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We propose T 13 ¼ Z13⋊Z3 as the underlying non-Abelian discrete family symmetry of the asymmetric
texture presented in [M. H. Rahat, P. Ramond, and B. Xu, Phys. Rev. D 98, 055030 (2018).]. Its mod 13
arithmetic distinguishes each Yukawa matrix element of the texture. We construct a model of effective
interactions that singles out the asymmetry and equates, without fine-tuning, the products of down-quark
and charged-lepton masses at a GUT-like scale.
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I. INTRODUCTION

The observable Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix is the overlap of the
unitary matrix Uð−1Þ that mixes the charged-lepton
Yukawa matrix Yð−1Þ and a quasiunitary matrix USeesaw
that diagonalizes the 3 × 3 Majorana matrix of the light
neutrinos, Mð0Þ, i.e.,

UPMNS ¼ Uð−1Þ†USeesaw: ð1Þ

Thus, the observable mixing angles have two different
origins: Uð−1Þ comes from ΔIw ¼ 1

2
electroweak physics,

whereas in the seesaw mechanism, USeesaw comes from
unknown ΔIw ¼ 0 physics; the PMNS matrix bridges the
ΔIw ¼ 1

2
and ΔIw ¼ 0 sectors. Two out of its three angles

are large, with a much smaller third “reactor angle.” In
contrast, the largest of the quark mixing angles is the
Cabibbo angle.
In the SUð5Þ extension of the Standard Model, the down-

quark Yukawa matrix Yð−1
3
Þ is similar to the transpose of the

charged-lepton Yukawa matrix Yð−1Þ,

Yð−1
3
Þ ∼ Yð−1ÞT; ð2Þ

implying that the left-handed charged-lepton unitary matrix
Uð−1Þ is similar to the right-handed down-quark unitary
matrix Vð−1

3
Þ.

In a basis where the up-quark Yukawa matrix Yð2
3
Þ is

diagonal, the left-handed unitary matrix of Yð−1
3
Þ is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix which con-
tains only small angles. In SUð5Þ, a symmetric down-
quark Yukawa matrix leads to small left-handed mixings
of the charged leptons. Its contribution provides a small
“Cabibbo haze” [1] to the angles of the seesaw mixing
matrix.
Before the value of the reactor angle θ13 was measured

[2], the large atmospheric and solar mixing angles were
approximately expressed by “platonic” mixing matrices,
e.g., tribimaximal (TBM) [3], bimaximal (BM) [4], and
golden ratio mixings GR1 [5] and GR2 [6]. All possess a
maximal atmospheric angle and a vanishing reactor
angle, differing in their prediction for the solar mixing
angle. When corrected via contributions from flavor-
symmetric Yukawa matrices, the reactor angle expect-
ations hovered around 4°–5° [7], much less than its
measured value.
These simple and beautiful mixing matrices may be

salvaged if the Yukawa matrices are asymmetric [8].
However, models based on an underlying family symmetry,
where the SUð5Þ quintets and decuplets transform as the
same representations of the group, can only single out
symmetric and antisymmetric Yukawa matrices. This leads
to two questions: (a) what asymmetry is required by the
Yukawas to satisfy the experimental constraints; and,
(b) which family symmetry group can naturally produce
an asymmetry?
A minimalist answer to the first question was provided

by three of us in a phenomenological texture with an
asymmetry present in only the (31) element of Yð−1

3
Þ
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and (13) element of Yð−1Þ [9]. It reproduces features of the
quarks and charged leptons such as the CKM matrix, the
Gatto-Sartori-Tonin (GST) relation [10], and the mass
ratios between down quarks and charged leptons in the
deep ultraviolet. The charged-lepton mixings are now
of the order of the Cabibbo angle, so that when folded
in with the unperturbed TBM mixing, they yield a reactor
angle larger than its experimental value.
The addition of a CP phase [11] to the TBM matrix is

necessary to lower θ13 to its Particle Data Group (PDG)
value [12]. This single parameter brings the other two
angles within 1σ of their PDG fit and predicts the CP
Jarlskog-Greenberg invariant [13], jJ j ≈ 0.028, which
matches with the central PDG value.
In this work we propose an answer to the second

question with a family symmetry (see [14] and the
references therein) based on the discrete group T 13 ¼
Z13⋊Z3 [15]. It explains the asymmetric term of the
texture and yields the equality of the determinants of the
matrices Yð−1

3
Þ and Yð−1Þ, conforming to the down-quark to

charged-lepton mass ratios at the GUT scale. T 13, however,
allows some operators which spoil these features. Such
operators can be naturally avoided and the determinant
condition can be established successfully only when the
family symmetry is extended to include a Z5 factor.
It is useful to comment here that a complete flavor model

would construct all Yukawa matrices of the Standard
Model, i.e., Yð2=3Þ, Yð−1=3Þ, Yð−1Þ, as well as generate a
light neutrino mass matrix Mð0Þ. As a first step in this
direction, in this work we focus solely on the asymmetric
matrices for the down quarks and charged leptons [9], and
show how they can naturally arise from the discrete family
symmetry T 13 × Z5.
The asymmetric texture of [9] requires Yð2=3Þ to be

diagonal, which, as we will show below, is natural to obtain
with T 13 × Z5. It also requires that the model contains a
Dirac neutrino matrix Yð0Þ and that the light neutrino
Majorana matrix Mð0Þ is diagonalized by the TBM
matrix with an additional phase [9]. In this paper we
construct Yð−1

