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We formulate a generalization of Higgs effective field theory (HEFT) including an arbitrary number
of extra neutral and charged Higgs bosons—a generalized HEFT (GHEFT)—to describe nonminimal
electroweak symmetry breaking models. Using the geometrical form of the GHEFT Lagrangian, which can
be regarded as a nonlinear sigma model on a scalar manifold, it is shown that the scalar boson scattering
amplitudes are described in terms of the Riemann curvature tensor (geometry) of the scalar manifold and
the covariant derivatives of the potential. The coefficients of the one-loop divergent terms in the oblique
correction parameters S and U can also be written in terms of the Killing vectors (symmetry) and the
Riemann curvature tensor (geometry). It is found that the perturbative unitarity of the scattering amplitudes
involving the Higgs bosons and the longitudinal gauge bosons demands that the scalar manifold be flat. The
relationship between the finiteness of the electroweak oblique corrections and the perturbative unitarity of
the scattering amplitudes is also clarified in this language: we verify that once the tree-level unitarity is
ensured, the one-loop finiteness of the oblique correction parameters S and U is automatically guaranteed.

DOI: 10.1103/PhysRevD.100.075020

I. INTRODUCTION

What is the origin of electroweak symmetry breaking
(EWSB)? In the standard model (SM) of particle physics,
EWSB is caused by a vacuum expectation value of a
complex scalar field (the SM Higgs field), which linearly
transforms under the SU(2),, x U(1), electroweak gauge
symmetry. The Higgs sector of the SM is constructed to be
minimal, as it includes only a scalar boson (SM Higgs
boson) and three would-be Nambu-Goldstone bosons eaten
by massive gauge bosons after EWSB. There are no cousin
particles of the Higgs in the SM. The scalar particle
discovered by the ATLAS and CMS experiments in
2012 with a mass of 125 GeV [1,2] can now be successfully
interpreted as the SM(-like) Higgs boson.
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The Higgs sector in the SM, however, does not ensure the
stability of the EWSB scale against quantum corrections. In
other words, the SM itself cannot explain why the EWSB
scale is of the order of 100 GeV, which is much smaller than
its cutoff scale, e.g., the Planck scale (~10'" GeV) or the
grand unification scale (~10'® GeV). Thus, the SM Higgs
sector is inherently incomplete and should be extended.
Many extensions/generalizations of the SM Higgs sector—
such as the two-Higgs-doublet model [3—24], composite
Higgs models [25-34], and the Georgi-Machacek model
[35-38]—have been proposed. The 125 GeV Higgs boson
accompanies extra Higgs particles in these scenarios.

The effective field theory (EFT) approach is widely used
to study these beyond-the-SM (BSM) physics in a model-
independent manner. The physics below 1 TeV can be
described by the standard model effective field theory
(SMEFT) [39-66], which parametrizes the BSM contribu-
tions using the coefficients of SM field higher-dimensional
operators. The SMEFT is successful if the BSM particles
are much heavier than 1 TeV and they decouple from the
low-energy physics. The SMEFT cannot be applied, how-
ever, if the heavy BSM particles do not decouple from
the low-energy physics. The Higgs effective field theory
(HEFT) [67-83] should be applied instead. These existing
EFTs cannot be applied if there exist BSM particles lighter
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than 1 TeV. We should include these BSM particles
explicitly in the EFT approach.

In this paper, we propose a generalization of the HEFT
(GHEFT) for this purpose. As in the HEFT, the GHEFT is
based on electroweak chiral perturbation theory (EWChPT)
[84-89]. In the GHEFT, the BSM particles, as well as the
125 GeV Higgs boson, are introduced as matter particles in
the Callan-Coleman-Wess-Zumino (CCWZ) construction
[90-92] of EWChPT.

Note that the longitudinal gauge boson scattering ampli-
tudes exceed perturbative unitarity limits at high energy in
the EWChPT. The GHEFT couplings should satisfy special
conditions—known as the unitarity sum rules [93-95]—to
keep the amplitudes perturbative in the high-energy scat-
terings if the model is considered to be ultraviolet (UV)
complete. We also note that the EWChPT is not renorma-
lizable. The UV-completed GHEFT couplings should
satisfy the finiteness conditions in order to cancel these
UV divergences.

The GHEFT can also be described in a geometrical
language using the scalar manifold metric, as discussed in
Refs. [96,97] in the HEFT context. We point out that both the
scalar scattering amplitudes and the one-loop UV divergen-
ces in the electroweak oblique correction parameters S and U
[98] are described by using the Riemann curvature tensor
(geometry) and the Killing vectors (symmetry) of the scalar
manifold. Therefore, both the unitarity sum rules and the
oblique correction finiteness conditions are described in
terms of geometry and symmetry. We find that perturbative
unitarity is ensured by the flatness of the scalar manifold
(vanishing Riemann curvature). We also find that the
divergences in the oblique correction parameters (S and U
parameters) are canceled if a subset of the perturbative
unitarity conditions and the SU(2),, x U(1), gauge sym-
metry are satisfied. These findings generalize our previous
observation [99] which relates perturbative unitarity to the
one-loop finiteness of the oblique correction parameters.1

This paper is organized as follows. In Sec. II we
introduce the GHEFT Lagrangian at its lowest order
[O(p?)]. We investigate the scalar boson scattering ampli-
tudes in Sec. IIl. Sections IV and V present one-loop
computations with and without the gauge boson contribu-
tions. The relationship between perturbative unitarity and
the one-loop finiteness of the oblique correction parameters
is clarified in Sec. VI. We conclude in Sec. VII.

II. GENERALIZED HEFT LAGRANGIAN
OF SUQ2)y xU(1)y » U(1)

EWCHhPT [84-89] provides a systematic framework
to describe the low-energy phenomenologies of electro-
weak symmetry breaking physics. It utilizes the electro-
weak chiral Lagrangian method for parametrizing the

'Possible relations between unitarity and renormalizability have
also been investigated in gravity models. See Refs. [100-104].

nondecoupling corrections, which appear ubiquitously in
models with a strongly interacting electroweak symmetry
breaking sector. Although the original version of the
EWChHPT was constructed to be a Higgsless theory [84-87,
94,95,105-114], after the discovery of the 125 GeV Higgs
particle the EWChPT was extended to the HEFT [67-83],
incorporating the 125 GeV Higgs particle & as a neutral
spin-0 matter particle in the electroweak chiral Lagrangian.
Introducing functions the F(h) and V(h) which para-
metrize the phenomenological properties of the 125 GeV
Higgs, the HEFT provides a systematic description of a
neutral spin-0 particle in the electroweak symmetry break-
ing sector, including the one-loop radiative corrections
[72—-83]. It can parametrize the low-energy properties of the
125 GeV Higgs particle in both the strongly and weakly
interacting model context.

We need to generalize the HEFT further if we want to
introduce extra Higgs particles other than the discovered
125 GeV Higgs particle. It is not trivial to introduce
nonsinglet extra particles into the EWChPT, however, since
the electroweak gauge symmetry SU(2)y x U(l), is
realized nonlinearly in the EWChPT. The interaction
Lagrangian needs to be arranged carefully to make the
theory invariant under the electroweak gauge symmetry
SUR2)yw xU(1)y.

These extra nonsinglet Higgs particles can be regarded
as matter particles in the EWChPT Lagrangian context. The
CCWZ formulation [90-92] provides an ideal framework
for the concrete construction of the matter particle inter-
action Lagrangian in a manner consistent with the sym-
metry structure of the nonlinear sigma model. See, e.g.,
Refs. [115,116] for earlier studies on these nonsinglet
matter particles in QCD chiral perturbation theory and
EWChPT, respectively.

In this section, we use the CCWZ formulation to
construct the GHEFT Lagrangian.

A. Electroweak chiral Lagrangian

For simplicity, in this subsection we consider the
EWChPT Lagrangian in the gaugeless limit, i.e., gy =
gy = 0. The couplings with the electroweak gauge fields
will be introduced in Sec. I C. The electroweak symmetry
G = [SU(2)y, x U(1)y] is broken spontaneously to the
H = U(1),,, symmetry in the SM Higgs sector. The most
general scalar sector Lagrangian consistent with the
symmetry-breaking structure G/H = [SU(2)y, x U(1)y]/
U(1),, can be constructed as the CCWZ nonlinear sigma
model Lagrangian on the coset space G/H. The coset
manifold G/H = [SU(2)y, x U(1)y]/U(1),, is parame-
terized by the Nambu-Goldstone (NG) boson fields z¢
(a=1,2,3)as

ul) e (1 L (0 5 ) m

a=12
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T

() = exp(iw0 7). @)

where 7 (a = 1, 2, 3) are the Pauli spin matrices. Under the
G = [SU(2)y x U(1)y] transformation,

gw € SUQ2)y gy € U(1)y, 3)

these NG boson fields transform as
Sw(x) — aw(x) = Qw‘fw(x)f)#(”v Gw- Gy ) (4)

&y(x) = &y (x) = b(m, gw, Qy)fy(x)g;- (5)

Here §(r, gy, gy) is an element of the unbroken group H,
which is determined to pull the coset space coordinates
(Ew, Ey) back to their original forms (1) and (2). Note that
the H transformation §(z, gy, gy) depends not only on the
SU(2)y and U(1)y elements gy, and gy, but also on the NG
boson fields z(x). The NG boson fields z¢ (a =1, 2, 3)
therefore transform nonlinearly under the G symmetry.

