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Lorentz and CPT violation in hadronic physics must be tied to symmetry violations at the underlying
quark and gluon level. Chiral perturbation theory provides a method for translating novel operators that
may appear in the Lagrange density for color-charged parton fields into equivalent forms for effective
theories at the meson and baryon levels. We extend the application of this technique to the study of Lorentz-
violating and potentially CPT-violating operators from the minimal standard model extension. For
dimension-4 operators, there are nontrivial relations between the coefficients of baryon-level operators
related to underlying quark and gluon operators with the same Lorentz structures. Moreover, in the
mapping of the dimension-3 operators from the quark and gluon level to the hadron level (considered here
for the first time), many of the hadronic observables contain no new low-energy coupling constants at all,
which makes it possible to make direct translations of bounds derived using experiments on one kind of
hadron into bounds in a completely different corner of the hadronic sector. A notable consequence of this is
bounds (at 10−15 − 10−20 GeV levels) on differences aμB − aμB0 of Lorentz and CPT violation coefficients
for SUð3Þf octet baryons that differ in their structure by the replacement of a single valance d quark by a s
quark. Never before has there been any proposal for how these kinds of differences could be constrained.
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I. INTRODUCTION

Recent developments in our understanding of fundamen-
tal symmetry principles have led to a great deal of interest in
testing how well the symmetries that seem to underlie the
fundamental physicswe currently understand—the standard
model of particle physics and the general theory of relativity
for gravitation—have really been verified experimentally.
Particular attention has been paid to Lorentz symmetry and
CPT, because these symmetries can be given up without
needing to abandon the general structure of field theory.
Other exotic possibilities (such as violations of the spin-
statistics relation) are even less well behaved, and it may not
even be possible to formulate completely self-consistent test
theories for such possibilities.
The experimental discovery of any kind of really exotic

new fundamental phenomena would obviously be of
singular importance, on par with the development of
renormalizable quantum field theories, which provided a

comprehensive framework for the study of interacting
elementary particles. If Lorentz or CPT violation is ever
found experimentally, the new result can immediately be
analyzed in the context of effective field theory (EFT),
since an effective field theory framework capable of
incorporating these symmetry violations into the descrip-
tion of standard model quanta has already been developed
[1,2]. This EFT, known as the standard model extension
(SME), describes Lorentz violation, and then is automati-
cally capable of describing CPT violation as well—
because a quantum field theory (QFT) with a well-defined
S-matrix that is not invariant under CPT cannot be
invariant under Lorentz symmetry either [3].
Thanks to its generality, the SME has become the

standard formalism used for parametrizing the results of
experimental Lorentz and CPT tests. Most reasonable test
theories previously proposed for use in explorations of how
these symmetries might be broken have turned out to be
special cases of the SME. As an EFT, the SME really
contains a potentially infinite hierarchy of Lorentz-violat-
ing operators that can be constructed out of standard model
fields. However, in many cases, attention is restricted to the
minimal SME (mSME), which contains only gauge invari-
ant and renormalizable operators in its action. The mSME
is expected to describe most low-energy Lorentz- andCPT-
violating phenomena, and experimental verifications of
these symmetries can usually be expressed most usefully as

*baltschu@physics.sc.edu
†mschindl@mailbox.sc.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 075031 (2019)

2470-0010=2019=100(7)=075031(18) 075031-1 Published by the American Physical Society

https://orcid.org/0000-0002-3297-7815
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.075031&domain=pdf&date_stamp=2019-10-23
https://doi.org/10.1103/PhysRevD.100.075031
https://doi.org/10.1103/PhysRevD.100.075031
https://doi.org/10.1103/PhysRevD.100.075031
https://doi.org/10.1103/PhysRevD.100.075031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


bounds on the coupling constants of the mSME (of which
there is a large but finite number). The Lagrange density for
the mSME looks qualitatively similar to the Lagrange
density for the standard model itself. The key difference is
that the mSME operators do not need to be Lorentz scalars;
each Lorentz-violating term will have one or more free
Lorentz indices, which is contracted with a constant
background vector that describes a preferred directional
structure in spacetime. These background constants are the
parameters that can be bounded experimentally, and the
current state of the art for such bounds may be found
summarized in [4]. The best bounds on different strains of
Lorentz-violating operators come from many different
areas of experimentation—including astronomy, atomic
physics, and collider physics.
There are still significant challenges for the interpretation

of experimental results in terms of SME parameters. One
of the most important ones is a challenge that is also present
in analyses in a conventional standard model context.
Although there are additional subtleties when Lorentz
and CPT are potentially broken, there is a common basic
issue that the fundamental parameters of the theory are the
coefficients of operators that are formed from the elemen-
tary fields, which do not necessarily represent the quanta
that are physically accessible at low energies. In particular,
it is not so easy to take the results of measurements made on
hadrons—particles with residual strong interactions medi-
ated largely by the exchange of mesons and mesonlike
resonance states—and relate those to the fundamental
description in terms of color-charged fields that are capable
of exchanging gluons. The purpose of chiral perturbation
theory (χPT) [5–7] (and see [8] for a pedagogical intro-
duction to the subject) is to bridge this gap between
the descriptions at the hadron level and the quark and
gluon level.
Previous work has introduced a number of SME oper-

ators for quarks [9,10] and gluons [11,12] and used χPT
methods to translate them into equivalent formulations
for mesons and baryons. The author of Ref. [12] also
considered certain radiative corrections and meson-
exchange potentials. However, there has not previously
been a complete treatment of all the mSME operators for
strongly interacting fields that are amenable to χPT
methods simultaneously. Such a treatment is our goal in
this paper. This is actually a slightly less onerous under-
taking than it might initially appear, since any Lorentz
violation in nature is known to be a very small effect. That
means that it is a pretty much universally valid approxi-
mation to work only to first order in the SME parameters;
we shall not consider any operators or phenomena that
involve products of multiple SME coefficients. However,
even at linear order, there are some interesting relationships
to be found between the coefficients.
The outline of this paper is as follows. In Sec. II, we

introduce mSME Lorentz violation for the fields at the level

of two-flavor quantum chromodynamics (QCD)—the
quarks and gluons. The methodology of χPT is discussed
in Sec. III. Then, in Secs. IVand V, we construct the leading
order (LO) effective actions for the pion and nucleon
sectors, respectively. Experimental consequences, includ-
ing some involving kaons and other strange particles, are
discussed in Sec. VI. Finally, Sec. VII summarizes our
conclusions and areas for future study.

II. LORENTZ VIOLATION WITH QCD FIELDS

A. Quark operators

The starting point for our analysis will be the mSME
Lagrange density, expressed in terms of the QCD fields.
The mSME action is built out of gauge-invariant operators
of dimensions 2, 3, and 4, which are constructed out of the
standard model’s quantum fields. This is the same basic
approach taken in the usual standard model, except that the
new operators specific to the mSME will have free Lorentz
indices. These indices are contracted with constant back-
ground tensors; if the Lorentz violation arises through
spontaneous symmetry breaking, then the background
tensors are determined from the vacuum expectation values
of tensor-valued bosonic fields. In the presence of such
background tensors, otherwise identical experiments done
in different coordinate reference frames may yield different
outcomes. By comparing the results of experiments done
with the apparatus at different orientations, or moving with
different velocities, it is possible to place bounds on the
symmetry-breaking backgrounds.
The Lagrange density for the QCD sector of the mSME

has operators that can be constructed out of quark field
bilinears and the gluon field. Our focus will primarily be on
Lorentz violation in two-flavor QCD. However, when it is
straightforward to do so, will we present generalizations to
the theory containing a strange (s) quark field, in addition
to up (u) and down (d), with an approximate SUð3Þf flavor
symmetry. However, the inclusion of a heavier quark does
significantly increase the complexity of the theory, because
there are no gauge symmetries to prevent there existing a
large number of Lorentz-violating mixing terms between
the d and s fields. The situation is analogous to having not
just a single Cabbibo angle to describe the difference
between the mass eigenstates and electroweak eigenstates
of the quarks, but a potentially different mixing angle for
every single component of the Lorentz-violating back-
ground tensors.
Moreover, although the focus of our analyses will

always be the strongly interacting sector of the mSME,
we will also make use of results from other sectors of the
theory. In addition to chiral symmetry and the SUð3Þc
gauge symmetry of QCD, there are additional symmetry
requirements that the hadronic Lagrangians must respect.
Some of these are simply the additional electroweak
gauge symmetries of the standard model. However, there
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are also other conditions that will need to be satisfied if
the mSME (which is a QFT) is to be embedded into a
larger geometric theory that also encompasses gravita-
tion. We will employ these additional consistency con-
ditions freely, whenever they can be used to simplify the
analysis.
We may further subdivide the various forms of Lorentz

violation into those which are odd under CPT, versus those
that are CPT invariant. In the mSME, the CPT-violating
operators are those with odd numbers of Lorentz indices to
be contracted with the external background tensors.
The CPT-even operators are then those with even numbers
of free indices; these include, naturally enough, the
regular standard model operators, which possess zero free
Lorentz indices. (This rule—that whether an operator is
CPT violating can be determined simply by counting its
indices—holds for most operators in the full SME.
However, there is an important exception [13,14]—the
f-type operators, which do not violate CPT, in spite of
having odd numbers of indices.) In the mSME, the only
quark and gluon operators that can exist at mass dimension
4 are even under CPT. There are CPT-odd dimension-4
operators that can exist in a SME version of pure quantum
electrodynamics (QED), but all such operators involve
Dirac matrix structures that mix left- and right-chiral
fermion fields in a way that is not consistent with the
SUð2ÞL electroweak gauge symmetry of the full standard
model. Since these terms are not gauge invariant (and are
correspondingly not expected to be renormalizable), they
are not truly part of the mSME. However, similar terms that
break the electroweak gauge symmetry actually can exist as
dimension-3 operators, where they may arise as vacuum
expectation values of dimension-4 operators involving the
Higgs field. This is the same way that the Dirac fermion
mass terms arise in the conventional standard model; when
the Higgs acquires a vacuum expectation, certain Yukawa-
like dimension-4 operators are converted into dimension-3
mass terms.
We shall first look at the dimension-4 operators, begin-

ning with those for the quarks. The CPT-even terms of this
dimension that can exist in the quark sector are [2]

Ld¼4;CPT-even
quark ¼ iðcQÞμνABQ̄Aγ

μDνQB

þ iðcUÞμνABŪAγ
μDνUB

þ iðcDÞμνABD̄Aγ
μDνDB: ð1Þ

The covariant derivatives contain all the standard model
gauge fields, and in curved spacetime, any derivatives
must be taken as 50-50 linear combinations of derivative
operators acting to the right and left. The left- and right-
handed quark multiplets are denoted by

QA ¼
�
uA
dA

�
L

; UA ¼ ½uA�R;DA ¼ ½dA�R; ð2Þ

where the left and right multiplets are of different dimen-
sionalities because they transform differently under the
SUð2ÞL electroweak gauge symmetry.
The labels A; B ¼ 1, 2, 3 denote the quark generations.