3
Þ and Yð−1Þ through the introduction of gauge-

singlet familons which spontaneously break the family
symmetry. We postpone the discussion of the familon
vacuum structure until all familons contributing to the
generation of the aforementioned mass matrices are
known [16].
The paper is organized as follows. In Sec. II, we

revisit the key features of the asymmetric texture and seek
a non-Abelian family symmetry that can naturally repro-
duce them. Section III contains the relevant T 13 group
theory and a discussion on its merits for model building.
In Sec. IV, we present an effective field theory model
for constructing the asymmetric texture from a T 13

family symmetry. The Higgs fields in our model are
family-singlets, so that the matrix elements of the texture
are generated from dimension-five and -six operators.

A theoretical outlook as to the origin of the T 13 family
symmetry follows in Sec. V.

II. A FAMILY SYMMETRY FOR THE
ASYMMETRIC TEXTURE

The phenomenological asymmetric texture reproduces
the deep ultraviolet structure of the Standard Model
Yukawa matrices Yð2

3
Þ, Yð−1

3
Þ and Yð−1Þ. Below we review

its salient features and show how it emerges as a minimal
departure from symmetric Yukawa matrices in the context
of SUð5Þ.

A. A search for a simple texture

Following the hints for ultraviolet simplicity outlined in
the Introduction, an asymmetric texture for the down-quark
and charged-lepton Yukawa matrices can be singled out
under the following assumptions:

(i) Seesaw simplicity. The two large leptonic mixing
angles suggest that a good zeroth order approxima-
tion for UPMNS is TBM mixing. We assume that

USeesaw ¼ UTBMðδÞ ¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

eiδffiffi
6

p − eiδffiffi
3

p eiδffiffi
2

p

1
CCCA: ð3Þ

The addition of a phase in the third row serves to
lower the corrections to the PMNS angles from the
Uð−1Þ to their central PDG values. We assume that
such mixing arises in the context of the seesaw
mechanism but do not further specify the dynamics
of the Majorana sector; the origin of the phase δ and
the implications of our chosen family symmetry on
Majorana physics will be the focus of a future
publication [16].

(ii) A diagonal up-quark Yukawa matrix Yð2
3
Þ ¼

mtDiagðλ8; λ4; 1Þ, where we have expressed the
mass ratios in terms of λ, the sine of the Cabibbo
angle θc. This feature of the asymmetric texture
implies that the CKM matrix is generated by Yð−1

3
Þ.

This is not a basis-dependent construction and needs
to be explained by a symmetry.

(iii) The 5̄ couplings of Yð−1
3
Þ and Yð−1Þ are related

through transposition, as suggested by SUð5Þ. A
45 Higgs couples solely to the (22) element of Yð−1

3
Þ

and Yð−1Þ, as in the Georgi-Jarlskog symmetric
texture [17]. The determinants of Yð−1

3
Þ and Yð−1Þ

are equal; i.e., the subdeterminant about their (22)
matrix element vanishes.

With TBM mixing, purely symmetric or antisymmetric
textures do not reproduce the data [9]. Some level of
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asymmetry is necessary in the Yukawa matrices to bring the
reactor angle in agreement with its measured value.
For symmetric textures,

Uð−1Þ ¼ UCKMðc → −3cÞ; ð4Þ

with c the coupling of the 45 to the (22) position. With
TBM neutrino mixing, the correction to the leptonic mixing
matrix yields a reactor angle,

j sin θ13j ¼
1ffiffiffi
2

p jUð−1Þ
21 þ Uð−1Þ

31 j ≈ λ

3
ffiffiffi
2

p ¼ 0.051;

one third of its PDG value of 0.145. An asymmetric
texture can alleviate this tension by relaxing Eq. (4) to

Uð−1Þ ¼ Vð−1
3
Þðc → −3cÞ; ð5Þ

related now to the right-handed mixing of the down quarks.
The phenomenological texture of [9], with a large

asymmetry along the (13)–(31) axis, is given by

Yð−1
3
Þ ∼

0
BB@

bdλ4 aλ3 bλ3

aλ3 cλ2 gλ2

dλ gλ2 1

1
CCA

and Yð−1Þ ∼

0
BB@

bdλ4 aλ3 dλ

aλ3 −3cλ2 gλ2

bλ3 gλ2 1

1
CCA; ð6Þ

where a, b, c, d, and g are Oð1Þ prefactors, which serve
as the input parameters to fit the experimental data. Written
in terms of the Wolfenstein parameters A, ρ, and η, they
are [9]

a ¼ c ¼ 1

3
; g ¼ A;

b ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
; d ¼ 2a

g
¼ 2

3A
:

This OðλÞ asymmetry provides OðλÞ elements to Uð−1Þ,
leading to

sin θ13 ¼
λ

3
ffiffiffi
2

p
�
1þ 2

A

�
¼ 0.184;

above its PDG value by 2.26°, with the solar and atmos-
pheric angles also being slightly off their PDG values (by
∼3°–6°). All leptonic mixing angles can be brought within
1° of their central PDG values by the addition of a complex
phase δ to the TBM mixing matrix, as in Eq. (3).
In summary, the key features of the asymmetric tex-

ture are
(i) a diagonal Yð2

3
Þ;

(ii) an asymmetric (31) and (13) matrix element ofOðλÞ
in Yð−1

3
Þ and Yð−1Þ, respectively, much larger than

their transposed counterparts, with symmetric off-
diagonal elements elsewhere;

(iii) equality of the determinants of Yð−1
3
Þ and Yð−1Þ. This

implies that the subdeterminant about the (22) entry
of Yð−1

3
Þ and Yð−1Þ must vanish.

B. Asymmetric group theory

The form of the Yukawa matrices in the asymmetric
texture put strong constraints on the choice of a family
symmetry group.
In SUð5Þ, the matter fields are described by three anti-

quintets Fi ∼ 5̄, and three decuplets Ti ∼ 10; we assume
here that they transform as three-dimensional representa-
tions r and s, respectively, of some family symmetry
group, Gf.
The Yukawa matrices Yð−1

3
Þ and Yð−1Þ couple to F ⊗ T≡

ð5̄; rÞ ⊗ ð10; sÞ. If these matrices are symmetric, setting
r ¼ s is natural, since group multiplication distinguishes
symmetry from antisymmetry. In contrast, asymmetry
requires the identification of a specific off-diagonal matrix
element, so that r and s must be different representations:
Requirement 1. F and T must be different triplets

of Gf.
The three smallest non-Abelian discrete subgroups of

SUð3Þ [18] with at least two distinct three-dimensional
representations are S4 of order 24, Δð27Þ of order 27, and
T 13 ¼ Z13⋊Z3 of order 39. S4 and Δð27Þ have two real
triplets, whereas T 13 has two complex triplets [19].
The diagonal charge-2=3 Yukawa matrix couples to

T ⊗ T ≡ ð10; sÞ ⊗ ð10; sÞ, requiring:
Requirement 2. The product s ⊗ s distinguishes diago-

nal from off-diagonal elements.
In S4, the product of a triplet with itself, i.e.,

3 ⊗ 3 ¼ ð1 ⊕ 2 ⊕ 3Þs ⊕ 30a;

is such that the diagonal elements do not appear in a single
representation, irrespective of the choice of basis for
Clebsch-Gordan coefficients [20]. In Δð27Þ, the similar
Kronecker product,

3 ⊗ 3 ¼ ð30 ⊕ 30Þs ⊕ 30a;

fails to put the diagonal elements in a distinct triplet [21]. In
both cases, singling out the diagonal elements requires
some relations between coupling constants that are not
protected by the group theory of either S4 or Δð27Þ.
The group structure of T 13 naturally satisfies the above

requirements. It yields a diagonal Yð2
3
Þ matrix, so that the

CKM matrix is fully determined by the diagonalization
of Yð−1

3
Þ.
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III. T 13 IN A NUTSHELL

The two generators a and b of T 13 ¼ Z13⋊Z3 have the
presentation,

ha; bja13 ¼ b3 ¼ I; bab−1 ¼ a3i: ð7Þ

The first two conditions establish a and b as generators of
the Z13 and Z3 groups, while the third condition specifies
how they nontrivially act under the semidirect product to
construct T 13. Besides the trivial singlet 1, a and b act on a
complex one-dimensional irrep 10, two complex triplet
irreps 31, 32, and their conjugates 1̄0, 3̄1 and 3̄2.
In a simple choice of basis, the action of a on triplets is to

assign specific Z13 charges to the components, while b
cyclically permutes them. Thus, the elements of each triplet
can be labeled by mod 13 arithmetic. Let ρ13 ¼ 1, and
assign the charges as follows:

31∶ ðρ; ρ3; ρ9Þ; 32∶ ðρ2; ρ6; ρ5Þ;

with the mod 13 conjugate charges in the conjugate
representations. The Clebsch-Gordan coefficients are then
determined by the Z13 charges and the Z3 permutations.
For example, setting 32 ¼ fj1i; j2i; j3ig, we get under

Z3,

j1i → j2i → j3i → j1i;

so that

j1ij1i → j2ij2i → j3ij3i → j1ij1i:

Under Z13,

j1i → ρ2j1i; j2i → ρ6j2i; j3i → ρ5j3i;
j1ij1i → ρ4j1ij1i; j2ij2i → ρ12j2ij2i;
j3ij3i → ρ10j3ij3i;

which are exactly the charges of the 3̄1 representation. This
is reflected in the Kronecker product,