It is useful to introduce objects called Maurer-Cartan
(MC) one-forms, ajﬂ (a =1, 2, 3), defined as

a, =~ =12 ©

and

o, = {5*(,@) }w[ (0,60)E} } 7)

Although the NG boson fields z transform nonlinearly,
these MC one-forms transform homogeneously, i.e.,

Zalﬂ*—’f) 7, 8w, 8y <ZU‘L,4 2) . 8w 8y),
a=1,2 a=1,2
(8)

3 3

@5 = b an) (@, 5 )0 mawean). ©)

under the G symmetry. We see that the MC one-forms
transform as

i, = lpa()yal,. (10)
with p,(}h) being a 3 x 3 matrix,

pa(h) = exp(igh(ﬂ’ aw, gY)Qa),
3
h =exp <i9h(m aw- Gy) %) (11)

In Eq. (10) and hereafter, the summation ) ,_,,3 is
implied whenever an index b is repeated in a product.
Here the NG boson charge matrix Q,, is defined by

0. = (“’2 0), (12)

with o, being the Pauli spin matrix,

6y = <J(:l_ I)i>. (13)

It is now straightforward to construct the lowest-order
[O(p?)] G-invariant Lagrangian of the NG bosons:

1 0 b
Eﬂ :EGEIIJ)(XL/A(XL”’ (14)

with

The Lagrangian can be rewritten as

L, = %ztr[(aﬂUT)(af‘U)}

Y < v (U (0,U)S Ut (04 U)7),  (16)

with
U :=Eyéy. (17)

It should be emphasized here that » and v, (the decay
constants of z'? and #°) are independently adjustable
parameters in the EWChPT on the G/H = [SU(2)y, x
U(1),]/U(1),,, coset space. The phenomenologically pre-
ferred relation

[}

pi=—=1 (18)

§|§
N

is realized only by a parameter tuning as v ~ v, in this
setup.

It is possible to introduce custodial symmetry to justify the
tuning. The standard model, in fact, possesses the custodial
symmetry in its gaugeless and Yukawa-less limit. See, e.g.,
Ref. [117] for the HEFT power-counting rules and how custodial-
symmetry-violating terms are organized therein. We do not
introduce the custodial symmetry here, however, since it is not
relevant to the main findings in the present paper. The restrictions
on the GHEFT Lagrangian parameters coming from the custodial
requirements and their power-counting rules will be studied in a
separate publication.
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B. Matter particles coupled with the electroweak
chiral Lagrangian

Thanks to the homogeneous transformation properties
of the MC one-forms (10), matter particles can be easily
introduced into the CCWZ formulation of the EWChPT
Lagrangian (16).

We consider a set of real scalar matter fields ¢, which
transforms homogeneously as

¢ = lpy (O’ (19)

under the unbroken group H. Here p,(h) stands for a
representation matrix,

3
pu6) =exp(i0,0,). H=exp(0,5).  (20)

with Q, being a Hermitian matrix. Note here that the §
transformation depends on the NG boson fields z(x). It is
therefore a local transformation depending on the space-
time point x. If the set of scalar matter particles consists
of ny species of neutral particles and n. species of
charged particles, the matrix Q4 can be expressed as a
(2n¢ + ny) X (2ne + ny) matrix,

—q102

Q¢ _ _anO-Z ) (21)

0

Here ¢; (i = 1,2, ...n¢) are the charges of the scalar matter
particles. Since § is a local transformation, 3,44)1 transforms
nonhomogeneously under . In order to write a kinetic term
for the matter field ¢/, we therefore introduce a covariant
derivative of the matter field ¢’:

(Dud)' =0,0" +V3[0,) y".  (1.J=1.2,...2nc+ny).

(22)

We take the connection Vf, as

Vi = —tr B (8,451/)5;13} + caiﬂ, (23)

with ¢ being an arbitrary constant. Hereafter we take ¢ = 0
for simplicity. The covariant derivative (22) transforms
homogeneously,

(Duh)' = o)) (D)’ (24)

as we intended. It is now straightforward to write down an
O(p?*) EWChPT Lagrangian including additional scalar
bosons with arbitrary charges:

LR a
L= 3 G, a) + Gyaf, (D )

1

2

Gy (Dug) (D' )’ = V. (25)

Here G, G,;, G;;, and V are functions of the scalar fields
¢'. Also, G, G,;, and G, transform homogeneously as
multiplets of corresponding representations. They satisfy3

Gw| =G, Gu| =0 G, =&,
$=0 =0 $=0
(26)
and
9 g 0
—~ v =o, — v =M, (27
8¢I =0 8¢J 6451 =0 Y1 ( )

with M, being the ¢’ boson mass. The second and third
conditions in Eq. (26) can be achieved by redefining the
scalar field ¢’ in the Lagrangian. The first condition in
Eq. (26) ensures that the extended Lagrangian (25) repro-
duces the lowest-order EWChPT Lagrangian (14) in the
absence of Higgs particles ¢/. The stability around the
vacuum ¢ = 0 is guaranteed by the conditions (27).

C. Electroweak gauge fields

It is easy to introduce the electroweak gauge fields Wy,
(@a=1,2,3) and B, into our EWChPT Lagrangian (25).
When the gauge coupling is switched on, we just need to
replace the derivatives 9,&y and 9,&y by the covariant
derivatives:

Ttl

Dy = 0,&w — igwW, ng’ (28)
3
D&y = 0,&y + igyéyB, 5 (29)

with gy and gy being the SU(2),, and U(l), gauge
coupling strengths, respectively.

The lowest-order [O(p?)] GHEFT Lagrangian is
therefore

3Equations (26) and (27) are understood to be the tree-level
matching conditions between the GHEFT and EWChPT. They
may be modified beyond the tree level. See, e.g., Refs. [118,119].
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1 ~ra Ab ~a
L= EGahalﬂaf + G, (D )

+3Gu(D, ) (D)~
- % Wi W = %B,wB””, (30)
with
1. o
af,=tr [75@(@,5@1“] —gwtr [S@Wﬁgéwr“} (a=1,2)
(31)

and
1 1
&L =tr [7 f&/(aﬂfw)fﬂ +u {7 (au‘fY)é:;r’T3]

i 7’
— gwtr [gwwg 5§W13] + gyB,. (32)

We define the covariant derivative of the matter fields
(Dup)" as

(Dﬂ‘ﬁ)l = 8}4¢1 + ﬂ,\}z[Q(ﬁ]IjgsJ? (33)

with
V- _ Lo T3 — gyB 34
" tr i( Méy)fyf gyby,. (34)

It should be noted that the GHEFT Lagrangian (30)
reproduces the HEFT Lagrangian [67-83] for ny = 1 and
ne = 0. Here ¢'=" stands for the 125 GeV Higgs boson
field. In the HEFT, G,; and G, are taken as

Gy =0, Gpy=1. (35)

G, 1s tuned to be

v
G =

Z}'(h)éab. (36)

D. Geometrical form of the O(p?)
GHEFT Lagrangian

The lowest-order [O(p?)] GHEFT Lagrangian (30) can
also be expressed in a geometrical form:

1 . , 1 1
L= 295D D P =V () = Wi, W — B, B".

(37)

where ¢’ stands for a scalar field multiplet containing
both Higgs bosons ¢’ and the NG bosons z¢ as its
components, i.e.,

{9} = {=*.¢'}. (38)

The geometrical form of the GHEFT Lagrangian (37) can
be understood as a gauged nonlinear sigma model on a
scalar manifold. The scalar manifold (internal space)
is parameterized by the scalar multiplet ¢'. Both the
metric g;;(¢) and the potential V(¢) are functions of ¢'.
They should be invariant under the SU(2)y x U(1)y
transformation:

0 = wigijx + Wh) 95 + (WE) ;i (39)
0= ygiix+ %) o + (yk),jgikv (40)
0= w’;V’k, (41)
0= ykv,kv (42)
with
0 0
Gijk = ngj, V= W v,
0 0
kY = i k kY = i k' 43
(Wll).l a¢l Wa’ (y ),l a¢ly ( )

The SU(2),, and U(1)y Killing vectors are denoted by wk
(a =1, 2, 3) and Y, respectively, in Egs. (39)—(42). The
GHEFT Lagrangian (30) provides the most general and
systematic method to construct the geometrical form of the
Lagrangian (37) with the symmetry properties (39)—(42).
The translation dictionary from the GHEFT Lagrangian
(30) to the geometrical form (37) is given in Appendix A.
The SU(2), x U(1)y gauge interactions are introduced
into the scalar sector through the covariant derivative

Dﬂ¢i = au¢i + gWWZWla(¢> + gYBﬂyl(¢> (44)

It should be noted that the gauge fields interact with the
scalar sector through the SU(2), x U(1)y Killing vectors
wi, and y'.

The scalar potential V(¢) should be minimized at the
point where

(@) =" (45)
We hereafter call the point Eq. (45) the vacuum. Note that,
since the electroweak symmetry is spontaneously broken at
the vacuum, the vacuum ¢’ = ¢ cannot be a fixed point of
the SU(2)y, x U(1), transformation, i.e.,

wi(@) #£0,  yi(p)#0. (46)
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However, it should be a fixed point of the U(1),,, trans-
formation,

wi(g) +¥'(4) = 0. (47)

The electroweak gauge bosons (W and Z) acquire masses,

M3y, & Gy g, (B)W (D)W ().
M} « (g3 + 9%/)9:’1((1_5)“’5 (@Wé(ff_’) (48)

Therefore, Killing vectors at the vacuum (46) play the role
of the Higgs vacuum expectation value in the SM. It should
be emphasized that the vanishing scalar vacuum expect-
ation value ¢»' = 0 does not imply the recovery of electro-
weak symmetry in the GHEFT Lagrangian. Actually, in the
GHEFT coordinate (38), even though all of the vacuum
expectation values of the scalar fields vanish (¢’ = 0), the
electroweak symmetry is still spontaneously broken by the
nonvanishing Killing vectors at the vacuum (46).

