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Dark matter direct detection experiments have poor sensitivity to a galactic population of dark matter
with mass below the GeV scale. However, such dark matter can be produced copiously in supernovae.
Since this thermally produced population is much hotter than the galactic dark matter, it can be observed
with direct detection experiments. In this paper, we focus on a dark sector with fermion dark matter and
a heavy dark photon as a specific example. We first extend existing supernova cooling constraints on
this model to the regime of strong coupling where the dark matter becomes diffusively trapped in the
supernova. Then, using the fact that even outside these cooling constraints the diffuse galactic flux of
these dark sector particles can still be large, we show that this flux is detectable in direct detection
experiments such as current and next-generation liquid xenon detectors. As a result, due to supernova
production, light dark matter has the potential to be discovered over many orders of magnitude of mass
and coupling.

DOI: 10.1103/PhysRevD.100.075018

I. INTRODUCTION

The particle nature of dark matter (DM) remains one of
the largest outstanding puzzles in physics. Despite the
overwhelming evidence for the existence of dark matter
from its gravitational imprints on cosmological and
astrophysical scales, there have as of yet been no
observations of any nongravitational interactions [1].
The fact that our current measurements leave an enor-
mous range of possibilities for its mass and interactions
with the Standard Model (SM) has motivated a very rich
experimental program exploring a wide range of dark
matter models.
A large ongoing experimental effort is searching for

dark matter candidates with masses in the GeV–TeV range
(weakly-interacting massive particles, or “WIMPs”),
largely motivated by the WIMP miracle (see, e.g., [2]).
These experiments have achieved incredible sensitivity to
dark matter by searching for very small energy depositions
from dark matter scattering with nuclei in extremely clean
environments. Despite their great progress, such

experiments quickly lose sensitivity to lighter dark matter
candidates because the kinetic energy of such candidates is
too small to lead to observable signatures in the detectors.
This is true under the assumption that we can only detect
dark matter particles which are gravitationally bound to
our galaxy, which implies a maximum velocity for the
dark matter flux.
The existence of astrophysical sources where dark matter

could be produced with larger velocities and at a non-
negligible flux allows one to significantly extend the reach
of these experiments to models of sub-GeV dark matter.1

Core-collapse supernovae (SN) can reach core temper-
atures in excess of 30 MeV for Oð10Þ seconds, allowing
them to produce vast thermal fluxes of particles with
masses ≲Oð100Þ MeV at relativistic speeds. This makes
them an ideal astrophysical source for sub-GeV dark
matter. Supernovae have already been used extensively
to constrain a plethora of models of new physics. In almost
all cases, the criterion applied in order to place a bound is
the so-called cooling criterion, which states that if any new
particle were able to transport energy out of the proto-
neutron star [7,8] formed by the SN more quickly than
the neutrinos, the cooling timescale of the core would be
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1Another recent idea has been to use stars and cosmic rays to
accelerate a fraction of the galactic DM to higher energies, also
enhancing the sensitivity to some models of dark matter [3–6].
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less than the ten-second timescale observed in SN1987a.
This is equivalent to the statement that any new particle that
transports greater than 3 × 1052 erg=s through the radius at
which the neutrinos are no longer diffusively trapped is
incompatible with observations [9].
There are two distinct regimes relevant for these cooling

bounds. At lower couplings one considers bulk emission
from the entire protoneutron star volume, which results in a
lower bound on the couplings below which the luminosity is
less than 3 × 1052 erg=s due to insufficient production of
the new particles. There is a separate regime at large
couplings, in which the coupling is large enough that the
new particles are diffusively trapped inside the core and
the emission effectively occurs from a radius at which the
densities and temperatures are low enough to allow the new
particles to escape freely. This is the regime in which the
upper bound on the couplings constrained by cooling can be
derived. The trapped regime is reasonably well understood
analytically for particles that are singly emitted or absorbed
(e.g., axions [10] and dark photons [11,12]). However, for
particles that can only be pair produced, a detailed under-
standing of different processes (e.g., production versus
scattering) is required, making analytic estimates more
challenging. For examples of existing cooling constraints
on pair-produced particles, see, e.g., Refs. [13–21].

II. SUMMARY

In this paper, we move beyond these cooling argu-
ments by considering the direct detection of a hot
population of supernova-produced dark matter. Even in
parameter space outside the cooling bound, a supernova
can still produce a vast flux of light dark matter particles.
This flux is also hot (semirelativistic), which allows for
the possibility of its detection in current and next
generation WIMP experiments. Using a Monte Carlo
Boltzmann particle transport simulation, we are able to
compute the DM flux in the trapped regime, which
allows us to estimate the reach of direct detection
experiments that were originally expected to only have
sensitivity to dark matter with masses above ∼GeV.
Furthermore, our results improve upon and extend
previous cooling constraints in the trapped regime which
relied on a number of approximations in order to produce
an analytic estimate of the flux.
For concreteness we focus on a simple model of dark

matter, in which it is a Dirac fermion which interacts with
the SM via the four-fermion operator

eϵgd
Λ2

χ̄γμχJ
μ
em; ð1Þ

where χ is the DM field and Jμem is the electromagnetic
current of the SM. Such an interaction can be generated if,
for example, DM is charged under a dark gauge boson with
mass mA0 ¼ Λ and DM-DM coupling gd that kinetically

mixes with the SM with mixing parameter ϵ.2 While this
model is a good first test case, it should be noted that the
main point of this paper (that SN can produce a flux of light
dark matter that is observable in direct detection experi-
ments) also applies to a much wider variety of models. We
leave those for future work.
The high temperatures reached in core-collapse SN allow

them to produce large abundances of the sub-GeV dark
sector fermions considered in this paper. In the regions of
parameter space we are interested in, these fermions have a
sufficiently strong coupling to the Standard Model that they
become diffusively trapped near the protoneutron star that
forms from the SN core. The diffusive trapping is primarily
due to scatterings off of the free protons generated by the
dissociation of nuclei in the SN shock. These scattering
interactions are inefficient at changing the dark fermion’s
energy because of the large mass ratio between the DM and
the nuclei. The dark fermions also scatter off of electrons
and positrons, allowing thermal exchange with the SM
bath. At a certain radius (which we call the electron sphere
or energy sphere) the density of electrons and positrons
drops to the point where a dark fermion no longer remains

FIG. 1. The characteristic spheres of the protoneutron star.
Outside the annihilation sphere, number-changing processes for
the DM (pair production and bremsstrahlung) freeze out, setting
the number flux. Outside the energy sphere, the DM thermally
decouples and its spectrum is set. Outside the streaming sphere,
the DM is no longer diffusively trapped by proton scattering and
free-streams out of the star.

2If the new particle accounts for all of dark matter, there are
stringent bounds from the cosmic microwave background (CMB)
from DM late annihilation that place strong constraints on this
model [22]. Those can be evaded by considering either asym-
metric DM or by introducing a small mass splitting, making it a
pseudo-Dirac fermion (see, e.g., [23,24]). Both of those scenarios
would not affect any of our conclusions (as long as the mass
splitting is small compared to the temperature of the SN), and so
for simplicity, we choose to focus on the simple Dirac fermion
model in this paper.
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in thermal contact with the SM; see Fig. 1. Additionally,
there is a streaming sphere at which the density of protons
drops low enough that dark fermions are no longer
diffusively trapped and begin to free-stream out of the
star. Any given dark fermion produced in the SN will
therefore diffuse through a proton-rich overburden until it
either reaches the streaming sphere and escapes or encoun-
ters an antiparticle and annihilates.
The dark fermions that do eventually escape are pro-

duced with a distribution of semirelativistic velocities. This
results in a time-spreading effect during their propagation
to Earth. The difference in arrival time of the high-
momentum and low-momentum ends of the spectrum is
of order the dark fermion travel time between Earth and the
SN; hence the dark fermions produced by a single SN arrive
on Earth over a timescale of 105 years for an average
galactic SN. This is in direct contrast to the neutrinos,
which are all produced highly relativistically and therefore
arrive as a single pulse over a timescale of ten seconds.
Given the typical rates and distances of galactic super-

novae, in addition to the inherent signal spread, the dark
fermion fluxes from various SN should overlap in time,
producing a diffuse galactic SN flux of dark fermions. This
signal is reminiscent of the diffuse flux of SN neutrinos,
with the distinction that diffuse neutrinos would arise from
the sum of a much greater number of extragalactic sources
each of short duration, since the time between galactic SN
is much larger than the duration of the neutrino flux.
If a diffuse dark matter SN flux is continuously passing

through Earth, we must consider ways to detect it with
Earth-based experiments. We find that the diffuse flux of
DM is detectable in existing and next-generation liquid
xenon (LXe) WIMP detectors. Interestingly, though the
idea is similar to the direct detection of the diffuse SN
neutrino flux, it is not the large neutrino detectors which are
best to search for this flux but rather the WIMP detectors
due to their low-energy thresholds. Though the WIMP
detectors were designed to hunt for dark matter on the GeV
scale, we show that they are sensitive to recoils by sub-GeV
dark sector fermions over a wide range of masses and
couplings above even the newly computed trapped regime
cooling bound. As this idea probes extremely weak
couplings, it is complementary to most of the experimental
proposals searching for sub-GeV dark matter through direct
detection or in accelerators (see [25,26] and references
therein for details of some of the other proposals for
detecting sub-GeV DM).
Existing LXe experiments such as Xenon 1T [27] are

already sensitive to the diffuse galactic SN flux of dark
sector fermions, and future experiments such as Xenon nT
[28], PandaX-4T [29], LUX-Zeplin [30], and, on a longer
time scale, DARWIN [31] will cover an even larger region
of parameter space.
In Secs. III and IV, we describe an analytic treatment of

the required computation and explain the details of the

Monte Carlo Boltzmann transport simulation. We discuss
our computation of new cooling bounds in Sec. V and
direct detection by LXe detectors in Sec. VI. Our results
are presented in Sec. VII.

III. ANALYTIC APPROXIMATION

While the final results used in this paper were computed
using a numerical Monte Carlo simulation of particle
transport within the supernova and cooling protoneutron
star, we first provide a simple physical picture of the
expected behavior of the DM flux in the diffusive regime.
We then apply the intuitive description to demonstrate how
to make rough analytical estimates of the spectrum of the
SN-produced dark fermion flux.
Our basic premise is to generalize the idea of a “neutrino

sphere” to the case of dark fermions. The term “neutrino
sphere” is typically used to describe the radius at which the
density of nucleons has dropped such that the neutrinos are
no longer diffusively trapped. It is common to approximate
the SN neutrino flux as simply the emission of a blackbody
sphere with radius and temperature given at the neutrino
sphere. This approximation is reasonable for electron
neutrinos and antineutrinos since beta processes are the
dominant interaction maintaining thermal equilibrium and
causing diffusive trapping of these neutrinos. Hence, when
this interaction ceases to become efficient due to falling
nucleon density, the neutrinos will free-stream from the
same radius at which their temperature has been set [32].
However, this is not the case for mu and tau neutrinos

[33]. As shown in Ref. [32], second and third generation
neutrinos are kept in thermal equilibrium by nuclear
bremsstrahlung (NN ↔ NNνν) but are kept diffusively
trapped by nuclear scatterings (νN → νN). These inter-
actions freeze out at different radii; hence their flux must
be computed with a combination of a blackbody emission
plus a transmission calculation through a scattering atmos-
phere [32]. Note that since bremsstrahlung keeps the
neutrinos in thermal equilibrium, its freeze-out sets both
the number flux and temperature of the outgoing neutrinos.
In the case of the dark fermions, the interactions that

set the number flux, the energy spectrum (temperature), and
the free-streaming radius are all different, so, in contrast
to the mu and tau neutrinos, there are now three distinct
radii, one for each of these interactions.3 We therefore
break the protoneutron star into three radii we have termed
characteristic spheres at which different interactions freeze

3The main reason for this difference is the fact that we focus on
a current-current interaction [see Eq. (1)], instead of an axial
current interaction. This leads to extra velocity suppressions in
the nuclear bremsstrahlung rates, which combined with the fact
that the neutron does not interact with χ, makes bremsstrahlung
subdominant for all radii except in the innermost region of the
core where the positron density is very suppressed (see Fig. 9).
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out and cease to affect the dark fermion flux. They are
as follows:
(1) Annihilation sphere (rN): This is the radius at which

χχ̄ → eþe− freezes out, or, in other words, the DM
density has dropped sufficiently that the dark fer-
mions are no longer annihilating with their anti-
particles. There are effectively no number-changing
reactions outside this sphere; hence it is this radius
that sets the number flux of escaping DM.