Terms that are off diagonal in the ðA;BÞ basis correspond to
mixing between the generations due to Lorentz violation. It
is familiar from the standard model that there is generally
not a single natural basis for the quark fields. The standard
model is formulated so that the mass terms in the quark
Lagrangian are diagonal, so that there is no flavor mixing
during free quark propagation. However, the electroweak
interactions are not diagonalized in the quark mass basis,
leading to flavor-changing interactions. In general, the
Lorentz violation coefficients will also not be diagonal
in the mass basis. If all the heavier quarks are integrated out
of the theory via the renormalization group, leaving just the
u and d fields, then the mixing issue becomes moot.
However, if the s field is retained, then for each Lorentz
component of the ðcQÞμνAB and ðcDÞμνAB, there are coef-
ficients for unmixed d and s propagation, as well as a
mixing angle between them, analogous to the Cabbibo
angle. As a result, the full parameter space of Lorentz-
violating flavor physics may be extremely difficult to
probe, even with just three flavors.
The predominant effects of the dimension-4 Lorentz-

violating operators are expected to come from terms that
are symmetric in the indices ðμ; νÞ. In particular, the
antisymmetric parts cannot modify the dimension-4 kinetic
terms for baryons at leading order in the Lorentz violation,
and they cannot affect the dimension-4 kinetic operators for
mesons at all. The generic mSME Lagrange density for a
single species of fermion is

Lspin−1
2
¼ ψ̄ðiΓμ∂μ −MÞψ ; ð3Þ

Γμ ¼ γμ þ cνμγν þ dνμγ5γν; ð4Þ

M ¼ mþ im5γ5 þ aμγμ þ bμγ5γμ þ
1

2
Hμνσμν: ð5Þ

With the only potential form of Lorentz violation coming
from an antisymmetric tensor cμν ¼ −cνμ, it is clear that the
effect of cμν is, at leading order, just a change in the basis of
the Dirac matrices. A complementary transformation of the
fermion field removes the antisymmetric cμν from the
Lagrange density at leading order [13]. So the antisym-
metric term cannot have any observable consequences at
leading order. The same fact can be seen manifested in the
exact energy-moment relation for a fermion described by
Lspin−1

2
with just cjk ≠ 0,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ pjpj − 2cjkpjpk þ cjlcklpjpk

q
: ð6Þ

In fact, it has been demonstrated that there is an exact
supersymmetry transformation between Lspin−1

2
with just a
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cμν coefficient and the general Lagrange density for a
complex scalar field

Lspin−0¼ð∂μ− iaμϕÞϕ�ð∂μþ iaμϕÞϕþkμν∂μϕ
�∂νϕ−m2jϕj2;

ð7Þ

so long as aμϕ ¼ 0 and kμν ¼ cμν þ cνμ þ cμρcνρ [15]. [Note
that it is not even possible for the bosonic kμν to have an
antisymmetric part without additionally breaking the
charge conjugation (C) symmetry of the Lagrange density.]
In the two-flavor QCD limit, the Lagrange density

simplifies quite a bit. Each of the cμν parameters in (1)
is a dimensionless coupling constant, and they form
matrices which are Hermitian in the ðA;BÞ flavor space.
Restricting the Lagrange density of (1) to one with just u
and d fields, it reduces to

Ld¼4;CPT-even
light quarks ¼ iQ̄LCLμνγ

μDνQL þ iQ̄RCRμνγ
μDνQR;

ð8Þ
where the quark fields are now QL=R ¼ ½uL=R; dL=R�T, and
the Lorentz-violation coefficients can be collected in the
matrices

Cμν
L=R ¼

� cμνuL=R 0

0 cμνdL=R

�
: ð9Þ

Note that there is no mixing between the u and d quarks;
that is forbidden by the standard model’s unbroken electro-
magnetic gauge invariance. This formalism actually allows
for there to be different coefficients cμνuL and c

μν
dL
, whereas in

actuality, SUð2ÞL gauge invariance requires these to be
equal, cμνuL ¼ cμνdL ¼ cμνqL . However, this is somewhat modi-
fied when the s quarks are included, and we shall generally
consider the cμνuL and cμνdL separately.
Because the coefficients in (8) are given in the chiral basis,

theymultiply operators that are not simply even or odd under
parity (P) and C. Since most precision experiments will
measure effects that are unambiguously odd or evenunderP,
the resulting bounds are usually quoted on the linear
combination cμν ¼ 1

2
ðcμνL þ cμνR Þ and dμν ¼ 1

2
ðcμνL − cμνR Þ.

When dealing with hadrons and chiral symmetry, it is often
convenient to use different linear combinations of coeffi-
cients, broken up by their transformation properties under
isospin. The isosinglet is 1Cμν

L=R ¼ 1
2
TrðCμν

L=RÞ, and the

isotriplet is 3Cμν
L=R ¼ Cμν

L=R − 11Cμν
L=R, where 1 is the identity

in isospin space.
There are also dimension-3 quark operators. Note that in

the generic Lspin−1
2
, the dimension-3 terms from (5) exhaust

all the possible Dirac matrix structures; each dimension-3
Lorentz-violating operator is composed of a fermion
bilinear ψ̄Aψ, multiplied by a matching background tensor.
At dimension 4, some of the Dirac bilinear quantities

ψ̄B∂ψ were forbidden by electroweak gauge invariance.
However, at dimension 3, terms that mix left- and right-
chiral fields can arise as vacuum expectations; in the
standard model, this is precisely how the mass m appears.
Among the allowed dimension-3 fermion bilinears in (3),
there are two mass terms, parametrized by m and m5. We
shall operate under the assumption that the m5 has already
been transformed away, so there are only pure Dirac mass
terms mu and md in the two-flavor QCD Lagrange density.
The way these masses (which break chiral symmetry) are
encoded in the hadronic sector will provide us with a guide
for how to include additional Lorentz-violating terms that
may also softly break chiral invariance.
The softest breaking is by terms that are CPT odd,

Ld¼3;CPT-odd
light quarks ¼ −Q̄LALμγ

μQL − Q̄RARμγ
μQR; ð10Þ

where the Aμ
L=R have a flavor-space matrix structure

analogous to the Cμν
L=R:

Aμ
L=R ¼

� aμuL=R 0

0 aμdL=R

�
: ð11Þ

Bounds on mSME coupling constants are usually
expressed in terms of the vector aμ and axial vector bμ

linear combinations,

aμu=d ¼
1

2
ðaμuL=dL þ aμuR=dRÞ; bμu=d ¼

1

2
ðaμuL=dL − aμuR=dRÞ:

ð12Þ

These also have isosinglet and isotriplet linear combina-
tions analogous to 1Cμν

L=R and 3Cμν
L=R. In terms of these

combinations, (10) can be rewritten as

Ld¼3;CPT-odd
light quarks ¼ −Q̄L

�
3ALμ þ

1

2
ð1ARμ þ 1ALμÞ1

�
γμQL

− Q̄R

�
3ARμ þ

1

2
ð1ARμ þ 1ALμÞ1

�
γμQR

− Q̄
1

2
ð1ALμ − 1ARμÞγ5γμQ; ð13Þ

which shows that this term includes an isosinglet axial
vector current. This form of the Lagrange density is
particularly convenient when mapping to χPT.
Following the pattern of (5), there is one remaining

possibility for d ¼ 3 operators—those of theHμν type. Like
the mass terms m and m5, the Hμν Lorentz violation mixes
the left- and right-chiral fields directly, so the Hμν do not
need to have the kind of natural chiral decomposition that
the other SME terms possess. In fact, the antisymmetry of
Hμν terms essentially preclude them making contributions
to the LO χPT Lagrange density, and so we will have little
to say about these operators here.
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B. Gluon operators

There are also mSME operators in the purely gluonic
sector. As in the quark sector, the dimension-4 gluon
operators are even under CPT. In a strictly Minkowski
spacetime, there is also an CPT-odd operator with mass
dimension 3, but this runs into difficulties when the EFT is
embedded in a gravitometrodynamic theory such as general
relativity. This will ultimately mean that the CPT-even
terms are the only ones that will need to be considered.
Those CPT-even terms are collected in the form

Ld¼4;CPT-even
gluon ¼ −

1

2
kμνρσG TrðGμνGρσÞ; ð14Þ

with two powers of the gluon field strength tensor Gμνa.
This allows for essentially arbitrary bilinear products
composed of spatial components of the chromoelectric
and chromomagnetic fields, summed symmetrically over
the three colors. The four-index tensor kμνρσG has the
symmetries of the Riemann tensor and is double traceless.
(A nonzero double trace would just provide a rescaling of
the usual QCD gluon Lagrange density.) Like the Riemann
tensor, which can be broken into Ricci and Weyl parts, the
kμνρσG background can be split into two pieces with different
characteristic behaviors,

kμνρσG ¼ 1

2
ðημρk̃νσG −ημσ k̃νρG −ηνρk̃μσG þηνσ k̃μρG Þþ k̂μνρσG ; ð15Þ

where k̃μνG ¼ kGαμαν is symmetric, traceless in ðμ; νÞ, and
invariant under both C and PT. k̃μνG is the gauge analogue of
the cμνL=R terms for the chiral fermions. These terms
represent there being different “natural” coordinates, which
are oblique to the usual Cartesian coordinates, for the
affected species.
While k̃μνG is the “Ricci-like” part of the kμνρσG tensor, the