32 ⊗ 32 ¼ ð3̄2 ⊕ 3̄1Þs ⊕ ð3̄2Þa;

with the diagonal elements in 3̄1. Similarly, in the
Kronecker products,

31 ⊗ 31 ¼ ð3̄1 ⊕ 32Þs ⊕ ð3̄1Þa;
31 ⊗ 32 ¼ 32 ⊕ 31 ⊕ 3̄2;

the diagonal elements reside in 32 and 31, respectively.
The T 13 group theory singles out the diagonal from off-

diagonal elements, satisfying the first requirement: choos-
ing the SUð5Þ decuplet T to transform as a triplet of T 13,

the up-quark matrix Yð2
3
Þ naturally appears diagonal, by

which we mean that the relations between matrix elements
are determined by the group structure.
To satisfy the second requirement, the antiquintets and

decuplets must transform as distinct triplets of T 13.
Labeling their components as F ¼ ðF1; F2; F3Þ ∼ 31 and
T ¼ ðT1; T3; T2Þ ∼ 32, the tensor product yields (see
Appendix A)

0
BB@

F1

F2

F3

1
CCA

31

⊗

0
BB@

T1

T3

T2

1
CCA

32

¼

0
BB@

F3T2

F1T1

F2T3

1
CCA

31

⊕

0
BB@

F3T1

F1T3

F2T2

1
CCA

3̄2

⊕

0
BB@

F3T3

F1T2

F2T1

1
CCA

32

: ð8Þ

Such an assignment of Z13 charges ensures that the three
sets of symmetric off-diagonal matrix elements appear
individually in the same representation, together with
one diagonal element; in this manner, T 13 picks out
individual matrix elements FiTj.
This assignment also sheds light on the construction

of a diagonal Yð2
3
Þ. For example, with T transforming as

a 32, the dimension-five operator,

TTH5φ
ðuÞ; ð9Þ

can generate the top-quark coupling with the simple
vacuum alignment hφðuÞi ∼ ð1; 0; 0Þ,1 where φðuÞ is a
familon field transforming as a 31. The up- and charm-
quark couplings may then be generated by higher dimen-
sional operators, which may require additional familons as
well as an extension of the Z5 shaping symmetry [16]. As
noted, T 13 allows for such a diagonal construction, since
the product of two similar triplets always picks out a unique
familon representation for the diagonal couplings.
With the group and charge assignments determined, we

now demonstrate how the key features of Yð−1
3
Þ and Yð−1Þ

can be stitched together into a renormalizable theory.

IV. EFFECTIVE THEORY DESCRIPTION

In our model, the Higgs fields H5̄ ∼ 5̄ and H4̄5 ∼ 45 are
T 13 singlets, so that the Yukawa matrix elements are
generated by effective operators of dimension five or
higher. This requires the introduction of gauge-singlet
familons φ and φ0, which transform nontrivially under T 13.
The dimension-five and -six effective operators FTH5̄φ

and FTH5̄φφ
0, respectively, generate the 5̄ couplings.

These operators can be constructed from renormalizable

1By hφðuÞi ∼ ð1; 0; 0Þ we mean φðuÞ
1 ∼ 1, φðuÞ

2 ¼ φðuÞ
3 ¼ 0.
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interactions by introducing a new complex messenger field
Δ, which yields the three vertices of Fig. 1.
The vertex in Fig. 1(a) requires Δ̄ to transform under T 13

as a 3̄2; the vertex in Fig. 1(b) implies thatΔ transforms as a
5 of SUð5Þ. By requiring Δ ∼ ð5; 32Þ, dimension-five
interactions are generated by MΔ, the invariant and pre-
sumably large messenger mass. The vertex in Fig. 1(c) is
possible because Δ̄Δ includes an SUð5Þ singlet-T 13 triplet
term that couples to triplet familons.
The relevant terms in the Lagrangian are of the form,

y0TΔ̄H5̄ þ yFΔφþMΔΔ̄Δþ y0Δ̄Δφ0;

where y, y0 and y0 are dimensionless coupling constants.
The vertices in Figs. 1(a) and 1(b) yield the following

dimension-five interaction:

ð10Þ

whereas the vertex in Fig. 1(c) is required to generate the
following dimension-six interaction:

ð11Þ

Note that in Eq. (10), we have specifically chosen the
operators so that φ couples to F and H5̄ couples to T.
With the generic features of the effective operators

explained, we now demonstrate how the T 13 Clebsch-
Gordan coefficients enable us to separate out the asym-
metric (13) term and implement the zero subdeterminant
with respect to the (22) element.

A. Generating the asymmetric term

We obtain the asymmetric (31) matrix element, Y
ð−1

3
Þ

31 , by
dimension-five operators arising from the Lagrangian,

L ⊃ y0TΔ̄H5̄ þ y2FΔφð2Þ þMΔΔ̄Δ; ð12Þ

where the familon φð2Þ transforms as a 32 of T 13, with
vacuum alignment,

hφð2Þi along ð0; 1; 0Þ:
It yields the F1T3 entry after integrating out the heavy
messenger fields Δ and Δ̄, i.e.,

ð13Þ

Here φðaÞ
i corresponds to the ith component of the

triplet φðaÞ.
The diagonal (33) element Y

ð−1
3
Þ

33 can similarly be generated
by adding the term y1FΔφð1Þ to the Lagrangian of Eq. (12).
It requires a familon φð1Þ ∼ 3̄2 with vacuum alignment,

hφð1Þi along ð1; 0; 0Þ:

Integrating out Δ and Δ̄ gives rise to the effective operator
FTH5̄φ

ð1Þ, yielding the desired term,

ð14Þ
With the (33) term and the asymmetric (31) term

constructed by dimension-five effective operators, we next
show how to generate the vanishing of the subdeterminant
from T 13 group structure.

