14Þ

and for B → a1, they are

mB

mB þma1

AB→a1ðq2Þ ¼ mB þma1

2E
VB→a1
1 ðq2Þ ¼ ξa1⊥ ðEÞ

ma1

E
VB→a1
0 ðq2Þ ¼ mB þma1

2E
VB→a1
1 ðq2Þ

−
mB −ma1

mB
VB→a1
2 ðq2Þ ¼ ξa1jj ðEÞ

TB→a1
1 ðq2Þ ¼ 0

TB→a1
2 ðq2Þ ¼ 2ξa1⊥ ðEÞ

TB→a1
0 ðq2Þ ¼ 2ξa1jj ðEÞ: ðA15Þ

The functions ξπ , ξ
ρ
jj, and ξρ⊥ have been determined by light-

coneQCDsumruleswithin theSoftCollinearEffectiveTheory,
using B meson light-cone distribution amplitudes [85–87].

APPENDIX B: ANGULAR
COEFFICIENT FUNCTIONS

Here, we collect the expressions of the angular coef-
ficient functions in Eqs. (7) and (8). The general form of the
B̄ → Vl−ν̄l decay amplitude, with V ¼ ρ and a1,

AðB̄ → Vl−ν̄lÞ ¼
GFffiffiffi
2

p Vub½ð1þ ϵlVÞHSM
μ LSMμ

þ ϵlSH
NP;SLNP;S þ ϵlPH

NP;PLNP;P

þ ϵlTH
NP;T
μν LNP;Tμν�; ðB1Þ

is given in terms of the quark current matrix elements

HSM
μ ðmÞ ¼ hVðpV; ϵðmÞÞjūγμð1 − γ5ÞbjB̄ðpBÞi

¼ ϵ�αðmÞTμα ðB2Þ
HNP;SðmÞ ¼hVðpV; ϵðmÞÞjūbjB̄ðpBÞi ¼ ϵ�αðmÞTNP;S

α

ðB3Þ
HNP;P

μ ðmÞ ¼hVðpV; ϵðmÞÞjūγ5bjB̄ðpBÞi ¼ ϵ�αðmÞTNP;P
α

ðB4Þ
HNP;T

μν ðmÞ ¼ hD�ðpD� ; ϵðmÞÞjc̄σμνð1 − γ5ÞbjB̄ðpBÞi
¼ ϵ�αðmÞTNP;T

μνα ðB5Þ
and of the lepton currents

LSMμ ¼ l̄γμð1 − γ5Þνl ðB6Þ

LNP;S ¼ LNP;P ¼ l̄ð1 − γ5Þνl ðB7Þ

LNP;Tμν ¼ l̄σμνð1 − γ5Þνl: ðB8Þ

In the SM, one can relate the helicity amplitudes for the V
polarization states to the polarizations of the virtual
Wðq; ϵ̄Þ. In the lepton pair rest frame, they are

ϵ̄� ¼ 1ffiffiffi
2

p ð0;1;�i;0Þ; ϵ̄0 ¼ð0;0;0;1Þ; ϵ̄t¼ð1;0;0;0Þ:

ðB9Þ
This allows us to define the amplitudes

Hm ¼ ϵ̄�μm ϵ�αm Tμα ðm ¼ 0;�Þ
Ht ¼ ϵ̄�μt ϵ�α0 Tμα ðm ¼ tÞ; ðB10Þ

which can be expressed in terms of the form factors in (A2)
and (A6),

Hρ
0 ¼

ðmB þmρÞ2ðm2
B −m2

ρ − q2ÞA1ðq2Þ − λðm2
B;m

2
ρ; q2ÞA2ðq2Þ

2mρðmB þmρÞ
ffiffiffiffiffi
q2

p

Hρ
� ¼

ðmB þmρÞ2A1ðq2Þ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
ρ; q2Þ

q
Vðq2Þ

mB þmρ

Hρ
t ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
ρ; q2Þ

q
ffiffiffiffiffi
q2

p A0ðq2Þ ðB11Þ
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and

Ha1
0 ¼ −ðmB þma1Þ2ðm2

B −m2
a1 − q2ÞV1ðq2Þ þ λðm2

B;m
2
a1 ; q

2ÞV2ðq2Þ
2ma1ðmB þma1Þ

ffiffiffiffiffi
q2

p

Ha1
� ¼

−ðmB þma1Þ2V1ðq2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
a1 ; q

2Þ
q

Aðq2Þ
mB þma1

Ha1
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
a1 ; q

2Þ
q

ffiffiffiffiffi
q2

p V0ðq2Þ: ðB12Þ

No new definitions are needed in the case of S and P operators, since their matrix elements involve the same form factors as
in the SM. For the NP tensor operator, one defines [32]

