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The type I seesaw represents one of the most popular extensions of the Standard Model. Previous studies
of this model have mostly focused on its ability to explain neutrino oscillations as well as on the generation
of the baryon asymmetry via leptogenesis. Recently, it has been pointed out that the type I seesaw can also
account for the origin of the electroweak scale due to heavy-neutrino threshold corrections to the Higgs
potential. In this paper, we show for the first time that all of these features of the type I seesaw are
compatible with each other. Integrating out a set of heavyMajorana neutrinos results in small masses for the
Standard Model neutrinos; baryogenesis is accomplished by resonant leptogenesis; and the Higgs mass is
entirely induced by heavy-neutrino one-loop diagrams, provided that the tree-level Higgs potential satisfies
scale-invariant boundary conditions in the ultraviolet. The viable parameter space is characterized by a
heavy-neutrino mass scale roughly in the range 106.5���7.0 GeV and a mass splitting among the nearly
degenerate heavy-neutrino states up to a few TeV. Our findings have interesting implications for high-
energy flavor models and low-energy neutrino observables. We conclude that the type I seesaw sector
might be the root cause behind the masses and cosmological abundances of all known particles. This
statement might even extend to dark matter in the presence of a keV-scale sterile neutrino.
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I. INTRODUCTION

A. The Dirac-neutrino option

The Standard Model (SM) describes neutrinos in terms
of massless left-handed (LH) Weyl fermions. The obser-
vation of neutrino flavor oscillations, however, points at
nonvanishing neutrino masses, which provides direct
experimental evidence for new physics (NP) beyond the
Standard Model (BSM) [1]. One straightforward way of
explaining nonzero neutrino masses is to supplement the
Standard Model by massless right-handed (RH) neutrinos
NR

I that transform as complete singlets under the SM
gauge group. The presence of RH neutrinos (RHNs) in
the theory then allows one to write down a Yukawa term
that couples LH and RH neutrinos to the SM Higgs doublet
ϕ ¼ ðϕþ;ϕ0ÞT,

LD
N ¼ i

2
NR

I =∂NR
I − yIαNR

I ϕ̃
†Lα þ H:c:;

I ¼ 1; 2; 3; α ¼ e; μ; τ: ð1Þ

Here, yIα is a matrix of complex Yukawa couplings, Lα ¼
ðνLα ;lL

αÞT represents the SM LH lepton doublet of flavor α,
and ϕ̃ ¼ iσ2ϕ� ¼ ðϕ�

0;−ϕ−ÞT denotes the hypercharge-
conjugated Higgs doublet. Equation (1) sets the stage for
neutrino mass generation via the standard Higgs mecha-
nism. Upon electroweak symmetry breaking (EWSB), the
Higgs field acquires a nonzero vacuum expectation value
(VEV),

ffiffiffi
2

p hϕ0i ¼ v ≃ 246 GeV, such that LH and RH
neutrinos combine into massive Dirac fermions. This
scenario is referred to as the Dirac-neutrino scenario. In
this model, the electroweak (EW) scale v, which is induced
by the tree-level Higgs mass parameter μ, can be identified
as the fundamental energy scale that determines the masses
of all SM particles, i.e., the masses of the SM Higgs boson,
EW gauge bosons, and all SM fermions. Another attractive
feature of this minimal SM extension is that it provides a
possibility to explain the origin of the baryon asymmetry of
the Universe (BAU) via the so-called neutrinogenesis
mechanism [2]. This mechanism is based on the idea that,
in the presence of RH neutrinos, the decay of heavy exotic
degrees of freedom (DOFs) in the early Universe can lead
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to a primordial asymmetry between LH and RH neutrinos.
The lepton number carried by the LH neutrinos, LL, is then
converted into a primordial baryon number B by EW
sphaleron processes [3,4]. The lepton number carried by
the RH neutrinos is of equal magnitude but different sign,
LR ¼ −LL. It remains sequestered from the rest of the
thermal bath, until LH and RH neutrinos eventually
equilibrate at late times due the Yukawa interaction
in Eq. (1).
The Dirac-neutrino model manages to explain the small

SM neutrino masses, offers a starting point for realistic
models of baryogenesis (see, e.g., Ref. [5]), and relates the
masses of all known elementary particles to a single energy
scale, i.e., the Higgs mass parameter μ. However, despite
these achievements, it also suffers from a number of
shortcomings and calls for further model building:
(1) In order to relate tiny SM neutrino masses of

Oð0.1Þ eV to the Higgs VEV v∼100GeV, the RHN
Yukawa couplings yIα need to be of Oð10−12Þ. This
aggravates the SM flavor puzzle.

(2) The particle content of the Dirac-neutrino model on
its own is not sufficient to realize successful baryo-
genesis. In order to generate a primordial chiral
neutrino asymmetry, it is necessary to extend the
model by new DOFs whose masses may be as large
as the energy scale of gauge coupling unifica-
tion, ΛGUT ∼ 1016 GeV, in grand unified theories
(GUTs). The Dirac-neutrino scenario features, in
particular, no intrinsic connection between the gen-
eration of the baryon asymmetry at high energies
and the phenomenology of neutrino oscillations at
low energies.

(3) If the Higgs VEV is regarded as a fundamental
energy scale, one would naively expect that the
solutions to other SM problems, such as dark matter
(DM) or the EW hierarchy problem, should also be
related to new physics at or slightly above the EW
scale. However, all experimental efforts thus far have
failed to directly detect new particles beyond the
Standard Model. This challenges the notion of the
Higgs VEV as a fundamental scale and might be
taken as an indication that the scale of new physics
may, in fact, be vastly separated from the EW scale.

(4) Equation (1) is not the most general Lagrangian that
is compatible with the field content of the Dirac-
neutrino model. Indeed, without imposing any
symmetry, one is allowed to write down a Majorana
mass term for the RH neutrinos, which explicitly
breaks lepton number L. To forbid this term, one
has to impose L as an exact global symmetry, or
alternatively, B − L as a gauge symmetry. This
represents a model-building constraint that needs
to be accounted for when embedding the Dirac-
neutrino model into a more comprehensive model at
high energies.

B. The Majorana-neutrino option

The shortcomings of the Dirac-neutrino model motivate
the extension of Eq. (1) by a Majorana mass term for the
RH neutrinos, which results in the Lagrangian of the type I
seesaw model [6–10],

LM
N ¼ i

2
NR

I =∂NR
I −yIαNR

I ϕ̃
†Lα−

1

2
NR

I MIJðNR
J ÞCþH:c: ð2Þ

Here, MIJ is a symmetric matrix of L-violating Majorana
masses, which are a priori unrelated to any other SM mass
scale. The matrix MIJ can always be chosen to be real and
diagonal, MIJ ¼ MIδIJ, without loss of generality. In the
model defined by Eq. (2), the SM neutrinos turn into
Majorana fermions upon EWSB, which is why this
scenario is referred to as the Majorana-neutrino scenario.
Typically, one assumes the RHN masses to be much larger
than the EW scale, MI ≫ v. The SM neutrino masses then
end up being suppressed not only by small RHN Yukawa
couplings, but also by the large ratio of mass scales,
v=MI ≪ 1. In the Majorana-neutrino scenario, it is there-
fore no longer necessary to assume Yukawa couplings as
small as yIα ∼ 10−12. Another advantage of this model is
that it establishes a link between baryogenesis and low-
energy neutrino phenomenology. In the type I seesaw, the
baryon asymmetry can be generated via the leptogenesis
mechanism [11], i.e., via out-of-equilibrium decays of
heavy Majorana neutrinos in the early Universe. These
decays generate a primordial lepton asymmetry, which is
again converted to a primordial baryon asymmetry by EW
sphalerons. For a recent series of review papers on lepto-
genesis, see Refs. [12–16].
However, also the Majorana-neutrino scenario comes

with a number of challenges and drawbacks. One may, e.g.,
complain that the type I seesaw model requires the
introduction of new mass parameters that are unrelated
to the EW scale. One is therefore no longer able to identify
a common origin of all particle masses, as it is possible in
the Dirac-neutrino scenario. Furthermore, the large hier-
archy between the mass scales MI and v can lead to the
destabilization of the EW scale because of large radiative
corrections to the Higgs mass from the RHN sector [17].
Consider, e.g., standard thermal leptogenesis, which can be
shown to require RHN masses as large as MI ≳ 109 GeV
[18–21]. In this case, the Higgs mass is necessarily
fine-tuned, which may be regarded as a naturalness
problem [22].
A possible way out of these problems is to turn the issue

of radiative corrections to the Higgs mass into a virtue. It
has recently been pointed out that the Higgs mass para-
meter μ in the Higgs potential can be entirely induced by
RHN threshold corrections, provided that μ ¼ 0 at tree
level. This scenario is consistent with the low-energy
neutrino oscillation data and has been dubbed the “neutrino
option” [23,24] (see Ref. [25] for related earlier work).
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The main premise of the neutrino option is that the classical
SM Lagrangian LSM satisfies scale-invariant boundary
conditions in the ultraviolet (UV), such that μ ¼ 0 above
the RHN mass threshold. Alongside other symmetry-based
approaches, such as supersymmetry or new (strongly
coupled) gauge dynamics, the concept of classical scale
invariance provides a well-motivated guiding principle for
the construction of BSMmodels [26–33]. In recent years, it
has been applied as a tool for BSM model building in a
variety of scenarios, ranging from neutrino physics over
dark matter to inflation (see, e.g., Refs. [34–50]).
It is important to note that the RHNmass terms in Eq. (2)

explicitly break scale invariance. In the context of the
neutrino option, classical scale invariance should therefore
be regarded as a working assumption. One open question is
why classical scale invariance should be a good symmetry
of the SM Lagrangian LSM but not of the seesaw
Lagrangian LM

N . Another point is that one ultimately has
to explain how classical scale invariance at low energies can
emerge as the remnant of a full-fledged quantum symmetry
at high energies [51]. These aspects of the neutrino option
require further investigation. A first step in this direction
has been made in Ref. [52], which illustrates how the RHN
masses in Eq. (2) can be generated via the spontaneous
breaking of scale invariance in a theory that initially
preserves conformal symmetry at the level of the entire
classical Lagrangian. Conformal symmetry breaking in this
model may be associated with a first-order phase transition
in the early Universe, which could give rise to an
observable signal in gravitational waves [53].

C. Type I seesaw as the origin of mass and matter

In this paper, we will stick to the original formulation of
the Majorana-neutrino option in Refs. [23,24] and not
attempt to embed it into a BSM model that is fully scale-
invariant at the classical level. In this sense, the ad hoc
assumption of scale-invariant boundary conditions in the
SM sector can be seen as being on the same footing as
the ad hoc assumption of lepton number conservation
in the Dirac-neutrino model. Both the Dirac-neutrino and
Majorana-neutrino models offer no intrinsic explanation
for the symmetry principles that they are based on and
eventually need to be extended. However, a fascinating
consequence of replacing lepton number conservation by
classical scale invariance as a guiding principle in the
construction of the BSM Lagrangian is that the RHN
Majorana masses MI now supersede the Higgs mass
parameter μ as the fundamental input scale that determines
the masses of all known particles. The Majorana-neutrino
option amounts to the idea that the RHN Majorana masses
first induce the EW scale, which then leads to the
generation of all SM particle masses via a combination
of the Higgs and type I seesaw mechanisms. This scenario
for the origin of the SM particle masses has several
advantages over the standard Higgs mechanism:

(1) It sheds new light on the question at which energy
scale one should expect to find new physics.
Provided that the EW scale is an effective scale that
only comes about because of radiative corrections
from the RHN sector, it is conceivable that the scale
of new physics is actually to be sought at energies
above the RHN mass thresholds, ΛNP ≳MI . This
may explain the absence of new physics in current
experiments. In this case, one could speculate that
the RH neutrinos actually play the role of messenger
fields that communicate with both the Standard
Model and the BSM sector that is, e.g., responsible
for the spontaneous breaking of scale invariance.

(2) In the Standard Model, the Higgs mass term and its
negative sign, which is crucial for EWSB, are
introduced by hand. The Majorana-neutrino option
provides, by contrast, a dynamical origin for the
Higgs mass term and may explain its negative sign.
The key observation is that the RHN one-loop
diagrams that induce μ2 come with an overall minus
sign because of the underlying Fermi-Dirac statis-
tics. For an appropriate choice of the renormalization
scale (see Sec. II C), this negative sign eventually
leads to the correct sign of the Higgs mass term.

(3) In order to explain the two measured (solar and
atmospheric) neutrino mass-squared differences, the
seesaw sector must contain at least two RH neutrinos
(2RHNs) (see, e.g., Refs. [54–58]). However, the
number of RH neutrinos can easily be larger. In
particular, it may appear appealing to extend the
seesaw sector by an additional RH neutrino with a
mass in the keV range whose cosmological relic
density accounts for the dark matter in the Universe
[59–63]. We will briefly discuss such a scenario
toward the end of the paper in Sec. III C. In this case,
the type I seesaw would not only set the masses of all
known particles, but also be responsible for the mass
and cosmological abundance of the DM particle.

