
 

Relating the Cabibbo angle to tan β in a two Higgs-doublet model
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In a two Higgs-doublet model with D4 flavor symmetry we establish a relation between tan β and the
Cabibbo angle. Due to a small number of parameters, the quark Yukawa sector of the model is very
predictive. The flavor changing neutral currents are small enough to allow for relatively light nonstandard
scalars to pass through the flavor constraints.
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Employing flavor symmetries to understand the apparent
arbitrariness of the quark masses and mixings in the
Standard Model (SM) is an exercise continuing for deca-
des. The Yukawa Lagrangian of the SM also contains many
redundant parameters, which is not a very attractive feature
of the model. Therefore, theoretical constructions beyond
the SM (BSM) that attempt to address these issues in a
minimalistic manner should deserve some attention. To this
end, we notice that the quark masses and mixings adhere to
the following approximate pattern,

mu ≈ 0; md ≈ 0;

VCKM ¼

0
B@

cos θC sin θC 0

− sin θC cos θC 0

0 0 1

1
CA; ð1Þ

where VCKM stands for the Cabibbo–Kobayashi–Maskawa
(CKM) matrix with only the Cabibbo block retained. The
quantity sin θC ≈ 0.22 appearing in Eq. (1) denote the
Cabibbo mixing parameter. In this approximate scenario,
we note that there are only five nonzero parameters in the
quark sector, namely, four quark masses (mc;ms;mt; mb)
and the Cabibbo parameter itself. Thus, a flavor-model that
contains five or fewer parameters in its quark Yukawa
Lagrangian, might have a better aesthetic appeal than the
SM in the sense that many of the redundant parameters
have been erased by the flavor symmetry leaving behind
only the relevant ones. The model can be even more
attractive, if the zeros in Eq. (1) emerge naturally as a
consequence of the Yukawa textures imposed by the flavor

symmetry. As we will demonstrate, these objectives can be
achieved in the simple framework of a two Higgs-doublet
model (2HDM) [1,2] with a D4 flavor symmetry.
The discrete symmetry group D4 has five irreducible

representations: 1þþ, 1þ−, 1−þ, 1−− and 2 [3,4]. We pick a
basis such that the generators in the 2 representation are
given by

a ¼
�
0 −1
1 0

�
; b ¼

�
1 0

0 −1

�
: ð2Þ

Note that a is of order 4, whereas b is of order 2. The rest of
the elements can be obtained by taking products of powers
of these two elements. In this basis, the relevant tensor
products are obtained as

�
x1
x2

�
2

⊗
�
y1
y2

�
2

¼ ½x1y1 þ x2y2�1þþ ⊕ ½x1y2 − x2y1�1−−
⊕ ½x1y2 þ x2y1�1−þ ⊕ ½x1y1 − x2y2�1þ−

; ð3aÞ

1rs ⊗ 1r0s0 ¼ 1r 00s 00 ; ð3bÞ

where r″ ¼ r · r0 and s″ ¼ s · s0. The quark fields are
assumed to transform under D4 in the following way:

2∶
�
Q1

Q2

�
;

�
p1R

p2R

�
;

�
n1R
n2R

�
; ð4aÞ

1þþ∶Q3; 1−−∶p3R; 1−þ∶n3R; ð4bÞ

where the QA’s (A ¼ 1; 2; 3) are the usual left-handed
SU(2) quark doublets, whereas the pAR’s and nAR’s are the
right-handed up-type and down-type quark fields, respec-
tively, which are singlets of the SU(2) part of the gauge
symmetry. Note that the square brackets in Eqs. (2), (3), and
(4) as well as in the subsequent text, denote the represen-
tations of D4 and has nothing to do with the representation
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of the enclosed fields under SU(2). In the Higgs sector there
are two SU(2) doublets ϕk (k ¼ 1; 2) and their trans-
formation under the D4 symmetry is as follows:

2∶
�
ϕ1

ϕ2

�
: ð5Þ

The most general Yukawa Lagrangian for the quarks that
is consistent with the gauge and D4 symmetries can be
written as

−LY ¼ AuðQ̄1ϕ̃2 − Q̄2ϕ̃1Þp3R þ BuQ̄3ðϕ̃1p1R þ ϕ̃2p2RÞ
þ AdðQ̄1ϕ2 þ Q̄2ϕ1Þn3R þ BdQ̄3ðϕ1n1R þ ϕ2n2RÞ
þ H:c:; ð6Þ

where, we have used the standard abbreviation ϕ̃k ¼ iσ2ϕ�
k.