HNP;ρ
þ ¼ 1ffiffiffiffiffi

q2
p f½m2

B −m2
ρ þ λ1=2ðm2

B;m
2
ρ; q2Þ�ðTB→ρ

1 þ TB→ρ
2 Þ þ q2ðTB→ρ

1 − TB→ρ
2 Þg

HNP;ρ
− ¼ 1ffiffiffiffiffi

q2
p f½m2

B −m2
ρ − λ1=2ðm2

B;m
2
ρ; q2Þ�ðTB→ρ

1 þ TB→ρ
2 Þ þ q2ðTB→ρ

1 − TB→ρ
2 Þg

HNP;ρ
L ¼ 4

�
λðm2

B;m
2
ρ; q2Þ

mρðmB þmρÞ2
TB→ρ
0 þ 2

m2
B þm2

ρ − q2

mρ
TB→ρ
1 þ 4mρT

B→ρ
2

	
: ðB13Þ

The expressions for HNP;a1
ðþ;−;LÞ are obtained by replacing mρ → ma1 and TB→ρ

i → TB→a1
i .

For the decay B̄ → a1ðρπÞl−ν̄l, we define the ρ helicity
amplitudes A1;A−1;A0 for λ ¼ þ1;−1, 0. Writing the
matrix element

hρðpρ; ηÞπðpπÞja1ðp0; ϵÞi ¼ g1ðϵ · η�Þðp0 · pρÞ
þ g2ðϵ · pρÞðp0 · η�Þ ðB14Þ

in terms of the couplings g1 and g2, we have

Γða1 → ρπÞ ¼ jp⃗ρj
24πm2

a1

ðΓ̃⊥ þ Γ̃jjÞ; ðB15Þ

where jp⃗ρj ¼ λ1=2ðm2
a1
;m2

ρ;m2
πÞ

2ma1
and

Γ̃⊥ ¼ 2jA1j2 ¼ 2g21m
2
a1ðm2

ρ þ jp⃗ρj2Þ

Γ̃jj ¼ jA0j2 ¼
m2

a1

m2
ρ
½ðm2

ρ þ jp⃗ρj2Þg1 þ jp⃗ρj2g2�2: ðB16Þ

The branching ratios for ρ longitudinally and trans-

versely polarized, appearing in the factors N jjð⊥Þ
a1 in

Eq. (8), read

Bða1 → ρjjð⊥ÞπÞ ¼
1

Γða1Þ
jp⃗ρj

24πm2
a1

Γ̃jjð⊥Þ: ðB17Þ

APPENDIX C: B → π FORM FACTORS AND
OTHER PARAMETERS

For the B → π form factors defined in (A1), we use the
parametrization [88]

TABLE II. Angular coefficient functions in the four-dimensional
B̄ → ρðππÞl−ν̄l decay distribution, Eq. (7), in the SM.

i ISMi

Iρ1s
1
2
ðH2þ þH2

−Þðm2
l þ 3q2Þ

Iρ1c 4m2
lH

2
t þ 2H2

0ðm2
l þ q2Þ

Iρ2s − 1
2
ðH2þ þH2

−Þðm2
l − q2Þ

Iρ2c 2H2
0ðm2

l − q2Þ
Iρ3 2HþH−ðm2

l − q2Þ
Iρ4 H0ðHþ þH−Þðm2

l − q2Þ
Iρ5 −2HtðHþ þH−Þm2

l − 2H0ðHþ −H−Þq2
Iρ6s 2ðH2þ −H2

−Þq2
Iρ6c −8HtH0m2

l
Iρ7 0
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TABLE IV. Angular coefficient functions for B̄ → ρðππÞl−ν̄l: NP term with T operator and interference term
SM-NP with T operator, Eq. (9).