“Weyl-like” part is k̂μνρσG . The two parts of the tensor have
qualitatively different features, and, in general k̂μνρσG is
expected to be less important in χPT. There are two
separate reasons for this. The first reason is that, because
it has four free Lorentz indices, any terms in the hadronic
Lagrange density will need to involve either multiparticle
interactions or additional derivatives. In the mesonic sector,
this immediately corresponds to terms that are higher order
in the chiral power counting. In the baryon sector, com-
pletely symmetrized combinations of the covariant baryon
derivatives can be included without a power counting
penalty; however, the antisymmetry of the k̂μνρσG ensures
that these terms vanish.
The second reason is that the electromagnetic analog of

k̂μνρσG is extremely tightly constrained. The most important
qualitative difference between the Ricci-like and Weyl-like
tensors in the QED sector of the mSME is that the tenWeyl-
like terms generate photon birefringence, while the nine

Ricci-like components do not. The birefringent terms
can be bounded extremely well, by looking at photons
that have traveled cosmological distances—from radio
galaxies, γ-ray bursts, and the cosmic microwave back-
ground. Some specific linear combinations of these terms
in the photon sector are constrained at the 10−37 level, and
all the birefringent terms are bounded at the 10−32 level, at
least. This means that, in many contexts, it is reasonable to
neglect the birefringent electromagnetic terms entirely. The
bounds on the Weyl-like gluonic terms are not as strong as
those for their electromagnetic equivalents. However, there
will necessarily be mixing between the different gauge
sectors due to radiative corrections. A nonzero k̂μνρσG will
contribute to the renormalization of the birefringent photon
terms; the mixing will be suppressed by powers of the
standard model coupling constants, but even with this
modest suppression, the k̂μνρσG would need to be exceed-
ingly small to be consistent with the existing electromag-
netic bounds.
The CPT-odd operator of dimension 3 has the form

Ld¼3;CPT-odd
gluon ¼ kμ3ϵμνρσTr

�
GσGνρ þ 2

3
igsGσGνGρ

�
: ð16Þ

The electromagnetic analog of this term will always
generate birefringence, so it would also be justifiable to
neglect this term in any context in which k̂μνρσG could be
similarly neglected.
However, there is actually an even stronger reason to

drop this term. The Lagrange density in (16) is not gauge
invariant on its own. Instead, it changes by a total derivative
under a gauge transformation, provided the background
tensor kμ3 is a constant. This means that the integrated action
is gauge invariant, which is sufficient to ensure the
equations of motion are similarly gauge invariant. This
is entirely satisfactory in a pure EFT approach in flat
spacetime. However, the physical mSME, if it is to
represent the Lorentz and CPT violation that are possible
for real-world particles, must be embedded in a dynamical
theory of gravitation. Explicit breaking of Lorentz invari-
ance by constant vacuum tensors such as kμ3 is inconsistent
with a metric theory of gravitation [16]. Lorentz violation
in a Riemannian theory of gravity is only possible if the
background tensors are themselves dynamical, with kμ3
being determined by the vacuum expectation value of a
dynamical axial vector field; without this, the geometrical
Bianchi identities cannot be satisfied. Once there are
nontrivial dynamics associated with kμ3, L

d¼3;CPT-odd
gluon no

longer changes by a total derivative under a gauge trans-
formation, meaning that the term is not allowed, even in an
asymptotically flat spacetime [17]. We shall not, therefore,
consider this term any further, although if it were included
in the χPT Lagrangian, it would be coupled to hadrons in
the same way as a quark bμ term.
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III. ELEMENTS OF χPT

With the full quark and gluon Lagrange density set down,
we now find ourselves in a position to construct a new,
effective Lagrange density for the hadrons. Our analysis
of how the Lorentz-violating mSME operators are to be
embedded in χPT will begin with a treatment of the purely
mesonic Lagrangian. (Some qualitative results for pions can
even be extended to their octet partners with nonzero
strangeness, especially toKmesons.) There canbe a basically
self-contained description of the pions in χPT, without
needing to simultaneously introduce nucleons. In contrast,
a low-energy χPT treatment of baryons automatically
includes, in addition to a description of the free propagation
of the baryons, a set of meson-baryon interaction vertices.
Whichever baryon sector is under consideration, using

χPT means considering all possible terms that are permitted
by the symmetries of the underlying theory [5–7].
Normally, in Lorentz-invariant QCD, this suite of sym-
metries includes rotations, boosts, and the discrete trans-
formations of C, P, and time reversal (T). There is also an
accidental chiral symmetry to QCD. This symmetry is exact
when the quarks are massless, mu ¼ md ¼ 0, and even
when the masses are nonvanishing, the chiral transforma-
tions generate an approximate symmetry that has many
useful consequences at energy scales well below the
symmetry breaking scale of ∼4πF ≈ 1 GeV, where F ≈
92.4 MeV is the pion decay constant. The strongly inter-
acting QCD dynamics break the full chiral symmetry group
SUð2ÞL × SUð2ÞR down to its diagonal subgroup SUð2ÞV .1
The pions are the associated pseudo-Goldstone bosons; in
the mu ¼ md ¼ 0 limit, in which the original chiral
symmetry is exact, the pions are precisely massless.
The massless, two-flavor QCD Lagrange density

L0
QCD ¼ Q̄Li=DQL þ Q̄Ri=DQR −

1

2
TrðGμνGμνÞ ð17Þ

will be the starting point for χPT. (We are continuing to
follow our previous convention [9,10] of using the letter
variants L for Lorentz-invariant Lagrange densities and L
for Lorentz-violating ones.) In (17), QL=R ¼ ½uL=R; dL=R�T
are the doublets of left- and right-chiral quark fields; and
Dμq ¼ ð∂μ þ igGμÞq is the QCD covariant derivative, with
Gμ the gluon fields, g the strong coupling constant, andGμν

the gluon field strength tensor. If (17) is the entire Lagrange
density (that is, if the u and d masses, along with any other
sources of explicit chiral symmetry breaking, are vanish-
ing), then there are global symmetry transformations,

QL → LQL; QR → RQR; ð18Þ

where ðL; RÞ are a pair of matrices in SUð2ÞL × SUð2ÞR.
However, since this chiral symmetry is broken down to

SUð2ÞV , there are Goldstone modes. The Goldstone boson
fields carry the quantum numbers of the broken symmetry
generators. This means that pion fields can be encoded in
the SUð2Þ matrix [18]

UðxÞ ¼ exp

�
i
ϕðxÞ
F

�
: ð19Þ

Here, ϕ ¼ P
ϕaτa [so that the ϕ contains the three SUð2Þ

generators], and F is the pion decay constant in the SUð2Þ
chiral limit. Global chiral transformations act on UðxÞ as

UðxÞ → U0ðxÞ ¼ RUðxÞL†; ð20Þ

for ðL;RÞ ∈ SUð2ÞL × SUð2ÞR.
The effective action for the pure pion EFT (the lowest-

energy limit of QCD) can be constructed from the matrix
UðxÞ and its derivatives. The power counting scheme used
in χPT dictates that each additional derivative acting on a
pion field indicates an additional power of a small param-
eter; this applies to both spatial and temporal derivatives,
because the pion mass is small in the chiral limit. The
lowest-order chirally invariant term that can be constructed
out of UðxÞ contains the meson kinetic terms. The standard
LO pion Lagrange density thus has a term of the form

LLO
π ⊃

F2

4
Trð∂μU∂μU†Þ; ð21Þ

where the trace Tr is taken over flavor space.
However, in real-world QCD, the masses of the light

quarks cannot usually be so glibly neglected. Moreover, in
addition to gluon interactions, there are also interactions
between the quarks and the electroweak gauge fields. Both
of these facts can be included in the χPT in a unified way,
by treating the quark masses and the electroweak gauge
boson fields as external fields. These external fields are
included in the QCD Lagrange density in the form

L ¼ L0
QCD þLexternal; ð22Þ

in which the coupling to the external fields is described
by [6,7]

Lexternal ¼ Q̄Lγ
μ

�
lμþ

1

3
vðsÞμ 1

�
QLþ Q̄Rγ

μ

�
rμþ

1

3
vðsÞμ 1

�
QR

þ Q̄Lðs− ipÞQRþ Q̄Rðsþ ipÞQL: ð23Þ

The external fields lμ, rμ, s, and p can have nontrivial
structures in flavor space. As chiral fields, lμ and rμ may be
taken to be traceless [the trace part of the Lagrange density

1While it is common to refer to SUð2ÞL × SUð2ÞR as the chiral
symmetry group, the QCD Lagrange density for massless u and d
quarks has a Uð2ÞL ×Uð2ÞR symmetry. Because of the axial
anomaly, this reduces to a SUð2ÞL × SUð2ÞR × Uð1ÞV symmetry,
with the Uð1ÞV symmetry related to baryon number. This will be
relevant for the baryonic sector.
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being taken care of through the isosinglet term vðsÞμ ; no axial
vector singlet term is needed because the diagonal chiral
symmetry is broken at a higher energy scale by the chiral
anomaly] and thus represented in terms of the generators

lμ ¼ 1

2

X
τal

μ
a; rμ ¼ 1

2

X
τar

μ
a: ð24Þ

With appropriate choices, these can give the couplings
of the quarks to the electroweak gauge bosons. For
instance, setting just lμ3 ¼ rμ3 ¼ vðsÞμ ¼ − 1

2
eAμ to be non-

zero gives the vector couplings of the u and d quarks to
the electromagnetic four-vector potential Aμ. [The com-

binations including vðsÞμ as they appear in (23), which are

also frequently useful, can be denoted l̃μ ¼ lμ þ 1
3
vðsÞμ 1

and r̃μ ¼ rμ þ 1
3
vðsÞμ 1.]