In Refs. [23,24], it has been shown that the radiative
generation of the Higgs mass parameter in the type I seesaw
typically requires RHN masses of Oð107Þ GeV. In this
case, the RHN Yukawa couplings that are necessary to
explain the SM neutrino masses via the type I seesaw
mechanism are too small to allow for baryogenesis via
standard thermal leptogenesis. This can also be expressed
by saying that RHN masses of Oð107Þ GeV violate the
Davidson-Ibarra (DI) bound, MI ≳ 109 GeV, on the RHN
mass scale for standard thermal leptogenesis [18]. For this
reason, it has been argued that the neutrino option is not
compatible with the simplest (vanilla) version of thermal
leptogenesis.
In this paper, we are, however, going to show that the

type I seesaw does manage to simultaneously generate SM
neutrino masses, the EW scale, and the baryon asymmetry
of the Universe, provided that baryogenesis proceeds via

TYPE I SEESAW MECHANISM AS THE COMMON … PHYS. REV. D 100, 075029 (2019)

075029-3



resonant leptogenesis [64–66]. In this leptogenesis sce-
nario, the CP asymmetry in RHN decays is resonantly
enhanced because of a nearly degenerate RHN mass
spectrum (see Ref. [14] for a review). The additional gain
in CP asymmetry allows one to bypass the DI bound and
lower the energy scale of leptogenesis down to values that
are compatible with the neutrino option. In our model, the
small mass splitting among the RHN mass eigenstates
corresponds to a second working assumption. When
embedding the type I seesaw into a UV completion, one
would have to show how this small mass splitting can be
accounted for by a symmetry in the RHN sector (see, e.g.,
Refs. [67–71]). In passing, we also mention that an
alternative possibility to lower the energy scale of lepto-
genesis would be to rely on a concerted interplay of flavor
effects [72–80]. However, in this case, one would have to
tune the tree-level SM neutrino masses against one-loop
radiative corrections in order to realize successful lepto-
genesis [79,80]. It is less clear to us how such a parametric
cancellation of different terms in perturbation theory may
be achieved by imposing a symmetry at the Lagrangian
level. For this reason, wewill not consider this possibility in
this paper and focus on resonant leptogenesis instead. In
our analysis, resonant leptogenesis therefore acts as the
counterpart of neutrinogenesis in the Dirac-neutrino sce-
nario (see Table I for a comparison between the Dirac-
neutrino and Majorana-neutrino options).
A remarkable outcome of our analysis is the realiza-

tion that the type I seesaw may not only be responsible
for the masses of all SM particles, but also for the
asymmetry between matter and antimatter in the
Universe. In the context of the Majorana-neutrino option,
it is therefore possible to identify the type I seesaw as
the principle cause behind the masses and cosmological
abundances of all known particles. Moreover, if the
seesaw sector also contains an additional keV-scale RH
neutrino, this statement can be even extended to include
dark matter. In this case, the type I seesaw would be the
origin of the masses and cosmological abundances of
visible and dark matter.

The remainder of this paper is organized as follows: In
the next section, we will review the type I seesaw and
discuss how it manages to simultaneously generate SM
neutrino masses (Sec. II A), the baryon asymmetry of the
Universe (Sec. II B), and the EW scale (Sec. II C). In
Sec. III, we will then turn to the bulk of our analysis and
show how the requirements of (i) successful baryogenesis
and (ii) the neutrino option allow one to constrain the
parameter space of the type I seesaw model. We will
present some analytical estimates (Sec. III A), the results of
a comprehensive numerical parameter scan (Sec. III B), and
discuss the implications of our analysis for high-energy
flavor models and keV-scale sterile-neutrino dark matter
(Sec. III C). Section IV contains our conclusions and a brief
outlook.

II. TYPE I SEESAW

A. Neutrino masses

The type I seesaw Lagrangian is given in Eq. (2). In this
paper, we shall restrict ourselves to the minimal type I
seesaw involving only two RH neutrinos,NR

I (I ¼ 1, 2), for
simplicity. This assumption is consistent with the present
low-energy data on neutrino oscillations as well as with the
generation of the baryon asymmetry via leptogenesis. In the
2RHN seesaw model, the Yukawa matrix yIα in Eq. (2) is
(in general) a rank-2 matrix. This is sufficient to explain the
two known nonzero mass-squared differences in the SM
neutrino sector. At the same time, one of the three SM
neutrino masses, mi (i ¼ 1, 2, 3), is always bound to
vanish, min fm1; m2; m3g ¼ 0. Given the fact that the
absolute neutrino mass scale, mtot ¼

P
i mi, has not yet

been measured, this is a perfectly viable possibility at
present. Similarly, resonant leptogenesis only demands two
nearly degenerate RHN mass eigenstates; the presence of a
third RH neutrino is not necessarily required.1

TABLE I. Properties of the Dirac-neutrino and Majorana-neutrino options. Note how the scalesMI and μ exchange their roles in both
scenarios due to the different underlying symmetries. In the Dirac-neutrino scenario, the RHN masses are absent and the masses of all
known particle are set by the tree-level Higgs mass parameter. The Majorana-neutrino option is based on the reversed situation. As a
consequence, the scale of new physics is expected to be much larger in the Majorana-neutrino scenario than in the Dirac-neutrino
scenario. In this paper, we show that the generation of neutrino masses and the EW scale in the Majorana-neutrino scenario is compatible
with leptogenesis.

Dirac-neutrino option Majorana-neutrino option

Underlying symmetry Lepton number → MI ¼ 0 Scale invariance → μ ¼ 0
Scale behind all SM particle masses Higgs mass parameter μ RHN Majorana masses MI
Anticipated scale of new physics ΛNP ≳ μ ΛNP ≳MI
SM neutrino mass generation Higgs mechanism Type I seesaw mechanism
Fermion type of SM neutrinos Dirac fermions Majorana fermions
Generation of the baryon asymmetry Neutrinogenesis Leptogenesis (this work)

1Baryogenesis via heavy-particle decay always requires at
least two particles that contribute to loop amplitudes [81].
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Working with only two RH neutrinos has two important
advantages. First of all, from a physical point of view, it is a
relevant observation that already the minimal 2RHN see-
saw succeeds in explaining neutrino masses, baryon asym-
metry, and the EW scale. It is actually not necessary to
consider the standard scenario involving three RH neu-
trinos (3RHNs). This leaves room for adding a third,
keV-scale RH neutrino NR

3 that would not affect the
low-energy neutrino observables, but which could act as
a DM candidate (see Sec. III C). Such a scenario represents
a highly attractive possibility that deserves further scrutiny
in future work. A second advantage of working with only
two RH neutrinos is that it leads to simplifications at the
technical level. The 3RHN seesaw model features 18 free
parameters in the high-energy Lagrangian (3 RHN masses
plus 9 complex Yukawa couplings minus 3 unphysical
charged-lepton phases), whereas the 2RHN seesaw model
only contains 11 free parameters at high energies (2 RHN
masses plus 6 complex Yukawa couplings minus 3
unphysical charged-lepton phases). At the same time, the
3RHN seesaw gives rise to 9 observable quantities at low
energies (3 nonzero SM neutrino masses, 3 mixing angles,
and 3 physical CP-violating phases), while the 2RHN
seesaw only leads to 7 observables (2 nonzero SM neutrino
masses, 3 mixing angles, and 2 physical CP-violating
phases). Fixing the masses in the RHN spectrum for the
purposes of leptogenesis, this means that there is a
mismatch of 6 real DOFs between high-energy and low-
energy quantities in the 3RHN seesaw, but only a mismatch
of 2 real DOFs in the 2RHN seesaw. In other words, the
unconstrained theory space of possible flavor models has
six real dimensions in the 3RHN seesaw, while it is only
two-dimensional in the 2RHN seesaw. As a consequence, it
is easier to scan over all possible flavor models in the
2RHN seesaw than in the 3RHN seesaw.
Let us now review the mechanism of SM neutrino mass

generation in the type I seesaw model. In the course of
EWSB, the SM Higgs doublet develops a nonvanishing
VEV,

ffiffiffi
2

p hϕ0i ¼ v ≃ 246 GeV, which generates a matrix
of complex Dirac masses, ðmDÞIα, for the LH and RH
neutrinos in Eq. (2),

LM
N ⟶

EWSB i
2
NR

I =∂NR
I −

�
ðmDÞIαþyIαϕ0

�
NR

I ν
L
α þyIαϕþNR

I l
L
α

−
1

2
NR

I MIJðNR
J ÞCþH:c: ð3Þ

Here, ϕ0 contains the real SM Higgs boson with a mass of
mh0 ≃ 125 GeV after EWSB. The Dirac mass matrix is
directly proportional to the RHN Yukawa matrix, ðmDÞIα ¼
yIαv=

ffiffiffi
2

p
. After EWSB, the Dirac and Majorana mass terms

in the neutrino Lagrangian can be organized as follows,

LM
N ⊃ −

1

2

�
ðvLαÞC NR

I

��
0αβ ðmT

DÞαJ
ðmDÞIβ MIJ

�

×

�
vLβ

ðNR
J ÞC

�
þ H:c: ð4Þ

The total neutrino mass matrix therefore corresponds to a
complex symmetric 5 × 5matrixM. Thus, there is a unitary
matrix that diagonalizesM by means of a Autonne-Takagi
factorization,

Mðα;IÞðβ;JÞ ¼
�

0αβ ðmT
DÞαJ

ðmDÞIβ MIJ

�

→ Dði;IÞðj;JÞ ¼
�Dν

ij 0iJ

0Ij DN
IJ

�
; ð5Þ

where Dν and DN contain three light and two heavy
Majorana mass eigenvalues, respectively,

Dν
ij ¼ miδij; DN

IJ ¼ M0
IδIJ: ð6Þ

Regarding the heavy neutrinos, we are able to define
0 < M0

1 ≤ M0
2, without loss of generality. However, as for

the light neutrinos, we need to distinguish between the case
of a normal hierarchy (NH), 0 ¼ m1 < m2 < m3, and the
case of an inverted hierarchy (IH), 0 ¼ m3 < m1 < m2. The
ordering among the light neutrino mass eigenstates then
determines the sign of the largest possible mass-squared
difference in the light-neutrino mass spectrum, Δm2

3l. For
NH, we have Δm2

3l ¼ Δm2
31 ¼ m2

3 −m2
1 ¼ m2

3 > 0, while
for IH, we have Δm2

3l ¼ Δm2
32 ¼ m2

3 −m2
2 ¼ −m2

2 < 0.
Up to now, our discussion has been completely general.

The above results are also valid if there should be no large
hierarchy among the mass eigenvalues mi and M0

I .
However, in the following, we will restrict ourselves to
the seesaw limit, in which the RHN masses in Eq. (2) are
considerably larger than the EW scale. In this case, the RH
neutrinos decouple at high energies, such that there is no
appreciable mixing among the active and sterile neutrino
states at low energies. In addition, we will also assume the
RHNMajorana mass matrix to be diagonal from the outset.
In the seesaw limit, we are able to perform an approximate
block diagonalization of the total mass matrix M,

Mðα;IÞðβ;JÞ → Mblock
ðα;IÞðβ;JÞ ≈

�
mαβ 0αJ
0Iβ MIJ

�
; ð7Þ

where we carried out a perturbative expansion in ratios of
the form ðmDÞIα=MJK and only kept the leading terms. The
mass matrix for the heavy Majorana neutrinos now coin-
cides with the RHN mass matrix in Eq. (2). This means
that, in the seesaw limit, the heavy neutrino mass eigen-
values coincide with the RHN input masses at the
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Lagrangian level, MIJ¼MIδIJ¼DN
IJ¼M0

IδIJ. Meanwhile,
we obtain the following expression for the Majorana mass
matrix of the light SM neutrinos,

mαβ ¼ −ðmT
DÞαIM−1

IJ ðmDÞJβ; ð8Þ

which reflects the fact that, in the type I seesaw model, the
masses of the light SM neutrinos are suppressed by the
combination of small Yukawa couplings and large RHN
masses.
The Majorana mass matrix mαβ in Eq. (8) is again a

complex symmetric matrix. Thus, there is again a unitary
matrix U that diagonalizes mαβ by means of a Autonne-
Takagi factorization,

ðUTÞiαmαβUβj ¼ Dν
ij ¼ miδij: ð9Þ

The matrix U relates the SM neutrino flavor eigenstates νLα
to the SM neutrino mass eigenstates νi,

νLα ¼ Uαiνi; νi ¼ ðU†ÞiανLα ¼ U�
αiν

L
α : ð10Þ

We assume a diagonal mass matrix for the charged-lepton
flavors e, μ, and τ. This is possible because one is always
able to perform unitary flavor transformations on the LH
lepton doublet Lα as well as on the RH charged-lepton
singlet lR

α prior to EWSB. In this case, there will be no
contributions to lepton mixing from the charged-lepton
mass matrix, and the unitary matrix U can be identified
with the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
lepton mixing matrix [82,83], UPMNS ¼ U. In the 2RHN
seesaw model, the PMNS matrix can be parametrized as
follows,

U ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ s23c13
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c23c13

1
CCA
0
BB@

1 0 0

0 eiσ 0

0 0 1

1
CCA: ð11Þ

Here, sij and cij are shorthand notations for sin θij
and cos θij, respectively. θ12, θ23, θ12 ∈ ½0; π=2Þ denote
the three PMNS mixing angles, δ ∈ ½0; 2πÞ is the CP-
violating Dirac phase, and σ ∈ ½0; πÞ represents the only
physical CP-violating Majorana phase in the 2RHN see-
saw. The second Majorana phase that is present in the
3RHN seesaw, τ, can always be rotated away by a phase
transformation of the massless SM neutrino mass eigen-
state. In Table II, we list the current experimental con-
straints on the neutrino observables that are accessible in
experiments according to the global-fit analysis in
Refs. [84,85]. Note that the CP-violating Majorana phase
σ is at present unconstrained.
The identities in Eqs. (8) and (9) can be used to write

down the following matrix relation,

ðUTÞiαmαβUβj¼−½M−1=2
I ðmDÞIαUαi�TδIJ½M−1=2

J ðmDÞJβUβj�
¼miδij; ð12Þ

which can be solved for the Dirac mass matrix ðmDÞIα, or
equivalently, for the Yukawa matrix yIα,

yIα ¼
ðmDÞIα
v=

ffiffiffi
2

p ¼ i

v=
ffiffiffi
2

p M1=2
I RIim

1=2
i ðU†Þiα; ð13Þ

This is nothing but the famous Casas-Ibarra parametriza-
tion (CIP) of the RHNYukawa matrix [87]. The matrix R in
Eq. (13) is a complex rotation matrix that satisfies RRT ¼
12×2 (but RTR ≠ 13×3). It can be parametrized in terms of a
complex rotation angle z ∈ C and a discrete parameter

TABLE II. Best-fit values and 3σ confidence intervals for the low-energy neutrino observables according to the NuFIT 4.0 global-fit
analysis [84,85], including data on atmospheric neutrinos from Super-Kamiokande [86]. The largest mass-squared difference in the SM
neutrino mass spectrum, Δm2

3l, is defined as m2
3 −m2

1 ¼ m2
3 > 0 for NH and as m2

3 −m2
2 ¼ −m2

2 < 0 for IH.