i INP;Ti IINT;Ti

Iρ1s 2½ðHNPþ Þ2 þ ðHNP
− Þ2�ð3m2

l þ q2Þ −4ðHNPþ Hþ þHNP
− H−Þml

ffiffiffiffiffi
q2

p
Iρ1c

1
8
ðHNP

L Þ2ðm2
l þ q2Þ −HNP

L H0ml

ffiffiffiffiffi
q2

p
Iρ2s 2½ðHNPþ Þ2 þ ðHNP

− Þ2�ðm2
l − q2Þ 0

Iρ2c
1
8
ðHNP

L Þ2ðq2 −m2
lÞ 0

Iρ3 8HNPþ HNP
− ðq2 −m2

lÞ 0
Iρ4

1
2
HNP

L ðHNPþ þHNP
− Þðq2 −m2

lÞ 0
Iρ5 −HNP

L ðHNPþ −HNP
− Þm2

l
1
4
½HNP

L ðHþ −H−Þ þ 8HNPþ ðHt þH0Þ
þ8HNP

− ðHt −H0Þ�ml

ffiffiffiffiffi
q2

p
Iρ6s 8½ðHNPþ Þ2 − ðHNP

− Þ2�m2
l −4ðHNPþ Hþ −HNP

− H−Þml

ffiffiffiffiffi
q2

p
Iρ6c 0 HNP

L Html

ffiffiffiffiffi
q2

p
Iρ7 0 1

4
½HNP

L ðHþ þH−Þ − 8HNPþ ðHt þH0Þ
þ8HNP

− ðHt −H0Þ�ml

ffiffiffiffiffi
q2

p

TABLE V. Angular coefficient functions in the four-dimensional B̄ → a1ðρπÞl−ν̄l decay distribution, Eq. (8), in
the SM.

i ISMi;jj ISMi;⊥
Ia11s

1
2
ðH2þ þH2

−Þðm2
l þ 3q2Þ 2H2

t m2
l þH2

0ðm2
l þ q2Þ þ 1

4
ðH2þ þH2

−Þðm2
l þ 3q2Þ

Ia11c 4H2
t m2

l þ 2H2
0ðm2

l þ q2Þ 1
2
ðH2þ þH2

−Þðm2
l þ 3q2Þ

Ia12s − 1
2
ðH2þ þH2

−Þðm2
l − q2Þ ½H2

0 − 1
4
ðH2þ þH2

−Þ�ðm2
l − q2Þ

Ia12c 2H2
0ðm2

l − q2Þ − 1
2
ðH2þ þH2

−Þðm2
l − q2Þ

Ia13 2HþH−ðm2
l − q2Þ −HþH−ðm2

l − q2Þ
Ia14 H0ðHþ þH−Þðm2

l − q2Þ − 1
2
H0ðHþ þH−Þðm2

l − q2Þ
Ia15 −2HtðHþ þH−Þm2

l − 2H0ðHþ −H−Þq2 HtðHþ þH−Þm2
l þH0ðHþ −H−Þq2

Ia16s 2ðH2þ −H2
−Þq2 −4HtH0m2

l þ ðH2þ −H2
−Þq2

Ia16c −8HtH0m2
l 2ðH2þ −H2

−Þq2
Ia17 0 0

TABLE III. Angular coefficient functions for B̄ → ρðππÞl−ν̄l: NP term with P operator, interference term SM-NP
with P operator, and NP-NP interference terms between P and T operators, Eq. (9).

i INP;Pi IINT;Pi IINT;PTi

Iρ1s 0 0 0
Iρ1c 4H2

t
q4

ðmbþmuÞ2 4H2
t

mlq2

mbþmu

0

Iρ2s 0 0 0
Iρ2c 0 0 0
Iρ3 0 0 0
Iρ4 0 0 0
Iρ5 0 −HtðHþþH−Þ mlq2

mbþmu
2HtðHNPþ þHNP

− Þ ðq2Þ3=2
mbþmu

Iρ6s 0 0 0
Iρ6c 0 −4HtH0

mlq2

mbþmu
HtHNP

L
ðq2Þ3=2
mbþmu

Iρ7 0 −HtðHþ−H−Þ mlq2

mbþmu
2HtðHNPþ −HNP

− Þ ðq2Þ3=2
mbþmu
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TABLE VII. Angular coefficient functions for B̄ → a1ðρπÞl−ν̄l: NP term with S operator, interference SM-NP
with S operator, and NP-NP interference with S and T operators, Eq. (9).

i INP;Si;⊥ IINT;Si;⊥ IINT;STi;⊥
Ia11s 2H2

t
q4

ðmb−muÞ2 2H2
t

mlq2

mb−mu

0

Ia11c 0 0 0
Ia12s 0 0 0
Ia12c 0 0 0
Ia13 0 0 0
Ia14 0 0 0
Ia15 0 1

2
HtðHþ þH−Þ mlq2

mb−mu
HtðHNPþ þHNP

− Þ ðq2Þ3=2
mb−mu

Ia16s 0 −2HtH0
mlq2

mb−mu
−HtHNP

L
ðq2Þ3=2

2ðmb−muÞ
Ia16c 0 0 0
Ia17 0 1

2
HtðHþ −H−Þ mlq2

mb−mu
HtðHNPþ −HNP

− Þ ðq2Þ3=2
mb−mu

TABLE VIII. Angular coefficient functions for B̄ → a1ðρπÞl−ν̄l: NP term with T operator and interference
SM-NP with T operator.