(2) Electron sphere/energy sphere (rE): This is the
radius at which χe → χe freezes out. Beyond this
radius, scattering events of dark fermions with
electrons and positrons are no longer sufficient to
keep the DM in thermal contact with the SM bath.
When rE > rN , this sets the temperature of the
escaping DM flux.

(3) Streaming sphere (rS): This is the radius at which
χp → χp freezes out. The proton density drops to a
point that the DM is no longer diffusively trapped
and the DM free-streams out of the star. Note that
because the protons are significantly heavier than the
DM, they cannot efficiently transfer energy to the
DM; hence scattering interactions with protons do
not change the energy of the DM appreciably.

In the parameter space of interest, the streaming sphere
always lies well outside of the annihilation and electron
spheres; hence the number flux and energy distribution are
set while the DM is still diffusing. We also find that the
electron sphere is always outside of the number sphere
(rN < rE). As we have already discussed, even though the
DM continues to scatter off of protons once outside of the
electron sphere, the large discrepancy in mass between
protons and the dark fermions means that the energy of the
dark fermions is not largely affected during these scatter-
ings. As a result, the energy spectrum of the DM flux is set
by the temperature at rE. Due to this, we will use the terms
electron sphere and energy sphere interchangeably. The
characteristic spheres are depicted in Fig. 1.
We can analytically compute these characteristic spheres

by finding the radius at which the optical depth associated
with a particular interaction becomes Oð1Þ [32]. The
optical depth for a given process at some radius r0 is
given by

R
∞
r0
λ−1ðrÞdrwith λðrÞ the interaction length of the

process as a function of the radius. The interaction lengths
for χχ̄ annihilation, χe� scattering, and χp scattering are
as follows:

λχχðrÞ ¼ ðnχσχχ→eeÞ−1; ð2Þ

λχe�ðrÞ ¼ hvχiðne�σχe→χevrelÞ−1; ð3Þ

λχpðrÞ ¼ ðnpσχp→χpÞ−1; ð4Þ

with nX the number density for a species X, σY the cross
section for a process Y, and T the temperature of the SN at

the given radius. The explicit forms of the cross sections are
provided in Appendix B. Note that there is an additional
factor of the averaged velocity hvχi in the mean-free path
for scattering off electrons. It can be understood by
recalling that the rate of interactions is given by
1=hσvreli and thus the mean-free path is hvχi=hσvreli.
For the other two interactions (annihilation and proton
scattering), the relative velocity is approximately the dark
matter velocity and thus these factors cancel out, but for
scattering off the relativistic electrons with vrel ≈ 1, this
cancellation does not occur.4

The mean-free path for scattering with protons is much
shorter than that of the other interactions in most regions
of interest. This is due to the extra vχ suppression in the
scattering cross section with electrons and due to the
Boltzmann suppression in nχ for annihilation. Because
of this, a DM particle will undergo many scatterings with
protons in between scatterings with electrons or annihila-
tions. This must be taken into account by using an effective
optical depth for the scattering with electrons and annihi-
lations as discussed in Ref. [32]. The characteristic radii
rN , rE, and rS are computed using the following criteria
(see, e.g., Ref. [34]):

Z
∞

rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−1χχ ðrÞ½λ−1χpðrÞ þ λ−1χχ ðrÞ�

q
dr ¼ 2

3
; ð5Þ

Z
∞

rE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ−1χe−ðrÞþλ−1χeþðrÞÞ½λ−1χpðrÞþλ−1χe−ðrÞþλ−1χeþðrÞ�

q
dr¼2

3
;

ð6Þ
Z

∞

rS

λ−1χpðrÞdr ¼
2

3
: ð7Þ

The integrands are simply the inverse effective mean-free
paths to the next relevant interaction (number-changing,
energy-changing, and scattering, respectively), so the over-
all integral is proportional to the expected number of
relevant interactions a particle will experience while escap-
ing the protoneutron star.
Having computed these radii, one can use a similar

argument to that of the neutrino sphere to make a simple
estimate of the outgoing DM spectrum. The logic behind
the following methodology is simply that, by definition, rN
sets the total number of dark fermions that are produced

4There should also be a factor to account for the inefficiency in
the energy transfer between the light electrons and the much
heavier dark matter. However, there is no closed form for this
factor in the mildly relativistic regime in which we are interested,
and not including this factor makes the decoupling happen at
larger radii (smaller temperature) which means that not including
this factor results in a conservative estimate for the detection
sensitivity.
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(since number-changing reactions are insignificant beyond
it) and rE sets the energy spectrum (since the DM is
thermally decoupled beyond it). Under the assumption that
the dark matter flux has reached a temporary steady state so
the DM density profile is not changing in time, the flux that
escapes at infinity will be set solely by the total number flux
produced and the temperature at the energy sphere.
The analytic estimate proceeds as follows:
(1) Treat the protoneutron star as a blackbody of radius

rN with a diffusive envelope. The number flux at the
blackbody surface is given by

ΦrN ¼ gχ

Z
d3k
ð2πÞ2

1

eEk=TN þ 1

k cos θ
Ek

Θðcos θÞ

¼ 1

2π2

Z
dE

E2 −m2
χ

eE=TN þ 1
; ð8Þ

where gχ ¼ 4 is the number of degrees of freedom
(d.o.f.) in DM and TN ≡ TðrNÞ is the temperature at
the number sphere. To obtain an energy flux one can
just multiply the integrand by the DM energy.

(2) Multiply this total flux by a normalized differential
energy spectrum set by assuming a Fermi-Dirac
distribution at TE, the temperature at the energy
sphere:

∂ΦrE

∂E ¼ ΦrN

�
E2 −m2

expðE=TEÞ þ 1

�

×

�Z
∞

mχ

E2 −m2

expðE=TEÞ þ 1
dE

�−1
: ð9Þ

(3) Even though the number changing reactions are
frozen out at r > rN , some particles emitted from
that radius can bounce back and return to the region
r < rN as they are trying to diffuse out of the
streaming sphere. Therefore one must include a
transmission factor to account for the losses due
to this effect (see Ref. [32] for details),

∂Φχ

∂E ¼ ∂ΦrE

∂E
�
1þ 3

4
τrN

�
−1
; ð10Þ

where τrN is given by

τrN ¼
Z

∞

rN

dr

�
rN
r

�
2

npðrÞ

×
Z

d cos θð1 − cos θÞ dσχp
d cos θ

: ð11Þ

This approach involves a number of simplifying approx-
imations, such as the notion of a sharp radial freeze-out for
different processes, but despite its limitations it provides a

simple physical picture of how the various interactions
affect the DM flux. Furthermore, it serves as a cross-check
on the results of the full Monte Carlo simulation. We used it
as such and found that the analytic estimates agreed with
simulation results to within an order of magnitude. To
provide a point of comparison, we include at the end of
Sec. IV C a comparison of the DM profile generated by our
analytic estimate to the output of the Monte Carlo transport
simulation.

IV. FLUX COMPUTATIONS
FROM SIMULATION

While the methodology outlined in the previous section
provides a convenient way to understand the physics of the
trapped regime, it becomes less accurate as the region over
which the decoupling of a certain process occurs becomes
larger (i.e., the decoupling radii become smeared into
decoupling regions). To produce more robust estimates
of the DM flux, one must perform a full Boltzmann particle
transport simulation. To calculate the transport of dark
fermions we use a Monte Carlo (MC) method that can be
broken into four main steps:
(1) Initial conditions: To describe the underlying matter

distribution of a protoneutron star we refer to
detailed multiphysics dynamical simulations of
core-collapse supernovae. From these we define
fiducial analytic profiles that capture the temper-
ature, density, and electron fraction structure of the
cooling protoneutron star.

(2) MC flux computation: An iterative MC simulation is
used to determine the steady-state DM distribution
within the star. The resulting DM profile is used to
determine the outgoing number flux of dark
fermions.

(3) Energy spectrum: The energy distribution is set in
the same manner as the analytic treatment described
in the previous section. The energy sphere is
computed and used to set a temperature for the
outgoing flux.

(4) Gravitational redshift: This energy spectrum is
subsequently adjusted to take into account the
effects of gravitational redshift on the escaping DM.

In the following subsections, we will address each of these
steps in turn.

A. Initial conditions

The collapse of a massive star in a core-collapse super-
nova leads to the compression of the inner iron core into a
dense protoneutron star (PNS) with a mass M ≈ 1.4 M⊙
and a total thermal energy (derived from the gravitational
collapse) of order E ≈ 1053 erg. At its formation, the PNS
has a radius of several tens of kilometers, although over a
timescale of tens of seconds it will cool and condense into a
cool neutron star of radius ∼14 km.
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The mechanisms of core-collapse SNe and PNS for-
mation are complex multiphysics phenomena that involve a
dense matter equation of state and multidimensional effects
such as turbulence and convection. While constructing
high-fidelity simulations of these events remains a work in
progress, the essential structure of the remnant PNS can be
specified at a level appropriate for making the DM flux
estimates of this paper.
The gray lines in Fig. 2 show an example PNS structure

about 1 s after bounce. In the bulk interior of the PNS, the
energy density is dominated by baryons, leading to temper-
atures of order T ≈ 30 MeV. Deleptonization via weak
interaction results in a low electron fraction Ye ≈ 0.1. The
very central core (r≲ 5 km) of the PNS typically has a
slightly higher Ye ≈ 0.2 and is a factor of ∼2 colder, as this
region is adiabatically compressed in the collapse without
experiencing strong heating from shocks.
Above the PNS is a steep, hydrostatic atmosphere

where the density falls off exponentially with a scale

height≲1 km. The temperature structure in the atmosphere
is roughly set by neutrino diffusion, which implies a scaling
TðrÞ ∝ ρðrÞ1=4. The neutrino sphere generally sits some-
where within this steep PNS atmosphere. The electron
fraction rises, approaching symmetry (Ye ≈ 0.5) outside
the PNS.
Finally, above the PNS atmosphere the densities drop

such that radiation pressure dominates and the profile
changes. The layers above the PNS are initially convective
and hence nearly isentropic, which results in the density
and pressure having approximately power-law profiles
(ρðrÞ ∝ r−3; TðrÞ ∝ r−1). Matter driven by neutrino winds
from the PNS surface may also influence the structure
above the atmosphere, but this still results in a similar
power-law profile.
To capture these essential features of PNS structure

without restricting ourselves to any specific core collapse
simulation, we constructed an analytic profile that resem-
bles the results of full simulations. Details of the analytic

20 40 60 80 100
radius (km)

1000
104

105

106

107

108

109

(MeV4)

20 40 60 80 100
radius (km)

5

10

50

T (MeV)

20 40 60 80 100
radius (km)

0.1

0.2

0.3

0.4

0.5

Ye

FIG. 2. The analytic profile used in this analysis (colored lines) is displayed alongside the results of one run of the supernova core-
collapse simulation (dashed lines). Note the strong agreement between the analytic profiles and the simulation results. The temperature
in the analytic profile is uniformly lower than simulation because it has been adjusted such that it reaches a maximum temperature of
30 MeV, which is a conservative and theoretically motivated peak core temperature (see discussion in text).
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mapping are given in Appendix A, and a comparison of
simulation data to the chosen fiducial profile is shown
in Fig. 2.
We estimated the profile dependence of our results by

varying the parameters of our analytic profile. The resulting
flux is most sensitive to the overall scale of the temperature
since the production terms depend strongly on temperature
(see Appendix B 5). Rescaling the profile such that the peak
temperature changes from ∼30 MeV to ∼50 MeV results
in an increase in the flux by a small Oð1Þ factor for masses
below ∼40 MeV and an order of magnitude for large
masses. This is unsurprising given that the larger masses
are already being produced on a Boltzmann tail, so the
production is exponentially sensitive to the temperature.
However, even order-of-magnitude changes in flux make
no appreciable change to the sensitivity bounds displayed
in this paper due to the fact that the flux changes very
rapidly with y. It is true that with a higher temperature, the
bounds may extend out to slightly larger masses, but we
have chosen a profile with peak temperature 30 MeV so as
to make our bounds conservative.
Using our analytic profiles for temperature, density,

and electron fraction, it is straightforward to compute
the resulting abundances of all SM particle species. To
compute the proton number density, we assume that the
electron and proton fractions are comparable in the proto-
neutron star [i.e., YðrÞ ∼ YpðrÞ] and that the protons are the
dominant contribution to the total mass density. These

assumptions immediately yield npðrÞ ¼ YðrÞρðrÞ
mp

as the

proton number density.
To compute the thermal densities of the electrons and

positrons, we make the assumption of thermal equilibrium
and use the associated thermal abundances (see [35]),

ne�ðrÞ ¼
2

2π2

Z
∞

me

1

expðE�μe
T Þ þ 1

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

q
dE: ð12Þ

The chemical potential μe can be determined by enforcing
charge neutrality, which requires the number density of
electrons to be equal to the sum of the proton and positron
number densities. This yields the following condition:

2

2π2

Z
∞

me

�
−

1

expðEþμe
T Þ þ 1

þ 1

expðE−μeT Þ þ 1

�

× E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

e

q
dE ¼ npðrÞ: ð13Þ

Critically, these profiles are assumed to be unchanged on
the timescale of emission (∼10 s); hence they are main-
tained as a fixed background in the following step of the
analysis: the MC simulation of the dark fermions.