The Dirac mass terms for the u and d fields can be
introduced similarly, through the scalar external field
s ¼ M ¼ diagðmu;mdÞ. [The pseudoscalar p could be
used for Majorana masses like m5 in (5).] All of the
external fields break the chiral symmetry, so the form that
this symmetry breaking takes must be mirrored between
the Lagrange densities at the QCD level and hadron level.
To match the symmetry breaking patterns it is necessary to
determine how the external fields would need to transform
if (22) were actually to remain chirally invariant. In fact, the
Lagrange density (22) is invariant under not just a global
chiral transformation, but a local ðVL; VR;UÞ ∈ SUð2ÞL×
SUð2ÞR ×Uð1ÞV ,

QL → exp

�
−
iΘðxÞ
3

�
VLðxÞQL;

QR → exp

�
−
iΘðxÞ
3

�
VRðxÞQR; ð25Þ

so long as the external fields transform as

lμ → VLlμV
†
L þ iVL∂μV

†
L;

rμ → VRrμV
†
R þ iVR∂μV

†
R;

vðsÞμ → vðsÞμ − ∂μΘ;

sþ ip → VRðsþ ipÞV†
L;

s − ip → VLðs − ipÞV†
R: ð26Þ

The ΘðxÞ is associated with the Uð1ÞV baryon number
symmetry, which is separate from the chiral SUð2ÞL×
SUð2ÞR. The invariance under local chiral transformations
ensures that the chiral Ward identities are satisfied [6,19].
With the quark mass terms transforming as s, (26) implies
the transformation behavior M → VRMV†

L.
At the hadronic level, the particle excitations may also

have nonminimal couplings to external fields. To get the

minimal couplings, we ensure invariance under local chiral
transformations by replacing the derivative ∂μU of UðxÞ by
a covariant derivative with a chiral connection,

DμU ¼ ∂μU þ iUlμ − irμU: ð27Þ

This transforms under local transformations according to
DμU → VRDμUV†

L. Then the possible nonminimal cou-
plings can be constructed from the “field strengths” formed
out of the chiral connection fields lμ and rμ,

fμνL ¼ ∂μlν − ∂νlμ − i½lμ; lν�; ð28Þ

fμνR ¼ ∂μrν − ∂νrμ − i½rμ; rν�: ð29Þ

These transform covariantly under the local
transformations,

fμνL → VLf
μν
L V†

L; fμνR → VRf
μν
R V†

R: ð30Þ

The mass enters in a similar fashion, via the external field

χ ¼ 2Bðsþ ipÞ; ð31Þ

transforming as χ → VRχV
†
L. The constant B is numerically

determined by the nontrivial dynamics of strong-field
QCD. However, it can be directly related to the chiral
condensate density, B ¼ − 1

2
hQ̄Qi. Thus the full LO pion

Lagrangian, including nonzero quark masses and the
couplings to external fields, is given by [7]

LLO
π ¼ F2

4
TrðDμUDμU†Þ þ F2

4
TrðχU† þ Uχ†Þ: ð32Þ

This provides a relationship,M2
π ¼−1

2
hQ̄QiðmuþmdÞ=F2,

between the pion mass and the underlying quark masses.
(Although the quark masses are real, χ† is still formally
distinguished from χ in this situation.)
For the various quantities that can be used to assemble

the mesonic Lagrange densities, the power counting
scheme is

U ¼ Oðq0Þ; DμU ¼ OðqÞ;
χ ¼ Oðq2Þ; fμνL=R ¼ Oðq2Þ; ð33Þ

where q is a small momentum expansion parameter.
For the baryonic sector, which resides at a slightly higher

natural momentum scale than the minimal meson theory,
there are additional quantities that can be invoked in the
construction of chirally invariant Lagrange densities. The
starting point is the nucleon doublet Ψ ¼ ½p; n�T , which
transforms as [18,20,21]

Ψ → KðVL; VR;UÞΨ; ð34Þ
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with the matrix KðVL; VR;UÞ determined in terms of the
transformation rules for the square root uðxÞ of UðxÞ. If
½uðxÞ�2 ¼ UðxÞ, then in order to have uðxÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRUV†

L

q
,

the matrix uðxÞ itself must transform according to

uðxÞ → VRuK† ¼ KuV†
L: ð35Þ

For the baryon field Ψ, the chiral covariant derivative is
more complicated than the one (27) for the pions. Probably
most notably, the covariant derivative that acts on the
fermions includes not just the external fields, but also the
meson fields themselves, which enter through combina-
tions of uðxÞ and u†ðxÞ,

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�; ð36Þ

so that

DμΨ ¼ ½∂μ þ Γμ − ivðsÞμ 1�Ψ: ð37Þ

This covariant derivative is constructed so that DμΨ
transforms in the same way as Ψ itself, DμΨ → KDμΨ.
In addition to a kinetic coupling term involving DμΨ, it

is well known that the nucleon also has an axial vector
coupling term. With this term included, the Lorentz-
invariant LO pion-nucleon Lagrangian has the form [22]

LLO
πN ¼ Ψ̄

�
i=D −mþ gA

2
γμγ5uμ

�
Ψ: ð38Þ

In this equation, m is the nucleon mass and gA the axial
coupling, both in the chiral limit. At LO, these may be
replaced by their physical values of mN ≈ 939 MeV and
gA ≈ 1.27, although there are further corrections to the
physical values at higher chiral orders. The chiral vielbein
uμ is defined as

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�; ð39Þ

which transforms according to uμ → KuμK†.
Because the nucleon mass mN does not vanish in the

chiral limit, a timelike derivative acting on the nucleon field
will not be suppressed, even at low energies. This affects
the chiral q-counting scheme. The additional building
blocks defined in the nucleon sector are counted as

Ψ ¼ Oðq0Þ; DμΨ ¼ Oðq0Þ; uμ ¼ OðqÞ: ð40Þ

However, because Ψ must obey a field equation, the
particular combination ði=D −mNÞΨ is counted as OðqÞ.
This means, for instance, that =DΨ may be exchanged
for −imNΨ if terms of higher chiral orders are being
neglected [23].

IV. LORENTZ-VIOLATING MESONIC
LAGRANGE DENSITY

A. CPT-even operators

The Lagrange density (32) can be generalized in a
straightforward way to include Lorentz violation coming
from the quark and gluon sectors. We shall begin with
generalizations to the kinetic Lagrange density (21). The
results with just the dimension-4 quark terms have already
been given [9]. The argument that led to these terms was
based on matching the transformation properties of the
QCD-level Lagrange density (8) onto the equivalent meson-
scale Lagrange density. Under a chiral transformation with
matrices ðL; RÞ, the doublets of u and d quark fields
transform as QR → RQR and QL → LQL. This takes (8)

Ld¼4;CPT-even
light quarks → iQ̄LL†CLμνLγμDνQL

þ iQ̄RR†CRμνRγμDνQR: ð41Þ

With constant matrices Cμν
L=R that do not transform under

SUð2ÞL × SUð2ÞR, the presence of the Lorentz-violating
term (8) would break the chiral symmetry. However, if the
Cμν
L=R were also to transform,

Cμν
L → LCμν

L L†; Cμν
R → RCμν

R R†; ð42Þ

the chiral symmetry would be restored. Since the trans-
formation properties (42) would keep the quark-level
Lagrange density chirally invariant, applying those same
transformation prescriptions must also maintain the chiral
symmetry at the hadron level. This rule allows us to identify
what kinds of operators the Cμν

L=R can be associated with in
the pion Lagrange density.
The transformation properties (42) are more usefully

expressed in terms of the isospin singlet and triplet
components of the Cμν

L=R. The isosinglet is useful because
it does not transform at all under chiral rotations, while the
isotriplet retains the transformation properties of the under-
lying Cμν

L=R.
Moreover, along with the Cμν

L=R, which modify the kinetic
terms in the quark Lagrange density, there is also the
gluon k̃μνG , which—since it appears in a term (14) involving
only the gauge fields—also does not transform at all under
the action of the chiral SUð2ÞL × SUð2ÞR. So the trans-
formation rules for the coefficients of the dimension-4
operators are

1CL → 1CL; 3CL → L3CLL†;
1CR → 1CR; 3CR → R3CRR†;

k̃μνG → k̃μνG : ð43Þ

These transformation rules—(42) or (43), along with the
discrete transformation properties of the SME terms—are
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sufficient for us to determine the qualitative forms of the
operators these coefficients are associated with in the LO
mesonic Lagrangian. The process begins with writing
down all the possible operator forms that are consistent
with the chiral symmetry. However, the Lorentz-violating
terms in the quark-level Lagrange density are also the
only potential sources of C, P, and T violations in the
theory. So at LO, any terms in the hadronic Lagrange
densities need to have the same discrete symmetries as
the terms in the underlying quark density that are
multiplied by the same SME coefficients. This means

that the coefficients for left- and right-handed quark
fields must always enter the pion Lagrange density
multiplied by the same low-energy couplings (LECs).
In this way, imposing the discrete symmetries drastically
reduces the number of independent terms in the
Lagrangian. Moreover, a number of the remaining terms
turn out to be linearly dependent (or at least linearly
dependent at LO). Using integration by parts, the addi-
tional redundant terms may also be eliminated from the
description of the theory.
The LO minimal mesonic Lagrange density is given by

Ld¼4;LO
π ¼ ½βð1Þð1CRμν þ 1CLμνÞ þ βð3Þk̃Gμν�

F2

4
Tr½ðDμUÞ†DνU� þ βð2Þ

F2

4
Tr½ðDμUÞ†3CRμνDνUþDμU3CLμνðDνUÞ†� ð44Þ

where the βðnÞ are dimensionless LECs. (The “d ¼ 4”
superscript denotes the mass dimension of the operators in
the underlying QCD Lagrange density that give rise to
this mesonic expression, rather than the dimension of the
Ld¼4;LO
π operators themselves.) The factor of F2=4 in (44) is

present to mirror the form of the standard pion Lagrange
density and is also chosen such that based on naive
dimensional analysis [24], the βðnÞ are expected to have
a natural size that is Oð1Þ. Actually, the βð2Þ term does not
contribute at all at leading order. It was shown in [9] that
with symmetric tensors 3Cμν