i INP;Ti;jj IINT;Ti;jj

Ia11s 2½ðHNPþ Þ2 þ ðHNP
− Þ2�ð3m2

l þ q2Þ 4ðHNPþ Hþ þHNP
− H−Þml

ffiffiffiffiffi
q2

p
Ia11c

1
8
ðHNP

L Þ2ðm2
l þ q2Þ HNP

L H0ml

ffiffiffiffiffi
q2

p
Ia12s 2½ðHNPþ Þ2 þ ðHNP

− Þ2�ðm2
l − q2Þ 0

Ia12c − 1
8
ðHNP

L Þ2ðm2
l − q2Þ 0

Ia13 −8HNPþ HNP
− ðm2

l − q2Þ 0
Ia14 − 1

2
HNP

L ðHNPþ þHNP
− Þðm2

l − q2Þ 0
Ia15 −HNP

L ðHNPþ −HNP
− Þm2

l − 1
4
½HNP

L ðHþ −H−Þ þ 8HNPþ ðHt þH0Þ
þ8HNP

− ðHt −H0Þ�ml

ffiffiffiffiffi
q2

p
Ia16s 8½ðHNPþ Þ2 − ðHNP

− Þ2�m2
l 4ðHNPþ Hþ −HNP

− H−Þml

ffiffiffiffiffi
q2

p
Ia16c 0 −HNP

L Html

ffiffiffiffiffi
q2

p
Ia17 0 − 1

4
½HNP

L ðHþ þH−Þ − 8HNPþ ðHt þH0Þ
þ8HNP

− ðHt −H0Þ�ml

ffiffiffiffiffi
q2

p

TABLE VI. Angular coefficient functions for B̄ → a1ðρπÞl−ν̄l: NP term with S operator, interference SM-NP
with S operator, and NP-NP interference with S and T operators, Eq. (9).

i INP;Si;jj IINT;Si;jj IINT;STi;jj

Ia11s 0 0 0
Ia11c 4H2

t
q4

ðmb−muÞ2 4H2
t

mlq2

mb−mu

0

Ia12s 0 0 0
Ia12c 0 0 0
Ia13 0 0 0
Ia14 0 0 0
Ia15 0 −HtðHþ þH−Þ mlq2

mb−mu
−2HtðHNPþ þHNP

− Þ ðq2Þ3=2
mb−mu

Ia16s 0 0 0
Ia16c 0 −4HtH0

mlq2

mb−mu
−HtHNP

L
ðq2Þ3=2
mb−mu

Ia17 0 −HtðHþ −H−Þ mlq2

mb−mu
−2HtðHNPþ −HNP

− Þ ðq2Þ3=2
mb−mu
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fþ;TðtÞ ¼
1

1 − q2

m2
pole

XN−1

n¼0

an½zðtÞn −
n
N
ð−1Þn−NzðtÞN �

f0ðtÞ ¼
XN−1

n¼0

anzðtÞn; ðC1Þ

expressed as a truncated series in the variable

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : ðC2Þ

In this expression, tþ ¼ ðmB þmπÞ2, and t0 is chosen at the
value t0 ¼ ðmB þmπÞð ffiffiffiffiffiffiffi

mB
p − ffiffiffiffiffiffi

mπ
p Þ2. For B̄ → πμ−ν̄μ,

the kinematic range is −0.279 ≤ z ≤ 0.283; for
B̄ → πτ−ν̄τ, it is −0.279 ≤ z ≤ 0.257. The mass of the
pole in fþ;T is mpole ¼ mB� . The parameters an for fþ; f0,
and fT , with the condition fþð0Þ ¼ f0ð0Þ, are obtained by
fitting the light-cone QCD sum rule results in the range
m2

e ≤ q2 ≤ 12 GeV2 [62,63] and the lattice QCD results for
16 GeV2 ≤ q2 in the recent FLAG report [64]: they are in
Table X. The other parameters used in the analysis are the
quark masses mu ¼ 2.16þ0.49

−0.26 MeV (in the MS scheme at
μ ¼ 2 GeV), m̄bðm̄bÞ ¼ 4.18þ0.04

−0.03 GeV [59], and the B
decay constant fB ¼ 188� 7 MeV [64].
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