B. MC flux computation

Having now found the radial profiles of the SM species,
we must determine the DM profile. This necessitates the
use of a Monte Carlo simulation of dark fermion diffusion
within the protoneutron star.
We begin by computing source and annihilation terms to

be used as inputs to the simulation that dictate the DM
emissivity and annihilation length, the details of which
appear in Appendix B. The two primary interactions that
source dark fermions are electron-positron annihilation to
DM (eþe− ↔ χ̄χ) and proton-neutron bremsstrahlung
(np ↔ npχ̄χ). We include both contributions, but we find
that for all DM masses considered, the production from
electron-positron annihilation dominates over bremsstrah-
lung for r≳ 5 km corresponding to the rapid fall in
electron degeneracy (see Appendix A).
Within the protoneutron star we represent the dark matter

fermion field by a set of N discrete tracer “packets,” each of
which represents a number of fermions. The initial location
and energy of these DM packets are sampled randomly so
as to match the total thermal DM emissivity at each location
in the protoneutron star. The DM packets are propagated a
distance d before experiencing a matter interaction event,
where d is determined in standard MC fashion by d ¼
−λ lnðzÞ where λ is the total mean-free path and z is a
uniform random number between (0, 1]. If the interaction
event is a scattering, the direction of the DM packet is
resampled from an isotropic distribution. If the interaction
event is an annihilation, the DM packet is removed from the
calculation. DM particles that leave the edge of the domain
are tallied as escaped.
The inclusion of self-annihilation induces a nonlinearity

in the transport problem due to the fact that the DM
annihilation depends on the background density field of
other DM particles. We address this with an iterative
approach. Initially, the DM density in each zone is assumed
to be thermal at the local temperature. We then run the MC
transport procedure and construct an improved DM density
profile by counting the DM packets passing through each
zone. The entire transport step is repeated using the newly
constructed DM density profile, and this process is iterated
until the density structure and emergent DM flux con-
verges. Typically we find that ≈20 iterations is sufficient to
converge to a self-consistent DM distribution. For simplic-
ity, the annihilation cross sections are assumed to be angle
and energy independent, although such effects would be
straightforward to include.
We include in Fig. 3 a comparison between the analytic

estimate of the DM profile described in the previous section
and the results of the simulation. The simulation results are
displayed in green, a purely thermal DM profile is shown in
red, and a blue line shows the free-streaming behavior of
our analytic profile beyond rS. The profile described in the
previous section is fixed to be thermal up until rS and then
falls with r−2 beyond it. It is clear that while there is an
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Oð1Þ difference between this analytic estimate of decou-
pling and the simulation mainly due to the treatment of the
decoupling as occurring at a single radius instead of over an
entire region, the general features and scaling behavior at
large radii are the same. Part of the discrepancy between the
analytical estimate and the Monte Carlo result can be
associated with the transmission factor in Eq. (11), which
was not taken into account in the figure since it only applies
to the asymptotic flux.

C. Energy spectrum

With the number flux computed from the MC simu-
lation, we must set the energy spectrum for the escaping
DM. While it would in principle be possible to extract a
complete spectrum from the MC simulation itself, we find
that only the dark fermions living in the high-momentum
tail of the spectrum will be observable in liquid xenon
detectors. Computing this tail with any precision is com-
putationally prohibitive in that it would require the simu-
lation to track a vast number of dark fermions such that the
tail would not be dominated by statistical noise. Therefore,
we instead choose to employ the analytic method detailed
here to compute the spectrum because it allows for a robust
prediction of the quantity of the escaping flux living in the
high-momentum tail of the spectrum.
We compute the spectrum in the same manner as in the

analytic methodology outlined in the previous section.
Namely, we compute rN and rE using Eqs. (5)–(7), with
number densities for protons, electrons, and positrons set by
the abundances computed in Sec. IVA. Note that the cross
sections that appear in the interaction lengths are momentum
dependent. For these computations, the momentum is taken
to be the average center-of-mass momentum at a given
radius. This is simply pCM ¼ 3TðrÞ for DM scattering off
of electrons/positrons and pCM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6mχTðrÞ
p

for DM scat-
tering off of protons.

As before, we take the temperature at thermal decoupling
to be TðrEÞ. We then enforce that the DM energy spectrum
take the form of a Fermi-Dirac distribution at this temper-
ature, but with normalization set by the number flux
determined via the MC simulation. Hence, we have the
following differential flux:

∂ _Nχ

∂E ¼ _NMC
χ

�
E2 −m2

expðE=TÞ þ 1

��Z
∞

mχ

E2 −m2

expðE=TÞ þ 1
dE

�−1
;

ð14Þ

where _Nχ ¼ ∂Nχ

∂t denotes the total DM flux in number per

second and _NMC
χ denotes the total number of DM particles

escaping the PNS per second as computed with the
simulation.

D. Gravitational redshift

Finally, we must take into account the effect of gravi-
tational redshift on the spectrum computed in the previous
step. The redshifted momentum of a DM particle emitted
with p0 at rE is given by

p∞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ΔΦ

�
E0

p0

�
2

s
ð15Þ

with ΔΦ the change in potential between rE and r ¼ ∞,
defined as

ΔΦ ¼ G
Z

∞

rE

mencðrÞ
r2

dr; ð16Þ

where mencðrÞ is the mass enclosed within r.
In the region of parameter space we are interested in,

this effect does not decrease the momenta of escaping dark

mX = 13 MeV

log10 y = –17
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decoupled
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FIG. 3. Simulation results for the DM density profile for y ¼ 10−17 and mχ ¼ 13 MeV are shown with a green line, with y the
dimensionless DM-SM coupling defined in Eq. (22). For comparison, we also display a purely thermal profile with a red line. Our
analytic estimate of the profile is fixed to be thermal up to some decoupling radius, at which point, it free-streams with r−2. This free-
streaming is shown as a blue line. There is anOð1Þ discrepancy between this analytic decoupled profile and the simulation results due to
the fact that the analytic profile assumes instantaneous decoupling, but the scaling behavior at large radii of the two profiles is the same.
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fermions by more than an Oð1Þ factor. However, the effect
does introduce a sharp cutoff in the spectrum corresponding
to where the DM no longer has sufficient initial momentum
to escape the gravitational well. This cutoff momentum is
given by

pmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΔΦ

1 − 2ΔΦ
m2

χ

r
: ð17Þ

We find that including these effects decreases the DM flux
above the detector threshold by ∼30%–40%.

V. COOLING

As mentioned in the Introduction, supernovae have been
used for decades to constrain models of new physics by
way of a cooling argument. Our observations of the
neutrino emission from SN1987a suggest a cooling time-
scale for the protoneutron star of ∼10 s. For new d.o.f. to be
compatible with this cooling timescale, they must transport
energy out of the star at a rate less than the neutrinos. This
simply means that new d.o.f. must transport energy out of
the neutrino sphere at a rate less than 3 × 1052 erg=s [9].
The cooling bound is usually computed more carefully in

the free-streaming regime, where analytic computations can
produce robust estimates of the escaping flux. However, for
the trapped regime it usually relies on many approximations,
and many important aspects have not been taken into
account in a previous analysis. In this paper, we both extend
this bound to the trapped regime using the results of our MC
simulation and recompute the bound in the free-streaming
regime with gravitational redshift folded in, an effect that
was not included by previous papers. The upper bound and
lower bound are placed in two different manners due to the
fact that the upper bound (stronger couplings to the SM) will
be in the trapped regime, while the lower bound (weaker
couplings to the SM) will be in the free-streaming regime.
The upper bound is computed straightforwardly using

the results of the simulation. The DM profiles produced
by the simulation are taken to be steady-state solutions;
hence the total flux going through any given radius must be
constant throughout the profile. Though the cooling con-
straint refers to energy transport through the neutrino
sphere (∼20 km), the flux of dark fermions through this
radius will be equal to the flux at infinity. In all regions of
parameter space that can be constrained by cooling, the
energy sphere for the DM lies well within the neutrino
sphere (rE < rν); hence we can compute the energy transfer
simply by computing the fraction of the nonredshifted
spectrum above pmin and multiplying by the flux at infinity.
The cooling constraint can therefore be expressed asZ

∞

pmin

∂ _Nχ

∂E
����
E¼

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

χ

p pdp < 3 × 1052 erg=s ð18Þ

with ∂ _Nχ

∂E defined by Eq. (14) and pmin defined by Eq. (17).

For the lower bound we can assume that all DM particles
produced in the core will free-stream and if their velocity is
above the escape velocity, they will carry energy out of the
neutrino sphere. The luminosity can be calculated by the
volume integral

Lχ ¼
Z

rν

0

dr4πr2
�
dLbrem

dV
þ dLeþe−

dV

�
; ð19Þ

where dLbrem=dV and dLeþe−=dV are, respectively, the
local luminosities due to np → npχ̄χ and eþe− → χ̄χ in an
infinitesimal volume dV around a point r⃗, and Rν is the
radius of the neutrino sphere. This functions are described
in Appendix D and only include particles produced with
velocities above the escape velocity at a point r⃗.

VI. DETECTION

As described in the Summary, LXe WIMP detectors are
well suited to observing the high-energy dark fermion flux
emitted by supernovae. It may seem at first surprising that a
detector designed to detect weak-scale WIMPs would be
sensitive to MeV-scale particles. Recall, however, that LXe
detectors hunt for WIMPs as a constituent of the ambient
galactic dark matter density. As such, the WIMPs are
generally fairly cold, traveling with the galactic virial
velocity of 10−3. In contrast, the dark fermions produced
by SN are boosted to semirelativistic velocities, and
hence have v ∼ 1. The maximum recoil energy that an
impinging DM particle with momentum p could possibly

deliver to a xenon nucleus is given by ∼ 2p2

mXe
. With a WIMP

of Oð10Þ GeV (approximately the lower design limit for
most LXe experiments) and v ¼ 10−3, this is a recoil
energy ofOð1Þ keV. Similarly, with a dark fermion of mass
Oð10Þ MeV and v ∼ 1, we find a maximum recoil energy
of Oð1Þ keV. Unsurprisingly, given the values we chose,
LXe detectors typically have thresholds on this order [27].
Since LXe detectors are already searching for WIMPs at the
zero-background limit, they make for ideal targets for
hunting for sub-GeV DM produced in SN.