B. Generating the zero subdeterminant

The asymmetric texture requires the vanishing of the

subdeterminant about Y
ð−1

3
Þ

22 and Yð−1Þ
22 . It implies that the

(1–3) submatrix takes the form,

(a) (b) (c)

FIG. 1. Vertices generating the effective Yukawa operators of
the 5̄ couplings.

STITCHING AN ASYMMETRIC TEXTURE WITH … PHYS. REV. D 100, 075008 (2019)

075008-5



�
γα γβ

α β

�
:

The first row matrix elements, of Oðλ4Þ and Oðλ3Þ respec-
tively, are much smaller than those of the second row [(OðλÞ
andOð1Þ]. This is a unique feature of the asymmetric texture,
in contrast to the symmetric Georgi-Jarlskog texture [17]. It
suggests that the upper-row elements of the (1–3) submatrix
are generated by six (or higher) dimensional effective
operators.
To generate Y

ð−1
3
Þ

13 and Y
ð−1

3
Þ

11 , we add a new interaction
y3Δ̄Δφð3Þ to Eq. (12), yielding the following dimension-six
operators:

ð15Þ

and

ð16Þ

The required Z13 charge of φð3Þ
k is ρ4, which implies that

φð3Þ must transform as a 3̄1, with vacuum alignment,

hφð3Þi along ð0; 0; 1Þ:

The matrix elements of the submatrix are then given by

Y
ð−1

3
Þ

11 ¼ y0y2y3hH5̄ihφð2Þ
2 ihφð3Þ

3 i
M2

Δ
;

Y
ð−1

3
Þ

13 ¼ y0y1y3hH5̄ihφð1Þ
1 ihφð3Þ

3 i
M2

Δ
;

Y
ð−1

3
Þ

31 ¼ y0y2hH5̄ihφð2Þ
2 i

MΔ
; Y

ð−1
3
Þ

33 ¼ y0y1hH5̄ihφð1Þ
1 i

MΔ
:

They naturally generate the desired “zero subdeterminant”
condition, independently of the coupling constants yi, i.e.,

Y
ð−1

3
Þ

11 Y
ð−1

3
Þ

33 ¼ Y
ð−1

3
Þ

13 Y
ð−1

3
Þ

31 : ð17Þ

Its implementation is possible courtesy of the T 13

Clebsch-Gordan coefficients and the choice of vertices in
Fig. 1. If instead we had chosen H5̄ to couple to F and φ
to couple to T, as in FΔ̄H5̄, TΔφð1Þ and TΔφð2Þ, the
zero subdeterminant condition could not have been
implemented.
The remaining symmetric off-diagonal elements can be

generated by adding two familons, φð4Þ ∼ 3̄2 and φð5Þ ∼ 3̄1,
contributing two more terms, y4FΔφð4Þ and y5FΔφð5Þ, to
the Lagrangian of Eq. (12). The required vacuum alignment
for the familons are (0,1,1) and (1,0,1), respectively.
The last required feature of the texture is the generation

of the (22) element by the 45 coupling, which we turn
to next.

C. The 45 coupling

The (22) term is solely generated by the coupling to a
Higgs H45 transforming as a 45 of SUð5Þ. The invariant in
terms of SUð5Þ indices a, b, c is FaTbcH45

a
bc. For

simplicity, we consider this Higgs to be a singlet of T 13.
A familon φð6Þ generates the (22) term with a dimension-
five effective operator of the form,

1

Λ
FTH45φ

ð6Þ:

From Eq. (8), we require that φð6Þ transforms as a 32,
aligned along the (0,0,1) direction in the vacuum.
At tree level, this effective operator can be constructed by

introducing a new complex “messenger” field Σ with heavy
massMΣ. Consider the scenario where the Higgs couples to
F and the familon couples to T, as in Fig. 2.
From Fig. 2(a), Σ ∼ 31 of T 13, and from Fig. 2(b), Σ ∼ 10

of SUð5Þ.
A Lagrangian of the form,

L45 ¼ y6FΣ̄H45 þ y7TΣφð6Þ þMΣΣ̄Σ ð18Þ

(a) (b)

FIG. 2. Vertices generating the effective Yukawa operator of the
45 coupling.
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yields the requisite operator,

ð19Þ

This completes the description of the Yukawa couplings.

D. The familon vacuum

T 13 Clebsch-Gordan coefficients determine the matrix
elements of the asymmetric texture, with the aid of six
familons. The representations and vacuum alignments of
these familons are

φð1Þ ∼ 3̄2∶ hH5̄ihφð1Þi ∼MΔð1; 0; 0Þ;
φð2Þ ∼ 32∶ hH5̄ihφð2Þi ∼ dλMΔð0; 1; 0Þ;
φð3Þ ∼ 3̄1∶ hH5̄ihφð3Þi ∼ bλ3MΔð0; 0; 1Þ;
φð4Þ ∼ 3̄2∶ hH5̄ihφð4Þi ∼ aλ3MΔð0; 1; 1Þ;
φð5Þ ∼ 3̄1∶ hH5̄ihφð5Þi ∼ gλ2MΔð1; 0; 1Þ;
φð6Þ ∼ 32∶ hH4̄5ihφð6Þi ∼ cλ2MΣð0; 0; 1Þ:

These vacuum directions have a geometric feature, in the
sense that they resemble the sides and face-diagonals of a
cube. T 13 assigns to each familon component a unique
Z13 charge, allowing them to pick out specific matrix
elements.