Normal hierarchy Inverted hierarchy

Best-fit value 3σ range Best-fit value 3σ range

Δm2
21=10

−5 eV2 7.39 6.79–8.01 7.39 6.79–8.01
jΔm2

3lj=10−3 eV2 2.525 2.431–2.622 2.512 2.413–2.606
sin2 θ12 0.310 0.275–0.350 0.310 0.275–0.350
sin2 θ23 0.582 0.428–0.624 0.582 0.433–0.623
sin2 θ13 0.02240 0.02044–0.02437 0.02263 0.02067–0.02461
δ=rad 3.79 2.36–6.39 4.89 3.42–6.13
σ=rad … 0–π … 0–π
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ζ ¼ �1, which distinguishes between a positive branch Rþ
and a negative branch R− of possible R matrices. For NH
and IH, we can respectively write the complex rotation
matrix R as follows,

NH∶ RζðzÞ ¼
�
0 þ cos z ζ sin z

0 − sin z ζ cos z

�
;

IH∶ RζðzÞ ¼
�þ cos z ζ sin z 0

− sin z ζ cos z 0

�
: ð14Þ

The two real DOFs contained in z ¼ zR þ izI reflect the
mismatch between high-energy and low-energy parameters
in the 2RHN seesaw.2 In our analysis in Sec. III, we will use
the CIP in Eq. (13) to scan over all possible flavor models
that are consistent with the low-energy neutrino observ-
ables within their 3σ ranges (see Table II). In doing so, we
will make use of several properties of the Yukawa cou-
plings yIα as functions of zR and zI in the limit of a
negligibly small RHN mass splitting, M2 −M1 → 0. First
of all, we note that shifting the real part of the complex
rotation angle by ΔzR ¼ π=2 results in a row exchange as
well as in a sign flip in the second row of the matrix yIα.
This leads to the following pattern when shifting zR by
ΔzR ¼ π=2 in four discrete steps,

M1 ¼ M2;�þy1α
þy2α

�
⟶

ΔzR¼π=2
�þy2α
−y1α

�
⟶
ΔzR¼π

�−y1α
−y2α

�

⟶
ΔzR¼3π=2

� −y2α
þy1α

�
⟶

ΔzR¼2π
�þy1α
þy2α

�
: ð15Þ

All relevant quantities in our parameter study in Sec. III will
depend on products of at least two Yukawa couplings. For
this reason, it will be enough if we restrict ourselves to
scanning over the parameter range zR ∈ ½0; πÞ. Next to
Eq. (15), the CIP also leads to two other useful relations,

M1 ¼ M2; zR → π=2 − zR; ðζ; δ; σÞ → −ðζ; δ; σÞ

⇒

�þy1α
þy2α

�
→

�þy�2α
þy�1α

�
;

M1 ¼ M2; zR → π − zR; ðzI; ζÞ → −ðzI; ζÞ

⇒
�þy1α
þy2α

�
→

� −y1α
þy2α

�
: ð16Þ

These symmetry properties of the CIP will be directly
visible in our numerical results in Sec. III. Finally, we
remark that the Yukawa couplings yIα grow exponentially
as functions of jzIj for jzIj ≫ 1,

jzIj ≫ 1 ⇒ y1α ≈ signðzIÞiy2α ∝ ejzIj: ð17Þ

By construction, the CIP still results in Yukawa couplings
that are in accord with the small SM neutrino masses in this
case. However, for jzIj ≫ 1, this can only be achieved at the
cost of fine-tuned cancellations among the different entries
in the RHN Yukawa matrix. In the context of the neutrino
option, there is no reason why such a situation should be
realized. In our parameter study, we will therefore restrict
ourselves to the range zI ∈ ½−2;þ2� to avoid fine-tuned
RHN Yukawa couplings.

B. Baryon asymmetry

The baryon asymmetry of the Universe is typically
quantified in terms of the baryon-to-photon ratio in the
present era, η0B. The most precise value for η0B follows
from the observations of the temperature anisotropies
in the cosmic microwave background by the PLANCK
satellite [88],

ηobsB ¼ n0B
n0γ

≃ 6.1 × 10−10
�

h2Ω0
B

0.0224

�
: ð18Þ

Here n0B and n0γ are the number densities of baryons and
photons, respectively, and h2Ω0

B ≃ 0.0224 is a measure for
the energy density contained in baryons. In this section, we
will now discuss how resonant leptogenesis in the type I
seesaw manages to reproduce the baryon asymmetry
in Eq. (18).
A first-principles treatment of leptogenesis requires one

to perform computations in nonequilibrium quantum field
theory (QFT) [89], which is beyond the scope of this work.
Instead, we will carry out a semianalytical analysis similar
to the one in Ref. [56], which also studies resonant
leptogenesis in the 2RHN seesaw model. We begin by
relating η0B to the three LH-lepton-doublet asymmetries
ηlptgLα

that are produced by the various Lα-number-violating
interactions during leptogenesis,

η0B ¼ g0�;s
g�;s

Csph

X
α

ηlptgLα
: ð19Þ

Here, g0�;s and g�;s count the effective number of relativistic
DOFs that contribute to the entropy density of the thermal
bath, srad ¼ 2π2=45g�;sT3, at the present time and at the
time of leptogenesis, respectively. In the following, we will
use the usual SM values for these two quantities,

g0�;s ¼
43

11
; g�;s ¼

427

4
⇒

g0�;s
g�;s

¼ 172

4697
≃

1

27.3
: ð20Þ

Csph in Eq. (19) accounts for the conversion from the LH-

lepton-doublet asymmetries ηlptgLα
to ηB by means of EW

2In the 3RHN seesaw, the matrix R is correspondingly para-
metrized in terms of three complex angles, z12, z23, and z13,
which correspond to the six real DOFs that cannot be constrained
by the low-energy data in this model.
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sphalerons. Let us now compute Csph based on the analysis
in Ref. [90]. In doing so, we will neglect the effect of
spectator processes [91–94] and make use of the fact that, at
temperatures T ∼ 105 GeV, all SM interactions eventually
reach chemical equilibrium [95].
First, we note that the total lepton asymmetry ηL receives

contributions from both LH lepton doublets Lα and RH
lepton singlets lR

α . In chemical equilibrium, one finds the
following relation,

ηlR
α
¼ 1

2
ηLα

−
2

21
ηLL ⇒ ηL ¼ ηLL þ ηRL ¼ 17

14
ηLL;

ηLL ¼
X
α

ηLα
; ηRL ¼

X
α

ηlRα : ð21Þ

Second, it is important to notice that the transport equations
that describe the evolution of the LH-lepton-doublet asym-
metries ηLα

typically do not contain an explicit collision
operator accounting for the EW sphalerons processes,
although EW sphalerons certainly do violate the Lα number
densities. In this case, one has to split the total lepton
asymmetry ηL into two contributions [90],

ηL ¼ ηlptgL þ ηsphL : ð22Þ

Here, ηlptgL denotes the effective lepton asymmetry that is
generated during leptogenesis and whose evolution follows
from solving a coupled set of transport equations. The
asymmetry ηsphL , on the other hand, is induced by the
interaction density of the EW sphalerons, γsph. The effective

leptogenesis asymmetry ηlptgL can be related to the total
baryon and lepton asymmetries, ηL and ηB, [90]

ηlptgL ¼ ηL − ηB ¼ ηL−B ¼ −ηB−L: ð23Þ
This reflects the well-known fact that the lepton number
generated during leptogenesis should actually be regarded as
a negative B − L charge whose B component happens to be
zero. The total B, L, and B − L asymmetries are related to
each other by standard factors, such that

ηB ¼ −
28

51
ηL ¼ 28

79
ηB−L ¼ −

28

79
ηlptgL : ð24Þ

Equation (21) also applies at the level of the individual
lepton asymmetries ηlptgL and ηsphL [90]. Combining our
results in Eqs. (21) and (24), we therefore obtain the
following sphaleron conversion factor,

ηB¼Csph

X
α

ηlptgLα
; Csph¼−

17

14
×
28

79
¼−

34

79
≃−0.43: ð25Þ

It is interesting to compare these results with other expres-
sions forCsph that one frequently encounters in the literature.
In our notation, we are also able towrite down the following
three relations,

ηB ¼−
28

79
ηL−B; ηB¼−

28

51
ηL; ηB¼−

2

3
ηLL: ð26Þ

None of these relations should be confused with the correct
relation in Eq. (25).3

We anticipate the temperature scale of leptogenesis to be
T ∼ 106 � � � 107 GeV in our scenario. In this case, the μ and
τ Yukawa interactions have already reached chemical
equilibrium during leptogenesis, such that we do not need
to worry about coherence/decoherence effects in flavor
space. Therefore, instead of solving matrix equations for
quantum-mechanical density matrices, it is sufficient to
restrict oneself to semiclassical Boltzmann equations for
number densities. In this paper, we will follow the analysis
in Ref. [96] (see also Ref. [56]), which studies the evolution
of the LH-lepton-doublet asymmetries ηlptgLα

during resonant
leptogenesis based on a set of flavored Boltzmann equa-
tions. The final asymmetries at the end of leptogenesis can
then be written as follows [56,96],

ηlptgLα
¼ 3

2

X
I

εIα
Keff

α zα
: ð27Þ

In writing down this expression, we assumed that lepto-
genesis always terminates before the EW sphalerons fall
out of thermal equilibrium at temperatures around Tsph ≃
130 GeV [97]. Given that we are interested in leptogenesis
at temperatures far above the EW scale, T ≫ Tsph, this
assumption is always satisfied. Another assumption enter-
ing Eq. (27) is that one of the ηlptgLα

asymmetries should be
larger than the two others, such that leptogenesis is
predominantly driven by the asymmetry in one specific
lepton flavor. We performed an explicit numerical analysis
of the Boltzmann equations in Ref. [96] to confirm that this
assumption is justified in our scenario to first approxima-
tion. We also confirmed that the semianalytical expression
in Eq. (27) allows one to reproduce the fully numerical
result with a precision of Oð10%Þ. For these reasons, we
will restrict ourselves to working with Eq. (27) in the
following. For more details on the Boltzmann equations
and the derivation of Eq. (27), we refer the reader to the
detailed presentation in Ref. [96].
Let us now spell out the meaning of εIα, Keff

α , and zα in
Eq. (27). The parameter zα quantifies the point in time
when the lepton asymmetry ηlptgLα

ceases to evolve at the end
of leptogenesis,

3The sphaleron factor in Eq. (25) can also be estimated by
consistently neglecting the effect of the RH lepton singlets. In this
case, one can simply write ηB ¼ −2=3ηLL ≈ −2=3ηL, such that
ηB ≈ −2=5ηL−B ¼ −2=5ηlptgL ≈ −2=5

P
α η

lptg
Lα

. This estimate re-
sults in Csph ≈ −2=5 ¼ −0.40, which deviates from our result by
less than 10%. In the following, we will, however, stick to our
result Csph ¼ −34=79. We thank Daniele Teresi for a helpful
discussion on this point.
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zα ≃ 1.25 ln ð25 Keff
α Þ: ð28Þ

Keff
α is an effective measure for the strength of processes that

wash out the asymmetry in the α-flavor channel. Large
values,Keff

α ≫1, correspond to strongwashout,whileKeff
α ∼1

corresponds to weak washout. The parameterKeff
α is defined

in terms of the standard RHN decay parameters KI,

Keff
α ¼κα

X
I

KIBIα; KI¼
ΓI

ζð3ÞHðT¼MIÞ
; BIα¼

jyIαj2
ðyy†ÞII

:

ð29Þ

Here, BIα denotes the branching ratio of NI decays into LH
leptondoublets of flavorα at tree level, andHðT ¼ MIÞ is the
Hubble rate evaluated at a temperature equal to the RHN
mass MI ,

HðT ¼ MIÞ ¼
�
π2g�;ρ
90

�
1=2 M2

I

MPl
; ð30Þ

where g�;ρ ¼ 427=4 is the effective number of relativistic
DOFs that contribute to the energy density of the thermal SM
plasma, ρrad ¼ π2=30g�;ρT4, at the time of leptogenesis, and
where we employed the reduced Planck mass MPl ¼
ð8πGÞ−1=2 ≃ 2.44 × 1018 GeV (with G being Newton’s
constant). ΓI in Eq. (29) is the total NI tree-level decay rate
at zero temperature,