The dynamical excitation fields ¢’ are obtained after
expanding around the vacuum,

P=¢+9. (49)

The scalar manifold metric g;; is expanded as

9ij = Gij + Gijat* + %g_ij,kaQDI +-- (50)
with
Gij = 9ij(P). Gijk = %sz(fﬁ)‘ >
b=¢
Jijki = %%gzj((ﬁ)‘(ﬁq; s (51)

In a similar manner, the potential term is expanded as

TR SUR I B SRR Pk
V)=V +V,p'+-V,p (PJJF*,V,ijk(O 7

2 3
1.
+ZVWMW¢¢+~n (52)
with
_ _ 0
V=4 , V= i% ,
- 9 =g
_ o 0
V.i' = ——lV N (53)
/ 84)] a¢ {/):(/_)

Since the potential V' is minimized at the point where the
potential should satisfy

V,=0. (54)

The scalar manifold is parameterized by the scalar field
multiplet ¢’. Hereafter, we normalize/diagonalize the
coordinates ¢’ as

gij = 0jj (55)
and

Vi =8;m? (56)

\ij ij
so that the excitation fields ¢’ are canonically normalized
and diagonalized.

III. SCALAR SCATTERING AMPLITUDES AND
PERTURBATIVE UNITARITY

We next consider the implications of perturbative uni-
tarity in the GHEFT framework. It is well known that, in the
effective field theory framework, the longitudinally polar-
ized EW gauge boson scattering amplitudes grow at high
energy and tend to cause violations of perturbative unitarity
[120,121]. The effective field theory coupling constants
need to be arranged to maintain perturbative unitarity in the
high-energy gauge boson scattering amplitudes.

For such a purpose, we use the equivalence theorem
between the longitudinally polarized gauge boson scatter-
ing amplitudes and the corresponding would-be NG boson
amplitudes [122-126]. The equivalence theorem allows
us to estimate the longitudinally polarized gauge boson
high-energy scattering amplitudes by using the NG boson
amplitudes in the gaugeless limit i.e., gy = gy = 0 with an
uncertainty of O(M%,/E?). The computation of the ampli-
tudes is greatly simplified in the gaugeless limit.

Note that the individual Feynman-diagrams for longitu-
dinally polarized gauge boson scattering amplitudes grow
as positive powers of the energy E (energy growing
behavior), which is, however, canceled exactly among
the diagrams in the SM [122,127-129]. The energy
growing behavior coming from the EW gauge boson
exchange and contact interaction diagrams is exactly
canceled by the Higgs exchange diagram in the SM.
The Higgs boson plays an essential role in maintaining
perturbative unitarity in the SM.

On the other hand, it is highly nontrivial whether the
cancellation of the energy growing terms works in the
GHEFT. In fact, in order to ensure the cancellation,
the coupling strengths between the Higgs boson(s) and
the EW gauge bosons should satisfy special conditions
known as the “unitarity sum rules” [93-95]. The unitarity
sum rules provide a guiding principle to investigate
the extended Higgs scenarios in a model-independent
manner. Model-independent studies on extended EWSB
scenarios have been done based on the unitarity argument
[70,93,99,130,131].

075020-6
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We estimate the longitudinally polarized EW gauge
boson scattering amplitudes using the corresponding
would-be NG boson amplitudes with the help of the
equivalence theorem. In subsequent subsections, we explic-
itly calculate the on-shell amplitudes among the scalar
fields ¢’ in the gaugeless limit, and express the unitarity
sum rules in terms of the scalar manifold’s geometry.

A. Scalar scattering amplitudes

We consider here an N-point on-shell scalar scattering
amplitude at the tree level,

iM(123---N) = iM(@" (p1). 92(P2). 9" (p3). ...
™ (pn)); (57)

with p, and i, (n = 1,2, ..., N) being outgoing momenta
and the particle species, respectively.
We define

Sp, = P%,I, Snyn, = (pnl + pnz)27
Sninyny = (pm +pn2 +pn3)21 (58)

External momenta p,, are taken on shell,

5, =m?. (59)

lh
We note that

_ 2 2 2
= Snn, +sn2n3 +sn],,3 —-—m: —ms; —m

Ky ‘ < <
l)'ll ll!z lﬂ3 ’

nynyn;
(60)

The N-point amplitude (57) can thus be written as a
function of the scalar particle masses m? and the gener-
alized Mandelstam variables s, ,,,.

As we will show explicitly below, the three- and four-
point on-shell scattering amplitudes are described in terms
of the geometry of the scalar manifold,

i
2
i_
= 59y (m12] + m%z —spp) +

i

iM(123) = 5

(Girinis T Tiniyis) (=P1 - P2) +
I
2

(Giyiyiy T Gisini,)(=P2 - P3) +

- 2 2
Giyiniy (M7, + M3, — $93) +

lM(lZB) - _iV§(ili2i3)’ (61)

iM(1234) = iM(1234) + iM(125)[D(s)5)];.,,iM(346)
+iM(135)[D(s513)];;, iM(246)
+ iM(145)[D(s14)];.; iM(236), (62)

isig

with

) - i - _
iM(1234) = =iV i) — g(Ri,i3i4i2 + R i4isiy)S12

i - _
3 (Ri iyisiy + Riiyiniy)S13
|- _
~3 (Ri,iyisi, + Riyisini, ) S14s (63)
and
i
[D(s)];; = P (64)
Here V. i,i)s Viiyiyisiy)» and R; ;. stand for the totally

symmetrized covariant derivatives of the potential and the
Riemann curvature tensor of the scalar manifold at the
vacuum.

Let us start with the three-point scalar scattering ampli-
tude M (123). The interaction vertices relevant for this
amplitude are

1_ . . 1 - o
L = Egij,k(ﬂk(ﬁyél")(a” @) - 3 V@'t (65)

at the tree level. It is straightforward to evaluate the on-shell
three-point amplitude

i _ _ -
5 (Gisiyiy T Tiyiniy) (=23 - P1) =1V i i

i_ S
5 Jinida (m,23 + mzzl —s31) —iV (66)

iy

from the vertices in Eq. (65). The conservation of the total momentum

Pi+ph+ps=0

implies

si2 = (p1 + p2)?

and similarly

— 2
S$o3 = mi] N

— 2
$31 = m,-z.
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The on-shell three-point amplitude (66) can therefore be expressed as

lM(123) glllz t;(m +m _m13)+

2
i L .
= >m; (Giyiyiy T Giriin

2 2

Note that m2 mlzz, and m are related to the second
derivative of the potential V ;; by (56). The first derivative
of the metric tensor in the 1nteract10n vertex (65) is related
to the affine connection F}k,

1
gilri'k =3 (Gijk + Grij = Gjkil- (68)

The amplitude (67) can then be rewritten as
i, T lV —-iVv

IM(123) =iV T}, 4+ iV,

1112 Jyipize
(69)
with "', being the affine connection at the vacuum
Ch=Th . (70)

Our final task is to rewrite the amplitude (69) in terms of the
covariant derivatives of the potential V. It is straightforward
to show that

Vi = Vi = Ch) Vi =TV =TV =ThV

INA WA B A (71)

Since the first derivative of the potential vanishes at the

vacuum, we obtain
V;ijk_vl]k F Vlk_r VZJ_F Vll (72)

Moreover, as we see in Eq. (72), V; jk 1s symmetric under

the exchanges i <> j, i <> k, and j <> k. We therefore
obtain

_ 1 - - _ - _ -
Vo =3 Ve + Vi + Viij + Vg + Vi + Vo

- V;ijk- (73)

It is now easy to obtain a geometrical formula for the three-
point amplitude:

iM(123) = (74)

=iV (i,iyiy)-

2 2 2
9121; i (mi + mi3 - mil) +

- §i2i3,i1) + m; (gt2t3 iy + ghll i3

i ;
- 2 2 2y _
Egigil,iz(mi3 +m; —mi) —iV

Jpiais

= Tivinis) = iV iinis -
(67)

i
- 2 - _
gisilyiz) + Emh (giﬂl;iz + Gisin.iy

We next consider the four-point amplitude,

IM(1234) = iMy(1234)
+ iM(12[5])[D(s12)];,;,iM (34[6])
+ iM(13[5])[D(s13)]i5i6iM(24[6])

+ iM(14[5])[D(s14)];

isig

iM(23[6)),  (75)

where the first line comes from the four-point contact
interaction vertices, while the second, third, and fourth lines
are from the is-particle exchange diagrams in the s,, 53,
and s,4 channels, respectively. The k-particle is allowed to
be off-shell in the three-point amplitude M (ij[k]), while the
particles i and j are assumed to be on-shell.

We first study M(12[5]),

-

M(12[5]) = —‘7;(125) + gisigl:;fiz(slz - mi) (76)

which can be related to the on-shell three-point amplitude
M(125) as

M(12[5]) = M(125) + Gu T, (s = m2). (77)

It is easy to rewrite the amplitude (75) as

iM(1234) = iM(1234)

+ iM(125)[D(Slz)]isiﬁiM(346)
+ iM(135)[D(s3)],,;,iM(246)
+ iM(145)[D(s14)],.; iM(236), (78)

I5le

with M(1234) being

M(1234) = M (1234) — g,s,ﬁrmzr,m(s12 —mj)

glﬁlbrls Flﬁ (s13 2)

iyi3™ ipiy
glilﬁl—‘zs Flﬁ (514_ )+V(

iyig" ipis

lllZlS)Fl3l4

+ V (111315) 1214 + V (’11415) + V (121215)
+ Vé(iziﬂs)r +V. (1;1415)F (79)

iyi3 iyip*

lzl 1114

The evaluation of the four-point contact interaction
contribution is a bit tedious but straightforward. We obtain
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. - i, _ _ _ _ _
iMy(1234) = =iV ; iiis + 5 =i iyiniy T Tisinisin)S12 = Giyinsinia + Tiniaigis)S13 = (Giyiainis + Tininiiyiy)S14