A. Diffuse galactic flux

It is an interesting physical consequence of the semi-
relativistic velocities with which the dark fermions are
emitted that they will form a diffuse5 galactic flux of
energetic DM. This flux is similar to the diffuse supernova
neutrino background (DSNB) (see, e.g., [36] for a review),
but with the significant difference that it is due to the

5It should be noted that while we refer to this flux as “diffuse”
because it is approximately constant in time, it is not isotropic.
The flux is strongly peaked toward the galactic center (where the
SN rate is highest in the galaxy). This may allow future direc-
tional detectors to discriminate this flux from a cosmological
abundance of cold WIMPs. (See upcoming paper for details.)
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overlapping emissions of galactic supernovae, while the
DSNB is due to extragalactic supernovae. The reason for
this is that, in contrast to the neutrinos, the dark fermions
are emitted traveling with an Oð1Þ spread in velocity. This
distribution of velocities at emission means that the DM
arrives at Earth over a long period of time (comparable to
the light travel time to the SN). For galactic SN, this
timescale is of order 104 years. With an estimated galactic
SN rate of roughly 1 per century [37], we see immediately
that the dark fermion emissions from up to 102 galactic SN
can overlap simultaneously at Earth, resulting in a diffuse
galactic flux of SN-produced dark fermions.6 (Note that
since SN neutrinos are produced at c, they arrive in a ten-
second window. It is clear that the galactic SN rate is
insufficient for neutrino emissions from different SN to
ever overlap; however, the extragalactic rate is suitably
large enough for overlap, leading to the existence of
the DSNB.)
To compute this diffuse DM flux from galactic SN, we

take the double-exponential profile of Adams et al. [37] for
the core-collapse SN density rate in our galaxy:

dnSN
dt

¼ Ae−r=Rde−jzj=H ð20Þ

with R the galactocentric radius and z the height above the
galactic midplane. For Type II SN, we use the parameter
values Adams et al. provide: Rd ¼ 2.9 kpc, H ¼ 95 pc.
Taking the galactic supernova rate to be 1 SN per 50 years,
we compute A ¼ 0.00208 kpc−3 yr−1. Earth sits at RE ¼
8.7 kpc and zE ¼ 24 pc.
Since the flux from a given SN falls off with 1=r2 with r

the distance from the SN, we can integrate over this
distribution, weighting by the 1=ðr⃗ − R⃗EÞ2. The integral
therefore takes the form

total flux ¼ Nχ

Z
zmax

0

Z
2π

0

Z
Rmax

0

dnSN
dt

1

ðr⃗ − R⃗EÞ2
drdθdz;

ð21Þ

where Nχ ≡ _NχΔt is the total number of DM particles
produced in a single SN over the Δt ¼ logð10Þ second
emission timescale.7 Computing this at the Earth’s

location in the galaxy gives a flux on Earth of
Φdiffuse ¼ ð2.69 × 10−54 cm−2 s−1ÞNχ .
In Fig. 4, we use the Nχ produced by our MC simulation

to display the magnitude of this diffuse galactic flux
on Earth as a function of y, a convenient variable that
encapsulates the strength of the DM-SM coupling. It is
defined as

y ¼ ϵ2αD

�
mχ

mA0

�
4

ð22Þ

with ϵ the small parameter controlling the kinetic mixing of
the SM photon with the dark photon, αD the fine-structure
constant of the dark U(1) sector, and mA0 the mass of the
dark photon [24]. The free-streaming and trapped regimes
are both apparent in the figure. At low couplings, the DM
free-streams from the PNS and the production scales
linearly with y; hence the flux on Earth scales linearly
with y as well. For larger couplings, we enter the trapped
regime, where the DM is emitted from some approximately
blackbody surface. As the coupling increases, this surface
moves out to larger radii where the PNS is cooler; hence the
DM flux decreases.
This diffuse source can be compared to the flux from a

hypothetical nearby point source. We find that in order for a
single SN to produce a comparable flux of DM on Earth, it
would have to sit within roughly 1 kiloparsec of Earth and
would have had to have occurred recently enough that the
DM flux would still be passing through us. There are no
observed SN that unambiguously satisfy these criteria;
hence our sensitivity limits are placed using exclusively the
galactic diffuse flux. However, if future observations detect
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FIG. 4. We display the diffuse galactic flux of dark sector
fermions on Earth as a function of y, the coupling to the SM, for a
variety of masses. The linear portion at low couplings corre-
sponds to the free-streaming regime, in which production scales
linearly with y and there is bulk volume emission of DM. At
higher couplings, the PNS behaves as a blackbody and emits DM
from a surface. In this trapped regime, as the coupling increases,
the surface moves outwards into cooler regions and the DM flux
drops accordingly.

6The SN-produced dark fermions will also produce a diffuse
extragalactic flux but in the following analysis, we conservatively
ignore extragalactic contributions as they are subdominant to the
galactic flux.

7Note that although this is a diffuse flux, the emission
timescale of the SN appears simply because our analysis
estimates the instantaneous DM flux from a supernova, but we
need the total number of DM particles injected by a supernova in
order to compute the diffuse flux from several overlapping SN.
This emission timescale is set by the cooling of the PNS and is
often taken to be 10 seconds, though we choose to take it to be
log(10) seconds so as to be conservative.
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such a SN, this would potentially enhance experimental
sensitivity to DM flux from supernovae. Point sources and
their associated recoil spectra are further discussed in
Appendix C.
Note that while we refer to this flux as “diffuse” because

it is approximately constant in time, it is not isotropic. The
flux is strongly peaked toward the galactic center (where
the SN rate is highest in the galaxy). As will be discussed in
upcoming work, this may allow directional detectors to

discriminate this flux from a cosmological abundance of
cold WIMPs.

B. Count rates in liquid xenon detector

The final necessary piece of this analysis is to determine
the detection rate of the diffuse flux in liquid xenon
detectors. This is given by the following expression:

event rate ¼ Ntargets

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mXeEmax

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mXeEthresh

p
Z

2p2
∞=mXe

Ethresh

dσ
dErec

����
p¼p∞

dΦdiffuse

dp0

����
p¼p0

dErecdp∞ ð23Þ

with dσ
dErec

the differential DM-Xe cross section defined in Appendix B 7, Erec the recoil energy of the xenon nucleus,
½Ethresh; Emax� the recoil energies measured by the detector, and

dΦdiffuse

dp0

¼ Φdiffuse

0
B@ p2

0

exp
� ffiffiffiffiffiffiffiffiffiffiffi

p2
0
þm2

χ

p
T

�
þ 1

1
CA
0
B@ p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þm2

χ

q
1
CA�Z

∞

mχ

E2 −m2

expðE=TÞ þ 1
dE

�−1
ð24Þ

the differential diffuse galactic flux of dark fermions. Note
that the outer integral is taken over p∞, the dark fermion
momentum at infinity [given by Eq. (15)], since the
scattering is occurring on Earth; however, the factors
corresponding to the energy spectrum of the DM are in
terms of p0, the momentum at production, since the
distribution is defined at TrE . It is trivial to find p0 by
inverting Eq. (15). The limits of integration derive from
requiring that the recoil energy be above threshold and less
than the maximum recoil energy probed by the detector.
Note that since the DM is usually very near the lower

threshold for energy deposition and typical values of Emax
are usually several tens of keV [27], Emax plays little role in
determining the event rate.
In Fig. 5, we show three recoil spectra for a liquid xenon

detector. We have set log y ¼ −15.3 and plot a variety of
masses. All of these points lie within the interesting region
of parameter space for direct detection. It is clear from the
figure that lower masses result in lower average recoil
energies while the tail of recoil energies can be fairly large
for heavier DM owing to its larger kinetic energy.
Integrating these distributions allows us to compute the
number of events expected in a variety of existing and next-
generation LXe detectors.

VII. RESULTS

Our results are summarized in Figs. 6 and 7. We have
chosen to display the sensitivity limits of the following
detectors:
(1) Xenon1T: Xenon1T has already completed a one

ton-year exposure with no observation of a signal
above background [27]. As such, we choose to
display the sensitivity region for this exposure.
The xenon1T sensitivity region is shown in red.

(2) LUX-Zeplin: LUX-Zeplin is a LXeWIMP experiment
currently under construction. When completed, it is
projected to be themost sensitive LXe detector to date.
It is expected to run for a total integrated exposure of
15 ton-years [30], which is the value we have used in
computing our limits. Its reach is shown in yellow.

(3) DARWIN: DARWIN is a future LXe experiment
designed to be the ultimate LXe WIMP detector,
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FIG. 5. Recoil spectra in a liquid xenon detector for the
parameters log y ¼ −15.3 and mχ of 6, 26, and 132 MeV. The
2.5 keV energy threshold used in many current LXe detectors is
shown for reference as a dashed gray line. For fixed y, increasing
mχ results in lower flux, hence lower overall scaling, but a longer
tail due to the larger kinetic energy of the incident DM.
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with sensitivity down to the neutrino floor [31]. If
constructed, it will have an integrated exposure of
200 ton-years. Its reach is shown in red.

Existing LXe detectors generally have nuclear recoil
thresholds of 5 keV [27] but future improvements aim to
lower this to 2.5 keV, where solar neutrinos begin to
become a large background [31]. As a result, we have
chosen to display the sensitivity limits for both values. Our
emission timescale has been chosen conservatively to be
log(10) seconds as we do not have a precise notion of the
time dependence of the profile at the radii of interest and
thus assumed that the χ luminosity will decrease approx-
imately as 1=t in the first 10 seconds, in analogy with the
neutrino case.
The vertical axis is defined in terms of the convenient

variable y, which is an oft-used variable in discussions of
these models that serves as a measure of the coupling of the
DM to the SM. Recall that y is defined as y ¼ ϵ2αDðmχ

mA0
Þ4

with ϵ the small parameter controlling the kinetic mixing of
the SM photon with the dark photon, αD the fine-structure
constant of the dark U(1) sector, and mA0 the mass of the
dark photon [24]. There is clearly a degeneracy between
the parameters of the dark sector for a given value of y. It
should be noted that all of the detection curves presented
here are sensitivity regions, not exclusion limits. In other
words, at any given point within the reach, the detector is
sensitive to some choice of parameters that yields a given y,
but is not necessarily sensitive to all choices of parameters.
This is an important distinction given that for certain values
of αD, the scattering of the dark fermions within the
protoneutron star will be dominated by self-scattering,
rather than scattering off of protons, an effect neglected
in this analysis. We will treat these self-interactions in
upcoming work, as well as considering models with extra
structure, including a lighter dark photon and cannibalistic
interactions [38,39].
The cooling region is shown in blue. The upper region is

calculated in the trapped regime and is valid under our
assumption that the self-interactions can be neglected. The
bottom of the exclusion region is obtained from the free
streaming regime and should be valid even when consid-
ering large self-interactions. Our bounds are stronger than
those obtained in Ref. [20] for two main reasons: (1) their
analysis only included production through nucleon-
nucleon bremsstrahlung, which is subdominant in all of
the parameter space we considered to the production from
eþe−, and (2) their treatment of the trapped regime is more
conservative in that they only consider the equivalent of the
free-streaming sphere and approximate the dark matter flux
as a blackbody at that radius.8

The relic density line is reproduced from Ref. [24] and
corresponds to where the relic abundance of dark fermions
produced by freeze-out matches the observed dark matter
density. It is included for reference. The parameter space
constrained by our analysis lies beneath this, meaning that
for a standard cosmological history, the dark fermions
would not have sufficient cross section to be depleted down
to the measured dark matter density and thus would be
overabundant. However these constraints can be avoided
by considering nonstandard cosmologies with, e.g., late
entropy injections or by including extra interactions in the
dark sector.

VIII. CONCLUSION

The extreme temperatures and densities that are reached
during supernovae would create vast abundances of any
sub-GeV d.o.f. in a dark sector. In regions of parameter
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FIG. 7. Same as Fig. 6 but with detector threshold set to 5 keV.
Note that this does not affect the cooling bound.
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FIG. 6. The sensitivity regions for xenon1T (red line), LUX-
Zeplin (yellow area), and DARWIN (green area). The detector
threshold has been taken to be 2.5 keVand the emission timescale
from the SN to be log 10 seconds. We compute these curves using
the diffuse galactic flux. The region bounded by our cooling
bound is overlaid in blue.

8Note that one cannot directly compare the limits displayed in
their paper to those displayed here since in their analysis they
specialized to the case where mχ ¼ mA=3 and included the
production of dark photons, which leads to substantial changes
compared to our analysis whenever mA ≲ 200 MeV.