ΓI ¼ ΓðNI → Lα þ ϕÞ þ ΓðNI → LC
α þ ϕ�Þ ¼ ðyy†ÞII

8π
MI:

ð31Þ

These definitions illustrate that the RHN decay parameterKI
characterizes how strongly the RH neutrinoNI is coupled to
the thermal bath. For KI ≫ 1, the RHN interactions have
(nearly) reached thermal equilibrium, for KI ≪ 1, they are
far away from thermal equilibrium. Equation (29) also shows
that

P
I KIBIα ¼ Kα can be regarded as the equivalent ofKI

in lepton flavor space. The washout parameterKeff
α ¼ καKα,

finally, is a rescaled version of Kα, where the factor κα
accounts for the effect of lepton-number-violating and
lepton-flavor-violating two-to-two scattering processes,4

κα ¼ 2
X
I;J

Re½yIαy�Jα�Re½ðyy†ÞIJ� − Im½yIαy�Jα�Im½yIαy�Jα�
ðy†yÞαα½ðyy†ÞII þ ðyy†ÞJJ�

×

�
1 − 2i

MI −MJ

ΓI þ ΓJ

�
−1

¼ 1þ 4
Re½y1αy�2α�Re½ðyy†Þ12� − Im½y1αy�2α�Im½y1αy�2α�

ðy†yÞαα½ðyy†Þ11 þ ðyy†Þ22�

×
ðΓ1 þ Γ2Þ2

ðΓ1 þ Γ2Þ2 þ 4ðM2 −M1Þ2
: ð32Þ

In the scattering operators leading to this expression for κα,
the contributions from on-shell RH neutrinos in the inter-
mediate state have been subtracted. These contributions are
already accounted for by the decay and inverse-decay
operators in the Boltzmann equations and must not be
counted twice. In our parameter scan in Sec. III, we will
mostly be interested in small RHN decay widths,
Γ1;2 ≪ M2 −M1. In this case, the rescaling factor κα
typically obtains values close to one, κα ≈ 1.
The final ingredient in Eq. (27) is the CP asymmetry

parameter εIα, which represents the amount of CP asym-
metry that can be generated per RHN decay. It is defined in
terms of the partial decay widths Γ1lðNI → Lα þ ϕÞ and
Γ1lðNI → LC

α þ ϕ�Þ, which involve the RHN decay ampli-
tudes at tree level as well as the radiative RHN vertex (v)
and self-energy (s) corrections at one loop [100],

εIα¼ εðvÞIα þ εðsÞIα ¼Γ1lðNI →LαþϕÞ−Γ1lðNI →LC
α þϕ�Þ

ΓI
:

ð33Þ

The vertex contribution εðvÞIα (also referred to as the ε0 or
direct CP asymmetry) reads,

εðvÞIα ¼
X
J≠I

Im½yIαy�Jαðyy†ÞIJ�
ðyy†ÞIIðyy†ÞJJ

ΓJ

MI

×

�
1 −

�
1þM2

J

M2
I

�
ln

�
1þM2

I

M2
J

��
; ð34Þ

while one finds for the self-energy contribution (also
referred to as the ε or indirect CP asymmetry),

εðsÞIα ¼
X
J≠I

�
Im½yIαy�Jαðyy†ÞIJ�
ðyy†ÞIIðyy†ÞJJ

þMI

MJ

Im½yIαy�Jαðyy†ÞJI�
ðyy†ÞIIðyy†ÞJJ

�
fIJ;

ð35Þ

where the function fIJ ∝ 1=ðM2
I −M2

JÞ originates from the
NJ propagator in the NI decay diagram.
Resonant leptogenesis is based on the observation that

εðsÞIα can be resonantly enhanced in the case of a small RHN
mass splitting, ΔM ¼ M2 −M1 ≪ M1, such that fIJ

4In Ref. [96], the rescaling factor κα is expressed in terms of
resummed Yukawa couplings ȳIα instead of the ordinary tree-
level Yukawa couplings yIα. The relation between these two sets
of Yukawa couplings in the case of only two RH neutrinos can be
found in Refs. [98,99]. We checked that replacing yIα by ȳIα in
our parameter study only leads to numerically insignificant
changes. For this reason, we decide to ignore this subtlety in
the following. We also point out that Eq. (32) agrees with
the result in Ref. [96] after substituting ȳIα → yIα, whereas it does
not agree with the expression in Ref. [56], which involves a
number of typos. We thank Bhupal Dev for a helpful discussion
on this point.
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becomes exceptionally large. In fact, given the naive
semiclassical estimate fIJ ∝ 1=ðM2

I −M2
JÞ, one finds that

εðsÞIα appears to diverge for a vanishing mass splitting,
ΔM → 0. This, however, is an unphysical effect that
reflects the breakdown of the semiclassical approximation.
A pair of exactly degenerate RH Majorana neutrinos
represents, in fact, a single Dirac neutrino, such that lepton
number remains conserved and the CP asymmetry param-
eter identically vanishes, εIα ¼ 0. This simple argument
indicates that the function fIJ needs to be regularized in
quantum fields theory,

1

M2
I −M2

J
→

M2
I −M2

J

ðM2
I −M2

JÞ2 þ RIJ
; ð36Þ

in order to avoid the singular behavior in the limitΔM → 0.
The proper form of the regulator RIJ has been the subject of
a long debate in the literature that has not yet been fully
settled (see, e.g., [98,99,101–105]). In this paper, we do not
have anything new to add to this debate. Instead, we will
simply adopt the results in Refs. [98,99,104], which
managed to reproduce the same form of the regulator both
in an analysis based on quantum-mechanical density matrix
equations [98,99] and a full QFT analysis based on
Kadanoff–Baym equations [104]. The main conclusion
of Refs. [98,99,104] is that the function fIJ actually
receives two contributions of similar magnitude,

fIJ ¼ foscIJ þ fmix
IJ ; foscIJ ¼ ðM2

I −M2
JÞMIΓJ

ðM2
I −M2

JÞ2 þ Rosc
IJ

;

fmix
IJ ¼ ðM2

I −M2
JÞMIΓJ

ðM2
I −M2

JÞ2 þ Rmix
IJ

; ð37Þ

where foscIJ and fmix
IJ account for the contributions to the CP

asymmetry parameter εðsÞIα from RHN flavor oscillations and
RHN mixing, respectively. If one decided to omit one these

two contributions, the CP asymmetry parameter εðsÞIα would
roughly decrease by a factor 2. This should be regarded as
an upper bound on the theoretical uncertainty of our

expression for εðsÞIα in Eq. (35). The regulators Rosc
IJ and

Rmix
IJ in Eq. (37) are given by the following expressions,

Rosc
IJ ¼ ðMIΓI þMJΓJÞ2

det ½Reðyy†Þ�
ðyy†ÞIIðyy†ÞJJ

;

Rmix
IJ ¼ M2

IΓ2
J: ð38Þ

This concludes our discussion of the different ingredients
that are necessary to compute the final baryon asymmetry
in our scenario. Combining all of the above results, we are
now able to write

η0B ≃ C
X
I;α

εIα
1.25 ln ð25Keff

α ÞKeff
α

;

C ¼ −
8772

371063
≃ −2.36 × 10−2; ð39Þ

which is the expression for η0B that we will use to calculate
the baryon asymmetry in Sec. III.

C. Electroweak scale

Let us now turn to the generation of the EW scale in the
type I seesaw. In the pure Standard Model without RH
neutrinos, the Higgs doublet ϕ possesses the following
scalar potential,

VSM¼−μ2jϕj2þλjϕj4; jϕj2¼ϕ†ϕ¼ϕþϕ−þϕ�
0ϕ0:

ð40Þ

Here, μ denotes the Higgs mass parameter, and λ is the
quartic Higgs self-coupling. The sign of the mass term in
Eq. (40) is chosen such that a real and positive mass
parameter, μ > 0, results in EWSB. The Standard Model is
based on the assumption that μ ∼ 100 GeV > 0 around a
renormalization scale Q ∼ 100 GeV; but it does not offer
any intrinsic justification for this assumption. In the true
vacuum after EWSB, the Higgs field has a nonzero VEVffiffiffi
2

p hϕ0i ¼ v ¼ μ=
ffiffiffi
λ

p
, and the physical Higgs boson h0

possesses a mass mh0 ¼
ffiffiffi
2

p
μ ¼ ffiffiffiffiffi

2λ
p

v. We emphasize that
μ is the only explicit mass scale in the Standard Model.
Once we set μ → 0, the SM Lagrangian becomes scale-
invariant.5

Motivated by this observation, the Majorana-neutrino
option is based on the assumption that the Higgs potential
satisfies scale-invariant boundary conditions above the
RHN mass thresholds,

Q > maxfMIg ⇒ VUV ¼ λjϕj4: ð41Þ

The Higgs mass parameter μ necessary for EWSB is then
induced by RHN threshold corrections to the Higgs
potential, ΔV ⊃ −μ2jϕj2, when matching the full theory
(including dynamical RH neutrinos) at high energies onto
the effective field theory (EFT) (without dynamical RH
neutrinos) at low energies. In the case of two nearly
degenerate RH neutrinos, this matching is done at
Q0 ¼ M1 ≃M2, which is the energy scale at which both
RH neutrinos decouple [106]. The threshold corrections
ΔV are encoded in the one-loop effective Coleman–
Weinberg (CW) potential [107],

5The scale of quantum chromodynamics (QCD), ΛQCD ∼
100 MeV, is not an explicit input scale, but generated via
dimensional transmutation by the renormalization group (RG)
running of the strong gauge coupling constant.
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ΔV ¼ VUV − VEFT ¼ ð−2Þ
64π2

X
I

M4
I ðϕÞ ln

M2
I ðϕÞ
Q2

: ð42Þ

The CW formula can be derived by computing one-loop
vacuum (bubble) diagrams, using dimensional regulariza-
tion to keep track of the infinities arising in the one-loop
momentum integrals. These infinities are canceled by an
appropriate set of counterterms in the MS renormalization
scheme. In our notation, the MS renormalization scale Q̄ is
given by Q̄ ¼ e−3=4Q. In this sense, the scale Q can be
regarded as the renormalization scale in a different scheme
that deviates from the MS scheme by a finite shift along the
RG flow. The advantage of employing Q rather than Q̄ in
Eq. (42) is that, in this scheme, the CW potential no longer
contains nonlogarithmic terms that do not depend on the
renormalization scale; in Eq. (42), all terms are proportional
to logarithms of the form ln M2

I =Q
2. This allows one to

minimize the absolute value of the CW potential by
setting Q to the typical mass scale of the theory. In our
analysis, we will consequently fix the renormalization
scale at the RHN decoupling scale, Q0 ¼ M1, corre-
sponding to Q̄0 ¼ e−3=4M1 in the MS scheme. In this
way, we intend to remove large logarithms from the CW
potential, which we expect to improve the quality of the
perturbative series. This is in line with the discussion in
Refs. [108,109], which states that the choice Q0 ¼ M1

amounts to a leading-log resummation to all orders in
perturbation theory that minimizes the Q dependence of
the CW potential. In future work, it would be interesting
to confirm these statements by an explicit calculation of
higher-order corrections in the type I seesaw model. In
the remainder of this paper, we will, however, simply
stick to our choice Q0 ¼ M1, cautioning that the scheme
dependence of the EFT matching analysis requires further
scrutiny.
The (−2) prefactor in Eq. (42) follows from the Fermi-

Dirac statistics of the RH neutrinos that run in the one-loop
vacuum diagrams. In our renormalization scheme, the
negative sign of this factor eventually leads to a negative
sign of the Higgs mass term at the matching scale
Q0 ¼ M1. This illustrates that the type I seesaw is capable
of explaining the tachyonic mass term in the Higgs
potential that is responsible for EWSB at low energies.
The ϕ-dependent masses MIðϕÞ in Eq. (42) represent the
two large mass eigenvalues that one finds when performing
a Autonne-Takagi factorization of the total neutrino mass
matrix M in Eq. (4) after replacing the Higgs VEV v by a
classical and homogeneous Higgs field background ϕ.
Again, similarly as in Sec. II A, the total neutrino mass
matrix can be approximately diagonalized by performing a
perturbative expansion in powers of the Higgs field. While
we were only interested in the leading-order result in
Sec. II A [see Eq. (7)], we now have to compute the
squared massesM2

I ðϕÞ up toOðϕ4Þ, in order to identify the

threshold corrections to the quadratic and quartic terms in
the Higgs potential. This procedure allows us to write the
threshold corrections ΔV as a power series in the Higgs
doublet ϕ,

ΔV ¼ ΔV0 − Δμ2jϕj2 þ Δλjϕj4 þOðjϕj6Þ; ð43Þ

where ΔV0 denotes a constant contribution to the vacuum
energy that we can ignore for our purposes.
We obtain the following expressions for the threshold

corrections Δμ2 and Δλ,

Δμ2 ¼ 1

8π2
X
I

�
ðyy†ÞIIM2

I

�
ln
M2

I

Q2
þ 1

2

��
;

Δλ ¼ 1

8π2
X
I≠J

h
ðyy†Þ2IILð1Þ

IJ −
1

2
Trðyy†y�yTÞLð2Þ

IJ

þ 1

2
Trðyy†yy†ÞLð3Þ

IJ

i
; ð44Þ

where the three loop functions Lð1Þ
IJ , L

ð2Þ
IJ , and Lð3Þ

IJ are
defined as follows,

Lð1Þ
IJ ¼ MJ

MJ −MI
ln
MJ

MI
− 1; Lð2Þ

IJ ¼ MIMJ

M2
J −M2

I
ln
MJ

MI
;