2

- ~ - 2 ~ _ - 2
+ Girinisia T Tivigeiniy T Tiviiniy)Mi, + (Gisivisia T Tinig.iviy T Tinig.iniy) M,
- ~ - 2 — _ - 2
+ Gigivivia T Tinin.ivig T Tiniginin)Miy T (Gigiviniy, T Tiginiiriy gi4i3,i,i2)mi4]' (80)

Combining these results, we obtain a geometrical formula
for the on-shell four-point amplitude:

. - I, = _
iM(1234) = =iV iii) — g(R + R 1i4i,) 512

i\ isisis
i, - _
3 (Ri,iyisis + Riyiyiniy)S13

i, = _
~3 (Ri,iyisi, + Rijisiniy)S14- (81)
We used the on-shell condition

S+ S13+ sy =mi +mi +mi +m; (82)

in the computation above. Here R;;;; and V) denote the
Riemann curvature tensor and the totally symmetrized
covariant derivatives of the potential at the vacuum:

Rijkl = Rijkl b= V;(ijkl) = V;(ijkl) b—i (83)

We here give formulas to compute R;jy; and V(; ) from the
metric tensor g;; and the potential V:

_ 1, _ B _ _
Rij = 5 (Girjk + Gjrit = i jt — Gjvix)
+ Gun (T T = TRT), (84)

and

Vi) = Vit = VigmL i =V aanL 5 = V it
= Vil = Vi = V D
+ V[T, + T, 4+ T
+ Aijer + Ajik + Ariji + Asijic (85)

with

1. _ _ _
Ajju = 3 V imG™" (Gjknt + Teing + Tjink

= 2(Gnjxt + G ji + Gt ji)]
+Vim [1:‘;"::1:‘21 + l:innl:;’ll + fﬁf;lk]
1 -

+ Vi@ O 0 + T80 + T8 T 05,,. (86)

[98]

B. Perturbative unitarity

As we have shown in Eq. (81), the scalar four-point
amplitude M(1234) contains energy-squared terms pro-
portional to sy,, s;3, and sj4. This implies that the
perturbative unitarity of the scattering amplitude is gen-
erally violated at a certain high-energy scale in the
GHEFT (37). In order to maintain perturbative unitarity
in the high-energy limit, the GHEFT Lagrangian should
satisfy special conditions known as the unitarity sum rules
[93-95]. We here give a geometrical interpretation for the
unitarity sum rules.

Applying the on-shell condition

s12+s13+s14:mizl+mi+mi+mi (87)
to the four-point amplitude (81), we obtain

i, = _ _ _

iM(1234) = 3 (Ri\iyisi, + Riiisiy = Rijiyisiy = Riyiyiniy)S12
I = _ _ _

~3 (Ri,iyisiy + Riiyinis = Riinisiy = Riyisini,)S13

+ OB, (88)

Therefore, the unitarity sum rules can be summarized in
geometrical language as

+R. ... —R.. .. —

L4131 11121314

iyi3igis iyisiriy — 0, (89)

+R ... —R. ... —

iyiqipis iyiyiziy

iyiyiygis iyiziaiy — 0. (90)

Note that the Riemann curvature tensor R;j; is antisym-
metric under the exchange k < [:

Rijkl = _Rijlk- (91)

The unitarity sum rules (89) can thus be rewritten as

2R; iiyi, = Riyigiyiy = Riiyiziy, = 0. (92)

The Bianchi identity
Rijii + Riggj + Rijjx =0 (93)

can be expressed as
_Rili4i2i3 - Ri,i2i3i4 = Ri,i3i4i2’ (94)
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which enables us to further simplify the unitarity sum
rules (92). The sum rules (89) can be expressed in a simple
form:

3R, ;i = 0. (95)

irisigiy
The unitarity sum rules (89) and (90) can be expressed in a
compact form:

Rijkl - 0 (96)

Note that the unitarity sum rules (96) imply the flatness of
the scalar manifold only at the vacuum. The unitarity
conditions (96) are lifted to

Rijkl = 07 (97)

i.e., the complete flatness of the entire scalar manifold
at least in the vicinity of the vacuum, by imposing
perturbative unitarity in the arbitrary N-point amplitudes.
See Appendix B for details.

Perturbative unitarity is violated at a certain high-energy
scale in an extended Higgs scenario with a curved scalar
manifold. For instance, if we consider the HEFT with
F(h) = (14 (xyh)/v)? and take ky < 1, the correspond-
ing scalar manifold has nonzero curvature proportional to
1 — k% [96,97]. The model violates perturbative unitarity at
A ~4zv/(1 —«%)"2. In that case, we need to introduce
new particles with mass m < A and/or consider nonper-
turbative effects to ensure the unitarity of the model.

IV. ONE-LOOP DIVERGENCES IN THE
GAUGELESS LIMIT

As we have shown in the previous section, the tree-level
perturbative unitarity requires that the GHEFT scalar
manifold be flat at the vacuum. What does this imply at
the loop level? References [96,97] investigated the structure
of the one-loop divergences in the nonlinear sigma model
Lagrangian (37). They found that the logarithmic diver-
gences in the scalar one-loop integral are described in the
gaugeless limit by

1 1 1
¥ loop 2
r(Y,, YY" —tr(X<)]|. 8
Here ¢ is defined as
€=4—-D, (99)

with D being the spacetime dimension. Y,, and X are
defined as

[Y/w]ij ]kl( y¢)( L/¢)l+qu(wé);j+Buu(yi);j’

(100)

[X]'y = R (D, ) (D) + g7V ., (101)
with
(W) = powh + Tl ()= 4T
Wa i 8¢] Wa Waa y g a¢]y ]jy )

(102)

and Rijk[ = gimijkl.
Remember that perturbative unitarity implies the flatness
at the vacuum,

Rijkl - O (103)

It is easy to see that the unitarity condition (103) is enough
to guarantee the absence of divergences in the (8M¢)4—type
operators, which affect the scalar boson high-energy four-
point scattering amplitudes. The flatness of the scalar
manifold at the vacuum (103) also automatically guarantees
the absence of divergences in the anomalous triple gauge
boson operators. These findings are in accord with the
general expectations regarding the connections between
perturbative unitarity and the absence of new counterterms
in the one-loop divergences, and also with the explicit heat-
kernel computations presented in Refs. [79,81,82,96,97].

However, the divergence structure in the operators
proportional to

Wi whhv, Wi, B", B, B" (104)

is not manifest. Note that the oblique correction parameters
S and U [98] are related to the gauge-kinetic-type operators
listed in Eq. (104). There is no obvious reason to ensure the
absence of the one-loop divergences in the § and U
parameters even in the perturbatively unitary models.

Moreover, the one-loop divergence formula (98) does
not include quantum corrections arising from the gauge-
boson loop diagrams, which should be evaluated to
deduce the divergence structure of the oblique correction
parameters.

In what follows, we explicitly perform the one-loop
calculations for both the scalar and gauge loop diagrams.
Our results are consistent with those of Refs. [81,82], in
which the complete one-loop divergence formulas includ-
ing gauge loops and fermionic loop corrections were
obtained. Picking the UV-divergent parts from the one-
loop functions, we investigate the relationship between the
divergence structure and tree-level perturbative unitarity.
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V. OBLIQUE CORRECTIONS AND FINITENESS
CONDITIONS

A. Vacuum polarization functions at one loop

The electroweak oblique correction parameters S and U
are defined as

$ = 168(1,(0) = (), (109)

U= 168(IT,(0) = Tl (0). (106
with IT/, (0) being

00) =257 (107)

Here I1,(p?) stands for the non-SM contribution to the
gauge boson vacuum polarization function in the A
channel. T1,;(p?) and Il3;(p?) are charged and neutral
weak SU(2),, current correlators at momentum p, respec-
tively. I3 (p?) is the correlator between the neutral weak
SU(2)yy current and the electromagnetic current. Note that,
in the GHEFT, a number of scalar particles, in addition to
the 125 GeV Higgs, contribute to IT,(p?) at loop level.

The oblique correction parameter 7 is related to
Veltman’s p parameter [132],

1:(2)
2+ 11, (0
ol =p—1, p:;ti“(),

. (108)
-4 4 T133(0)

with vy and v, being the “bare” parameters corresponding
to the charged and neutral would-be NG boson decay
constants v and v,. The GHEFT Lagrangian loses its
ability to predict the T parameter if we introduce inde-
pendent counterterms for » and v.

On the other hand, if we assume that the counterterms for
v and v, are related to each other,

v} =1*(1+36,), vy, =v3(1+6,), (109)
then p is calculated as
2146, +%10;,(0
p:v = 11;,(0) (110)

’U_%l +5v +%H33(0)

and we regain a counterterm-independent prediction for
the parameter p,

v? ~
p=—=(1+al),
vz

(111)

with

of ==4<%n1,(0) —Ul%n33(0)>. (112)

In what follows, we calculate I1;;, I133, and Il at the
one-loop level in the GHEFT and derive the required
conditions to ensure the UV finiteness of Eqgs. (105),
(106), and (112). We apply a background-field method
[133-138] to calculate the vacuum polarization functions to
keep the gauge invariance. See Appendix C for the details
of the calculation. Although UV divergences associated
with tadpole diagrams exist in IT;; (0) and I135(0), as shown
in Fig. 1, we assume that these UV divergences are
canceled by the corresponding tadpole counterterms.

1. Scalar loop

Let us start with the scalar loop corrections to the
vacuum polarization functions. The relevant Feynman
diagrams are shown in Fig. 2, which are evaluated to be

1 _ s .
55(p*) = =2 () (7). + (7))
(477) T
X By, (p?, m3, mf)
# S+ Faed)] 1
and
HZ)Z)( [ 22 322(17 m; ,2>
; Z 4 ) R A )
(114)
/a -~ \\
! 1
! 1
RN @
S~ r” ]
1 1 1
1 ] 1
) ) )
SAVAVAVAVAVAVAVAVAVAVERRRAVAVAVAVAVAVAVAVAVAV
FIG. 1. Feynman diagrams for tadpole contributions to IT;; (0)

and I133(0) and their counterterms.