WILLIAM DEROCCO et al. PHYS. REV. D 100, 075018 (2019)

075018-12



space where the coupling of the dark sector to the Standard
Model is too large to allow the produced dark matter to
free-stream out of the cooling protoneutron star, the DM
becomes diffusively trapped. In this paper, we focus on a
model of an additional U(1) dark sector populated by
Oð1–100Þ MeV fermions and a heavy dark photon that
mixes kinetically with the Standard Model photon. As the
dark fermions diffuse out of the star, the flux and spectrum
are set by the freeze-out of various interactions. Here, we
have used this to calculate the DM flux by employing a
dedicated Monte Carlo simulation of particle transport
within the protoneutron star. The results allow us to extend
the well-known cooling bound into the diffusive regime.
In addition, the fluxes can also be sufficiently large to be

detectable in existing liquid xenon WIMP detectors. Due
to the semirelativistic velocities with which the fermions
escape from the star, the arrival time on Earth of the flux
from a single SN overlaps with≳104 other SN, leading to a
diffuse galactic flux of dark fermions permeating the Earth.
We show that existing and proposed liquid xenon detectors
are sensitive to this flux over a large region of parameter
space. Future LXe experiments may provide the first direct
detection of dark matter at the MeV scale.
Although we have focused on a particular model of such

light dark matter, the same idea applies broadly to many
models of DM with mass below ∼GeV. Existing direct
detection results along with SN cooling in the trapped
regime may already set important limits on these other
models. Perhaps most excitingly, future direct detection
experiments could very well discover a wide variety of light
dark matter through supernova production.
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APPENDIX A: ANALYTIC PROFILE OF SN

To provide an analytic fit to the results of the full
multiphysics supernova simulation described in Sec. IVA,
we defined a fiducial profile in the following way:

ρðrÞ ¼ ρ0 ×

8>><
>>:

e−2ðr−R0Þ=R0 r < R0

eðR0−rÞ=h R0 ≤ r < Rt

eðR0−RtÞ=hðr=RtÞ−3 r ≥ Rt

; ðA1Þ

TðrÞ¼

8>>>>>><
>>>>>>:

T inþðT0
R0

Rin
−T inÞexp

h
−16ðr−RinÞ2

R2
in

i
r<Rin

T0

�
R0

r

�
Rin≤ r<R0

T0eðR0−rÞ=4h R0≤ r<Rν

T0eðR0−rÞ=4hðRν=rÞ r≥Rν

;

ðA2Þ

YðrÞ¼

8>>>>>><
>>>>>>:

Y inþðY0−Y inÞexp
h
−16ðr−RinÞ2

R2
in

i
r<Rin

Y0þðYt−Y0Þexp
h
−100ðr−RtÞ2

R2
t

i
Rin≤ r<Rt

YtþðYout−YtÞ r−Rt
Rout−Rt

Rt≤ r<Rout

Yout r≥Rout

;

ðA3Þ

with the following fiducial parameters:

Rin ¼ 8 km;

T in ¼ 15 MeV;

Y in ¼ 0.25;

R0 ¼ 15 km;

ρ0 ¼ 1014 g cm−3;

T0 ¼ 20 MeV;

Y0 ¼ 0.1;

Rν ¼ 21 km;

Rt ¼ 25 km;

h ¼ 1 km;

Yt ¼ 0.4;

Rout ¼ 30 km;

Yout ¼ 0.5:

See Fig. 3 for a comparison of this profile to the output of
the simulation. Additionally, we include in Fig. 8 the
electron degeneracy normalized to the temperature as a
function of radius.
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APPENDIX B: CROSS SECTIONS

In this appendix we list the cross sections and rates
relevant for the DM dynamics in the supernova.

1. χe → χe

This cross section is relevant for the energy decoupling
of dark matter. Since for the cases of interest this is
dominated at radii ≳15 km, we ignore the effects of
Pauli blocking, which if included would decrease the cross
section, leading to a smaller rE and thus to a hotter χ
spectrum (and thus a more optimistic prediction for the
experimental sensitivity). With this approximation the
cross section in the center of momentum (COM) frame
is given by

σχe ¼
8πyα
m2

χ

p2

m2
χ

"
1þ 4

3

p2�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

χ

q �
2

#
; ðB1Þ

where p is the COM momentum and we neglected the
electron mass.

2. χp → χp

The cross section in the COM frame is given by

σχp ¼ 8πyα
m2

χ

�
2þ p2

m2
χ

�
; ðB2Þ

where we neglected terms that were suppressed by the
proton mass.

3. χ̄ χ → e+ e−
For the DM annihilation into electron-positron pairs we

take Fermi blocking of the electrons into account since this
is a large effect in the core, where the electron chemical
potential is large. Because the cross section now depends
on the electron distribution function we work in the frame
of the proton-neutron star and the cross section will be in
terms of the two incoming dark matter momenta p⃗ and k⃗.
First let us define the following auxiliary functions

which appear frequently in the cross section due to the
Pauli-blocking term

B0ðE;Q; T; μÞ ¼
Z ðEþQÞ=2

ðE−QÞ=2
dq

�
1 −

1

1þ eðq−μÞ=T

�

¼ Q
2
þ T log

�
cosh

�
EþQ − 2μ

4T

�	
− T log

�
cosh

�
E −Q − 2μ

4T

�	
;

B1ðE;Q; T; μÞ ¼
Z ðEþQÞ=2

ðE−QÞ=2
dqq

�
1 −

1

1þ eðq−μÞ=T

�

¼ TðEþQÞ
2

log
h
1þ e

−2μþEþQ
2T

i
−
TðE −QÞ

2
log

h
1þ e

−2μþE−Q
2T

i
þ T2

h
Li2

�
−e

−2μþEþQ
2T

�
− Li2

�
−e

−2μþE−Q
2T

�i
;

B2ðE;Q; T; μÞ ¼
Z ðEþQÞ=2

ðE−QÞ=2
dqq2

�
1 −

1

1þ eðq−μÞ=T

�

¼ T
4
ðEþQÞ2 log

�
1þ e

EþQ−2μ
4T

�
−
T
4
ðE −QÞ2 log

�
1þ e

E−Q−2μ
4T

�
þ T2ðEþQÞLi2

�
−e

−2μþEþQ
2T

�
− T2ðE −QÞLi2

�
−e

−2μþE−Q
2T

�
− 2T3Li3

�
−e

−2μþEþQ
2T

�
þ 2T3Li3

�
−e

−2μþE−Q
2T

�
;

ðB3Þ
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FIG. 8. The electron degeneracy divided by the temperature as a function of radius for our choice of profile.
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where LinðzÞ is the Polylog of order n.
In order to simplify the expression we will also use the following definitions:

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

χ

q
;

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
;

E ¼ Ep þ Ek;

Q⃗ ¼ p⃗þ k⃗;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2 þ 2pk cos θ

q
; ðB4Þ

where cos θ is the cosine of the angle between p⃗ and k⃗.
With those definitions, the cross section is

σχ̄χðp⃗; k⃗Þ ¼
4παy

m4
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEpEk − pk cos θÞ2 −m4

χ

q 

2

�
E2
pB2

Q
−
Epðp⃗ · Q⃗Þ

Q3
½2EB2 − ðE2 −Q2ÞB1�

þ ðp⃗ · Q⃗Þ2
2Q5

�
3

4
ðE2 −Q2Þ2B0 − 3ðE2 −Q2ÞEB1 þ ð3E2 −Q2ÞB2

	

þ p2

2Q3

�
−
ðE2 −Q2Þ2

4
B0 þ ðE2 −Q2ÞEB1 − ðE2 −Q2ÞB2

		

þ ðEpEk − p⃗ · k⃗Þ
Q

½ðEpEk − p⃗ · k⃗Þ þm2
χ �B0 − 2

ðEpEk − p⃗ · k⃗ÞEp

Q
B1

þ 2ðEpEk − p⃗ · k⃗Þðp⃗ · Q⃗Þ
2Q3

½2EB1 − ðE2 −Q2ÞB0�
�
; ðB5Þ

where E and Q⃗ were defined in Eq. (B4) and all Bi are to be interpreted as BiðE;Q; T; μÞ as defined in Eq. (B3).

4. Inverse bremsstrahlung annihilation term

Here we compute the DM absorption rate through inverse bremsstrahlung: χ̄χnp → np. We will use the soft radiation
aApproximation (SRA), which is also used in the neutrino production (and absorption) through (inverse) bremsstrahlung
[40] and also for computing dark photon production in the protoneutron star [41]. This approximation allows one to
factorize the nucleon-nucleon interaction from the emission process, and the latter can be directly measured by experiment.
This approximation is well justified when the energy of the emitted dark matter pair is much smaller than the COM kinetic
energy of the nucleons,

P
ωχ ≪ ECM. For us, this is not satisfied for most of the DMmasses, and we are usually in a regime

where
P

ωχ ∼ ECM. In Ref. [41] it was argued that even in such a regime the SRA approximation only resulted in a factor of
2 error in the case of dark photon production. We expect that this approximation leads to anOð1Þ error in the rate, but as we
will find, this rate is subdominant to the annihilation to eþe− almost everywhere in the proton-neutron star by a significant
margin.
The absorption rate for DM via inverse bremsstrahlung is given by

Γχ ¼
1

nχ

Z
d3k1d3k2

ð2πÞ64ω1ω2

gðk1Þgðk2Þ
Z

d3p1 � � � d3p4

ð2πÞ122E1 � � � 2E4

ð2πÞ4δ4ðk1 þ k2 þ p1 þ p2 − p3 − p4Þ × fpðp1Þfnðp2Þ ¯jMj2χ̄χnp;

ðB6Þ

where gðkÞ is the distribution function for DM (including the number of spin dof), nχ is the number density of DM, fp=n is

the distribution function for protons/neutrons, and ¯jMj2χ̄χnp is the averaged matrix element squared for the χ̄χpn → pn
process. Now, using SRA, we can rewrite this as

SUPERNOVA SIGNALS OF LIGHT DARK MATTER PHYS. REV. D 100, 075018 (2019)

075018-15



Γχ ¼
1

nχ

Z
d3k1d3k2

ð2πÞ64ω1ω2

gðk1Þgðk2Þ
Z

d3p1 � � � d3p4

ð2πÞ122E1 � � � 2E4

ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ

× fpðp1Þfnðp2Þ ¯jMj2np
X
spins

1

4

�
egdϵ
m2

A0

�
2

jJμūk1γμvk2 j2; ðB7Þ

where

Jμ ¼ pμ
1

p1 · k
−

pμ
3

p3 · k
; kμ ¼ kμ1 þ kμ2; ðB8Þ

with p1ð3Þ the momentum of the incoming (outgoing) proton and the sum over spin in the previous equation being over
the DM spin.
Note that in this approximation we drop the momentum of DM in the energy momentum conservation delta function,

since in the SRA these are soft compared to the nucleon energy and momentum. Because of this, we can first perform the
d3ki integrals. For this it is useful to first compute

R1 ¼
Z

dΩk1dΩk2

ð4πÞ2 JμJνtr½ð=k1 −mχÞγμð=k2 þmχÞγν�: ðB9Þ

We can make use of the SRA and also of the nonrelativistic (NR) nature of the nuclei to expand Jμ as a series in the nuclei
velocity to lowest order. With this we find

R1 ¼
4Δp⃗2

M2ω4

"
−
2

3
ðω2

1k
2
2 þ ω2

2k
2
1Þ − ðω1ω2 þm2

χÞ
�
k21 þ k22

3
− ω2

�
þ 2k21k

2
2

9

#
; ðB10Þ

where ω ¼ ω1 þ ω2 and mp is the mass of the nuclei.
We can now rewrite Eq. (B7) as

Γχ ¼
1

nχ

16π2αy
m4

χ
RpnRχ ;

Rχ ¼
Z

d3k1d3k2
ð2πÞ64ω1ω2

gðω1Þgðω2Þ
1

m2
pω

4

�
ðω1ω2 þm2

χÞ
�
ω2 −

k21 þ k22
3

�
þ 2k21k

2
2

9
−
2

3
ðω2

1k
2
2 þ ω2

2k
2
1Þ
	
;