Lð3Þ
IJ ¼ M2

I

M2
J −M2

I
ln
M2

I

Q2
−
1

4
: ð45Þ

In the limit of a small RHN mass splitting, M2 ≃M1, these
expressions can be simplified to

Δμ2 ≃
Trðyy†Þ
8π2

M2
1

�
ln
M2

1

Q2
þ 1

2

�
;

Δλ ≃ −
Trðyy†y�yTÞ

16π2
−
Trðyy†yy†Þ

16π2

�
ln
M2

1

Q2
þ 3

2

�
: ð46Þ

In particular, we obtain the following threshold corrections
at the RHN decoupling scale Q0 ¼ M1,

Δμ20¼Δμ2jQ0
≃
Trðyy†Þ
16π2

M2
1;

Δλ0¼ΔλjQ0
≃−

1

16π2

�
Trðyy†y�yTÞþ3

2
Trðyy†yy†Þ

�
: ð47Þ

These results conform with the naive expectations Δμ20 ∼
y2=ð16π2ÞM2

1 and Δλ0 ∼ y4=ð16π2Þ. We observe that the
threshold correction to the Higgs mass parameter turns
out to have a positive sign, Δμ20 > 0, which is the sign
needed to induce EWSB at low energies. The threshold
correction to the quartic Higgs self-coupling, on the other
hand, turns out to have a negative sign, Δλ0 < 0, which
may raise the concern of a vacuum instability in the Higgs
potential. However, at this point, it is important to
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remember that the Higgs potential already contains a
quartic coupling at tree level [see Eq. (41)]. Compared
to this tree-level coupling,Δλ0 is typically tiny, given that it
is suppressed by the combination of four Yukawa couplings
and a loop factor. The effect of the threshold correction Δλ0
can therefore be easily compensated for by a shift in the
tree-level coupling. This allows us to neglect Δλ0 and focus
on the matching of the Higgs mass parameter in the
following.
At the RHN decoupling scale Q0 ¼ M1, the type I

seesaw can be matched onto the SM effective field theory
(SMEFT) (see Ref. [110] for a review). A complete one-
loop matching of the two theories including operators up
to dimension five on the SMEFT side has been per-
formed in Ref. [24]. There, it has been shown that the
dominant outcome of the one-loop matching consists of
(i) the threshold corrections to the Higgs potential in
Eq. (44) and (ii) nonzero Wilson coefficients for the
dimension-five Weinberg operator [111], which results in
the SM neutrino masses after EWSB. The one-loop
Wilson coefficients computed in Ref. [24] also capture
radiative corrections to the tree-level neutrino mass
matrix mαβ in Eq. (8). However, these corrections only
become relevant in the case of large (and fine-tuned)
Yukawa couplings, i.e., for large absolute values of the
parameter zI [see Eq. (17)]. In our parameter study in
Sec. III, we will not be interested in this regime. This
leaves the threshold correction to the Higgs mass
parameter, Δμ20, as the only quantity that we need to
explicitly account for, for the purposes of the matching
analysis in this paper. On the SMEFT side, the RG
running of the Higgs mass parameter μ2 is controlled by

the standard RG equations (RGEs) of the Standard
Model.6 Our matching condition therefore amounts to
the requirement that the running Higgs mass parameter
μ2ðQÞ must equal the threshold correction Δμ20 at the
RHN decoupling scale,

μ20 ¼ μ2ðQ0 ¼ M1Þ ¼
Trðyy†Þ
16π2

M2
1 ¼ Δμ20: ð48Þ

In order to determine the value of μ2ðQ0Þ on the left-
hand side of Eq. (48), we need to solve the RG equations of
the Standard Model, which we employ from Ref. [114].
The outcome of our analysis is shown in Fig. 1, alongside
our results for the running quartic Higgs self-coupling. In a
first step, we solve the RG equations in the MS renorm-
alization scheme at one-loop, two-loop, and three-loop
order [114]. As evident from Fig. 1, the result of the three-
loop analysis for μðQ̄Þ does not significantly improve over
the result of the two-loop analysis. In the following, we will
therefore restrict ourselves to working with the results of
the two-loop RGEs, in combination with the one-loop
threshold corrections to the running SM parameters at the
top-quark mass scale, Q̄ ¼ mt, in order to fix the initial
conditions of the two-loop RGEs. These initial conditions
are given in Table III, where we also show the correspond-
ing values at the typical RHN scale of 107 GeV, which
we obtain after numerically solving the two-loop RGEs.
At values of the renormalization scale relevant for the
Majorana-neutrino option, Q̄ ∼ 106 � � � 107 GeV, the Higgs

FIG. 1. RG running of the Higgs mass parameter μ and quartic
Higgs self-coupling constant λ as functions of the MS renorm-
alization scale Q̄ ¼ e−3=4Q in the Standard Model. For the
purposes of this paper, we are only interested in Q̄ values of
at most Oð107Þ GeV. The metastability / instability of the EW
vacuum at higher energies needs to be addressed by new physics
beyond the type I seesaw.

TABLE III. List of SM parameters relevant for our RGE
analysis: gi are the SM gauge couplings (where g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
gY),

while yt, yb, and yτ denote the Yukawa couplings of the top quark,
bottom quark, and tau lepton, respectively. The second column
contains the input values for these parameters at the top-quark
mass scale, Q̄ ¼ 173.2 GeV (see text for details), while the third
column shows the computed values at Q̄ ¼ 107 GeV based on our
numerical solution of the two-loop RG equations.

Q̄ ¼ 173.2 GeV Q̄ ¼ 107 GeV

g1 0.4639 0.4957
g2 0.6476 0.5961
g3 1.167 0.7614
yt 0.9503 0.6400
yb 0.02401 0.01434
yτ 0.01020 0.01053
λ 0.1276 0.01173
μ 93.54 GeV 101.7 GeV

6The RG running of the Wilson coefficients of the dimension-
five Weinberg operator is numerically insignificant [24]. This is
the SMEFT version of the statement that the RG running of the
type I seesaw parameters can typically be neglected [56,112,113].
For this reason, we will not consider any RGEs in the BSM sector
of our model.
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mass parameter turns out to exhibit only a very weak
dependence on the renormalization scale (see Fig. 1). Over
a broad range of Q̄ values of this order of magnitude, we
approximately find μðQ̄Þ ≃ 101 � � � 102 GeV. As a conse-
quence, Eq. (48) turns into the following constraint on the
parameter space of the type I seesaw model,

Trðyy†ÞM2
1 ∼ ð1300 GeVÞ2: ð49Þ

Once this relation is satisfied, the type I seesaw induces a
Higgs mass term of the right magnitude and with the correct
sign in the Lagrangian of the classically scale-invariant
Standard Model.

III. ANALYSIS AND DISCUSSION

A. Analytical estimates

In Sec. II, we have separately discussed the generation of
SM neutrino masses, the baryon asymmetry of the
Universe, and the EW scale. In the present section, we
will now put together the pieces of the puzzle and identify
the viable parameter region where all three features of the
type I seesaw can be realized at the same time. To this end,
we will make use of our results in Eqs. (13), (39), and (48),

yIα ¼
i

v=
ffiffiffi
2

p M1=2
I RIim

1=2
i ðU†Þiα;

X
I;α

CεIα
zαKeff

α
¼ ηobsB ;

Trðyy†Þ
16π2

M2
1 ¼ μ20: ð50Þ

That is, we will employ the CIP for the RHN Yukawa
couplings to ensure that our analysis is in agreement with
the low-energy neutrino data, and we will simultaneously
impose the conditions that (i) leptogenesis results in the
correct value of the baryon asymmetry and that (ii) the
RHN threshold corrections induce the correct Higgs mass
parameter at the RHN decoupling scale. It is interesting to
note that, in the context of the 2RHN seesaw model, these
conditions completely remove the parametric freedom at
low energies. Recall that, in the case of the 2RHN seesaw,
the low-energy EFT contains only one complex DOF,
z ¼ zR þ izI, that is not accessible in experiments [see
Eq. (13)]. For a given RHN mass spectrum, this parameter
can thus be eliminated by the two conditions η0B ¼ ηobsB and
Δμ20 ¼ μ20. In the following, we will turn this argument
around and solve the conditions in Eq. (50) for the values of
M1 and M2 that are required by leptogenesis and the
neutrino option as functions of zR and zI. In this analysis, zR
and zI can then be regarded as the coordinates of the
unconstrained theory space of all possible UV flavor
models (see Sec. II A).
We begin by examining the constraint in Eq. (48), which

can also be written as follows,

m̃ ¼ Tr½mDm
†
D�

M1

¼ 16π2

M3
1

v2

2
μ20 ¼ m̃0: ð51Þ

Here, we introduced themass parameter m̃, which is defined
in a similar way as the well-known effective neutrino mass
parameters m̃I ¼ ðmDm

†
DÞII=MI [21,115]. In this formu-

lation, the neutrino-option constraint now states that the
mass parameter m̃ must obtain a particular value m̃0,

m̃0 ≃ 48 meV

�
107 GeV

M1

�
3
�

μ0
100 GeV

�
2

: ð52Þ

The mass m̃ can be related to the total mass in the SM
neutrino sector, mtot ¼

P
i mi, as follows,

m̃
mtot

¼ coshð2zIÞþ
δM
2

ðcoshð2zIÞþδmcosð2zRÞÞ; ð53Þ

where we introduced the dimensionless ratios δM and δm to
parametrize the relativemass splittings among the heavy and
light neutrino mass eigenstates, respectively,

δM¼ΔM
M1

¼M2−M1

M1

;

δm¼Δm
mtot

¼
8<
:ðm3−m2Þ=mtot ≃

BFP
7.1×10−1 ðNHÞ

ðm2−m1Þ=mtot ≃
BFP

7.5×10−3 ðIHÞ
: ð54Þ

Here, the numerical values for δm correspond to the NH and
IH best-fit points (BFPs) in Table II.
An important implication of Eq. (53) is that m̃ turns out

to be bounded from below by mtot,

m̃ > mtot; ð55Þ

which is reminiscent of the inequality m̃I > mmin, where
mmin is the smallest nonzero SM neutrino mass eigenvalue
(see the Appendix of Ref. [116]).7 Together with the
neutrino-option constraint m̃ ¼ m̃0 in Eq. (51), this
lower bound on m̃ results in an upper bound on the
RHN mass M1,

M1 ¼
�
8π2v2μ20
mtot

�
1=3

�
coshð2zIÞ þ

δM
2

ðcoshð2zIÞ

þ δm cosð2zRÞÞ
�
−1=3

<

�
8π2v2μ20
mtot

�
1=3

: ð56Þ

For both NH and IH, we thus find that M1 cannot obtain
values larger than 107 GeV,

7Note that m̃1 þ m̃2 ¼ mtot cosh ð2zIÞ, such that m̃ → m̃1 þ
m̃2 for δM → 0.
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mtot ≃
BFP

�
59 meV ðNHÞ
99 meV ðIHÞ

⇒ M1 ≲
BFP

�
9.4 × 106 GeV ðNHÞ
7.9 × 106 GeV ðIHÞ : ð57Þ

M1 values below this upper bound can always be realized at
the cost of a larger value of jzIj. In the limit of a small RHN
mass splitting, δM ≪ 1, we find the following simple
relation,

δM ≪ 1 ⇒ M1 ≈
�

8π2v2μ20
mtot cosh ð2zIÞ

�
1=3

: ð58Þ

Therefore, restricting the range of allowed zI values to zI ∈
½−2; 2� (see Sec. II A), we recognize that a nonzero value of
jzIj can lower M1 by roughly a factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh 43

p
≃ 3

compared to the upper bound in Eq. (57). This fixes the
range of viable M1 values that are compatible with the
successful generation of the Higgs mass parameter without
fine-tuned cancellations in the RHN Yukawa matrix,

δM ≪ 1; zI ∈ ½−2;2� ⇒ 106.5 GeV≲M1 ≲ 107.0 GeV:

ð59Þ

Hence, all viableM1 values are of Oð107Þ GeV and spread
across only half an order of magnitude.
Next, let us turn to the baryon asymmetry η0B in Eq. (39).

In our analytical discussion, we shall restrict ourselves to
the resonantly enhanced part of the CP asymmetry param-
eter εIα only. That is, we will neglect the subdominant

contribution εðvÞIα in Eq. (34) for simplicity and only focus

on the dominant contribution εðsÞIα in Eq. (35). In our
numerical analysis in Sec. III B, we will not make any
such simplification, but work with the full expression for
εIα instead. Furthermore, it is convenient to distinguish
between two different regimes regarding the CP asymme-

try parameter εðsÞIα , depending on whether the regulators R
osc
IJ

and Rmix
IJ in Eq. (38) are numerically relevant or not. It is

easy to see that the transition between these two regimes is
controlled by the size of the RHN mass splitting,
ΔM ¼ M2 −M1, in relation to the RHN decay widths
ΓI. For ΔM ≫ ΓI, the function fIJ in Eq. (35) does, in fact,
not need to be regularized, whereas for ΔM ≪ ΓI, regu-
larization is crucial,

fIJ ≈ sgnðMI −MJÞ

×

(
ΓJ=ð2ΔMÞ ; Γ1;2 ≪ ΔM ≪ M1;2

2ΓJMIMJΔM=RIJ ; ΔM ≪ Γ1;2 ≪ M1;2
:

ð60Þ

This behavior of fIJ determines the dependence of the
final baryon asymmetry η0B on the mass splitting ΔM.