-~ < \\
RN / .
1 ; ! !
AVAVAVA "’V\/\/ ' 1
\
\\ 7 ~ ,’
~_-7 AVAVAVAVAVAVAVAVAVAVAVAVAV

FIG.2. Feynman diagrams for I}, T3y, and IT5/. The internal
lines correspond to ¢ fields.
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FIG.3. Feynman diagrams for 17}, T1% , and Hg’g . The internal
lines correspond to ¢ and gauge fields.

for b, ¢ =1, 2, 3. Here (W), and (7)., denote the
covariant derivatives of the Killing vectors at the vacuum,

va)y = W)yl 7). = (' 115
(3= ()] (=00, (19)
A and B,, are loop functions defined as
i dk 1
Am?) = | —5—5—. 116
(4x)? (m7) / (2z)* k> — m? (116)
i
WBzz(Pz;m%’m%)
d*k k,k,
:/ 7l 5 (117)
o) (=) {(k+ p)? = md}|,

Y

2. Scalar-gauge loop

We next calculate the Feynman diagrams shown in
Fig. 3. In the 't Hooft-Feynman gauge, we obtain

ey () = 0 (118)
and
) (p?)
-7 [ZZQ (Gl (G Bo(p2. M3y )
+Zg,, 1(G2)LBy(p* M3, m?)
b 30 (GG B2, 0.1 (119)

i

Ge Ge
I (p?) = My (p?)
4

= [—A(My,) -

+ 4(cfyBan(p* M3, M3,) + s3,Bay(p*:0,M7,))].

U L2,

FIG. 4. Feynman diagrams for HGauge“, I'[g;“ge’cc, and
Hg’é”ge ‘. The wavy and dotted lines correspond to gauge fields

and Faddeev-Popov ghost fields, respectively.

for b, ¢ =1, 2, 3. Here (Gy,)}, (G)i, and (G,)} are
defined as

(Gwa)ly = gw(W) W, (a=1,2),  (120)
1 ol 1
(G2l = — s [ () — ()17, (121)
9w T 9y
gw3y _ _
(Ga)y, = [(5),; + () ]y, (122)
s+
and
2 2
My =T =TI (13
4 4
By is defined as
i
(4ﬂ)280(p2’m%7m%)
d*k 1
= . (124)
/(27f)4 (K = m}){(k + p)* — m3}

3. Gauge and Faddeev-Popov ghost loop

Finally, we calculate the contributions that are indepen-
dent of the scalar interactions. The relevant Feynman
diagrams are depicted in Fig. 4. In the 't Hooft-
Feynman gauge, we find that the gauge bosons contribu-
tions are given by

AME) = A(0) + 207(6 Bop% M3, M3,) + 53 Bolp%: 0. M3,)

(125)
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M5 (p?) = ﬁ [p*Bo(p*: M3, M3,)

+ 2By (p*s My, M3,) — A(M7,)],  (126)
M55 (p?) = ( 4;2 [P*Bo(p*; M3y, M)

+ 2By (p% M3y, M3,) — A(M3,)],  (127)

and the Faddeev-Popov (FP) ghost contributions are
calculated as

1155 (p?) = 155 (p?)

2
:W[A(M%v) + cpA(M3) 4 s3,A(0)
—4(cyBan(p* M5, M3y) + 53y Boy (p*;0, M§,))],
(128)
cc( 12 4 2. 2 2 2
H33(P )= —(4—”)2[2322(17 9MW’MW) _A(MW)]’
(129)
cc 2 4 2 2 2 2
H%Q(p ) - (4”)2 [2322<p M ’MW) _A(MW>]
(130)
Here sy and cy, are
g g
Swzé» szﬁ, gZ:\/g%V—i_g%/' (131)

B. Finiteness of the oblique corrections

We are now ready to derive the UV finiteness conditions
for the oblique correction parameters at the one-loop level,
i.e., the finiteness of Egs. (105), (106), and (112).

To estimate the UV divergences, we regularize the
loop functions A, B, and B,, by employing dimensional
regularization. The loop functions are expanded as

2

A
A(m?) = A2+ mIn’S — (4m)2A,(m).  (132)
u
A2
Bo(p?, m3,m3) = IHF + (47)B,(m;, my, p?), (133)

1 1 P\ A2
Bzz(pz,m%,mz) = —EAZ +Z <m% + m% —?> ln?

1
0By (mma, p), (134)

where the terms proportional to A? and In A% correspond
to the terms proportional to 1/(2— D) and 1/(4 — D),
respectively. D and p denote the spacetime dimension
and the renormalization scale, respectively. A,, B,, and B,
are A-independent (u-dependent) functions. The explicit
expressions for the A-independent functions are given
in Ref. [99].

1. S and U parameters

Let us focus on the UV divergences in Egs. (105) and
(106). Combining the results derived in Sec. VA and
Egs. (132)—(134), we find that the UV-divergent parts of S
and U are given as

1 2
Sle E(M@);j(y])zln 2 (135)
1 —i W’ —i —J A?
Udiv:E((Wl);j( 1);i_<W3);j(W3);i)lnﬂ_2- (136)

The gauge-boson loops do not contribute to the one-loop
divergences in the parameters S and U. These results are
thus identical to the results computed in the gaugeless
limit [96,97].

2. HII(O) and H33(0)

The UV divergences in Eq. (112) other than the tadpole
contributions can also be extracted using Eqs. (132)—(134).
We obtain

(%Hn (0) - énw (0))

div

~ (M0 - 50

+(Hmo - ) )
where
- _@ [%wll)( ! yi%(wé><w3>:|kikjlgk1[\2,
(138)

and
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1 1
<—2 I1;,(0) - —2H33(0)>
v vz In A2

~ 7 [ = ()5
X {—492W(W§);i(%);j§k1 - 49%'()7k);i()71);j§k1
R (3 (139)

with (#2)¥ being the scalar boson mass matrix in the ’t
Hooft-Feynman gauge:

(B2 s= GEGIV 4y + g3, (W) (Wh) + g3 (7) (37),
V;ij = i . (140)

VI. PERTURBATIVE UNITARITY VS
FINITENESS CONDITIONS

We are now ready to discuss the implications of
perturbative unitarity on the one-loop finiteness of the
oblique correction parameters. We first concentrate on the
parameter S, the UV divergence of which is given by
Eq. (135). As we stressed in Sec. IV, since there are no
obvious connections between the Riemann curvature tensor
(geometry) R;;; and the SU(2)y, x U(1)y Killing vectors
(symmetry) w', and y', the relation between perturbative
unitarity R; ikt = 0 and the one-loop finiteness of S is not
obvious in Eq. (135).

We note, however, that the scalar manifold should
be invariant under the SU(2), x U(1), transformations,
and thus the Killing vectors should satisfy the Killing
equations,

0= (Wﬁ)gij,k + (W]tfz),igkj + (sz),jgik,

0= (y")gijx + %) g1 + (yk),jgik~ (141)

There do exist connections between the geometry (R;jx;)
and the symmetry (w, and y’) embedded in the Killing

equations (141). Moreover, the Killing vectors w!, and y’
should obey the SU(2),, x U(1), Lie algebra,

[Ww Wb] = &abcWes [me} = 07 (142)

with

W, = y=y (143)

Wi -, - .
O o'
The connections can be studied more easily if we use a

Riemann normal coordinate (RNC) system around the

vacuum ¢, in which the metric tensor g;;(¢) can be

expressed in a Taylor-expanded form around ¢ as

1._
9ii(@) = 6;; — §Rikjl(0k(0l + - (144)

with

51“:_1": ii _ Ri‘ :Ri‘ . 145
i = ij 91(¢)¢:¢ ki ], (145)

Solving the Killing equations (141) in terms of the Taylor
expansion around the vacuum,

4 . R B
Wa = Wa + (Wa) ;07 + 57 0%) u@9" + -, (146)
i i =i S ik
V=3 4+ G0 50 a0 et -, (147)

2!

we find that the Taylor expansion coefficients satisfy

0= gik(wlc;).j + G (Wh) ., (148)
0= gu(3); + (") s (149)
i Ly Bi Vol

(W) jx = §(R ikt R ji)We, (150)
i 1 = Bi Vol

() e = §(R R )Y (151)

There are certainly connections between the geometry R,
and the symmetry w', and y’ in Egs. (150) and (151).
However, Eqgs. (150) and (151) are not enough to clarify the
relation between perturbative unitarity and the S-parameter
coefficient in Eq. (135). Note that the S-parameter coef-
ficient is written in terms of the first covariant derivative of
the Killing vectors (W}); and (y').;. We need physical
principles to relate (w},).; and (¥').; to the second deriv-
atives (W},) ; and (7') ;. Actually, the SU(2)y x U(1)y
Lie algebra (symmetry) (142) plays this role. Plugging
Egs. (150) and (151) into Eq. (142), we obtain

1

‘ 1 .
(Ta)jl = Egahc([Tha TcDjl =+ Eeahc(wlﬁ)(wé)R Jkl» (152)

0= ([T, Ty]);" + (w5) )R ju» (153)

with 7', and T’y being matrices denoting the first derivatives
of the SU(2)y, x U(1), Killing vectors at the vacuum,

(To);" = (W) ), (Ty); = (') ;- (154)

It is now easy to show that
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1 o .
tr(T5Ty) = §€3hctr([Tbv T |Ty) + = &35 (Wh) (WL)R 1y (Ty )/

1 L .
= 583bctr([Tc’ Ty|Ty) + = &35 (Wy) (WL)R iy (T )/

T R .
= —Egsbc(wlé)(yl>lek1(Tb)ij + = &35 (W) (WL)R 3y (Ty),/

1

In the last line of Eq. (155) we used the fact that U(1),,, is
unbroken at the vacuum (47), i.e.,

0=w,+7y. (156)

Equation (155) can be rewritten in the covariant form

(09) () = 5 (eane () 0P R 7)),
+ €35 (W) (WL)R 111 (7)) (157)

In a similar manner, we obtain the divergent coefficient in
U [Eq. (136)],

(158)

Combining Egs. (135), (136), (157), and (158), we find

Sdiv = —é(83bc(W]5)(W§)Rijk1(W2);i
_. ) A2
+ &350 (W) (WL R 1y (7)) lnF, (159)
1 (S \Bi ()
Ugiv = E(EIbc(wb)(W6>R jkl(Wl);i
_. ; A2
— €35 (W) WL)R' 13, (93)) 1“/72- (160)

The relation between the symmetry and the geometry
hidden in Egs. (135) and (136) is now unveiled in
Egs. (159) and (160). The one-loop divergences of both
S and U are proportional to the Riemann curvature tensor
R;ji; at the vacuum. Once the four-point tree-level unitarity
is ensured, i.e., R;;;; = 0, the one-loop finiteness of S and
U is automatically guaranteed in Egs. (159) and (160).4

“The relation between the one-loop S divergence and the
flatness of the scalar manifold was also pointed out in Ref. [96] in
the context of the HEFT framework, in which the connection can
be seen more manifestly than in the GHEFT framework.

o S T 4
= §€3hc(wlj)(wé)R w(Tp)! + §€3hc(W/;§)(W£-)R w(Ty)/.