E. Extending SUð5Þ × T 13 with an
Abelian Z5 symmetry

As we have seen, this familon structure enables an
elegant SUð5Þ × T 13 model of the asymmetric Yukawa
texture given in [9]. However, the fact that some of the
familons belong to the same representation means that
unwanted couplings can be generated. This results in a need
to extend SUð5Þ × T 13 by an additional symmetry to
protect against such couplings.

More precisely, the necessity to extend the SUð5Þ × T 13

symmetry stems from the need to: (a) separate the 5̄ and 45
couplings, and (b) prevent additional operators to which the
familons could couple inadvertently.
(a) The 5̄ and 45 couplings do not mix in the asymmetric

texture. One could implement the 45 coupling with the
same messenger Δ used for the 5̄ couplings, where
H45 couples to T and φð6Þ couples to F. However, this

contributes an unwanted H5̄ coupling to Y
ð−1

3
Þ

22 . It can
be avoided by introducing a new symmetry under
whichH5̄ andH45 transform differently, thus requiring
a new messenger field Σ.

(b) The second reason for extending the symmetry arises
from the familons being complex fields, with some of
them having same transformation properties under
SUð5Þ × T 13. For example, both φð3Þ and φð5Þ trans-
form as a 3̄1 of T 13, allowing the term y05Δ̄Δφð5Þ.
Together with the terms y1FΔφ1 and y0TΔ̄H5̄, it
yields the dimension-six operator,

1

M2
Δ
FTH5̄φ

ð1Þφð5Þ →
y0y1y05hH5̄ihφð1Þ

1 ihφð5Þ
1 i

M2
Δ

F1T1

þ y0y1y05hH5̄ihφð1Þ
1 ihφð5Þ

3 i
M2

Δ
F3T1;

contributing gλ2 to Y
ð−1

3
Þ

11 and Y
ð−1

3
Þ

13 , larger than the
required leading terms of Oðλ4Þ and Oðλ3Þ. Consider
another example, with φð2Þ ∼ 32, φð2Þ� ∼ 3̄2. The
allowed term FΔφð2Þ� would contribute an OðλÞ term
to Y

ð−1
3
Þ

21 , larger than the desired Oðλ3Þ term.
All such problems can be alleviated by introducing a new

symmetry and carefully choosing the charges of the fields.
The smallest group which works is Z5, as we show in
Appendix B.
The full symmetry of the down-quark and charged-

lepton sectors is therefore SUð5Þ × T 13 × Z5.
The transformation properties of the fields are listed in

Table I.
Note that the familons φð1Þ and φð4Þ still have the same

transformation properties, although the vacuum expec-
tation value of φð4Þ is suppressed by a factor of Oðλ3Þ.
In principle, they should couple to the same fields, and they
do so in our model; they should also mix. However, as their

TABLE I. Charge assignments of matter, Higgs, messenger and familon fields (η ¼ e
2πi
5 ).

F T H5̄ H45 ▵ Σ φð1Þ φð2Þ φð3Þ φð4Þ φð5Þ φð6Þ

SUð5Þ 5̄ 10 5̄ 45 5 10 1 1 1 1 1 1
T 13 31 32 1 1 32 31 3̄2 32 3̄1 3̄2 3̄1 32
Z5 1 1 η4 η3 η4 η3 η η 1 η η η2
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vacuum alignments are orthogonal, this has no effect on the
asymmetric texture.
The full Yukawa Lagrangian generating the matrix

elements of the phenomenological asymmetric texture is
given by

LY ¼ L5̄ þ L45

¼ y0TΔ̄H5̄ þ y1FΔφð1Þ þ y2FΔφð2Þ þMΔΔ̄Δ

þ y3Δ̄Δφð3Þ þ y4FΔφð4Þ þ y5FΔφð5Þ

þ y6FΣ̄H45 þ y7TΣφð6Þ þMΣΣ̄Σ: ð20Þ

V. THEORETICAL OUTLOOK

In the T 13 model, asymmetry arises naturally only when
F and T transform as different family triplets. This might
seem counterintuitive in a theory that relies on gauge
unification. Yet, it may not be so odd at the level of E6.
The E6 fundamental representation decomposes as 27¼

16⊕10⊕1¼½5̄⊕10⊕1�⊕ ½5⊕ 5̄�⊕1 under SOð10Þ and
SUð5Þ, respectively. The SUð5Þ 5 in the SOð10Þ decuplet
could acquire a vectorlike mass by coupling with the 5̄ in the
SOð10Þ 16. The chiral content would then be SUð5Þ 10s and
5̄s coming from different representations,