For ΔM ≫ ΓI and ΔM ≪ ΓI , the baryon asymmetry will
scale as η0B ∝ 1=ΔM and η0B ∝ ΔM, respectively. Let us
now discuss these two cases in more detail one by one.

In the first case, ΓI ≪ ΔM, we can expand εðsÞIα up to
linear order in the RHN decay rates ΓI ,

ΓI ≪ ΔM ⇒
X
I

εðsÞIα ≈ Aα
M1Γ2 þM2Γ1

M2
2 −M2

1

;

Aα ¼
4Re½ðyy†Þ12�Im½y�1αy2α�

ðyy†Þ11ðyy†Þ22
; ð61Þ

where we dropped all higher-order terms in ΓI as well as all
terms that are not resonantly enhanced. Making use of the
CIP, the Yukawa prefactor Aα in this expression can be
written as follows,

Aα ¼
4δm sinð2zRÞðBα sinhð2zIÞ−Cαζcoshð2zIÞÞ

δm2cos2ð2zRÞ− cosh2ð2zIÞ
; ð62Þ

where Bα and Cα capture the dependence on the PMNS
matrix U and the SM neutrino masses mi,

Bα ¼
X
i

jUαij2
mi

mtot
; Cα ¼

2
ffiffiffiffiffiffiffiffiffiffiffi
mkml

p
mtot

Im½UαkU�
αl�;

ðk; lÞ ¼
� ð2; 3Þ ðNHÞ
ð1; 2Þ ðIHÞ : ð63Þ

These quantities also allow us to rewrite the effective
washout parameter Keff

α as a function of the CIP parameter
z. In doing so, we can simply approximate M2 ≈M1, since
Keff

α does not experience any resonant enhancement in the
limit of a small RHN mass splitting. We thus obtain

M2 ≈M1

⇒ Keff
α ≈ κα

mtot

ζð3Þm�
ðBα cosh ð2zIÞ−Cαζ sinh ð2zIÞÞ: ð64Þ

Note that this expression is also valid in the ΔM ≪ ΓI
regime. m� in Eq. (64) is a benchmark value for the SM
neutrino masses that is sometimes referred to as the
equilibrium mass [21]. It allows one to express the RHN
decay parameter KI in terms of the mass ratio m̃I=m�, such
that m̃I ≫ m� and m̃I ≪ m� are synonymous to the strong-
washout and weak-washout scenarios, respectively,

KI ¼
m̃I

ζð3Þm�
; m� ¼

�
π2g�;ρ
90

�
1=2 4πv2

MPl
≃1.1meV: ð65Þ

Combining Eqs. (61) and (64), we arrive at the following
estimate for the final baryon asymmetry,
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η0B ≈ C
M1Γ2 þM2Γ1

M2
2 −M2

1

ζð3Þm�
mtot

4δm sin ð2zRÞ
δm2cos2ð2zRÞ − cosh2ð2zIÞ

×
X
α

Dα

zακα
; ð66Þ

where the dependence on the PMNS matrix and the SM
neutrino masses is now encoded in Dα,

Dα ¼
Bα sinh ð2zIÞ − Cαζ cosh ð2zIÞ
Bα cosh ð2zIÞ − Cαζ sinh ð2zIÞ

: ð67Þ

This estimate is dominated by the leading 1=δM term when
expanding in powers of δM,

δM≪ 1 ⇒ η0B≈
C
δM

ζð3Þm�M1

2πv2
δmsinð2zRÞcoshð2zIÞ

δm2cos2ð2zRÞ−cosh2ð2zIÞ
×
X
α

Dα

zακα
; ð68Þ

which is our final result for η0B as a function of δM,M1, zR,
zI, etc. in the ΓI ≪ ΔM regime.
As expected, η0B scales like one inverse power of the

RHN mass splitting, η0B ∝ 1=δM. On the other hand, it is
linearly proportional to the mass splitting in the SM
neutrino spectrum, η0B ∝ δm, to leading order in δm.
This is similar to the situation in standard hierarchical
leptogenesis, where the DI bound on the total CP asym-
metry parameter also turns out to be proportional to the SM
neutrino mass splitting [18]. An immediate consequence of
this proportionality, η0B ∝ δm=δM, is that, given the
numerical values of δm in Eq. (54), an inverted SM
neutrino mass ordering always requires a RHN mass
splitting that is roughly two orders of magnitude smaller

than in the case of a normal SM neutrino mass ordering,
δMIH ∼ 10−2δMNH. Therefore, if we speculate that UV
flavor models may be biased toward larger RHN mass
splittings, we are able to conclude that resonant lepto-
genesis tends to indicate a preference for the NH scenario
rather than the IH scenario. This is an interesting result in
light of the current low-energy neutrino data, which results
in a χ2 difference between the NH and IH global fits of
Δχ2 ¼ χ2IH − χ2NH ≃ 9.3 [84,85]. Together, these observa-
tions motivate us to assign higher priority to the NH case in
the following than to the IH case.
In our numerical parameter scan in Sec. III B, we will be

interested in assessing the maximal RHNmass splitting that
is compatible with the observed value of the baryon
asymmetry. For this reason, let us now consider the special
case zR ¼ π=4, which maximizes jη0Bj as a function of zR,

η0B ≈ −
Cδm

cosh ð2zIÞδM
ζð3Þm�M1

2πv2
X
α

Dα

zακα
: ð69Þ

From this expression, it is evident that jη0Bj decreases
exponentially as a function of jzIj for jzIj ≫ 1,

jzIj ≫ 1 ⇒ η0B ∝ e−2jzIj: ð70Þ

This suppression can be traced back to the suppression of
the CP asymmetry parameter in the case of large (and fine-
tuned) Yukawa couplings, εIα ∝ 1=ðyy†ÞII ∝ e−2jzIj for
jzIj ≫ 1 [see Eq. (17)]. The simple dependence of η0B on
cosh ð2zIÞ in Eq. (69) allows us to finally combine our
analysis of resonant leptogenesis with our previous dis-
cussion of the neutrino option. According to Eq. (58), the
neutrino option implies an approximate one-to-one relation
between M1 and cosh ð2zIÞ, such that

η0B ≈ −
C

16π3
δm
δM

ζð3Þm�mtotM4
1

v4μ20

X
α

Dα

zακα
; Γ1;2 ≪ ΔM ≪ M1;2: ð71Þ

This estimate for the baryon asymmetry is one of the main
results in this paper. It illustrates in one compact expression
how the type I seesaw model succeeds in unifying the
physics of neutrino masses, leptogenesis, and EWSB.
Roughly speaking, one may summarize the content of
Eq. (71) as follows: The factors δm, mtot, and Dα represent
the masses and flavor oscillations of the light SM neutrinos
at low energies; the factors C, δM, ζð3Þm�, M1, zα, and κα
account for resonant leptogenesis in the early Universe; and
the factors v and μ0 reflect the spontaneous breaking of EW
symmetry at the EW scale as well as the RHN threshold
corrections to the Higgs mass parameter.
Based on Eq. (71), we are now able to estimate the

RHN mass splitting δM that is required for successful

baryogenesis. For illustration, let us set the RHN mass M1

to its maximally allowed value [see Eq. (57)] and maximize
δM over theCP-violating phases δ and σ, while keeping the
PMNS mixing angles fixed at their respective best-fit
values given in Table II. We thus find

M1 ¼
�
9.4 × 106 GeV ðNHÞ
7.9 × 106 GeV ðIHÞ

⇒ δM ≃BFP
�
2.1 × 10−4 ðNHÞ
1.3 × 10−6 ðIHÞ ; ð72Þ

which translates into absolute mass splittings of ΔM ≃
2.0 × 103 GeV (NH) andΔM ≃ 10 GeV (IH), respectively.
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Note that these values mark the upper boundaries of the
viable M1 and δM ranges, meaning in particular that the
largest possible RHN mass splitting that we find is of
Oð103Þ GeV. If we allow the RHNmassM1 to vary by half
an order of magnitude [see Eq. (59)], the strong dependence
of η0B onM1 in Eq. (71), η0B ∝ M4

1, implies a variation of δM
by two orders of magnitude. The NH case is therefore
characterized by a relative RHN mass splitting in the range
δM ∼ 10−6 � � � 10−4, while in the IH case, we expect a mass
splitting in the range δM ∼ 10−8 � � � 10−6.
Next, let us consider the ΔM ≪ ΓI regime, where the

shape of the function fIJ in the CP asymmetry parameter

εðsÞIα is determined by the regulators Rosc
IJ and Rmix

IJ [see
Eqs. (35) and (38)]. We discuss this regime mostly for
completeness. From a conceptual point of view, it is less
appealing than the ΓI ≪ ΔM regime because of the strong
dependence on the regularization procedure, which intro-
duces a certain degree of theoretical uncertainty; and from a
phenomenological point of view, it is less appealing
because of the tiny RHN mass splitting that is required
for successful baryogenesis. The only difference in the case
of an extremely small mass splitting is that one should not

expand εðsÞIα in powers of ΓI [see Eq. (61)], but rather in
powers of δM. To leading order, this results in

ΔM≪ΓI

⇒
X
I

εðsÞIα ≈AαδM
8πv2

mtotM1

�
X

cosh2ð2zIÞ−δm2
þ 1

X

�
; ð73Þ

where X is a shorthand notation for the following function
of zR and zI in the complex z plane,

X ¼ cosh2ð2zIÞ − δm2cos2ð2zRÞ
2 cosh ð2zIÞ

: ð74Þ

Apart from this, all steps in the calculation remain the same.
In analogy to Eq. (68), we thus obtain

η0B ≈ CδM
32πv2ζð3Þm�

m2
totM1

�
X

cosh2ð2zIÞ − δm2
þ 1

X

�

×
δm sin ð2zRÞ

δm2cos2ð2zRÞ − cosh2ð2zIÞ
X
α

Dα

zακα
: ð75Þ

In order to facilitate the comparison with Eq. (69), let us
evaluate this expression at zR ¼ π=4,

η0B ≈ −
CYδmδM
cosh3ð2zIÞ

16πv2ζð3Þm�
m2

totM1

X
α

Dα

zακα
;

Y ¼ 5þ δm2

cosh2ð2zIÞ − δm2
: ð76Þ

Here, we introduced the function Y, which varies in the
range Y ≃ 5 � � � 6 in the NH scenario, and which is roughly
constant, Y ≃ 5, in the IH scenario. Finally, let us impose
the neutrino-option condition, which allows us to replace
cosh3ð2zIÞ by an expression in terms of M1 [see Eq. (58)],

η0B ≈ −
CY
32π5

δmδM
ζð3Þm�mtotM8

1

v4μ60

X
α

Dα

zακα
; ΔM ≪ Γ1;2 ≪ M1;2: ð77Þ

The expression in Eq. (77) is the ΔM ≪ ΓI equivalent of
our ΓI ≪ ΔM result in Eq. (71). The main difference
between these two results is the different scaling with δM,
M1, and μ0. While the result in Eq. (71) scales as
η0B ∝ δM−1μ−20 M4

1, we now find η0B ∝ δMμ−60 M8
1. For

ΔM ≪ ΓI , the baryon asymmetry is thus enhanced by a
factor M4

1=μ
4
0 and suppressed by a factor δM2 compared to

the expression in the ΓI ≪ ΔM regime. This leads to a
situation where successful baryogenesis can only be
achieved for a RHN mass splitting that is significantly
smaller than anything that we have encountered thus far,
δM ≪ 10−8. In our numerical parameter scan in Sec. III B,
we will therefore ignore the alternative solution in Eq. (77)
and focus on our first solution in Eq. (71) instead. In Fig. 2,
we show a comparison of our analytical estimates in
Eqs. (71) and (77) with the full numerical result for the
baryon asymmetry based on Eqs. (39). We find that, within
their respective ranges of applicability, both of our

analytical expressions are in excellent agreement with
the exact result.

B. Numerical parameter scan

Let us now cross-check and extend our analytical results
by means of a full-fledged numerical analysis. As in the
previous section, we are going to consider the conditions in
Eq. (50); this time, however, we will refrain from applying
any simplifying approximations and work with the full
expressions that we derived in Sec. II instead. In a first step,
we wish to perform a scan of our model in the complex z
plane. We are specifically interested in the region zR ∈
½0; πÞ and zI ∈ ½−2;þ2� (see Sec. II A). At each point in
this region, we would like to solve the leptogenesis and
neutrino-option constraints in Eq. (50) for the RHN
mass M1 and the RHN mass splitting δM ¼ ΔM=M1 ¼
ðM2 −M1Þ=M1 and determine the largest possible
mass splitting δMmax that is compatible with the current
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low-energy neutrino data. The fact that we decide to follow
this strategy is motivated by our theoretical prejudice that
exceptionally small mass splitting may be hard to come by
in concrete UV flavor models. That is, if the size of the
RHN mass splitting should, e.g., be related to the quality of
some approximate global flavor symmetry in the ultra-
violet, we would expect a bias toward larger mass splittings
that do not require a strong suppression of symmetry-
breaking effects at higher energies.
In order to find the maximal mass splitting δMmax as a

function of zR and zI, we allow the low-energy observables
in Table II to vary within their 3σ confidence ranges. As for
the CP-violating phase δ, which is currently only poorly
constrained by the data, we consider the full range of
possible values, δ ∈ ½0; 2πÞ. Similarly, we allow the CP-
violating phase σ, which is completely unconstrained at the
moment, to vary in the full range σ ∈ ½0; πÞ. In practice, we
implement the variation of the low-energy observables by
drawing random numbers from the respective ranges of
allowed values. Likewise, we let the discrete parameter ζ in
Eq. (13) randomly flip between ζ ¼ þ1 and ζ ¼ −1. At
each point in the complex z plane, we consider 106 different
combinations of possible values for the low-energy observ-
ables, and for each of these combinations, we solve the
constraints in Eq. (50) forM1 and δM. In Fig. 3, we present
our results for δMmax for both the NH and IH scenarios; in
Fig. 4, we show our solutions for δMmax andM1 in the NH
case next to each other. In view of our numerical results in
Figs. 3 and 4, several comments are in order:
(1) All plots in Figs. 3 and 4 display the symmetry and

reflection properties that we anticipated in Eq. (16).