Rpn ¼
Z

d3p1 � � � d3p4

ð2πÞ122E1 � � � 2E4

ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þfpðp1Þfnðp2Þ ¯jMj2npðp⃗1 − p⃗3Þ2: ðB11Þ

As a first step to compute Rpn we first compute

Πpn ¼
Z

d3p3d3p4

ð2πÞ62E32E4

ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þðp2
1 þ p2

3 − 2p1p3 cos θÞ64π2E2
cm

dσnp
dΩCM

;

Πpn ¼ 16p3
CMmp

Z
dΩCMð1 − cos θCMÞ

dσnp
dΩ

����
CM

≡ 16p3
CMmphσð2Þnp i: ðB12Þ

The integral in the above expression has been obtained from the measured phase shifts in [41] and is denoted by hσð2Þnp i.
Note that this is a function only of the CM momentum.
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Using the NR approximation for the nuclei we can write Rpn as

Rpn ¼
npnχ

ð2πmpTÞ3
Z

d3p1d3p2

4m2
p

exp

�
−p2

1 − p2
2

2mpT

�
16mp

�jp⃗1 − p2j
2

�
3

hσð2Þnp i;

q⃗ ¼ p⃗1 − p⃗2

2
; P⃗ ¼ p⃗1 þ p⃗3;

Rpn ¼
npnn

ð2πmpTÞ3
4

mp

Z
d3P exp ð−P2=4mpTÞ

Z
d3qq3hσð2Þnp i expð−q2=mpTÞ

¼ npnn
ðπmpTÞ3=2

8πm2
p

Z
dKK2hσð2Þnp i expð−K=TÞ: ðB13Þ

Combining these results we find

Γχ ¼
64αy
9π

npnn
nχ

1

ðπmpTÞ3=2
Z

∞

1

dx1

Z
∞

1

dx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 − 1Þðx22 − 1Þ

p
ðemx1=T þ 1Þðemx2=T þ 1Þðx1 þ x2Þ4

× ½4þ x1x2ð3x21 þ 4x1x2 þ 3x22Þ þ ð5x21 þ 12x1x2 þ 5x22Þ�
Z

∞

0

dKK2hσð2Þnp ie−K=T: ðB14Þ

5. Source term: e+ e − channel

The source term can directly be calculated from the annihilation term by using detailed balance:

Seþe− ¼
Z

d3qd3q0

ð2πÞ62Eq2Eq0

4

ðeðEq−μeÞ=T þ 1ÞðeðEq0þμeÞ=T þ 1Þ

×
Z

d3kd3k0

ð2πÞ62ωk2ωk0
ð2πÞ4δ4ðkþ k0 − q − q0ÞjMj2ð1 − gðkÞÞð1 − gðk0ÞÞ

¼
Z

d3kd3k0

ð2πÞ62ωk2ωk0

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωkωk0 − kk0 cos θÞ2 −m4

χ

q
ðeωk=T þ 1Þðeωk0=T þ 1Þ σχ̄χðk⃗; k⃗0Þ; ðB15Þ

where μe is the electron chemical potential, k (k’) is the χðχ̄Þ momentum, gðkÞ is the thermal DM distribution function (per
d.o.f.), and σχ̄χ is the DM annihilation cross section to eþe−, including Fermi blocking, as defined in Eq. (B5).

6. Source term: Bremsstrahlung channel

We can also compute this term by enforcing detailed balance and recycle the result from Eq. (B14)9

Sbrem ¼
Z

d3p1 � � �d3p4

ð2πÞ122E1 � � �2E4

Z
d3k1d3k2

ð2πÞ62ω12ω2

ð2πÞ4δ4ðp1 þp2 −p3 −p4 − k1 − k2Þ× fpðp1Þfnðp2ÞjM̄j2prod

¼
Z

d3p1 � � �d3p4

ð2πÞ122E1 � � �2E4

Z
d3k1d3k2

ð2πÞ62ω12ω2

ð2πÞ4δð4Þðp1 þp2 þ k1 þ k2 −p3 −p4Þ× jM̄absj2fpðp1Þfnðp2Þgðk1Þgðk2Þ

¼ nχΓχ ; ðB16Þ

where Mprod and Mabs are the production and absorption matrix elements and gðkiÞ are the thermal distribution functions
for DM. Note that bremsstrahlung production is subdominant to eþe− production the full parameter space of interest.
See Fig. 9.

9We have also independently computed the source term by directly using the SRA for production. We have found that both answers
disagree by more than an order of magnitude for most of the masses of interest, with the direct production rate always being larger than
what was obtained by enforcing a detailed balance. This effect is related to the failure of the SRA in the regime of interest, and we chose
to enforce detailed balance in order to ensure that in the large coupling regime the distribution of DM would approach a thermal
distribution.
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7. DM-xenon recoil

Here we compute the differential cross section for DM
colliding with a xenon nucleus. Since mXe ≫ mχ , we make
the approximation that the center-of-mass frame and rest

frame for the nucleus are roughly the same. Then, we can
compute the scattering cross section and make the requisite
substitutions in order to solve for it in terms of the incoming
momentum of the DM particle. This gives the expression

dσ
dErec

¼ 4παyZ2

�
mXe

p2

�0B@ 1

m4
χ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Xe þ p2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ p2
q �

2

1
CA

×

�
p2

�
1 −

mXeErec

p2

��
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Xe þ p2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ p2

q
þm2

Xe þm2
χ

�

þ p2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Xe þ p2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ p2

q
þm2

χ þ 3p2

�
þm2

Xeð2m2
χ þ p2Þ þ p4

�
1 −

mXeErec

p2

�
2
	
; ðB17Þ

where p is the momentum of the incoming DM particle and
Erec is the recoil energy of the xenon nucleus. The nuclear
charge is Z ¼ 54 for xenon.

APPENDIX C: RECOIL SPECTRA
FROM NEARBY SN

Though there are no observed supernovae that would
produce a singular flux in excess of the diffuse SN
background of dark fermions discussed in the body of this
paper, it is still interesting to consider the recoil spectrum
from a single point source. Since the fermions are produced
with an Oð1Þ spread in velocities, the arrival time varies
between different parts of the spectrum. Dark fermions
living on the high-energy (high-velocity) end of the
spectrum will arrive far sooner than those on the low-
energy (hence low-velocity) end. The majority of the flux
will arrive with a delay behind the neutrinos of order the
light-travel time to the SN.
As a result of this, the recoil spectrum of xenon in a

liquid xenon detector on Earth changes over time. Shortly

after the arrival of light from the SN, we expect to see a
recoil spectrum that extends to high recoil energies (due to
the highly boosted fermions) but with low event rates (due
to the fact that the high-velocity fermions live on a tail of
the spectrum). As time passes, event rates will increase but
the average recoil energy will decrease as the more
abundant, less energetic part of the dark fermion distribu-
tion begins to arrive on Earth. This evolution is displayed in
Fig. 10. For the purposes of computation, we have focused
on the case of a 30 MeV dark fermion with log y ¼ −16.3
and an SN occurring 30 kpc from Earth (the distance to the
galactic center). The recoil spectra are plotted for three
different time delays: 103, 104, and 105 years after the
arrival of the neutrinos on Earth. As expected, the shortest
time delay corresponds to the highest energies of dark
fermions; hence we have a relatively low yield, but
energetic recoil spectrum. As we move toward longer
delays, the average recoil energy decreases, but the event
rate increases. At 105 years (the light-travel time for
30 kpc), we reach the maximal event rate since this
corresponds to the arrival of the peak of the dark fermion

5 MeV

10 MeV

50 MeV

100 MeV

2 4 6 8 10 12

10–4

0.1

100

105

108
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e+
e–

/b
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FIG. 9. This plot displays the eþe− source term divided by the bremsstrahlung source term as a function of radius for a variety of
masses. It is clear that only in the inner core does bremsstrahlung dominate for any mass. Note that the behavior of the 100 MeV curve is
due to the fact that for radii less than 5 km, we have T ≪ 2mχ ; hence there is a large Boltzmann suppression for the bremsstrahlung.
However, the chemical potential remains well above the mass (μ ≫ mχ), and hence there is little suppression on the eþe− channel.
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spectrum. By 106 years (not shown), the dark fermion flux
is once again very low since it corresponds to the arrival of
the low-energy tail. The average recoil energy is well below
the detector threshold.
We find this change in recoil spectrum a noteworthy

feature of the SN flux as it could provide a discriminatory
tool for detecting a DM flux from a future nearby SN, and
we have included it for completeness.

APPENDIX D: COOLING IN THE
FREE-STREAMING REGIME

The lower limits of the cooling bound in Figs. 6 and 7 are
obtained by considering the free-streaming regime of DM
produced in the SN. In this case all DM produced in the
core can free-stream out of the SN as long as it has enough
kinetic energy to escape the gravitational attraction due to
the protoneutron star.
In order to compute the minimum escape energy from a

region of radius r we need to compute the metric inside the
protoneutron star. Following Ref. [42], the metric can be
written as

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2dΩ2: ðD1Þ

The two functions A and B are given by

AðrÞ ¼
�
1 −

2GMðrÞ
r

	
−1
; ðD2Þ

where

MðrÞ ¼
Z

r

0

dr04πr02ρðr0Þ ðD3Þ

and

BðrÞ ¼ exp

�
−
Z

∞

r
dr0

2G
r02

ðMðr0Þ þ 4πr03pðr0ÞÞ

×

�
1 −

2GMðr0Þ
r0

�
−1
	
; ðD4Þ

with p the pressure in the star. Given that the pressure
term is subdominant, we can approximate the pressure by
treating the protons and neutrons as a gas of degenerate
fermions to the level of precision we are interested in.
The minimum energy required for DM to escape from a
radius r is given by

Eesc ¼
mχffiffiffiffiffiffiffiffiffi
BðrÞp : ðD5Þ

As discussed in previous sections there are two important
production channels which contribute to the DM produc-
tion: electron-positron annihilation to DM and DM brems-
strahlung from proton-neutron scattering. For the profile
used in our work we found that the latter yields a larger
production for all masses of interest, but we include both
contributions for completeness.
For the bremsstrahlung case, we use a similar calcu-

lation to what was done in Sec. B 4. However, because we
are now interested in the energy flux and not the number
flux, and because we must impose a minimum energy due
to gravitational trapping, we cannot utilize that result
which was obtained via detailed balance. The steps to
compute the production cross section are almost identi-
cal, except that one must impose a maximum energy
cutoff for the DM produced by hand, since due to the
SRA the energy of the DM no longer appears in the
energy conserving delta function. For that purpose we
include an exponential regulator exp½−ðω1 þ ω2Þ=T�,
where ωi is the DM energy and T the temperature.10

Using this, the local DM luminosity from this channel
is given by

mass = 30 MeV
log(y) = –16.3
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FIG. 10. The recoil spectra of xenon nuclei in a liquid xenon
detector plotted for different time delays from a nearby SN. The
curves shown here are for a 30 MeV dark fermion with log y ¼
−16.3 and Earth-SN distance of 30 kpc. Note the evolution of the
spectrum with time, changing from an energetic spectrum with a
low event rate during the arrival of the high-momentum end of the
DM spectrum to a less-energetic spectrum with higher yields as
the bulk of the DM spectrum arrives on Earth. The gray line
indicates the 2.5 keV threshold of future LXe experiments.