SOð10Þ × T 13∶ ð16; 32Þ ⊕ ð10; 31Þ:

T 13 and T 7 [22] are well known to physicists as discrete
subgroups of the continuous group SUð3Þ since they have
three-dimensional complex representations. They have also
been discussed in connection to the global symmetries of
two-dimensional spin lattice models, where each lattice
point has a Z7 × Z3 and Z13 × Z3 symmetry, respectively,
and the direct product becomes a semidirect product for
special values of the interaction strength between nearest
neighbors [23].
They are also subgroups of the continuous groupG2 [24]

through two different embeddings. In one, they are sub-
groups of SUð3Þ, which is a subgroup of G2. In the other,
the embedding goes through the seven-dimensional repre-
sentation of G2, bypassing SUð3Þ. For T 7, this sequence is

T 7 ¼ Z7⋊Z3 ⊂ PSLð2; 7Þ ⊂ G2;

where the seven-dimensional representation of PSLð2; 7Þ
is equal to that of continuous G2. The same septet
embedding is also present for T 13,

T 13 ¼ Z13⋊Z3 ⊂ Z13⋊Z6 ⊂ PSLð2; 13Þ ⊂ G2:

This case is more complicated since PSLð2; 13Þ has two
distinct septet representations. In either case, these
“anomalous” embeddings single out a seven-dimensional

manifold. Applied to compactification, it could point to
eleven-dimensional physics.

VI. CONCLUSIONS

In this paper we presented a family symmetry model
based on the group T 13 to derive the asymmetric texture
proposed in an earlier work. The key features of the
asymmetry are well explained by T 13. With a simple
choice of basis inspired by mod 13 arithmetic, its
Clebsch-Gordan coefficients naturally single out diagonal
matrices; this feature is crucial for the charge-2=3 Yukawa
matrix. The SUð5Þ fermion fields F and T transform as
distinct T 13 triplets, distinguishing each matrix element. By
relabeling T as ðT1; T3; T2Þ ∼ 32, and keeping F as
ðF1; F2; F3Þ ∼ 31, the symmetric terms, FiTj and FjTi,
appear in the same triplets. Six Yukawa couplings of
the down quarks and charged leptons are generated by
dimension-five effective operators obtained by integrating
out a complex massive messenger field Δ. Two couplings
are described by dimension-six effective operators.
With T 13, the equality of the determinants of the down-

quark and charged-lepton matrices required by GUT-scale
mass ratios is satisfied without fine-tuning. The Georgi-
Jarlskog 45 coupling in the (22) position is given by
another dimension-five operator, generated by integrating
out a different complex messenger field Σ. An Abelian
symmetry, Z5, is needed to distinguish the messengers of 5̄
and 45 couplings and label the familons to restrict
unwanted terms in the tree-level Lagrangian.
The model presented in this paper addresses only the

down-quark and charged-lepton Yukawa matrices of the
Standard Model. It serves as a small step towards a more
complete model, requiring additional symmetries and
familon fields, that addresses all mass matrices and familon
dynamics. When applied to the neutrino sector with a
complex TBMmixing, it reproduces the observable mixing
angles and predicts leptonic CP violation. However, it does
not resolve the ordering of the light neutrino masses nor
does it specify the underlying dynamics of the neutrino
sector. The origin of the phase in the TBM matrix is still
unknown. Perhaps it can be generated from a generalized
CP symmetry [25].
The asymmetric texture together with the complex TBM

mixing can also predict Majorana invariants, from which
one can calculate the Majorana phases and express the
effective Majorana mass parameter mββ of neutrinoless
double beta decay in terms of the lightest neutrino mass.
Extending the T 13 model to the neutrino sector, one can
thus predict the light neutrino masses, and mββ, with an
additional constraint coming from T 13 invariants. Also, the
familon vacuum alignments of the model presented in this
paper are suggestive of the geometry and perhaps under-
lying crystalline structures. Investigating these avenues are
the aim of a future publication [16].
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APPENDIX A: T 13 GROUP THEORY

The group T 13 is second in the series T n, after its better-
known sibling T 7. In this appendix, we list the Kronecker

products and Clebsch-Gordan coefficients of T 13. For
further details; see [26].

1. Kronecker products

10 ⊗ 10 ¼ 1̄0; 10 ⊗ 1̄0 ¼ 1

10 ⊗ 3i ¼ 3i; 1̄0 ⊗ 3i ¼ 3i

31 ⊗ 31 ¼ 3̄1 ⊕ 3̄1 ⊕ 32

32 ⊗ 32 ¼ 3̄2 ⊕ 3̄1 ⊕ 3̄2

31 ⊗ 3̄1 ¼ 1 ⊕ 10 ⊕ 1̄0 ⊕ 32 ⊕ 3̄2

32 ⊗ 3̄2 ¼ 1 ⊕ 10 ⊕ 1̄0 ⊕ 31 ⊕ 3̄1

31 ⊗ 32 ¼ 3̄2 ⊕ 31 ⊕ 32

31 ⊗ 3̄2 ¼ 3̄2 ⊕ 31 ⊕ 3̄1

32 ⊗ 3̄1 ¼ 32 ⊕ 31 ⊕ 3̄1

2. Clebsch-Gordan coefficients
0
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

31

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

32

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄1

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄10
B@

j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

32

¼

0
B@

j2ij20i
j3ij30i
j1ij10i

1
CA

3̄1

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄2

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄20
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