L=R, the βð2Þ reduces to a total
derivative. As we shall see below, this actually holds for
antisymmetric 3Cμν

L=R as well.
The short-distance QCD physics is entirely encapsulated

in the LECs. A complete determination of their values
would entail the use of nonperturbative QCD, and to our
knowledge, no numerical computation of these values has
thus far been undertaken. Relative to the formulation given
in [9,10], the portion of (44) that is symmetric in ðμ; νÞ
contains one additional term, since in addition to the four
quark tensors cμνuL , c

μν
dL
, cμνuR , and cμνdL , (44) also includes the

contribution from the gluon tensor k̃μνG [12]. However, it
turns out that, when all five of these tensors from the
mSME are included, there is actually a nontrivial relation
between the LECs, which will allow us to express βð3Þ in
terms of βð1Þ.
What the cμν and k̃μνG tensors represent is a form of Lorentz

violation in which the natural spacetime coordinates for
different standard model fields are actually different. Having
solely a nonzero cμνuL , for example, indicates that the left-
chiral u quarks propagate according to normal relativistic
rules in a coordinate system that is oblique to the usual
coordinates. If we change to the oblique coordinates, which
are given (at leading order) by x0μ ¼ xμ − 1

2
ðcuLÞμνxν, the

dynamics for the u quark field are standard, but all the other
fields will have Lorentz-violating behavior, dictated by
c0μν ¼ 1

2
k̃0μνG ¼ −cμνuL for the remaining species. The fact

that c-type Lorentz violation can be moved from one sector
to another by coordinate redefinitions like these means that
any physical measurement of a c-type coefficient really has
to be a measurement of a difference of the coefficients for
different particle types.
Expanding UðxÞ to second order in the pion fields, the

Lagrange density (44) gives the Lorentz-violating kinetic
terms for the pions. [ExpandingUðxÞ to higher orders in the
pion fields produces Lorentz-violating meson interaction
vertices.] The two-pion portion of the Lagrange density is

LLO;2ϕ
π ¼

�
βð1Þ

4
ðcμνuL þcμνdL þcμνuR þcμνdLÞþ

βð3Þ

2
k̃μνG

�
∂μϕa∂νϕa

ð45Þ

¼
�
βð1Þ

4
ðcμνuL þ cμνdL þ cμνuR þ cμνdLÞ þ

βð3Þ

2
k̃μνG

�

× ð∂μπ
þ∂νπ

− þ ∂μπ
−∂νπ

þ þ ∂μπ
0∂νπ

0Þ: ð46Þ

[π0 ¼ ϕ3, πþ ¼ 1ffiffi
2

p ðϕ1 − iϕ2Þ, and π− ¼ 1ffiffi
2

p ðϕ1 þ iϕ2Þ are
the physical pion fields.] This LLO;2ϕ

π has the form of the
Lorentz-violating k term from (7). There are three species
of pions, but in the chiral limit, there is a just single

kμνπ ¼ βð1Þ

2
ðcμνuL þ cμνuR þ cμνdL þ cμνdRÞ þ βð3Þk̃μνG ð47Þ

tensor common to all three of the physical pion fields. Note
that since the pion wave functions are all equal mixtures of
left- and right-chiral, u and d quarks, the quark portion of
kμνπ receives equal contributions from each of the four
quark types.
The nontrivial relation between βð1Þ and βð3Þ arises from

the fact that, by making a change of coordinates in the usual
two-flavor QCD Lagrange density xμ → x0μ ¼ xμ þ κμνxν

(for some arbitrary symmetric tensor κμν), we can turn the
conventional QCD expression into a Lorentz-violating
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Lagrange density with cμνuL ¼ cμνdL ¼ cμνuR ¼ cμνdL ¼ 1
2
k̃μνG ¼ κμν.

Since the theory this describes is really just the standard,
Lorentz-invariant one, merely viewed in unconventional
coordinates, the pion sector must also be the usual one,
expressed in the same oblique coordinates. This means that
1
2
kμνπ ¼ κμν also.
Taken together with (46), this relation indicates that

βð3Þ ¼ 1 − βð1Þ. The same kind of relation for the c-type
Lorentz-violation coefficients for composite particles was
found in [25], with the coefficient for a composite being a
sum of the constituents’ coefficients, each one weighted by
the fraction of the total momentum carried by a particular
constituent. In this case, βð1Þ represents the fraction of the
pion momentum carried by all the constituent quarks, with
the remainder carried by the gluons. The values of these
weights still cannot be determined without recourse to
nonperturbative QCD, but (47) does simplify to

kμνπ ¼ βð1Þ

2
ðcμνuL þ cμνuR þ cμνdL þ cμνdRÞ þ ½1 − βð1Þ�k̃μνG : ð48Þ

This specific results also supports the general presumption
that each of the LECs should be Oð1Þ.
The kμνπ coefficients are the easiest ones to observe

directly for pions. They affect the energy-momentum
relations for ultrarelativistic pions, which in turn can lead
to new thresholds (including upper energy thresholds) for
reactions involving extremely energetic mesons. There are
also pion vertices, which are in some cases straightforward
Lorentz-violating generalizations of the usual pion vertex
operators, involving even numbers of fields. The form
of (46) involves the insertion of a Lorentz-violating
symmetric tensor between the ðμ; νÞ indices of the deriv-
atives ∂μϕa∂νϕa. At higher orders in the fields ϕa, there are
homologous expressions, such as

LLO;4ϕ
π ¼ kμνπ

6F2
ðϕaϕb∂μϕa∂νϕb − ϕbϕb∂μϕa∂νϕaÞ ð49Þ

at fourth order. Note that all these higher-order terms
depend on the same linear combination of quark and gluon
SME coefficients.
Naively it looks like there might be other terms,

associated with the antisymmetric parts of 1Cμν
L=R and

3Cμν
L=R or with the Hμν, which would be qualitatively

different in structure. (Note that, by virtue of its structure,
k̃μνG cannot have an antisymmetric part, so that the anti-
symmetric terms can only involve quark parameters.) For
example, if the Cμν

L=R are all antisymmetric, then direct
expansion of the Lagrange density gives

LLO
π ⊃

βð2Þ

4
ðcμνuL þcμνuR þcμνdL þcμνdRÞð∂μϕ1∂νϕ2−∂νϕ1∂μϕ2Þ:

ð50Þ

However, (50) is actually a total derivative (both with
respect to ∂μ and ∂ν), which makes no contribution to the
physics.
We might also anticipate a three-ϕ term involving

∂μϕ3∂νϕaϕa−∂νϕ3∂μϕaϕa, or equivalently,∂μπ
0ðπ−∂νπ

þþ
πþ∂νπ

−Þ−∂νπ
0ðπ−∂μπ

þþπþ∂μπ
−Þ. However, not only

would this term be another total derivative, but the
three-pion form gives an operator that is manifestly odd
under C, which does not match the symmetry of the SME
coefficients multiplying the term; this C-odd behavior is a
general feature of antisymmetric tensor SME coefficients in
scalar field theories [26]. In fact, there appears to be no term
that can be written down in the pion sector at LO that
involves an antisymmetric tensor structure. This observa-
tion was already prefigured by the fact that there was no
antisymmetric tensor among the external fields (26) that
could be coupled to the hadrons at leading order. This also
justifies the absence of any LO terms involving k̂G, which is
separately antisymmetric in two sets of Lorentz indices.

B. CPT-odd operators

For the d ¼ 3, CPT-odd operators coming from the
quark sector, finding their couplings to pions is actually
quite straightforward. These terms can simply be inserted
as external fields of the left- and right-chiral vector forms,
through −l̃μ and −r̃μ. The correct signs and magnitudes for
these terms can be read off directly from the SME coupling
(10) [or equivalently (13)] to the quarks. The pion term is
then

Ld¼3;LO
π ¼ F2

4
Tr½ð∂μU þ iUAμ

L − iAμ
RUÞ

× ð∂μU þ iUAμ
L − iAμ

RUÞ†�− F2

4
Trð∂μU∂μU†Þ:

ð51Þ

The scalar part with vðsÞμ cancels between the left- and right-
chiral terms, which ensures that the expression has the
correct behavior under C and P transformations. Moreover,
(51) is structured to contain only Lorentz-violating terms,
since the usual LO meson kinetic term has been explicitly
subtracted away. In Lorentz-invariant χPT, the singlet
axial-vector current is not considered, and even in the
SME, it is not possible to construct an axial vector current
operator entirely out of pseudoscalar meson fields.
Simplifying (51), and noting that Aμ

LþAμ
R¼ðaμuþaμdÞ1þ

ðaμu−aμdÞτ3, the CPT-odd expression reduces to

Ld¼3;LO
π ⊃

i
4
Tr½ðAμ

LþAμ
RÞðϕa∂μϕb−∂μϕaϕbÞτaτb� ð52Þ

¼−
i
2
ðaμuL þaμuR −aμdL −aμdRÞðπþ∂μπ

− −π−∂μπ
þÞ; ð53Þ
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up to a total derivative. The form of (53) is essentially
what is expected for a charged spin-0 field. Note that this
kind of term cannot exist for a single real scalar field, so the
CPT-odd term does not affect the π0 part of the Lagrange
density. As far back as [27], it was argued that the net aμϕ
term for a meson should be a difference of the a-type
coefficients for the constituent quark fields, times a
dimensionless factor not too different from unity. This
calculation grounds that conclusion firmly in χPT. In fact,
since the a-type terms are odd under C, but independent of
spin and momentum, it makes sense that the expectation
value of the contribution from virtual quark-antiquark pairs
to the net meson aμϕ should vanish.
Like the c-type coefficients, the aμ coefficients for

fermions can only be observed as differences between
different species, not in isolation. Moreover, the difference
must be between the coefficients for species that can
interconvert. For example, in a theory with multiple species
of massless, noninteracting fermions, none of the aμL=R can
be observed by propagation effects. The free propagation of
a particle with SME coefficient aμ and momentum pμ is
indistinguishable from the motion of a particle with a0μ ¼ 0

and momentum p0μ ¼ pμ − aμ, and without the ability to
create or annihilate particles, it is impossible to make an
absolute measurement of the momentum carried by an
excitation. Introducing a Dirac mass term generates a
coupling between the left- and right-chiral fermion modes,
which makes differences of aμL and aμR physically observ-
able; these are precisely the fermion bμ terms, which affect
the energy-momentum relations of massive particles in a
directly observable fashion.
The reason that only differences between aμ values are

observable is tied to the observation that aμ effectively
represents a translation of the momentum space for a single
species. That translation can be undone by applying a field
redefinition [13] that changes the phase of the fermion field

by e−ia·x. For uncoupled species, the phases of their fields
may be varied independently. However, if two types of
fermions are coupled by an interaction term of the form
ψ̄aCψb, then the phases of ψa and ψb cannot be set
separately; trying to define away both a aμa and aμb will
leave behind a residual term in the Lagrange density,
proportional to aμa − aμb.
The combination aμπþ ¼aμu−aμd¼1