2
(155)

|
The physical implications of the S and U parameter
formulas (159) and (160) can be studied more closely. Note
that both of them vanish when
(W) (W) R;jra = 0, (161)
which does not require R; it = 0. What does the condition
(161) imply? Combining the equivalence theorem and the
results presented in Sec. III, we see that the condition (161)
ensures the tree-level unitarity of the high-energy p-wave
scattering amplitude in the

ﬂhﬂ.c N (Pi(ﬂj

(162)
channel. In the high-energy limit, the amplitude (162)
corresponds to the V2V¢ — ¢ig/ scattering amplitudes
because of the equivalence theorem. Here V§ stands for
the longitudinally polarized massive gauge bosons, Vi’z =
Wi’z and V3 = Z,. The one-loop finiteness of S and U
does not require a completely flat scalar manifold: the
scattering amplitudes ¢’/ — ¢*¢' other than the NG
boson channels may still violate the tree-level unitarity.
Once the p-wave tree-level unitarity in the channel (162) is
somehow ensured, it is potentially possible to construct
strongly interacting EWSB models without violating the
one-loop finiteness of S and U.

Moreover, as we see in Appendix D, the covariant
derivative of the Killing vector (wi); is related to the
light-fermion scattering amplitudes

ff—=ao'¢l. (163)
Here f (f) stands for light quarks or leptons (light
antiquarks or antileptons). The coefficients in front of
the logarithmic divergences in Egs. (159) and (160) can
be expressed in the form

(W) (WE)R! g (W) - (164)
This suggests that, assuming negligibly small tree-level
O(p*) contributions, precise measurements of S and U can
be used to constrain the high-energy scattering amplitudes
in the
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ViVi = ¢'¢/ and ff - ¢'¢l (165)
channels, which can be tested in future collider experi-
ments.

Finally we make a comment on the UV finiteness
condition of Eq. (137). We find that the UV finiteness
of Eq. (137) is not ensured solely by the flatness of the
scalar manifold. For example, even if we assume that the
scalar manifold is completely flat and v = v, at the tree
level, the extra condition

[091) (#1) = (95) 093)] g3 (96) . (%) ;T

+ gzy(fk);i(f]);jgkl] =0. (166)
is required to ensure the finiteness of the one-loop
T-parameter correction. The Georgi-Machacek model
[35-38] is an example of models where the condition
(166) is not satisfied. We need to introduce independent
counterterms for v and v, in these models.

VII. SUMMARY

We have formulated a generalized Higgs effective field
theory that includes extra Higgs particles other than the
125 GeV Higgs boson as a low-energy effective field
theory describing electroweak symmetry breaking. The
scalar scattering amplitudes are expressed by the geometry
(Riemann curvature) and the symmetry (Killing vectors) of
the scalar manifold in the GHEFT. The one-loop radiative
corrections to electroweak oblique corrections are also
expressed in terms of the geometry and symmetry of the
scalar manifold. By using the results, we have clarified the
relationship between perturbative unitarity and the UV
finiteness of oblique corrections in the GHEFT.

In particular, we have shown that once the tree-level
unitarity is ensured, the § and U parameters’ one-loop
finiteness is automatically guaranteed. The tree-level per-
turbative unitarity in the scalar amplitudes requires the
scalar manifold to be completely flat at the vacuum. On
the other hand, the one-loop finiteness of the electroweak
oblique corrections does not require complete flatness.
These findings enabled us to verify that the tree-level
unitarity condition is stronger than the one-loop UV
finiteness condition in extended Higgs scenarios.

We also found the coefficients of S and U parameter
divergences [Egs. (157) and (158)] have a connection with
the particle scattering amplitudes which can be measured in
future collider experiments.

We emphasize that future precision measurements of the
discovered Higgs couplings, cross section, and oblique
parameters are quite important for investigating the geom-
etry and symmetry of the scalar manifold in the generalized
Higgs sector. Combining collider and precision experimen-
tal data with our effective theoretical approach, we should
be able to obtain new prospects for physics beyond the SM.

ACKNOWLEDGMENTS

This work was supported by KAKENHI Grant
Nos. 16H06490, 18H05542, 19K14701 (R.N.), 16K17697,
18H05543 (K. T.), 15K05047, and 19K03846 (M. T.).

APPENDIX A: A SYMMETRY-GEOMETRY
DICTIONARY

The metric tensor g;;(¢) in the geometrical form of the
Lagrangian [Eq. (37)] can be computed from the symmetry
form of the Lagrangian [Eq. (30)]. We obtain

1
g11 =Gy — Gp3n? + 3 (-G 7°n* + Gpr'n?)

+%G33n2n2 +O(()), (A1)

1
g =G + 5 (Gar' — Gy3?)

1
+ G (G 7' 7? + Gypr'n? = Gor'n' — Gon?a?)

—%G%zzlzzz +O((x)?), (A2)

1 1
913 =G13— 5(;33752 + 3 (=G3m°n* + Gyym'n?)

1 1
- GyliQy)' 0’ (1 - 6”2”2> + §G31[iQ¢}11¢Jﬂ2

1 .
- 6G21[1Q¢]IJ¢J71'17T2 + O((%)?), (A3)
o1 11 12
90 =Gn+Gpur +§(—G22ﬂ 7'+ Gpr'n®)
1
+4—1G33”1”1 +O((=)), (Ad)

1 1
923 = Go3 +5G33”1 +6(G13ﬂ'1ﬂ'2 - Gur'x')
) 1 1 :
- G21[1Q¢]11¢J <1 - gﬂ1ﬂ1> - §G31[1Q¢]IJ¢J7TI

— CGuliQy) /' + O((a)), (A3)
933 = G33 — 2G3[iQy)" " + G1i[iQy) ki 0y} L ¥ D",
(A6)

1 1 1
g =Gy + §G317T2 - 5(;11772”2 + 6(;21751772 + O((n)*),

(A7)

1 1 1
91 = Gor + §G317rl + 6G117¢'17172 - ngﬂflﬂl + O((n)*),

(A8)
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931 = G3p — GIJ[iQr/)]JK¢K1 (A9)

917 = Gyy. (AlO)

Note that the scalar multiplet ¢’ in the geometrical form
Lagrangian (37) contains both the NGB bosons z!, 72, 7°
and the Higgs bosons ¢’ as its components, i.e.,
{#'} ={r'.2*. 7 ¢'}. (A1)
The SU(2)y, x U(1), Killing vectors w!, and y' are
introduced through the covariant derivative (44) in the
geometrical form Lagrangian (37). These Killing vectors
can be determined from the infinitesimal SU(2),, x U(1)y
transformation properties (4), (5), and (19). They are

w)l=1- %ﬂ'zﬂ'z + O((n)%), (A12)
(n) =372+ O(@)), (A1)
(wy)? = —%ﬂ'z - 2—14(711771 + 2222 + O((n)*), (A14)

(1)) = =320 ) ! o (B + )i, 1

+O((n)*), (A15)

(i) =3A 24O, (Al6)

(W) =1- %nlnl + O((x)%), (A17)

(wy)? = %ﬂl + 2—14 (rlal + 2+ O((x)Y),  (AIS)

(w)! = 210, ! + o (w7 + 22) 2110, ) s

+O((x)*), (A19)
(w3)! =2, (A20)

(w3)? = ', (A21)

(w3)* =1, (A22)

(w3)! = [iQy)' ¢’ (A23)

(»'=0. (A24)

(y)?=0. (A25)
(v)?=-1. (A26)
»'=0 (A27)

APPENDIX B: N-POINT AMPLITUDE

Let us consider the Taylor expansion of the scalar
manifold metric tensor g;;(¢) around the vacuum point ¢',

L i 1.
9ii(@) = gij + Gijk(pk =+ EGijkl(pk(pl + 37 Gijklm¢k§0l(pm
1 _
+ 31 Giimn @ 019" 9" £ -+ (B1)

with ¢’ = ¢’ +¢'. The Taylor coefficients can be
expressed in terms of the covariant derivatives of the
Riemann curvature tensor in RNC. They are [139,140]

Jij = Oijs (B2)
Gijk = 07 (B3)
_ 2 _
Giju = §Riklj’ (B4)
Gijklm = _iklj;m’ (BS)
- 6 - 16 - -
Gijklmn = gRiklj;mn + ERikloRomnj
(B6)
with
Riju = Riju i Rijkim = Rijiim o
Rijktmn = Rijitmn i’ (B7)

The one-particle-irreducible on-shell N-point amplitude
M(12---N) can thus be expressed’ as

. i, A
ZM(IZ T N) - _5 Zs”'l”G(imin)([l[2-“?”,'--?”"'[']\/)’ (BS)
m<n

in the gaugeless flat-potential (V = 0) scalar model. Scalar
particles are all massless in this model. The indices inside

Equation (B8) can be regarded as a geometrical manifestation
of Weinberg’s soft-theorem in on-shell amplitudes. See, e.g.,
Ref. [141] for a recent review on the computational techniques of
various on-shell amplitudes including nonlinear sigma models.
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the parentheses are understood to be totally symmetrized.
The inverted hats on top of i, and i, in the sequence
iyiy--ly---1,--iy denote the absence of the corre-
sponding indices, i.e.,

iyiy el

(B9)

In this Appendix we show that perturbative unitarity up
to the N-point amplitudes requires

Ri i, =0, R .... =0,
R.. ... =0, R =0.