Our results are thus invariant under the different
operations on the RHN Yukawa couplings
shown in Eq. (16). In particular, we observe that
the dependence of δMmax on zR is mostly controlled
by the sin ð2zRÞ term in Eq. (68), which stems from

the fact that the CP asymmetry parameter εðsÞIα in
Eq. (61) is proportional to Re½ðyy†Þ12� ∝ sin ð2zRÞ.
For 2zR=π ∈ Z, it is thus impossible to realize
successful baryogenesis, which explains why we

FIG. 3. Maximally allowed RHN mass splitting δMmax as a
function of zR and zI in the NH scenario (left panel) and in the IH
scenario (right panel). The solid contour lines represent the full
numerical result after varying the low-energy neutrino observ-
ables within their 3σ confidence intervals, while the dotted
contour lines correspond to fixed low-energy input parameters
(δ ¼ 3π=2, σ ¼ 0, and all other observables set to their best-fit
values in Table II). The white triangles indicate the locations of
the texture-zero flavor models discussed in Sec. III C at the same
benchmark point.

FIG. 2. Final baryon asymmetry η0B as a function of the relative
RHN neutrino mass splitting δM ¼ ΔM=M1 ¼ ðM2 −M1Þ=M1

at four representative points in the complex z plane. The RHN
mass M1 is always chosen so as to satisfy the neutrino-option
constraint in Eq. (48). All other parameters are fixed at their best-
fit values according to Table II. The analytical estimates at small
and large δM values are based on Eq. (71) and Eq. (77),
respectively. We find excellent agreement between the full
numerical result and our analytical estimates, except for δM
values close to the resonance peak, where the mass splitting is of
the order of the RHN decay widths, ΔM ∼ Γ1;2. Also, note how
varying the CIP parameter zI affects the solutions of the lepto-
genesis condition η0B ¼ ηobsB .

FIG. 4. Maximally allowed RHN mass splitting δMmax (left
panel) and corresponding RHN mass M1 (right panel) as
functions of zR and zI in the NH scenario after varying the
low-energy neutrino observables within their 3σ confidence
intervals. The white contour lines in the plot on the left-hand
side indicate the orbits of the texture-zero flavor models dis-
cussed in Sec. III C.
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fail to find solutions to the conditions in Eq. (50) on
this hypersurface in parameter space.

(2) The dependence of δMmax on zI is mostly controlled
by the by the cosh ð2zIÞ term in Eq. (69), which

reflects the fact that εðsÞIα is inversely proportional to
ðyy†ÞII ∝ cosh ð2zIÞ. Large values of jzIj therefore
lead to large and fine-tuned Yukawa couplings that

suppress the CP asymmetry parameter εðsÞIα . This
suppression can only be compensated for by a
smaller RHN mass splitting. On top of that, the
factor Dα in Eq. (67) also contributes to the
dependence of δMmax on zI,

Dα ¼
tanhð2zIÞ−Eα

1−Eα tanhð2zIÞ
; Eα¼

ζCα

Bα
: ð78Þ

The factor Dα has only little impact on the overall
magnitude of the final baryon asymmetry; its main
effect is that it modulates the sign of the LH-lepton-
doublet asymmetry ηlptgLα

. In the region 0 < zR < π=2,

we find that ηlptgLα
obtains positive values for

zI > zαI ¼ artanhðEαÞ=2, while it obtains negative
values for zI < zαI . In the NH case, this behavior
leads to a sign flip of the total baryon asymmetry at zI
values around zð0ÞI ≃ −0.6, which is consistent with
the values that one typically finds for the three critical
zI values zeI , z

μ
I , and z

τ
I . As a consequence, we are not

able to construct viable solutions to the conditions in

Eq. (50) for zI < zð0ÞI in the region 0 < zR < π=2 and

for zI > −zð0ÞI in the region π=2 < zR < π in the NH
case. In the IH scenario, a similar effect occurs;
however, in this case, the dependence of the excluded
region on zR and zI is more complicated. We will
comment on this further below.

(3) The z dependence of M1 in Fig. 4 is dictated by the
relation in Eq. (56). The dependence on zR in this
relation is suppressed by the small value of δM, such
that M1 effectively turns out to be a function of zI
only, M1 ∝ cosh−1=3ð2zIÞ [see Eq. (58)]. This
dependence is a direct consequence of the neutrino-
option constraint in Eq. (48), which can also be
written as

δM ≪ 1

⇒ 8π2v2μ20 ¼ Tr½mDm
†
D�M2

1 ≈ cosh ð2zIÞmtotM3
1:

ð79Þ
Here, the cosh ð2zIÞ factor is a consequence of the
relation ðyy†ÞII ∝ cosh ð2zIÞ, while the cubic power
of the RHNmass follows from the two powers ofM1

in Eq. (48) and the single power of M1 that relates
Tr½mDm

†
D� to the effective mass parameter m̃ [see

Eqs. (51) and (53)].

(4) The dotted contour lines in Fig. 3 are the outcome of
a restricted analysis based on δ ¼ 3π=2 and σ ¼ 0
and all other observables kept fixed at their best-fit
values in Table II. While these contour lines are also
generated by our numerical code, we are able to
confirm that they can be reproduced to excellent
precision by the analytical expressions in Eqs. (58)
and (68). In large parts of the complex z plane, the
dotted contour lines represent a good approximation
of the solid contour lines, which correspond to our
full numerical results after varying all low-energy
input parameters. This indicates that the variation of
the low-energy observables within their 3σ confi-
dence ranges only has a small effect on the outcome
of our analysis in a large part of parameter space.
A notable exception to this statement occurs in the
IH case in Fig. 3. For 0 < zR < π=2 and zI ≲ −1 as
well as for π=2 < zR < π and zI ≳ 1, we find a set of
solutions that cannot be reproduced by simply
assuming fixed input values for the low-energy
observables. We explicitly checked that this
deviation is not a numerical artifact, but a genuine
outcome of our numerical algorithm. We thus con-
clude that, in this region of parameter space, the
marginalization over the low-energy observables is
essential.

(5) Overall, we find very good agreement between the
results in Figs. 3 and 4 and our analytical estimates
in Sec. III A. As expected, the mass splitting varies in
the range δMmax ∼ 10−6 � � � 10−4 in the NH scenario
and in the range δMmax ∼ 10−8 � � � 10−6 in the IH
scenario. Because of this relative suppression by a
factor 10−2 (and because of the slight experimental
preference for a normal SM neutrino mass ordering),
we will no longer consider the IH case from now.
Regarding our numerical results for M1, we find
perfect agreement with Eqs. (57) and (58) by con-
struction. All M1 values are of Oð107Þ GeV and
spread across half an order of magnitude.

(6) As mentioned earlier, the CIP parameters zR and zI
can be regarded as the coordinates of the uncon-
strained theory space of flavor models that might act
as UV completions of the 2RHN seesaw. To illus-
trate this statement by means of a simple example,
we show the position of certain (toy) flavor models
in Figs. 3 and 4. We will elaborate on this in more
detail in Sec. III C.

Finally, we conclude this section by pointing out that our
scenario also manages to account for the generation of the
baryon asymmetry even if the CP-violating phases δ and σ
in the PMNS matrix are the only source of CP violation
during leptogenesis. This observation allows us to conclude
that our scenario is compatible with the concept of lepto-
genesis from low-energy CP violation [80,117–126]. To
show that this is the case all we have to do is to fix the CIP
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parameter zI at zI ¼ 0 in our numerical analysis. This
renders the matrix R in Eq. (13) real, such that δ and σ
are the only nontrivial complex phases that enter the RHN
Yukawa couplings yIα.

8 Once zI is set to zI ¼ 0, we are able
to perform a similar analysis as before.We scan the complex
z plane along the real zR direction, solve the conditions in
Eq. (50) for δM andM1 for random combinations of values
of the low-energy observables, and determine themaximally
allowed mass splitting δMmax.
The outcome of this analysis is shown in Fig. 5, where

we project our results for δMmax into the σ–δ plane as well
as into the sin2θ23–δ plane. Our motivation for picking
these projections is that sin2 θ23, δ, and σ represent
important observables that are expected to become better
constrained by experiments in the near future [1]. In both
plots in Fig. 5, δMmax varies only slightly around values of
Oð10−4Þ. This is in accord with our results in Fig. 3, where
we also consistently find δMmax ∼ 10−4 along the real zR
axis, and demonstrates once more the comparatively small
impact of varying the low-energy observables within their
3σ confidence ranges. The main message from Fig. 5
is that it is possible to solve the conditions in Eq. (50) for
δM and M1 across the entire ranges of sin2 θ23, δ, and σ
values. In particular, it is always possible to obtain the
correct sign of the baryon asymmetry, independently of the
values of δ and σ. The only exception to this statement
are small regions around the following six singular
points, where the baryon asymmetry vanishes identically:
ðδ;σÞ∈fð0;0Þ;ðπ;0Þ;ð2π;0Þ;ð0;πÞ;ðπ;πÞ;ð2π;πÞg. At these
points, CP invariance is not violated, such that there is no
source for the baryon asymmetry [127]. In their immediate
vicinity, there is not enough CP violation to reproduce the

observed value of the baryon asymmetry. Other than that, it
is always straightforward to realize leptogenesis from low-
energy CP violation in our scenario.

C. Flavor models and dark matter

Our scan of the complex z plane in Sec. III B can be
understood as a scan over all possible UV flavor models
that are consistent with the low-energy neutrino data. In the
following, we will illustrate this point by means of a simple
example—flavor models that are characterized by a single
texture zero in RHN Yukawa matrix yIα. The concept of
texture zeros in the Yukawa sector is well known from
QCD, where it can be used to successfully predict the
Cabbibo angle in the quark mixing matrix [128]. In the SM
neutrino sector, texture zeros in the Majorana mass
matrix mαβ have been extensively studied in the literature
[129–133]. The same is true for texture zeros in the Yukawa
matrix yIα; see, e.g., Refs. [57,58,118,134,135] for studies
of two-zero Yukawa textures in the 2RHN seesaw model.
Typically, texture zeros in a fermion Yukawa matrix are
assumed to be related to a flavor symmetry at high energies
(see, e.g., Ref. [136]), which demands that certain cou-
plings are exactly zero or significantly suppressed com-
pared to all other entries in the Yukawa matrix. This flavor
symmetry could, e.g., correspond to a Froggatt–Nielsen
flavor symmetry [137] with a flavor charge assignment
such that some Yukawa couplings end up being vanish-
ingly small.
In this section, we shall simply consider one texture zero

in the RHN Yukawa matrix yIα. Two texture zeros would
only be possible, if we assumed an inverted SM neutrino
mass hierarchy; more than two texture zeros are always in
conflict with the low-energy neutrino data in the 2RHN
seesaw. The requirement that one element in the matrix yIα
must vanish can then be used to determine the complex
rotation angle z. Let us denote by zζ1α and zζ2α those values
of z that lead to vanishing values for the couplings y1α
and y2α, respectively. Making use of the CIP in Eq. (13),
we find

zζ1α¼ arctan
�
−ζ

ffiffiffiffiffiffi
mk

ml

r
U�

αk

U�
αl

�
; zζ2α¼ arctan

�
þζ

ffiffiffiffiffiffi
ml

mk

r
U�

αl

U�
αk

�
;

ðk;lÞ¼
�ð2;3Þ ðNHÞ
ð1;2Þ ðIHÞ : ð80Þ

These expressions depend on the PMNS matrix U as well
as on the SM neutrino masses mi. However, in the
following, we will fix the SM neutrino masses and the
PMNS mixing angles at their best-fit values in Table II,
such that zζ1α and z

ζ
2α turn into functions of the CP-violating

phases δ and σ only. In Fig. 3, we evaluate these functions
at δ ¼ 3=2π and σ ¼ 0 and indicate the locations of the
twelve complex numbers zζ1α and z

ζ
2α, where α ¼ e, μ, τ and

ζ ¼ �1, in the complex z plane. Here, we use upwards and

FIG. 5. Maximally allowed RHN mass splitting δMmax as a
function of σ and δ (left panel) and of sin2 θ23 and δ (right panel)
for zI ¼ 0, i.e., for vanishing CP-violating phases at high
energies, after varying all other low-energy neutrino observables
within their 3σ confidence intervals.