10Another option is to introduce a hard cutoff on the DM
energy such that ω1 þ ω2 ≤ jp⃗1 − p⃗2j2=ð4mpÞ, where p⃗1ð2Þ are
the nuclei initial momentum. This guarantees that the produced
energy is smaller than the COM kinetic energy of the nuclei. We
found that the exponential regulator gives a smaller (and thus
more conservative) rate, and also that it gives an answer that is
closer to satisfying detailed balance when compared to the
absorption rate.
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dV
¼ 64αy

9π

npnn
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K2hσð2Þnp ie−K=Tmχ

�Z
∞

1=
ffiffiffi
B

p dx1

Z
∞

1=
ffiffiffi
B

p dx2ðx1 þ x2Þ

þ 2

Z
∞

1=
ffiffiffi
B

p dx1

Z
1=

ffiffiffi
B

p

1

dx2x1

	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 − 1Þðx22 − 1Þ

p
ðx1 þ x2Þ4

�
½4þ x1x2ð3x21 þ 4x1x2 þ 3x22Þ

þ ð5x21 þ 12x1x2 þ 5x22Þ�; ðD6Þ

where the first integral over dxi corresponds when both pair-produced DM have energy above the escape energymχ=
ffiffiffiffi
B

p
and the second one when only one of them does.
For the electron-positron annihilation term the full form of the production above a certain energy threshold is very

complicated due to the average over the initial electron and positron momentum. In order to simplify our treatment we
compute the luminosity such that half the COM energy

ffiffiffi
s

p
=2 is abovemχ=

ffiffiffiffi
B

p
and consider that

ffiffiffi
s

p
=2 of energy is carried

away (i.e., we only consider the energy carried by the particle which gains energy from the boost from the COM frame to the
star frame). Since we do not include the enhancement of the energy due to the boost, and only consider one of the produced
DM particles for the luminosity, this leads to a conservative estimate. Using this the luminosity from electron positron
annihilation is given by

dLeþe−

dV
¼ 4αy

3π3m4
χ

Z
dω1dω2ω

2
1ω

2
2

ðeðω1þμÞ=T þ 1Þðeðω1−μÞ=T þ 1ÞΘðω1ω2 −m2
χ=BÞ

×
Z

1−
2m2

χ
ω1ω2B

−1
d cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ð1 − cos θÞ

2
−m2

χ

r
½2ω1ω2ð1 − cos θÞ þ 2m2

χ �; ðD7Þ

where the Θ ensures that the COM energy is above the escape energy.

APPENDIX E: TABLES

This appendix contains the full tables used to generate our bounds.

1. Number flux

The following tables show the number flux of DM from the SN, as determined by the MC simulation. It is the total
number of DM particles escaping the SN per second.

log10 y mX ¼ 5 MeV 6 MeV 8 MeV 9 MeV 11 MeV 14 MeV 17 MeV 21 MeV 26 MeV 32 MeV

−13.3 2.3 × 1052 2.9 × 1052 5.9 × 1052 4.0 × 1052 6.2 × 1052 1.0 × 1053 9.6 × 1052 1.4 × 1053 1.5 × 1053 1.7 × 1053

−13.7 1.0 × 1053 1.7 × 1053 2.1 × 1053 2.1 × 1053 2.7 × 1053 4.0 × 1053 4.5 × 1053 5.5 × 1053 5.5 × 1053 3.8 × 1053

−14.0 5.0 × 1053 4.6 × 1053 6.6 × 1053 8.9 × 1053 1.1 × 1054 1.1 × 1054 2.2 × 1054 2.1 × 1054 2.3 × 1054 5.3 × 1054

−14.3 2.3 × 1054 2.5 × 1054 2.9 × 1054 4.0 × 1054 3.4 × 1054 4.3 × 1054 7.0 × 1054 7.3 × 1054 1.7 × 1055 1.1 × 1055

−14.7 8.9 × 1054 1.1 × 1055 9.7 × 1054 1.2 × 1055 1.4 × 1055 2.6 × 1055 2.3 × 1055 1.7 × 1055 4.6 × 1055 6.5 × 1055

−15.0 2.4 × 1055 2.7 × 1055 3.6 × 1055 3.8 × 1055 5.3 × 1055 6.4 × 1055 8.0 × 1055 1.1 × 1056 1.1 × 1056 1.1 × 1056

−15.3 5.8 × 1055 7.3 × 1055 7.6 × 1055 1.0 × 1056 1.2 × 1056 1.5 × 1056 2.0 × 1056 2.6 × 1056 3.3 × 1056 4.2 × 1056

−15.7 1.2 × 1056 1.2 × 1056 1.5 × 1056 1.7 × 1056 1.8 × 1056 2.0 × 1056 3.2 × 1056 4.7 × 1056 6.1 × 1056 6.8 × 1056

−16.0 1.7 × 1056 2.0 × 1056 2.3 × 1056 2.4 × 1056 2.9 × 1056 4.8 × 1056 5.5 × 1056 9.4 × 1056 1.2 × 1057 1.4 × 1057

−16.3 3.1 × 1056 2.7 × 1056 3.4 × 1056 3.9 × 1056 5.3 × 1056 7.4 × 1056 1.2 × 1057 1.3 × 1057 1.8 × 1057 2.3 × 1057

−16.7 3.5 × 1056 4.2 × 1056 5.6 × 1056 6.5 × 1056 7.7 × 1056 1.5 × 1057 1.9 × 1057 2.3 × 1057 2.9 × 1057 3.2 × 1057

−17.0 5.6 × 1056 6.9 × 1056 9.4 × 1056 1.3 × 1057 1.6 × 1057 2.0 × 1057 2.8 × 1057 3.3 × 1057 4.0 × 1057 4.6 × 1057

−17.3 8.3 × 1056 1.2 × 1057 1.5 × 1057 2.0 × 1057 2.3 × 1057 3.4 × 1057 3.9 × 1057 4.2 × 1057 4.8 × 1057 6.7 × 1057

−17.7 1.3 × 1057 1.9 × 1057 2.7 × 1057 3.1 × 1057 3.7 × 1057 4.4 × 1057 5.1 × 1057 5.4 × 1057 6.7 × 1057 9.7 × 1057

−18.0 1.8 × 1057 2.7 × 1057 3.4 × 1057 4.3 × 1057 5.0 × 1057 5.6 × 1057 6.5 × 1057 7.5 × 1057 1.1 × 1058 1.2 × 1058

−18.3 2.4 × 1057 3.2 × 1057 4.5 × 1057 5.5 × 1057 6.3 × 1057 7.8 × 1057 8.5 × 1057 1.2 × 1058 1.3 × 1058 8.9 × 1057

−18.7 3.4 × 1057 4.3 × 1057 5.5 × 1057 6.6 × 1057 8.5 × 1057 9.9 × 1057 1.3 × 1058 1.5 × 1058 9.5 × 1057 4.4 × 1057

−19.0 4.4 × 1057 5.5 × 1057 6.6 × 1057 7.8 × 1057 1.1 × 1058 1.4 × 1058 1.6 × 1058 1.0 × 1058 4.6 × 1057 2.0 × 1057

−19.3 5.6 × 1057 6.6 × 1057 7.7 × 1057 1.0 × 1058 1.4 × 1058 1.6 × 1058 1.0 × 1058 4.9 × 1057 2.1 × 1057 9.4 × 1056

−19.7 6.6 × 1057 7.4 × 1057 9.4 × 1057 1.5 × 1058 1.7 × 1058 1.1 × 1058 5.1 × 1057 2.3 × 1057 1.0 × 1057 4.4 × 1056

−20.0 8.4 × 1057 1.0 × 1058 1.5 × 1058 1.7 × 1058 1.1 × 1058 5.4 × 1057 2.4 × 1057 1.1 × 1057 4.6 × 1056 2.0 × 1056

(Table continued)
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(Continued)

log10 y mX ¼ 5 MeV 6 MeV 8 MeV 9 MeV 11 MeV 14 MeV 17 MeV 21 MeV 26 MeV 32 MeV

−20.3 1.1 × 1058 1.5 × 1058 1.8 × 1058 1.2 × 1058 5.6 × 1057 2.5 × 1057 1.1 × 1057 4.9 × 1056 2.1 × 1056 9.4 × 1055

−20.7 1.5 × 1058 1.8 × 1058 1.3 × 1058 5.9 × 1057 2.6 × 1057 1.2 × 1057 5.1 × 1056 2.3 × 1056 1.0 × 1056 4.4 × 1055

−21.0 1.8 × 1058 1.3 × 1058 6.2 × 1057 2.7 × 1057 1.2 × 1057 5.4 × 1056 2.4 × 1056 1.1 × 1056 4.6 × 1055 2.0 × 1055

−21.3 1.4 × 1058 6.5 × 1057 2.9 × 1057 1.3 × 1057 5.6 × 1056 2.5 × 1056 1.1 × 1056 4.9 × 1055 2.1 × 1055 9.4 × 1054

−21.7 6.8 × 1057 3.0 × 1057 1.3 × 1057 5.9 × 1056 2.6 × 1056 1.2 × 1056 5.1 × 1055 2.3 × 1055 1.0 × 1055 4.4 × 1054

−22.0 3.2 × 1057 1.4 × 1057 6.2 × 1056 2.7 × 1056 1.2 × 1056 5.4 × 1055 2.4 × 1055 1.1 × 1055 4.6 × 1054 2.0 × 1054

log10 y mX ¼ 39 MeV 48 MeV 58 MeV 88 MeV 108 MeV 132 MeV 162 MeV 199 MeV 244 MeV 300 MeV

−13.3 1.2 × 1053 2.7 × 1053 2.0 × 1053 5.1 × 1053 2.1 × 1053 2.3 × 1053 3.0 × 1053 2.0 × 1053 7.1 × 1052 5.1 × 1052

−13.7 1.6 × 1054 1.0 × 1054 1.4 × 1054 1.3 × 1054 1.0 × 1054 9.9 × 1053 9.5 × 1053 5.6 × 1053 2.7 × 1053 3.4 × 1053

−14.0 6.6 × 1054 4.1 × 1054 7.8 × 1054 3.7 × 1054 4.8 × 1054 4.7 × 1054 3.2 × 1054 1.3 × 1054 1.0 × 1054 1.8 × 1054

−14.3 1.7 × 1055 3.9 × 1055 2.3 × 1055 1.8 × 1055 1.9 × 1055 1.4 × 1055 6.9 × 1054 5.3 × 1054 6.7 × 1054 4.4 × 1054

−14.7 5.8 × 1055 3.9 × 1055 4.6 × 1055 6.2 × 1055 5.3 × 1055 3.4 × 1055 1.8 × 1055 1.9 × 1055 2.3 × 1055 4.6 × 1054

−15.0 1.4 × 1056 2.1 × 1056 1.4 × 1056 1.6 × 1056 1.3 × 1056 8.6 × 1055 7.5 × 1055 8.7 × 1055 3.3 × 1055 2.5 × 1054

−15.3 4.6 × 1056 3.7 × 1056 4.7 × 1056 3.9 × 1056 2.7 × 1056 2.2 × 1056 2.7 × 1056 1.5 × 1056 2.2 × 1055 1.2 × 1054

−15.7 8.4 × 1056 9.5 × 1056 1.0 × 1057 6.9 × 1056 6.5 × 1056 6.6 × 1056 4.7 × 1056 1.1 × 1056 1.0 × 1055 5.4 × 1053

−16.0 1.6 × 1057 1.6 × 1057 1.7 × 1057 1.6 × 1057 1.5 × 1057 1.2 × 1057 3.7 × 1056 5.4 × 1055 4.8 × 1054 2.5 × 1053

−16.3 2.4 × 1057 2.7 × 1057 2.8 × 1057 3.0 × 1057 2.3 × 1057 8.5 × 1056 1.8 × 1056 2.5 × 1055 2.2 × 1054 1.2 × 1053

−16.7 3.6 × 1057 4.1 × 1057 4.6 × 1057 3.7 × 1057 1.5 × 1057 4.2 × 1056 8.4 × 1055 1.2 × 1055 1.0 × 1054 5.4 × 1052

−17.0 5.3 × 1057 6.1 × 1057 6.8 × 1057 2.3 × 1057 7.5 × 1056 2.0 × 1056 3.9 × 1055 5.4 × 1054 4.8 × 1053 2.5 × 1052

−17.3 8.0 × 1057 8.8 × 1057 6.4 × 1057 1.1 × 1057 3.5 × 1056 9.1 × 1055 1.8 × 1055 2.5 × 1054 2.2 × 1053 1.2 × 1052

−17.7 1.1 × 1058 7.4 × 1057 3.4 × 1057 5.1 × 1056 1.6 × 1056 4.2 × 1055 8.4 × 1054 1.2 × 1054 1.0 × 1053 5.4 × 1051

−18.0 8.2 × 1057 3.8 × 1057 1.6 × 1057 2.4 × 1056 7.5 × 1055 2.0 × 1055 3.9 × 1054 5.4 × 1053 4.8 × 1052 2.5 × 1051