1112131431516

(B10)

The scalar manifold needs to be completely flat at least
in the vicinity of the vacuum. It should be stressed here
that, even though we already have a compact expression for
the N-point amplitude (BS), it is nontrivial to obtain the
unitarity condition (B10) since the generalized Mandelstam
variables s,,, need to satisfy the momentum conservation
conditions

(B11)

N
E Sun = 0
n=1

and the conditions coming from the four-dimensional
spacetime (Gram determinant conditions) [142]. We need
to make full use of the Riemann tensor’s symmetry to
deduce our conclusions (B10).

N =4.—Let us start with the four-point scattering
amplitude. We compute the amplitude in the limit

S14 =523 =0.
(B12)

§i=81p = 8§34 = =513 = =54 # 0,

Clearly, the momentum conservation conditions (B11) are
satisfied in Eq. (B12). The Gram determinant conditions do
not give extra conditions for N = 4.

In the above limit, the four-point on-shell amplitude
behaves as

M(1234) «x sA(1234), (B13)
with
A(1234) = {(12)[(34)} + {(34)[(12)}
-{(13)|24)} - {(24)|(13)}.  (B14)

Here we introduce an abbreviation for the Riemann
curvature tensor,

{1234} == R (B15)

iyisigis

N A L LS8 SRR TR LS B '

Again, the indices inside parentheses are understood to be
totally symmetrized.

Considering the amplitude (B13) for large s, we see that
perturbative unitarity requires

A(1234) = 0. (B16)

Using the Riemann curvature tensor’s symmetry

{1234} = —{32[14} = —{14]32} = {34]12} = {2143}
(B17)

and the first Bianchi identity

{12]34} + {1342} + {1423} =0,  (B18)

the coefficient A(1234) can be computed as

A(1234) = 2{(12)|(34)} - 2{(13)[(24)}
= {1234} + {12143} — {13]24} — {13[42}
= {12]34} — {1342} + {14[23} — {13[42}
= —3{13}42}. (B19)

It is now easy to see that perturbative unitarity requires the
Riemann curvature tensor to vanish at the vacuum,

Hiyipi; = 0- (B20)
Taking the external lines iy, ...,i4 as arbitrary, the result
(B20) requires R,-jk, =0, which is enough to guarantee
perturbative unitarity in the arbitrary four-point amplitudes
given in the form of Eq. (B8). The considerations in the
limit (B12) thus provide necessary and sufficient conditions
for perturbative unitarity in the four-point amplitudes.

N=5

We next consider the five-point scattering amplitude.
Again, we consider the amplitude in the limit

§i= 81y =834 = =53 =~ F0,
S14 = S23 = 815 = S35 = 835 = S45 = 0. (B21)

Note that the fifth particle is considered to be very soft.
We introduce an abbreviation for the covariant derivative
of the Riemann curvature tensor,

{12|34,5} = Ri1i3i4i2;i5' (B22)
The five-point amplitude in this limit behaves as
M(12345) « sA(12345), (B23)
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with
A(12345) == {(12)|34:5)} + {34)[(12;5)} = {(13)[(24;5)} = {(24)[(13;5)}. (B24)
Using
{(12)/(34:5)) = ${02)1(34):5} + 3 {(12)|35):4) + 5 {(12)|(45):3), (B25)
we obtain
A(12345) = %{{(12)I(34);5} +{B4)[(12): 57 = {(13)|(24):5} = {(24)[(13): 53}
+%{{(43)|(25); 1} = {(42)[(35): 1}} +%{{(34)|(15);2} —{(31)[(45):2}}
+%{{(21)|(45);3} —{(24)[(15);3}} +%{{(12)|(35);4} —{(13)|(25):4}}. (B26)
The first line in Eq. (B26) can be easily computed using the Si=8p =833 =—83=—54 70 (B31)

result for the four-point amplitude. The second and third
lines can also be computed in a manner similar to Eq. (B19).
We find

1 1
A(12345) = ~{13]42:5} — 7 {42|53: 1} ~ 7 {31/54:2}

1 1
—5{24|51;3} —5{13\52;4}. (B27)
Equation (B27) can be simplified further with the help of
the second Bianchi identity,

{12/34;5} + {14]35;2} + {15[32;4} =0.  (B28)

We obtain

A(12345) = —{1342;5) —%{{24|35; 1} + {2531:4}}
—%{{13\45;2} +{1542:3})

1 1
= —{13142:5} + 5 {21[34:5} + 5 {12/43: 5}

= —2{13|42;5}. (B29)
The perturbative unitarity in the five-point amplitude thus
requires

R;iiiic =0. (B30)
It is easy to see that Eq. (B30) gives necessary and
sufficient conditions for perturbative unitarity in the five-
point amplitudes.

N=6

It is now straightforward to derive perturbative unitarity
conditions for the six-point amplitude M (123456). It turns
out that considering the limit

are enough. Generalized Mandelstam variables other than
S12, $34, $13. and s,4 are taken to be zero. Note that the fifth
and sixth particles are both considered to be very soft in this
limit. Note also that this choice of Mandelstam variables is
consistent with the momentum conservation constraints
and the Gram determinant constraints.

We already know that the Riemann curvature tensor R; ki
vanishes at the vacuum thanks to the perturbative unitarity
of the four-point amplitude. We therefore concentrate
on the R; jkizmn term in Eq. (B6). The six-point amplitude
coming from the Rijkl;m,, term in Eq. (B6) behaves as

M(123456) o sA(123456). (B32)
with
A(123456) := {(12)](34:56)} + {(34)|(12; 56)}
~ {(13)](24;56)} - {(24)|(13: 56}
(B33)
Here we introduce the abbreviation
{12|34;56} := Ri.i3i4i2;i5i6~ (B34)
Using
{(12)](34:56))
= S{02)[(34):(56)} + £ {(12)](56): (34))
£ 12)](35):(46)} + £ ((12)](46); (35}
FL12)](36): (49)) + £ (12)](45):36)). (B39)
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we obtain

with
Ay =%{{(12)I<34);56} +{(34)|(12); 56} — {(13)[(24); 56} — {(24)[(13); 56} }, (B37)

Ay = é{{(12)|(35);46} +{(12)[(45);36} + {(34)[(15); 26} + {(34)[(25); 16}
— {(13)[(25); 46} — {(13)(45); 26} — {(24)[(15); 36} — {(24)|(35); 16} }, (B38)

Az = é{{(12)|(36);45} +{(12)|(46); 35} + {(34)[(16); 25} + {(34)[(26); 15}
— {(13)[(26); 45} — {(13)|(46); 25} — {(24)[(16); 35} — {(24)|(36); 15} }, (B39)

Ay = %{{(12)I(56);34} +{(34)[(56); 12} — {(13)[(56); 24} — {(24)(56); 13}}. (B40)

Here we used the fact that the covariant derivatives are commutable, justified by the vanishing curvature tensor R; = 0at

the vacuum. The A; term can be easily computed by using the result for A(1234). The A, and A5 terms can be computed in a
manner similar to the computation of A(12345). We obtain

Ay :A2:A3:—%{13\42;56}. (B41)
The A4 term can be computed as
A, = é{{12|56; 34} + {12]65;34} + {34/56; 12} + {34(65; 12}
—{13]56;24} — {13|65;24} — {2456, 13} — {24/|65;13}}
_ 11—2{{12|56; 34} + {12(65; 34} + {43]65; 12} + {43]56; 12}
+{16|53;24} 4 {15|63;24} + {45]62; 13} + {46|52;13}}
= %{({12|56; 34} + {16|53;24}) + ({12]65;34} + {15]63;24})
+ ({43]65; 12} + {45]62;13}) + ({43]56; 12} + {46|52;13})}.
Applying the second Bianchi identity, it can be simplified further to obtain
Ay = —%{{13|52;64} +{13]62;54} + {42]63;15} + {42|53;16}}
- —%{{31|25;46} + {26]31:45) + {24[36; 15} + {35[24: 16}}
_ —%{({3”25;46} + {35]24: 16}) + ({26[31: 45} + {24[36; 15})}
- 1—12{{34|21;56} +{21]34:65})

1
= — 2 {13}42:56}. (B42)
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The second Bianchi identity is used in the first and fourth
lines in the above calculation. Combining these results, we
find that the six-point amplitude can be expressed in the
simple form

5
A(123456) = ~3 {13|42;56}. (B43)
The perturbative unitarity condition in the six-point ampli-
tude A(123456) = 0 can now be written in terms of the
covariant derivative of the Riemann curvature,

R.. ... —0.

iyiglpis;isig

(B44)

It is straightforward to generalize the calculation pre-
sented above to perturbative unitarity conditions in the
N-point amplitude,

R ... - =0.

iyiglniz;isig i

(B45)

Since the Taylor expansion coefficients of R;j,(¢) are
required to vanish at any order, the N-point perturbative
unitarity requires the Riemann curvature to be

Riju(¢) =0, (B46)
at least in the vicinity of the vacuum. However, there may

exist essential singularity type corrections to Eq. (B46)
without affecting the Taylor expansion coefficients of

R ().