8The overall factor i in Eq. (13) corresponds to a global phase
that does not affect any of our results.
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downwards pointing triangles to distinguish between the
ζ ¼ þ1 and ζ ¼ −1 solutions, respectively. In Fig. 4, on
the other hand, we generate the full orbits of these flavor
models in the complex z plane by varying δ and σ in the
ranges δ ∈ ½0; 2πÞ and σ ∈ ½0; πÞ. In this sense, both figures
demonstrate in an illustrative manner how the complex z
plane can be understood as a map of the landscape of
possible flavor models. Figure 3 allows us, in particular, to
conclude that it is not possible to simultaneously demand
the following four things in our model: (i) a successful
solution to the leptogenesis and neutrino-option con-
straints, (ii) δ ¼ 3=2π and σ ¼ 0, (iii) a normal SM
neutrino mass ordering, and (iv) a vanishing RHN
Yukawa coupling to the LH lepton doublet Le.
Meanwhile, we can read off from Fig. 4 that a vanishing
Yukawa coupling yIe can be easily realized as soon as we
relax our assumptions on δ and σ. These statements are just
simple examples of how our plots in Sec. III B can help to
constrain possible embeddings of the 2RHN seesaw into
UV flavor models. We expect that more complicated flavor
models may give rise to a richer structure in the complex z
plane that would allow for even more complex conclusions.
We leave such an investigation of alternative flavor models
for future work. In particular, it would be interesting to
assess whether there are entire classes of models that are
preferred or ruled out by our scenario.
Finally, let us comment on dark matter. Throughout this

work, we referred several times to the possibility that, upon
extending our RHN particle content by a keV-scale state,
the type I seesaw model could in addition to neutrino
masses, baryon asymmetry, and EW scale also account for
dark matter. The simplest realization of keV-scale dark
matter, compatible with the type I seesaw Lagrangian
employed in this work, was proposed by Dodelson and
Widrow [59]. These authors concluded that the amount of
dark matter consistent with observations can be produced
by collision processes, provided nonzero mixing between
the active and sterile neutrino states. However, despite its
simplicity and minimality, this scenario is nowadays
excluded by the combined constraints from structure
formation [138], supernova 1987A data [139,140], and
X-ray searches [141].9 The minimal scenario for keV-scale
sterile-neutrino dark matter that is compatible with present
limits is therefore resonant production à la Shi and Fuller
[60]. In this scenario, the mixing between active and sterile
states can be enhanced because of lepton number asym-
metries, which results in the well-known Mikheev–
Smirnov–Wolfenstein (MSW) effect [144–146]. The viable
parameter space of the Shi–Fuller mechanism is currently

probed by on-going astrophysical observations (see, e.g.,
Ref. [147]).
Resonant sterile-neutrino production is a basic ingredient

of the so-called neutrino minimal Standard Model (νMSM)
[148,149], which successfully combines the physics of
neutrino masses, dark matter, and baryogenesis solely
based on the type I seesaw Lagrangian. In the νMSM,
the oscillations of GeV-scale sterile neutrinos are respon-
sible for the generation of primordial lepton asymmetries
via the Akhmedov–Rubakov–Smirnov (ARS) mechanism
[150] (see Ref. [151] for very recent work on this topic),
which then set the stage for the production of keV-scale
sterile-neutrino dark matter. Given the similarity between
the νMSM and our setup, it would be interesting to
investigate the possibility of an extended type I seesaw
sector featuring a split RHN spectrum. That is, if the RHN
spectrum should contain states with masses in the PeV,
GeV, and keV range, one could attempt to simultaneously
realize (i) the generation of the EW scale via RHN
threshold corrections, (ii) baryogenesis via a combination
of resonant and ARS leptogenesis, and (iii) the production
of keV-scale sterile-neutrino dark matter via the Shi–Fuller
mechanism. Alternatively, one should study in more detail
whether the scenario of resonant leptogenesis explored in
this paper might not suffice to generate the lepton number
asymmetries needed for DM production. In this case, one
would be able to bypass the ARS mechanism at lower
energies and would not need to introduce GeV-scale states
in the RHN spectrum. Both of these scenarios go beyond
the scope of this paper and deserve more attention in future
work. In passing, we note that keV-scale sterile-neutrino
dark matter was also explored in gauge [152,153] and
scalar extensions [154–158]. The latter are particularly
appealing because the realization of scale-invariant boun-
dary conditions calls for an extended scalar sector.

IV. CONCLUSIONS AND OUTLOOK

RH neutrinos are key players in the field of BSM model
building, which allow one to address several shortcomings
of the Standard Model at the same time. In this paper, we
have considered two viable RHN scenarios that manage to
simultaneously explain (i) the SM neutrino oscillations,
(ii) the baryon asymmetry of the Universe, and (iii) the
origin of all SM particle masses. The first scenario, which
we dubbed the Dirac-neutrino option, is based on the
assumption that the RHN sector preserves lepton number.
In this case, neutrinos turn into massive Dirac fermions in
consequence of the Higgs mechanism, baryogenesis might
proceed via neutrinogenesis, and the EW scale plays the
role of a universal mass scale that determines the masses of
all SM particles. The Dirac-neutrino option, however,
suffers from (i) exceptionally small RHN Yukawa cou-
plings, (ii) a missing connection between baryogenesis at
high energies and the phenomenology of neutrino oscil-
lations at low energies, and (iii) the fact that the EW scale

9In view of the recently discovered unidentified x-ray line at
around 3.55 keV [142,143], x-ray searches have led to a strong
interest in this type of dark matter, which could radiatively decay
into pairs of photons and active neutrinos.
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should likely not be considered a fundamental scale, given
the absence of signals for new physics in current experi-
ments. Motivated by these observations, we therefore
turned to a second scenario based on an alternative under-
lying symmetry principle. This second scenario, which we
dubbed the Majorana-neutrino option, postulates that the
SM Lagrangian satisfies scale-invariant boundary condi-
tions in the ultraviolet, whereas the RHN sector is allowed
to feature Majorana masses for the RH neutrinos that
explicitly break classical scale invariance and lepton
number. In this scenario, the Higgs mass parameter in
the Higgs potential is forbidden at tree level and only
induced via RHN one-loop threshold corrections. As a
consequence, the RHN mass scale replaces the EW scale as
the input scale that translates into the masses of all SM
particles. This observation may be taken as a sign that the
scale of new physics should, in fact, not be sought close to
the EW scale but rather at energies above RHN thresholds.
The RH neutrinos should then be regarded as messengers
between the Standard Model and the BSM sector in this
framework.
According to the Majorana-neutrino option, the SM

neutrinos obtain small masses via the type I seesaw
mechanism. Moreover, it can be shown that the generation
of the Higgs mass term (with the correct magnitude and the
correct sign) requires RHN masses of Oð107Þ GeV. Our
main contribution in this paper was to show that these
two features of the type I seesaw model are compatible
with baryogenesis via resonant leptogenesis. We focused
on the minimal type I seesaw model involving only two
RH neutrinos and studied resonant leptogenesis both
from an analytical and a numerical perspective. We
found excellent agreement between our two approaches
and concluded that resonant leptogenesis succeeds in
explaining the baryon asymmetry of the Universe for an
absolute RHN mass splitting as large as ΔM ∼ 103 GeV,
or equivalently, for a relative RHN mass splitting as large
as δM ∼ 10−4. These values apply in the case of a
normally ordered SM neutrino mass spectrum. In the
case of an inversely ordered SM neutrino mass spectrum,
we found an additional suppression by a factor of
Oð102Þ. In addition, it is interesting to note that the
success of resonant leptogenesis is not contingent on the
presence of additional sources of CP violation at high
energies. We could show that the leptonic CP violation
encoded in the PMNS matrix is enough to explain the
observed baryon asymmetry. In light of these results, we
arrive at the conclusion that the type I seesaw can not
only explain the masses of all known particles but also
the cosmological relic density of matter. In this sense, the
type I seesaw may be regarded as the origin of all mass
and matter in the Universe. This statement might even
extend to dark matter if the type I seesaw sector should
also contain a RHN state with a mass at the keV scale
whose relic density accounts for dark matter.

The production of keV-scale sterile-neutrino dark matter
in our scenario should be investigated more carefully in
future work. Similarly, it would be interesting to extend our
discussion of flavor models in Sec. III and assess which
classes of flavor models turn out to be favored or disfavored
by our scenario. In this paper, we merely restricted
ourselves to a class of simple texture-zero models that
allowed us to illustrate the physical meaning of our
parameter plots in Figs. 3 and 4. In particular, it would
be worthwhile to seek an embedding of the type I seesaw in
a flavor model that automatically explains the small
splitting among the RHN mass eigenvalues. Besides that,
there are several further directions in which our analysis
could be extended: (i) The renormalization scheme depend-
ence of the RHN threshold corrections should be cross-
checked by explicit higher-order computations in the type I
seesaw model. (ii) One should repeat our analysis in the
3RHN seesaw model and study to which extent this model
enables one to loosen the parameter constraints that we
derived in this work. (iii) Finally, one should embed the
type I seesaw in a fully scale-invariant UV completion that
explains how the RHN masses originate from the sponta-
neous breaking of classical scale invariance. Such a UV-
complete model will necessarily feature an extended scalar
sector, and it would be interesting to study the conse-
quences of this extended scalar sector for leptogenesis.
All of these questions are, however, beyond the scope of
this work. We conclude by emphasizing that the type I
seesaw model is a truly intriguing extension of the Standard
Model. Despite the fact that it has been around for some
40 years, it still calls for further exploration and promises
further surprises.
The lower bound on M1 is associated with the fact that

the baryon asymmetry becomes exponentially suppressed
at large values of jzIj [see Eq. (70)]. This suppression can
only be compensated for by resorting to smaller mass
splitting δM up to the point where one reaches the
resonance peak in Fig. 2 [see also Eq. (60)]. Beyond that
point, it is no longer possible to realize successful lepto-
genesis because of a strongly suppressed CP asymmetry
parameter. By extending our numerical parameter scan to
larger values of jzIj, we are able to locate this boundary
of the viable parameter region in the complex z plane. In
the NH scenario, we find that M1 and δM can become as
small as Mmin

1 ≃ 1.0 PeV and δMmin ≃ 1.0 × 10−8 around
zmax
I ≃ 3.7, while in the IH scenario, we obtain Mmin

1 ≃
1.8 PeV and δMmin ≃ 5.4 × 10−9 around zmax

I ≃ 2.5. Our
bounds on M1 and zI are thus more or less consistent with
those in Ref. [159]. They just appear to be slightly weaker;
this may be related to details such as the sphaleron
conversion factor [see Eq. (25)] or the fact that the analysis
in Ref. [159] accounts for the running of the SM neutrino
masses. Besides that, we observe that the mass splitting
quoted in Ref. [159], δM ∼ 10−8, actually corresponds to
the smallest possible value that is consistent with resonant
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leptogenesis and the neutrino option. As we have demon-
strated in our paper, the RHN mass splitting can, in fact,
become as large as δM ∼ 10−4 (see Fig. 3).
The upper bounds on zI can also be estimated

analytically based on the expressions in Sec. III A. It is
easy to show that, at large jzIj, the CP asymmetry

parameter εðsÞIα attains a maximal resonant enhancement
for ΔM=Γ1 ≃ ΔM=Γ2 ≃ 0.616. In analogy to Eq. (66) and
setting zR → π=4, we are therefore able to write the final
baryon asymmetry at the resonance peak as follows,

η0B ≈ −CF
ζð3Þm�
mtot

2δm
cosh2ð2zIÞ

X
α

Dα

zακα
: ð81Þ

Here, the numerical factor F corresponds to the difference
f21 − f12 [see Eq. (37)] that appears in the CP asymmetry
parameter, evaluated at the resonance peak and at large jzIj,
such that Γ1 ≃ Γ2,

F ¼
�

x
1þ x2

þ 4x
1þ 4x2

þOðy2Þ
�
x≃0.616

≃ 1.425;

x ¼ ΔM
Γ1

; y ¼ Γ1

M1

: ð82Þ

Making use of Eq. (81), one can then solve the leptogenesis
constraint η0B ¼ ηobsB for zI. For instance, for the benchmark
point discussed in Sec. III (i.e., for δ ¼ 3π=2, σ ¼ 0, and all
other observables set to their best-fit values in Table II), we
obtain zmax

I ≃ 3.5 and zmax
I ≃ 2.3 in the NH and IH cases,

respectively. These values agree with our numerical results
up to a deviation of less than 10%, which reflects the impact
of marginalizing over the low-energy input parameters in
our numerical analysis.
Finally, we mention that Ref. [159] also contains a brief

discussion of the upper bound onM1, which is more or less
consistent with our findings. However, regarding the
required RHN mass splitting in the case of close-to-
maximal M1 values, the authors of Ref. [159] refrain from
performing a quantitative analysis. Instead, they restrict
themselves to the qualitative statement that δM does not
necessarily need to be as small as δM ∼ 10−8 for larger M1

values. In this sense, the mass splitting stated in the abstract

of Ref. [159], δM ∼ 10−8, must be understood as a lower
bound on the mass splitting that is necessary for successful
leptogenesis. As we have shown in our analysis, δM can, in
fact, be as large as δM ∼ 10−4 and δM ∼ 10−6 for NH and
IH, respectively.
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Note added.—During the final stages of our project, we
became aware of work by Ilaria Brivio, Kristian Moffat,
Silvia Pascoli, Serguey T. Petcov, and Jessica Turner [159]
that is closely related to ours. Here, we comment on the
relation betweenour results and those obtained inRef. [159].
The authors of Ref. [159] arrive at the conclusion that
resonant leptogenesis in the context of the Majorana-
neutrino option requires a relative mass splitting of
δM ∼ 10−8. In addition, they derive a lower bound Mmin

1

on the RHN massM1 ofMmin
1 ≃ 1.2 PeV in the NH case as

well as of Mmin
1 ≃ 2.4 PeV in the IH case. According to

Ref. [159], these values ofM1 are realized at zmax
I ≃ 3.3 and

zmax
I ≃ 2.1, respectively, i.e., at values of the CIP parameter
zI larger than those that we considered in this paper.
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