2
ðaμuLþaμuR−a

μ
dL
−aμdRÞ

that appears in (53) is thus not actually yet an observable,
since it is a difference of a-type parameters for two
species (u and d quarks) which do not have the same
charge and thus cannot interconvert. In fact, to form a
physical observable, we must construct a difference of
two a-type parameters for like-charged meson species.
(There are possible exceptions to this rule if the a-type
coefficients are to be measured in a gravitational experi-
ment; however, even there, nonminimal gravitational
couplings are required, placing this scenario outside the
mSME framework.) We shall return to this topic in Sec. VI,
when we discuss experimental bounds on CPT violation
for mesons.

V. LORENTZ-VIOLATING BARYONIC
LAGRANGE DENSITY

A. CPT-even operators

The analysis of the contributions from dimension-
4 mSME operators in the nucleon sector proceeds along
similar lines to the treatment in the pion sector. Again, there
is a straightforward generalization of earlier results [9,10]
to include the additional contributions from a gluon k̃μνG
term. Because of the presence of chirally covariant deriv-
atives, the form of the free baryon Lagrange density also
determines the LO meson-baryon couplings.
The LO baryonic Lagrange density for the nucleon

doublet field Ψ is

Ld¼4;LO
πN ¼ αð1ÞΨ̄½ðu†3Cμν

R uþ u3Cμν
L u†ÞðγνiDμ þ γμiDνÞ�Ψþ αð2Þð1Cμν

R þ 1Cμν
L ÞΨ̄ðγνiDμ þ γμiDνÞ�Ψ

þ αð3ÞΨ̄½ðu†3Cμν
R u − u3Cμν

L u†Þðγνγ5iDμ þ γμγ
5iDνÞ�Ψþ αð4Þð1Cμν

R − 1Cμν
L ÞΨ̄ðγνγ5iDμ þ γμγ

5iDνÞΨ
þ αð5Þk̃μνG Ψ̄ðγνiDμ þ γμiDνÞΨ; ð54Þ

where the αðnÞ’s are the dimensionless LECs for
this sector of the theory. By naive dimensional
analysis, these are again anticipated to be Oð1Þ. The
structural properties of these various terms are discussed
in detail in [9].
As there was for the pions, there is a nontrivial constraint

coming from the fact that, when all the quark cμνuL ¼ cμνdL ¼
cμνuR ¼ cμνdL and gluon 1

2
k̃μνG are equal to κμν, the theory is

really just conventional QCD written in skewed coordi-
nates. From the expression for the proton coefficient

cμνp ¼ αð1ÞðcμνuL þ cμνuR − cμνdL − cμνdRÞ
þ αð2ÞðcμνuL þ cμνuR þ cμνdL þ cμνdRÞ þ 2αð5Þk̃μνG ; ð55Þ

it again follows, from cμνp ¼ κμν, that αð5Þ ¼ 1
4
− αð2Þ.

[Precisely the same result could be obtained from the
neutron coefficient cμνn , because the αð1Þ term, which
changes sign between protons and neutrons, vanishes when
all the quark coefficients are equal.] So in spite of the
inclusion of the additional gluonic SME coefficients
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relative to [9], the number of independent LECs corre-
sponding to the d ¼ 4 QCD operators has not increased.

B. CPT-odd operators

The LO contributions from theCPT-violating vector and
axial vector operators enter through their couplings to the
chiral connection (36). Here, in order to get the correct C
and P transformation properties, we must set the chiral
sources lμ ¼ −3ALμ and rμ ¼ −3ARμ. In addition, from
comparing (13) and (23), we see that

vðsÞμ ¼−
3

2
ð1Aμ

Lþ 1Aμ
RÞ¼−

3

4
ðaμuL þaμuR þaμdL þaμdRÞ: ð56Þ

Inserting these into the chiral covariant derivative gives

ðDμ − ∂μÞΨ ¼ 1

2

�
u†ð∂μ þ i3ARμÞuþ uð∂μ þ i3ALμÞu†

þ i
3

2
½1ALμ þ 1ARμ�1

�
Ψ: ð57Þ

There is also the axial coupling term, which likewise
depends on lμ and rμ,

gA
2
γμγ5uμ ¼ i

gA
2
γμγ5½u†ð∂μþ i3ARμÞu−uð∂μþ i3ALμÞu†�:

ð58Þ

In addition, we need to include the singlet axial vector
contribution from the quark-level Lagrange density.
While chiral symmetry does not constrain this piece of
the interaction and thus provides no relationships between
various terms with different numbers of pion fields, only
the contribution without pions will be relevant for the
following discussion. The corresponding baryonic operator
takes the form

Ld¼3
N ⊃ −αð6ÞΨ̄γ5γμð1ALμ − 1ARμÞ1Ψ; ð59Þ

where αð6Þ is a new LEC. (If we had considered hadronic
terms arising from the CPT-odd gluon operator with
coefficient kμ3, they would also have entered here, through
yet another Ψ̄γ5γμΨ operator with another new LEC.)
So, with the neglect of the pion coupling terms [setting

uðxÞ ¼ 1] the CPT-violating part of the purely baryonic
action reads

Ld¼3
N ¼ Ψ̄

�
γμ

1

2
½−ð3Aμ

L þ 3Aμ
RÞ − 3ð1Aμ

L þ 1Aμ
RÞ1�

−
gA
2
γ5γμð3Aμ

L − 3Aμ
RÞ − αð6Þγ5γμð1Aμ

L − 1Aμ
RÞ1

�
Ψ:

ð60Þ

From this, coefficients such as the proton aμ and bμ can be
read off,

aμp ¼ ðaμuL þ aμuRÞ þ
1

2
ðaμdL þ aμdRÞ ¼ 2aμu þ aμd; ð61Þ

bμp ¼ gA
4
ðaμuL − aμuRÞ þ

αð6Þ

2
ðaμuL − aμuR þ aμdL − aμdRÞ

¼ gA
2
bμu þ αð6Þðbμu þ bμdÞ: ð62Þ

Since bμp is directly observable, it is a sum of direct
differences between the a-type coefficients for pairs
of equally charged chiral species. Moreover, while aμp is
not an independent physical observable, it has a very
natural form—the sum of the (spin-averaged) a-type
coefficients for the proton’s three valance quarks. It is
actually quite remarkable that, at LO, there is only a
single undetermined LEC (which only affects the baryons’
b-type coefficients, not any of the a-type coefficients)
that appears in the dimension-3 Lagrange densities for both
the pions and the nucleons.

VI. EXPERIMENTAL CONSTRAINTS

We shall now turn to an exploration of how the various
LECs for mesons and baryons can be constrained using
existing and future experimental data. In purely phenom-
enalistic analyses, it has been commonplace to assign a
separate set of SME coefficients to each observable hadron
species. However, this will end up significantly overcount-
ing the number of independent parameters, because the true
number of mSME coefficients for strongly interacting
particles is determined by the structure of the quark and
gluon sectors. The coefficients for different types of
hadrons are not independent, and this makes it possible
to carry bounds over from one part of the strongly
interacting sector to another. There will be modest uncer-
tainties, due to the presence of unknown LECs; however, it
will be possible to set constraints on the SME parameters
for baryons using measurements made on mesons, and vice
versa. This is one of the things that makes χPT such a
powerful technique.
We have previously discussed [9] how bounds on

pion Lorentz violation could be improved by making
reference to atomic clock experiments that measured
Lorentz violation for nucleons, and [12] took a similar
approach to constraining the gluon coefficients k̃μνG . χPT
methods can also be used to help isolate Lorentz-violating
observables in the weak sector [10]. All these approaches
have dealt with the dimension-4, CPT-even coefficients.
Since this paper has, for the first time, given a χPT
description of dimension-3, CPT-odd operators for quarks,
gluons, and hadrons, we shall primarily concentrate our
attention on how new bounds may be placed on these
dimension-3 operators.
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However, we should first point out that the specific
bounds derived in [9] were set under the simplifying
assumption that there was no dimension-4 Lorentz viola-
tion in the gluon Lagrange density. In that case, particular
sums of proton and neutron observables ended up probing
the exact same linear combinations cμνuL þ cμνuR þ cμνdL þ cμνdR
as a separate set of pion observables (in the chiral limit).
Meanwhile, [12] adopted a complementary approach,
effectively assuming that there was Lorentz violation in
the gluon sector, and none for the quarks. If, as discussed
here, all the phenomenalistically viable dimension-4 QCD
operators are included, the actual effective coefficients
for mesons and baryons are linear combinations of ele-
ments from the quark and gluon Lagrange densities, and the
relative weights for the two kinds of coefficients are not
known. As a result, bounds such as those derived in [9,12]
should be considered order of magnitude estimates for
the sizes of the underlying quark and gluon SME coef-
ficients; the bounds (at the 10−19 − 10−27 levels) represent
the largest those coefficients could be without there
being unnatural fine tuning in the form of a nearly exact
cancelation between the quark and gluon parameters.
We now turn to the experimental status of the dimension-