32

¼

0
B@

j3ij30i
j1ij10i
j2ij20i

1
CA

31

⊕

0
B@

j3ij10i
j1ij20i
j2ij30i

1
CA

3̄2

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

320
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄2

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

3̄1

⊕

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

3̄2

⊕

0
B@

j2ij10i
j3ij20i
j1ij30i

1
CA

310
B@

j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄1

¼

0
B@

j1ij10i
j2ij20i
j3ij30i

1
CA

31

⊕

0
B@

j1ij20i
j2ij30i
j3ij10i

1
CA

3̄1

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

320
B@

j1i
j2i
j3i

1
CA

31

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄1

¼

0
B@

j1ij20i
j2ij30i
j3ij10i

1
CA

3̄2

⊕

0
B@

j2ij10i
j3ij20i
j1ij30i

1
CA

32

⊕ ðj1ij10i þ j2ij20i þ j3ij30iÞ1
⊕ ðj1ij10i þ ωj2ij20i þ ω2j3ij30iÞ10
⊕ ðj1ij10i þ ω2j2ij20i þ ωj3ij30iÞ1̄00

B@
j1i
j2i
j3i

1
CA

32

⊗

0
B@

j10i
j20i
j30i

1
CA

3̄2

¼

0
B@

j2ij30i
j3ij10i
j1ij20i

1
CA

31

⊕

0
B@

j3ij20i
j1ij30i
j2ij10i

1
CA

3̄1
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⊕ ðj1ij10i þ j2ij20i þ j3ij30iÞ1
⊕ ðj1ij10i þ ωj2ij20i þ ω2j3ij30iÞ10
⊕ ðj1ij10i þ ω2j2ij20i þ ωj3ij30iÞ1̄0

ðj1iÞ10 ⊗

0
B@

j10i
j20i
j30i

1
CA

3i

¼

0
B@

j1ij10i
ωj1ij20i
ω2j1ij30i

1
CA

3i

ðj1iÞ1̄0 ⊗

0
B@

j10i
j20i
j30i

1
CA

3i

¼

0
B@

j1ij10i
ω2j1ij20i
ωj1ij30i

1
CA

3i

; ω3 ¼ 1

APPENDIX B: ENLARGING THE SUð5Þ × T 13 SYMMETRY

The SUð5Þ × T 13 symmetry allows the following tree-level terms which have unwanted contributions to Yð−1
3
Þ:

Δ̄Δφð5Þ; Σ̄Σφð1Þ;ð2Þ;ð4Þ; Σ̄Σφð6Þ; FΔφð3Þ; FΔφð6Þ; FΣ̄H;

Δ̄Δφð5Þ�; Σ̄Σðφð1Þ;ð2Þ;ð4ÞÞ�; Σ̄Σφð6Þ�; FΔðφð1Þ;ð2Þ;ð4Þ;ð5ÞÞ�;
ΣTφð1Þ;ð2Þ;ð3Þ;ð4Þ;ð5Þ; TΔ̄H45; FΔφð6Þ�; ΣTðφð1Þ;ð2Þ;ð3Þ;ð4Þ;ð5Þ;ð6ÞÞ�: ðB1Þ

Suppose there is an AbelianZn symmetry whose purpose is
to prohibit these terms.
We use ½·� to denote the Zn charges of the respective

fields. For simplicity, we assume that ½F� ¼ ½T� ¼ 0.
From Eq. (20), ½L� ¼ 0. Setting the Z13 charge of each

term equal to zero, we derive

½φð1Þ� ¼ ½φð2Þ� ¼ ½φð4Þ� ¼ ½φð5Þ� ¼ ½Δ̄� ¼ k; ðB2Þ

½φð3Þ� ¼ 0; ðB3Þ

½φð6Þ� ¼ ½Σ̄� ¼ k0; ðB4Þ

½φð1Þ�� ¼ ½φð2Þ�� ¼ ½φð4Þ�� ¼ ½φð5Þ�� ¼ ½Δ� ¼ ½H5̄� ¼ n − k;

ðB5Þ

½φð6Þ�� ¼ ½Σ� ¼ ½H45� ¼ n − k0; ðB6Þ

where 0 ≤ k, k0 ≤ n.

Now, prohibiting the unwanted terms listed above
requires that their Zn charges are nonzero, giving

k ≠ 0; ðB7Þ
k0 ≠ 0; ðB8Þ
2k ≠ 0; ðB9Þ
2k0 ≠ 0; ðB10Þ
k ≠ k0; ðB11Þ

kþ k0 ≠ 0: ðB12Þ
The lowest triplet fk; k0; ng that satisfies these constrains
is f1; 2; 5g.
Then, Eqs. (B2)–(B6) give theZ5 charges of the fields in

the model.
Note that there are no non-Abelian groups of order equal

to or smaller than 5; henceZ5 is the smallest symmetry that
prohibits the unwanted terms.
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