APPENDIX C: BACKGROUND-FIELD METHOD

In this Appendix we briefly summarize the interaction
terms used in the calculation of the vacuum polarization
functions in the background-field method at the one-loop
level. For a review of the background-field method, see
Refs. [133-138].

We start with the lowest-order [O( p?)] gauged nonlinear
sigma model Lagrangian (37). Let us first decompose ¢,
|

W/‘j, and BM into the background fields and the fluctuation
fields as

. ~. A U
R I RN ()
Wa = Wa + We, (C2)
B/t = Bﬂ + B}u (C3)

where ¢, VV,‘,’, and Bﬂ are the background fields. The
dynamical fluctuation fields are denoted by &, W4, and B,.
fj.k represents the Christoffel symbols for the metric g;; at

¢ = ¢. The metric tensor and the Killing vector fields are
expanded as

N
9ij = 9ij T+ gRikljgké:l +- (C4)
T (O
Wy = W + (Wg),;& + gRjdjwaajkgl .o, (C5)
RPN [
Y=+ );j‘§]+§Rkljy]§k§l+“', (Co)

where g;; and i?ikj, denote the metric and the Riemann
curvature tensor evaluated at ¢p = ¢, respectively. i/, and 7'
are the SU(2)y, and U(1)y Killing vectors, while (#},).; and
(7').; are the covariant derivatives of the Killing vectors

evaluated at ¢ = ¢.
The Lagrangian (37) is expanded as

L=LO 4204 @ 4 ..., (C7)

where £ is of order n in the fluctuation fields.
The quadratic terms £(?) are given as

1 ~ o g ~ 1 .
LO) = =S Wi(=D*51" + D* D80y = Gy Gy — guW e )WL = 2B, (=0 + & = 55 B,

S Lo 70 A Tkl & j alm (kY Ty i\ £
+ gway Wi (Giwa 3 n*) B, +§§ (_ngij - Dy¢kDﬂ¢leilj — Vi) + 2gwWi(g (Wh) ;D ¢ )&

+ 29YB;t(gjk(yk);iDﬂ(z7j)§i - QWjSWi(D”WZ)fi — 9y ;i3 (0" B,)¢E,

with #* being the spacetime metric. Here we define

D W4 = O, W% — gye ® WhWS, (C9)

Dﬂ¢i = 5ﬂf~pi + gWWZWZ + gYByyiv (ClO)

(C8)

[

Dﬂéi = aﬂéi +1:‘;<](aﬂ$)j‘£k +gWW;<wil),/51 +gYB/4()~)i>;j§j’
(C11)

=Vl (C12)
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In order to compute radiative corrections, we introduce Gy = 0"B, — gyayg;;y'E, (C15)
the gauge-fixing action

1 1
Lo = = 2ay Gy Gy — 2ay GyGy, (C13)  with ay and ay being gauge-fixing parameters for SU(2)y,
and U(1), symmetry, respectively. In the one-loop calcu-
where lation performed in Sec. VA, we take ay =ay =1
('t Hooft-Feynman gauge).
G, = DﬂWZ _ gwawgijwﬁ &, (C14) We then obtain

1 - 1 -, .. -
L+ Lop = =5 Wi (—Dzéabn"” + (1 - a—) DIDY5,, — Gy Gi; Wi vin™ — 2gWW"’“’€”bC> WS
w

Y

1 1 o o
- EB” (—8217"” + (1 - a—) I — 39,5y n"”) B, + gway Wi (g, 3/ n*)B,

1 o o S
+ 551(—1)2917 — D, D P Ryitj — aw gy 919V Wl — ay g3 91,55 — Vi) &

+ 29w Wi (5 (W6) ; D* ) E + 29y B, (0 (7%),: D' ) &' (Clo)
I

We also need to introduce the FP action D, ¢y = 0,8y — gwe® Whes,, (C23)

oG4 oG 0G4 N ~a ._ ~a _ abcYyb =c
Lyp = igwlly 1" cfy + igyCy =+ cy + gy —" cy Dy ¢y = 0,¢y — gwe W, cyy. (C24)

565, 50y 66y
5Gy In Eq. (C22) we only show the quadratic terms of the
+ igwCy S00. chy (C17)  fluctuation fields.

W The one-loop corrections to the electroweak gauge boson

vacuum polarization functions I, (p?) can be evaluated by

associated with the gauge-fixing term, where ) ) )
gaig & using the quadratic Lagrangian, £® + Lgr + Lpp. In

5G 1 ~ ~ Sec. VA we calculate the one-loop diagrams where the
5 Q‘W = (059 — ge®™dWPH) (0,69 — gwe® W) internal lines are the fluctuation fields or FP ghosts.
w 4
+ g%vawgijwéﬂ’{'] +O($) (C18)

APPENDIX D: ff — ¢'¢/ AMPLITUDE

5G4 . The four-point scalar boson scattering amplitudes are

Wm —gwawg; iy’ + O(&) (C19) . . 5
50y IwawGijWay ’ described by the Riemann curvature tensor R;j; and the
covariant derivatives of the potential V.;;, V., and V., at

ijs

oGy 5 s the vacuum in the nonlinear sigma model, as we show in
507, = —gyayJ;y' w, + O(S), (C20) Sec. III. Therefore, these tensors can be measured through
the measurements of the scalar boson scattering cross
5Gy 1 o sections.
59, =" g_ (0> + gray 7, ')+ O8). (C21) When we consider a gauged nonlinear sigma model, the
Y Y

derivative d,¢" is replaced by the covariant one (D,¢)’,

Lpp is expanded as , . .
" (D)’ = 0’ + gy V0’ (). (D1)

— i((DHFAND a2 ~ ~i~]=a b )
L = i((D"e)Dycly = givawijwaiy &y civ) with V, and v'(¢) being a gauge field and its corresponding

+ i((0¢y)d,cy — gyay g3’y eyey) Killing vector. The gauge coupling strength is denoted by
— gy gyaw s gi W5 cy gy in Eq. (D1). If the Killing vector v(¢) does not vanish at
o the vacuum,
— igwgy@yCy iy Wacly + - -, (C22)
= vi(g)|  #0, D2
where @), ,# (D2)
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this implies that the gauge symmetry is spontaneously
broken, and the gauge boson V,, acquires a mass,

M5, = gy.gi;(7) (), (D3)

with

gij = 9i;(d)| . (D4)
b=¢
The magnitude of the Killing vector at the vacuum,
Gi;(7")(97), can therefore be determined by measuring
the gauge boson’s mass.

How can we measure the first covariant derivative of the
Killing vector

(0), = (v"); . (D5)

from experimental observables in the gauged nonlinear
sigma model? We address the issue in this Appendix and
show that the process ff — V, — ¢'¢p/ can be used to
determine (#').;. Here we introduce a spin-1/2 fermion
multiplet f. It couples with the gauge field V,, through its
covariant derivative

Duf = 0,f + gV, TV 7, (D6)
with Tg,f ) being the charge matrix of the fermion multiplet

f. Note that, in order to keep the Lagrangian gauge
invariant, the fermion current

7y = Frrlf (D7)
must be conserved,

0=0,J. (D8)

In order to calculate the ff — V, — ¢’/ amplitude, we
consider the gauge interaction Lagrangian
ﬁv(/) = Qnygij(Qb)(aﬂd’i)”j(@a (DY)
which can be derived from the nonlinear sigma model
kinetic term,

1

59i(0)(D,p) (D)) € L.

: (D10)

Expanding the scalar manifold metric g;;(¢) and the Killing
vector 1/(¢) by the dynamical excitation field ¢, we obtain

9i5(9) = Gij + @ Giju + - (D11)
V@)= + @)t (DI)
with
Gijk = %}kgz‘j i (7)o = %kaj - (D13)
and
b= D14)

The interaction Lagrangian (D9) can be expanded as

Lyy = gvV,.3;(0"¢") (1))
+ vV, (00" )" (G (07) 1 + Giju(07)) + - - -
(D15)
Note that on-shell amplitudes are not affected by total

derivative terms in the Lagrangian. The interaction
Lagrangian (D15) can thus be replaced by

1 o .
Lyy = Lyy— Eaﬂ(gvvﬂfpl¢k(gij(vj),k + Giji (V7))

= gvV,u3:ij(0"9") (#7) = gy (0"V )@ 0" (G (77) 4 + Giju (7))

2

On the other hand, it is straightforward to show that

1 . . . ) )
+ =gy V, (09" (G (V) g + Gija(07) = Gaj (07) = Gajui(89)) + - -

(D16)

9ij () = g (v); = gy (/) 4 + gijrfdvl — g () + gkjrflvl

) 1 . 1
= 9i;(07) & + 5 [9ix + Gig — GV — g (v7) ; — 3 [9k1i + Gis — Gua] V'

2

= g;; () 4 + G (v") = 9i; (V) ; = gui(v').

(D17)
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Here the affine connection Fil is defined by

o
Ty = Egjm (Imik + Grm1 = Gktm)- (D18)

It is now easy to see that
Lip = av Vo (0 0)(7) = 9y (0, )09 (3,() 4
s 1 . o o
* gij’k(vj)) + Egvvﬂ(aﬂ(p )¢k(gij(vj);k - gkj(vj);i)
4+ (D19)

Thanks to the fermion current conservation, the term
proportional to 9*V, does not contribute to the ff — V, —
@'’ amplitude. It is now easy to show that

96"
s — M2,

(D20)

M(ff = Vi = 0'¢7) o< (Gu(7"); — G (7))

The first covariant derivative of the Killing vector, g; (7). i
thus plays the role of the V,, — ¢' — ¢/ interaction vertex in
the ff - V, - ¢'¢’ amplitude.
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