3 hadronic terms. In many cases, the b-type coefficients for
nucleons are extremely well bounded. The reason is that the
bμ coefficients alter the energies of spin states, meaning that
these coefficients can be measured in extremely sensitive
spin flip and spin precession experiments. Except for the
proton time component bTp, all the components of bμp and b

μ
n

have been bounded at the 10−25 GeV level or better [4].
Bounds on forms of Lorentz violation are by convention
expressed in a system of Sun-centered celestial equatorial
coordinates ðT; X; Y; ZÞ, with the Z-axis coinciding with
the Earth’s rotation axis. The X- and Y-components of a
vector such as bμp are relatively easy to constrain, because
they affect observables that oscillate as the Earth rotates;
bounds on a Z-component are trickier, since while such a
component does give rise to anisotropic phenomena, they
are not of a type that can be observed just by looking for
sidereal variations in some observable; and measuring a
time component is the hardest, as it requires a direct test of
either boost invariance or a discrete symmetry. This
explains why bTp has, thus far, only been bounded at the
3 × 10−8 level [28].
However, before we delve into questions about the

b-type coefficients for quarks, we shall consider a much
less well studied area of the SME—the a-type coefficients
for baryons. As pointed out in Sec. IV B, the aμ are only
observable as differences between the coefficients for like-
charged particles that can be interconverted. This immedi-
ately means that to set any experimental bounds, it is
necessary to go beyond two-flavor QCD; aμp − aμn is not a
QCD observable, even in principle. We shall therefore
extend our analysis to three-flavor QCD, with a s quark and
assuming that there is a fairly robust SUð3Þf symmetry.

With this assumption, the a-type coefficients for kaons as
well as pions can be inferred from our formulas [as the
kaons are also pseudo-Goldstone bosons for the sponta-
neously broken SUð3ÞL × SUð3ÞR, together with the pions
and the η8, they form a flavor octet; we briefly discuss the
extension of our χPT methods to the SUð3Þf sector in the
Appendix]. Specifically, the kaon coefficient is aμ

K0 ¼ aμd −
aμs with no s-dmixing. Since the K0 can oscillate into a K̄0,
it is possible to measure the difference of aK0 and
aK̄0 ¼ −aK0 . A number of strong bounds on the difference
in quark coefficients, as measured in kaon oscillations
experiments, have been reported in the literature. The
orders of magnitude of the best current constraints are
listed in Table I.
What is remarkable is that, in the SUð3Þf limit, the

difference aμd − aμs is the basis of another observable: the
difference between the a-type coefficients for octet baryons
that differ in their valance quark content by the replacement
of a d quark with a s quark. This means a difference such as
aμp − aμΣþ , or the even more exotic aμΣ− − aμΞ− . The key
relations follow from (61) and its analogs for other species;
these yield, for example,

aμp − aμΣþ ¼ 1

2
ðaμdL þ aμdR − aμsL − aμsRÞ: ð63Þ

Conservative bounds [leaving at least an order of magni-
tude buffer to account for possible deviations from SUð3Þf
symmetry] on such quantities are listed in Table II.
One thing that is notable about these bounds is

that no method for constraining these baryon coefficient

TABLE I. Strengths of the existing constraints on the CPT-
violating differences between the a-type coefficients for d and s
quarks. The values are taken from [4], based on experimental
kaon results reported in [29,30].

Coefficent Bound

ΔaX ¼ 1
2
ðaXdL þ aXdR − aXsL − aXsRÞ 10−21 GeV

ΔaY 10−21 GeV
ΔaZ 10−17 GeV
ΔaT 10−16 GeV

TABLE II. Order of magnitude bounds for differences between
the a-type coefficients for SUð3Þf octet baryons B and B0 that
differ in quark content by one d ↔ s replacement.

Coefficent Bound

aXB − aXB0 10−20 GeV

aYB − aYB0 10−20 GeV

aZB − aZB0 10−16 GeV

aTB − aTB0 10−15 GeV
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differences has ever been proposed before. They would, in
fact, be exceedingly difficult to measure directly. (This is
different from the situation with aμp − aμn which is not
directly observable, even in principle—at least not without
nonminimal couplings to gravity.) Although baryons such
as the proton and the Σþ can, in theory, interconvert (there
being no conserved quantity that differentiates them), the
fact that there are (in the standard model) no flavor-
changing neutral currents means that there can be no direct
transitions between these species. What makes the K0-K̄0

system special is that the oscillation process is mediated by
a box diagram that exchanges both a Wþ and W−, so that
the net charges of the initial and final particles are the same.
There is no similar process for the baryons, so methods
utilizing comparisons between different hadron types
represent essentially the only practicable way to constrain
these differences.
The relations derived here from χPT can be used not just

to place bounds on new combinations of hadron SME
parameters, but also on the underlying quark coefficients.
This can be illustrated by considering differences of
nucleon b-type coefficients. According to (62)—as well
as the homologous formula for neutrons—

bμp − bμn ¼ gA
2
ðbμu − bμdÞ; ð64Þ

which contains no unknown LECs at LO in χPT.
There are bounds (coming from precision magnetometer

experiments) on linear combinations of mSME coefficients
that include all the proton and neutron spatial components
bJp and bJn (J ¼ X, Y, Z), at 10−28 − 10−33 GeV levels.
With direct bounds on the proton and neutron b-type terms,
we could construct similarly precise bounds on the funda-
mental quark parameters in (64). Unfortunately however,
the extant bounds are actually on somewhat complicated
linear combinations of proton and neutron coefficients,
including both dimension-3 and dimension-4 terms. These
mixtures of coefficients for operators of different mass
dimensions are unavoidable in purely nonrelativistic
experiments, although it is possible to disentangle the
effects of, for instance, bJ and dJT at higher energies. In
fact, this disentanglement can actually be accomplished by
using relativistic corrections related to nuclear binding and
the internal motions of constituent nucleons [31], although
separating the operators of different dimensions does come
with a significant cost in precision. The disentangled
bounds will be worse than the raw experimental ones by
a sizable factor of ∼mN=Δe, where Δe is the difference in
the binding energies of the nucleons that are being probed
in different nuclei.
However, to distinguish proton and neutron contribu-

tions, as well as to separate dimension-3 and dimension-4
operators, would require measurements of b-type Lorentz
violation for at least four different nuclear systems. At
present, the best bounds on b-type coefficients are

dominated by measurements made on just two nuclei:
3He and 129Xe [32,33], which are very convenient to use in
atomic magnetometers, because they are spin-1

2
noble

gasses. There is only one other nucleus, 199Hg, for which
comparably precise measurements have been made [34],
which means there are not enough independent measure-
ments to extract complete and robust bounds on the quark
sector coefficients. However, naturalness does still suggest
that the bμu and b

μ
d should probably not be much larger than

the best inferred bounds on bμp and bμn.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have given the first explorations of
simultaneous quark and gluon SME operators of dimension
4 in χPT, finding nontrivial relationships between the LECs
that characterize their effects at the hadron level. We have
also presented the first χPT analysis of dimension-3 SME
operators. The results for the dimension-3 CPT-violating
terms have allowed us to place new bounds on certain
combinations of octet hadron a-type coefficients, based on
comparisons to the octet meson sector. This provides a
novel avenue for constraining certain mSME parameters
that are, in principle, observable, but which would be
extremely difficult to investigate directly.
In the course of our analyses, we have also made some

additional observations about the character of Lorentz-
violating operators in χPT. There is a notable difference
between the structure that χPT dictates for the CPT-even
SME operators (of dimension 4 and higher) and the CPT-
odd ones (which begin at dimension 3). The dimension-4
terms behave as modifications of the kinetic terms for the
hadrons, and their sizes depend on the amount of momen-
tum carried by the individual quarks and gluons. There are
nontrivial relations between the coefficients for the PT-
even quark-derived and gluon-derived terms. The relations
are tied to the physical fact that all the momentum of a
given hadron must ultimately be carried by its constituent
partons (although those parton components generally
include sea quarks as well as valance quarks and gluons).
However, there are still a number of undetermined coef-
ficients in the effective Lagrange densities for the hadrons.
These parametrize, for instance, the relative contributions
from the isosinglet and isotriplet Lorentz violation tensors,
and they are ultimately determined by the interior wave
functions of the nucleons. Determination of the αðnÞ and
βðnÞ LECs, using nonperturbative methods such as lattice
QCD, would be a welcome development.
The situation is quite different for the dimension-3

operators, whose coefficients are, in the chiral limit,
completely determined by the transformation behavior of
the quarks. The Lorentz violation enters through external
fields that couple to the quarks, which means that the lμ, rμ,

and vðsÞμ terms contribute unambiguously to the pion and
baryon effective actions. This also makes sense, since, for
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example, the net a-type coefficient for a baryon will just be
the sum of expectation values of the a-type coefficients of
its constituent quark fields. The contributions from the
three valance quarks in an SUð3Þf octet baryon simply add
up, while the contribution from the virtual sea of quark-
antiquark pairs cancels out.
There is, however, a subtlety to the SUð3Þf analysis. For

bounds that are based on kinematical considerations—such
as direction- and boost-dependent differences between the
effective masses of K0 and K̄0 mesons—it is correct to
phrase those bounds in terms of the mSME coefficients
(such asaμd anda

μ
s ) forwell-defined quark species. However,

if the experimental results are to be interpreted in terms of
“direct” CPT violation—involving CPT-violating decays
with strangeness change ΔS ¼ �1, rather than asymmetric
K0-K̄0 oscillations involving ΔS ¼ �2—it would also be
necessary to include in the analysis terms such as aμds, which
parametrizes an operator