−18.3 4.1 × 1057 1.8 × 1057 7.4 × 1056 1.1 × 1056 3.5 × 1055 9.1 × 1054 1.8 × 1054 2.5 × 1053 2.2 × 1052 1.2 × 1051

−18.7 1.9 × 1057 8.2 × 1056 3.4 × 1056 5.1 × 1055 1.6 × 1055 4.2 × 1054 8.4 × 1053 1.2 × 1053 1.0 × 1052 5.4 × 1050

−19.0 8.9 × 1056 3.8 × 1056 1.6 × 1056 2.4 × 1055 7.5 × 1054 2.0 × 1054 3.9 × 1053 5.4 × 1052 4.8 × 1051 2.5 × 1050

−19.3 4.1 × 1056 1.8 × 1056 7.4 × 1055 1.1 × 1055 3.5 × 1054 9.1 × 1053 1.8 × 1053 2.5 × 1052 2.2 × 1051 1.2 × 1050

−19.7 1.9 × 1056 8.2 × 1055 3.4 × 1055 5.1 × 1054 1.6 × 1054 4.2 × 1053 8.4 × 1052 1.2 × 1052 1.0 × 1051 5.4 × 1049

−20.0 8.9 × 1055 3.8 × 1055 1.6 × 1055 2.4 × 1054 7.5 × 1053 2.0 × 1053 3.9 × 1052 5.4 × 1051 4.8 × 1050 2.5 × 1049

−20.3 4.1 × 1055 1.8 × 1055 7.4 × 1054 1.1 × 1054 3.5 × 1053 9.1 × 1052 1.8 × 1052 2.5 × 1051 2.2 × 1050 1.2 × 1049

−20.7 1.9 × 1055 8.2 × 1054 3.4 × 1054 5.1 × 1053 1.6 × 1053 4.2 × 1052 8.4 × 1051 1.2 × 1051 1.0 × 1050 5.4 × 1048

−21.0 8.9 × 1054 3.8 × 1054 1.6 × 1054 2.4 × 1053 7.5 × 1052 2.0 × 1052 3.9 × 1051 5.4 × 1050 4.8 × 1049 2.5 × 1048

−21.3 4.1 × 1054 1.8 × 1054 7.4 × 1053 1.1 × 1053 3.5 × 1052 9.1 × 1051 1.8 × 1051 2.5 × 1050 2.2 × 1049 1.2 × 1048

−21.7 1.9 × 1054 8.2 × 1053 3.4 × 1053 5.1 × 1052 1.6 × 1052 4.2 × 1051 8.4 × 1050 1.2 × 1050 1.0 × 1049 5.4 × 1047

−22.0 8.9 × 1053 3.8 × 1053 1.6 × 1053 2.4 × 1052 7.5 × 1051 2.0 × 1051 3.9 × 1050 5.4 × 1049 4.8 × 1048 2.5 × 1047

2. Annihilation sphere

These tables contain entries for rN, the radius (in km) at which the number-changing processes cease. “Bulk” indicates
that the diffusive approximation breaks down and there is no defined annihilation sphere.

log10 y mX ¼ 5 MeV 6 MeV 8 MeV 9 MeV 11 MeV 14 MeV 17 MeV 21 MeV 26 MeV 32 MeV

−13.3 174.0 142.0 116.0 94.4 77.0 62.6 50.9 41.2 33.4 27.1
−13.7 153.0 125.0 102.0 82.8 67.4 54.8 44.4 36.0 29.1 23.8
−14.0 133.0 108.0 88.4 71.9 58.4 47.5 38.4 31.0 25.3 21.3
−14.3 114.0 92.7 75.5 61.5 49.9 40.5 32.7 26.5 22.1 20.5
−14.7 96.6 78.7 63.9 51.9 42.1 34.0 27.6 22.8 20.6 19.9
−15.0 80.6 65.6 53.3 43.2 35.0 28.3 23.3 20.7 20.0 19.2
−15.3 66.6 54.2 43.8 35.5 28.7 23.6 20.8 20.1 19.3 18.6
−15.7 54.2 44.1 35.6 28.7 23.6 20.8 20.1 19.4 18.7 18.0

(Table continued)
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(Continued)

log10 y mX ¼ 5 MeV 6 MeV 8 MeV 9 MeV 11 MeV 14 MeV 17 MeV 21 MeV 26 MeV 32 MeV

−16.0 43.5 35.1 28.5 23.4 20.8 20.1 19.4 18.7 18.0 17.4
−16.3 34.3 27.8 22.9 20.7 20.0 19.3 18.6 18.0 17.3 16.7
−16.7 26.8 22.3 20.6 19.9 19.2 18.6 17.9 17.3 16.6 16.0
−17.0 21.6 20.4 19.7 19.1 18.4 17.8 17.2 16.5 15.9 15.3
−17.3 20.3 19.6 18.9 18.3 17.6 17.0 16.4 15.8 15.2 13.9
−17.7 19.4 18.8 18.1 17.5 16.9 16.3 15.7 15.0 13.6 11.8
−18.0 18.6 18.0 17.3 16.7 16.1 15.5 14.7 13.1 11.4 Bulk
−18.3 17.8 17.2 16.5 15.9 15.3 14.3 12.6 10.9 Bulk Bulk
−18.7 17.0 16.4 15.8 15.2 13.8 12.1 10.4 Bulk Bulk Bulk
−19.0 16.2 15.6 15.0 13.4 11.7 Bulk Bulk Bulk Bulk Bulk
−19.3 15.4 14.5 12.9 11.1 Bulk Bulk Bulk Bulk Bulk Bulk
−19.7 14.1 12.4 10.6 Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.0 11.9 10.1 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−22.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk

log10 y mX ¼ 39 MeV 48 MeV 58 MeV 88 MeV 108 MeV 132 MeV 162 MeV 199 MeV 244 MeV 300 MeV

−13.3 20.5 19.7 18.9 18.2 17.5 16.7 16.0 15.3 14.0 12.0
−13.7 20.0 19.2 18.5 17.8 17.0 16.3 15.6 14.8 13.0 11.0
−14.0 19.5 18.7 18.0 17.3 16.6 15.9 15.2 13.8 11.9 Bulk
−14.3 18.9 18.2 17.5 16.8 16.1 15.4 14.5 12.7 10.7 Bulk
−14.7 18.4 17.7 17.0 16.3 15.7 15.0 13.3 11.4 Bulk Bulk
−15.0 17.8 17.2 16.5 15.8 15.2 13.8 12.0 10.1 Bulk Bulk
−15.3 17.3 16.6 15.9 15.3 14.1 12.4 10.5 Bulk Bulk Bulk
−15.7 16.7 16.0 15.4 14.4 12.7 10.8 Bulk Bulk Bulk Bulk
−16.0 16.1 15.4 14.5 12.8 11.0 Bulk Bulk Bulk Bulk Bulk
−16.3 15.4 14.5 12.9 11.1 Bulk Bulk Bulk Bulk Bulk Bulk
−16.7 14.4 12.8 11.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−17.0 12.6 10.8 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−17.3 10.5 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−17.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−22.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk

WILLIAM DEROCCO et al. PHYS. REV. D 100, 075018 (2019)

075018-22



3. Energy sphere

These tables contain entries for rE, the radius (in km) at which the processes that keep the SM and DM in thermal contact
cease. “Bulk” indicates that the diffusive approximation breaks down and there is no defined energy sphere.

log10 y mX ¼ 5 MeV 6 MeV 8 MeV 9 MeV 11 MeV 14 MeV 17 MeV 21 MeV 26 MeV 32 MeV

−13.3 300.0 248.0 203.0 167.0 136.0 111.0 89.8 72.8 59.3 48.2
−13.7 233.0 192.0 156.0 127.0 104.0 84.4 69.0 55.9 45.5 37.1
−14.0 181.0 148.0 121.0 98.5 80.1 65.1 53.0 43.1 35.1 28.6
−14.3 141.0 114.0 93.6 76.2 62.2 50.6 41.2 33.6 27.2 22.9
−14.7 110.0 89.3 72.8 59.5 48.4 39.5 32.1 26.1 22.4 20.8
−15.0 86.1 70.4 57.4 46.7 38.0 31.0 25.1 22.1 20.6 19.7
−15.3 68.0 55.7 45.3 36.9 30.1 24.4 21.8 20.4 19.6 18.9
−15.7 54.2 44.2 36.1 29.3 23.9 21.6 20.3 19.5 18.9 18.3
−16.0 43.4 35.4 28.9 23.6 21.4 20.2 19.4 18.8 18.2 17.7
−16.3 34.9 28.4 23.4 21.3 20.1 19.3 18.7 18.1 17.6 17.1
−16.7 28.1 23.2 21.1 20.0 19.3 18.7 18.1 17.6 17.0 16.5
−17.0 23.2 21.1 20.0 19.2 18.6 18.1 17.5 17.0 16.5 15.9
−17.3 21.0 19.9 19.2 18.6 18.0 17.5 16.9 16.4 15.9 15.4
−17.7 19.9 19.2 18.6 18.0 17.5 16.9 16.4 15.9 15.3 14.8
−18.0 19.2 18.6 18.0 17.4 16.9 16.4 15.8 15.3 14.8 13.9
−18.3 18.6 18.0 17.4 16.9 16.4 15.8 15.3 14.7 13.8 12.4
−18.7 18.0 17.4 16.9 16.4 15.8 15.3 14.7 13.8 12.4 10.4
−19.0 17.4 16.9 16.4 15.8 15.3 14.7 13.8 12.3 10.4 Bulk
−19.3 16.9 16.4 15.8 15.3 14.7 13.8 12.3 10.3 Bulk Bulk
−19.7 16.4 15.8 15.3 14.7 13.8 12.3 10.4 Bulk Bulk Bulk
−20.0 15.9 15.3 14.8 13.8 12.4 10.4 Bulk Bulk Bulk Bulk
−20.3 15.3 14.8 13.9 12.4 10.4 Bulk Bulk Bulk Bulk Bulk
−20.7 14.8 13.9 12.4 10.5 Bulk Bulk Bulk Bulk Bulk Bulk
−21.0 14.0 12.5 10.6 Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.3 12.6 10.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.7 10.8 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−22.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk

log10 y mX ¼ 39 MeV 48 MeV 58 MeV 88 MeV 108 MeV 132 MeV 162 MeV 199 MeV 244 MeV 300 MeV

−13.3 31.9 25.7 22.4 20.8 19.8 19.2 18.6 18.0 17.5 16.9
−13.7 24.3 21.9 20.5 19.7 19.0 18.4 17.9 17.3 16.8 16.3
−14.0 21.5 20.3 19.5 18.8 18.3 17.7 17.2 16.7 16.2 15.7
−14.3 20.0 19.3 18.7 18.1 17.6 17.1 16.6 16.1 15.5 15.0
−14.7 19.2 18.6 18.0 17.5 17.0 16.5 16.0 15.4 14.9 14.2
−15.0 18.5 17.9 17.4 16.9 16.4 15.9 15.3 14.8 14.0 12.8
−15.3 17.8 17.3 16.8 16.3 15.8 15.2 14.7 13.8 12.5 10.7
−15.7 17.2 16.7 16.2 15.7 15.2 14.6 13.7 12.2 10.3 Bulk
−16.0 16.6 16.1 15.6 15.1 14.5 13.4 11.9 Bulk Bulk Bulk
−16.3 16.0 15.5 15.0 14.4 13.3 11.7 Bulk Bulk Bulk Bulk
−16.7 15.5 14.9 14.2 13.1 11.4 Bulk Bulk Bulk Bulk Bulk
−17.0 14.9 14.1 12.9 11.1 Bulk Bulk Bulk Bulk Bulk Bulk
−17.3 14.0 12.7 11.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−17.7 12.6 10.8 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.0 10.6 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−18.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−19.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk

(Table continued)
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(Continued)

log10 y mX ¼ 39 MeV 48 MeV 58 MeV 88 MeV 108 MeV 132 MeV 162 MeV 199 MeV 244 MeV 300 MeV

−20.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−20.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.3 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−21.7 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
−22.0 Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk Bulk
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