Ld¼3;CPT-odd
s−dmixing ¼ −

i
2
s̄aμdsγμdþ H:c:; ð65Þ

where “H.c.” indicates the Hermitian conjugate. A term
like (65), which is off diagonal in flavor space, would
contribute directly to the kaon decay process, in an intrinsi-
cally Lorentz- and CPT-violating fashion. Whereas the
Cabibbo angle describes the mixing between the s and d
species in the matrix of the standard model’s fermion-Higgs
Yukawa couplings, the aμds play analogous roles in the
Lorentz-violating sector. Further exploration of how neutral
meson experiments could be used to place constraints on aμds
(as well as the other analogous mixing parameters that
appear when more than three flavors are taken into account)
would be quite interesting.
In fact, it would also be useful to have systematic

methods for determining the effective SME coefficients
for heavier hadron species. Using techniques for the study
of hadrons containing heavy quarks (c or b flavors), it
should be possible to generalize the χPT results to answer
questions about heavier mesons and the related spin-1

2

baryons. The differences between the a-type coefficients
for the constituents ofD0 and B0 mesons have already been
measured, at roughly 10−15 GeV levels of precision. These
limits can presumably be translated into bounds on the
differences of a-type coefficients for baryons with the same
heavy valance quarks.
It may also be possible to extend our analysis to mesons

with spin. There has been some recent work on higher-
dimensional forms of Lorentz violation for spin-1 bosons
[35]. Lorentz violation for a massive spin-1 particle is
similar to that for a photon, although without the restriction
of gauge invariance there are additional allowed operators.
The general features of a Lorentz-violating mass term have
been explored and appear to be qualitatively understood
[36–38]. If the mass-squared matrix Mμ

ν for the vector

boson field has an eigenvalue m2
0 corresponding to a

timelike direction and a larger eigenvalue m2
1 correspond-

ing to a spacelike eigenvector, then there may be propa-
gation with signal and group velocities as large as m1

m0
> 1

for the approximately longitudinal mode. However, in
spite of these interesting results, there has been no
systematic survey of all possible Lorentz-violating oper-
ators of dimensions 3 and 4.
Existing work on Lorentz-invariant applications of χPT

to spin-1 octet mesons, such as in [39–44], has often
focused on the forms taken by interaction vertices involving
vector particles like the ρ0, rather than on the behavior of
the vector propagator. This focus is partially motivated by
the vector meson dominance (VMD) phenomenon, in
which the interactions of hadrons with deeply virtual
photons can be dominated by diagrams in which the
photon makes a virtual transition into a neutral vector
meson such as the ρ0 before interacting with real hadrons.
Because of the existence of VMD, understanding the role
of the vector meson sector of the SME may actually be
quite important for the interpretation of some high-energy
collider tests of Lorentz and CPT symmetries.
Moreover, there are other heavy particles for which a

different suite of techniques might be needed. The χPT
methodology has been useful for determining the effective
Lorentz violation coefficients for nucleons and pions. In
terms of flavor SUð3Þf, these are the lightest representa-
tives of the meson and baryon octets. A natural additional
question is how to determine the coefficients for decuplet
baryons as well. In fact, the mSME structure for a spin-3

2

field operator has not yet been worked out, so even the
general forms of the possible operators (much less their
relationships to the underlying quark and gluon operator
structures) are unknown. The chief complication with a
spin-3

2
field is that the Rarita-Schwinger equation [45]

describes the behavior of a field with both a Dirac index
and a Lorentz index—and thus 16 apparent components.
However, an actual spin-3

2
quantum has only eight possible

states (four helicity projections, along with a binary choice
for particle versus antiparticle identity). Therefore only a
certain subspace of solutions of the Rarita-Schwinger
equation actually represents the propagation of spin-3

2

particles. This significantly complicates the construction
of any EFT theory for such particles; many of the operators
that might be constructed in generalizations of the Rarita-
Schwinger Lagrange density will turn out to be spurious
(because they only affect the behavior of the unphysical
part of the solution space) or pathological (because they
induce transitions between the physical subspace and the
unphysical one, thus destroying unitarity). This is a serious
problem even for Lorentz-invariant Rarita-Schwinger the-
ories with nonminimal couplings [46,47], and it is likely
to be an even greater challenge when the most general
Lorentz-violating couplings are included. The inclusion of
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the Δ resonance in χPT in the Lorentz-invariant sector has
been treated extensively in the literature, addressing issues
of power counting as well as the treatment of the unphysical
degrees of freedom, in such works as [48–54]. Extensions
of these methods to the Lorentz-violating sector might be
feasible.
In any event, understanding Lorentz violation for spin-3

2
composite particles such as Δþ baryons would be very
interesting, because of the importance of such particles
to the Greisen-Zatsepin-Kuzmin (GZK) cutoff [55,56].
Primary cosmic ray protons of sufficient energy interact
with cosmic microwave background photons according to

pþ þ γ → Δþ →

�
pþ þ π0

n0 þ π−
; ð66Þ

and the threshold energy depends sensitively on the
relevant c-type coefficient for the Δþ. The process must
be allowed for at least one Δþ helicity state that is
accessible from each proton helicity state, in order for
all the protons above the ∼5 × 1010 GeV GZK threshold to
have their energies drained away over intergalactic dis-
tances, as is observed experimentally.
However, it is not even known how many different

parameters actually govern the ultrarelativistic dispersion
relations for the Δþ modes under the mSME. The propa-
gation of a field with spin-3

2
excitations may be controlled

by up to four c-type symmetric tensors, one for each
helicity state. Alternatively, it may be that there are only
two independent tensors involved, with the c-type coef-
ficients for a Δþ taking the form cμνΔþ þ 2hdμνΔþ , with h
being the helicity component of the particle’s angular
momentum.
Either type of Lorentz-violating spin structure would be

at least partially analogous to the Lorentz-violating behav-
ior of relativistic spin-1

2
fermions, which have two helicity

states and whose dispersion relations are set by cμνL ¼
cμν þ dμν and cμνR ¼ cμν − dμν. Note, however, that in spite
of the Dirac spinor having four components—allowing for
the presence of two particle and two antiparticle excitation
modes for each momentum eigenvalue—there are not four
separate c-type tensors, only the two. When the C-parity of
γ5 is taken into account, the behavior of antiparticle modes
is governed by the same tensors as the particle modes.
Something similar is expected for the spin-3

2
modes as well,

although the details of which Lorentz-violating terms
actually change signs under the action of C are unknown.
(For relativistic fermion fields, regardless of their total
spins, the zitterbewegung process ensures that only helicity
eigenstates are eigenstates of propagation. This ensures
that the even more complicated spin structure that is
possible for Lorentz-violating integer-spin fields such as
photons—which is represented by the birefringent part of
their bosonic Lagrange densities—cannot be replicated for
higher-spin fermions.)

Ultimately, although progress is being made in under-
standing the relationships between Lorentz violation at the
quark and gluon level and at the hadronic level, there are
still important unanswered questions. As χPT and other
methods are used to further elucidate the connections
between the SME coefficients for different strongly inter-
acting particles, we expect there to be many strong new
bounds based on the understanding of these connections.
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APPENDIX: SUð3Þf FORMALISM

The extension of χPT methods to SUð3Þf in the meson
sector is straightforward. As in the SUð2Þ case, the
Goldstone bosons are encoded in the matrix UðxÞ of
(19), which still transforms as in (20). However, the matrix
ϕ in the exponential now takes the form

ϕ¼
X8
a¼1

ϕaλa¼

2
664
π0þ 1ffiffi

3
p η8

ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0þ 1ffiffi

3
p η8

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η8

3
775; ðA1Þ

and the constant F is now the pseudoscalar decay constant
in the SUð3Þ chiral limit—that is, with the strange quark
mass also set to zero. Because the transformation properties
are unchanged compared to the SUð2Þf case, the LO
Lagrange densities for both the Lorentz-invariant and
Lorentz-violating sectors still take the same forms as in
(32), (44), and (51), respectively. Differences between the
two- and three-flavor cases appear in the values of the low-
energy constants, as well as possibly in the forms of higher-
order Lagrange densities, as some techniques used in
reducing the number of independent terms at a given order
(such as the Caley-Hamilton formalism) may differ.
The extension to SUð3Þf in the baryon sector is more

complicated. Instead of the nucleon doublet Ψ, the baryon
octet is encoded in a traceless 3 × 3 matrix

B ¼
X8
a¼1

Ba
λaffiffiffi
2

p

¼

2
664

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

3
775; ðA2Þ

with the chiral transformation property

B → KBK†: ðA3Þ
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The corresponding covariant derivative is naively
given by

DμB ¼ ∂μBþ ½Γμ; B�: ðA4Þ

The Lagrangian is constructed by forming products of
terms X that each transform as KXK† and then taking a
trace. For example, the LO Lorentz-conserving meson-
baryon Lagrange density is

LLO
MB ¼ Tr½B̄ði=D −m0ÞB� −

D
2
TrðB̄γμγ5fuμ; BgÞ

−
F
2
TrðB̄γμγ5½uμ; B�Þ: ðA5Þ

Here, m0 is the octet baryon mass in the chiral limit, while
D and F are LECs that can be related to semileptonic
decays. Note that there are three parameters, compared to
two in the SUð2Þf case.
Analogously, we expect the form of the Lorentz-

violating Lagrange density in the SUð3Þf sector to be
more complex. However, for the discussion in Sec. VI, we

are only interested in the baryon octet a-type coefficients.
At LO, these enter through the covariant derivative term
in (A5); the terms proportional to D and F contribute
to b-type terms, since they are proportional to uμ. However,
to properly include the Lorentz-violating interactions, the
baryon covariant derivative has to be modified to

DμB ¼ ∂μBþ ½Γμ; B� − ivðsÞμ B: ðA6Þ
In standard χPT, coupling to the vector current describes
electromagnetic interactions, which at the quark level are
proportional to the quark charge matrix. Since this matrix
is traceless, the singlet vector current is identically zero.
For the CPT-odd terms considered here, this is no longer

the case, and the vðsÞμ contribution has to be considered.
The a-type terms for the baryon octet can then be
determined from the first term in (A5). In addition to
reproducing the SUð2Þf results of Sec. V B, we find, for
example,

aμΣþ ¼ 2aμu þ aμs : ðA7Þ
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