The complex phases of the Yukawa couplings can be
absorbed in the quark field redefinitions. Thus, the D4

symmetry reduces the number of Yukawa couplings dras-
tically to the extent that we are left with only five unknown
parameters in Eq. (6), namely, four Yukawa couplings and
the ratio of the two vacuum expectation values (VEVs),
tan β≡ v2=v1. Quite remarkably, these are just enough to
reproduce the five nonzero parameters in the quark sector
when Eq. (1) holds. Therefore, at this leading order, using
a D4 flavor symmetry we have successfully removed all
the unnecessary parameters from the quark Yukawa
Lagrangian. The mass matrices that follow from Eq. (6)
are given by

Mu ¼
1ffiffiffi
2

p

0
B@

0 0 Auv2
0 0 −Auv1

Buv1 Buv2 0

1
CA;

Md ¼
1ffiffiffi
2

p

0
B@

0 0 Adv2
0 0 Adv1

Bdv1 Bdv2 0

1
CA; ð7Þ

where hϕki ¼ vk=
ffiffiffi
2

p
represents the VEV of ϕk. The

diagonal mass matrices can be obtained via the following
biunitary transformations:

Du ¼ VL ·Mu · V
†
R ¼ diagðmu;mc;mtÞ; ð8aÞ

Dd ¼ UL ·Md ·U
†
R ¼ diagðmd;ms;mbÞ: ð8bÞ

The matrices, V and U relate the quark fields in the
gauge basis to those in the mass basis as follows:

uL ¼ VLpL; uR ¼ VRpR; ð9aÞ

dL ¼ ULnL; dR ¼ URnR; ð9bÞ

where, u and d denote the physical up and down type
quarks respectively. The CKM matrix is then given by

VCKM ¼ VL ·U†
L: ð10Þ

The matrices, VL and UL can be obtained by diagonalizing
MuM

†
u and MdM

†
d respectively, which can be calculated

from Eq. (7) as follows:

MuM
†
u ¼ 1

2

0
B@

A2
uv22 −A2

uv1v2 0

−A2
uv1v2 A2

uv21 0

0 0 B2
uv2

1
CA;

MdM
†
d ¼

1

2

0
B@

A2
dv

2
2 A2

dv1v2 0

A2
dv1v2 A2

dv
2
1 0

0 0 B2
dv

2

1
CA; ð11Þ

where, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
is the total electroweak VEV.

To diagonalize the above matrices, we introduce the matrix,

Uβ ¼

0
B@

cos β sin β 0

− sin β cos β 0

0 0 1

1
CA: ð12Þ

One can easily check that

D2
u ¼ Uβ · ðMuM

†
uÞ ·U†

β ¼ diagð0; A2
uv2=2; B2

uv2=2Þ;
ð13aÞ

D2
d ¼ U†

β · ðMdM
†
dÞ ·Uβ ¼ diagð0; A2

dv
2=2; B2

dv
2=2Þ:

ð13bÞ

Thus, we can identify the masses of the physical quarks as

m2
u;d ¼ 0; m2

c;s ¼
1

2
A2
u;dv

2; m2
t;b ¼

1

2
B2
u;dv

2: ð14Þ

Also, comparing with the definitions in Eq. (8), we can
conclude

VL ¼ Uβ; UL ¼ U†
β: ð15Þ

Using Eq. (10) we can now easily calculate the CKMmatrix
as follows:

VCKM ¼ Uβ · Uβ ¼

0
B@

cos 2β sin 2β 0

− sin 2β cos 2β 0

0 0 1

1
CA: ð16Þ

Therefore, comparing with Eq. (1), one can identify the
Cabibbo mixing angle as
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sin θC ¼ sin 2β ≈ 0.22: ð17Þ

This relation between the Cabibbo parameter and tan β is the
key result of our analysis. Note that the relation of Eq. (17) is
purely a consequence of theYukawa textures inEq. (7)which
are dictated by the D4 symmetry. Therefore, this relation
should be stable under quantum corrections.
At this stage, it is reasonable to ask whether such a value

of tan β will be allowed from the scalar sector. As we will
see, the value of tan β can be quite arbitrary if we allow for
terms that softly break theD4 symmetry in the scalar sector.
Keeping these in mind, we write the scalar potential as

V ¼ −μ21ðϕ†
1ϕ1Þ − μ22ðϕ†

2ϕ2Þ − μ212ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ
þ λ1ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ2 þ λ2ðϕ†

1ϕ2 − ϕ†
2ϕ1Þ2

þ λ3ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ2 þ λ4ðϕ†
1ϕ1 − ϕ†

2ϕ2Þ2: ð18Þ

Note that, in the limit μ21 ¼ μ22, μ
2
12 ¼ 0 the D4 symmetry

will be exact in the scalar potential. However, in this case
one can easily verify that the minimization conditions will
enforce v1 ¼ v2, i.e., tan β ¼ 1 which will be incompatible
with Eq. (17). Therefore, we decide to proceed with the
potential of Eq. (18) containing the most general bilinear
terms. The minimization conditions, in this case, can be
used to solve for the bilinear parameters μ21 and μ22 as
follows:

μ21 ¼ ðλ1 þ 2λ3 − λ4Þv22 þ ðλ1 þ λ4Þv21 þ μ212
v2
v1

; ð19aÞ

μ22 ¼ðλ1 þ 2λ3 − λ4Þv21 þ ðλ1 þ λ4Þv22 þ μ212
v1
v2

: ð19bÞ

After the spontaneous symmetry breaking, we expand
the scalar doublets as

ϕk ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

wþ
k

vk þ hk þ izk

�
ðk ¼ 1; 2Þ: ð20Þ

The massless unphysical scalars ω� and ζ in the charged
and the pseudoscalar sectors respectively, can be extracted
using the following rotation:

�
ω�

H�

�
¼
�

cos β sin β

− sin β cos β

��
w�
1

w�
2

�
;

�
ζ

A

�
¼
�

cos β sin β

− sin β cos β

��
z1
z2

�
: ð21Þ

In the above equation,H� and A stand for physical charged
scalar and pseudoscalar respectively, whose masses can be
calculated as

m2þ ¼ 2μ212
sin 2β

− 2λ3v2; ð22aÞ

m2
A ¼ 2μ212

sin 2β
− 2ðλ2 þ λ3Þv2: ð22bÞ

The mass squared matrix in the scalar sector is given by

Vmass
S ¼ ð h1 h2 Þ

M2
S

2

 
h1
h2

!
; ð23aÞ

with; M2
S ¼

 
2ðλ1 þ λ4Þv21 þ μ212

v2
v1

2ðλ1 þ 2λ3 − λ4Þv1v2 − μ212

2ðλ1 þ 2λ3 − λ4Þv1v2 − μ212 2ðλ1 þ λ4Þv22 þ μ212
v1
v2

!
: ð23bÞ

The diagonalization of M2
S will lead to two physical

CP-even scalars H and h which are obtained via the
following rotation

�
H

h

�
¼
�

cos α sin α

− sin α cos α

��
h1
h2

�
: ð24Þ

This diagonalization will then entail the following relations:

m2
Hcos

2αþm2
hsin

2α ¼ 2ðλ1 þ λ4Þv21 þ μ212
v2
v1

; ð25aÞ

m2
Hsin

2αþm2
hcos

2α ¼ 2ðλ1 þ λ4Þv22 þ μ212
v1
v2

; ð25bÞ

ðm2
H −m2

hÞ sin α cosα ¼ 2ðλ1 þ 2λ3 − λ4Þv1v2 − μ212:

ð25cÞ

We note that the potential of Eq. (18) contains seven
parameters among which two of the bilinear parameters,
μ21 and μ22, have been traded in favor of v1 and v2 (or
equivalently v and tan β) using Eq. (19). The remaining
five parameters (four lambdas and μ212) can then be
exchanged for four physical masses (mþ, mA, mH and
mh) and the mixing angle, α using Eqs. (22) and (25). On
top of this, putting α ¼ β − π=2 [5] will ensure that h
possesses exact SM-like couplings at the tree-level, so
that it can be identified with the 125 GeV scalar discov-
ered at the LHC. In this alignment limit [6,7], Eq. (25) can
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be rearranged to obtain simpler expressions for mh and
mH as follows:

m2
h ¼ 2ðλ1 þ λ3Þv2; ð26aÞ

m2
H ¼ 2μ212

sin 2β
þ 2ðλ4 − λ3Þv2: ð26bÞ

From Eqs. (22) and (26) we can see that, in the limit
μ212 ≫ v2, only the SM-like Higgs scalar, h, remains at the
EW scale while the other nonstandard scalars are quasi-
degenerate and super heavy. Considering the absence of
any convincing hints of new physics at the collider experi-
ments, such a spectrum of the scalar masses might be
desirable. Moreover, in the limitmþ ≈mH ≈mA ≫ mh, the
bound from the electroweak T-parameter can be easily
avoided [8,9].
For the sake of completeness we now discuss the scalar

mediated flavor changing neutral currents (FCNCs) in our
model. Comparing Eq. (6) with the general 2HDMYukawa
Lagrangian

LY ¼ −
X2
k¼1

½Q̄ΓkϕknR þ Q̄Δkϕ̃kpR� þ H:c:; ð27Þ

we can write,

Δ1 ¼

0
B@

0 0 0

0 0 −Au

Bu 0 0

1
CA; Δ2 ¼

0
B@

0 0 Au

0 0 0

0 Bu 0

1
CA;

Γ1 ¼

0
B@

0 0 0

0 0 Ad

Bd 0 0

1
CA; Γ2 ¼

0
B@

0 0 Ad

0 0 0

0 Bd 0

1
CA: ð28Þ

Note that in writing Eq. (27), we have suppressed the
generation indices. The matrices, Nu and Nd, which control
the FCNC couplings in the up and down sectors respec-
tively, are given by [1]

Nu ¼
1ffiffiffi
2

p VLðΔ1v2 − Δ2v1ÞV†
R; ð29aÞ

Nd ¼
1ffiffiffi
2

p ULðΓ1v2 − Γ2v1ÞU†
R: ð29bÞ

As an explicit example, Nu and Nd will get involved in
the FCNC couplings in the physical CP-even sector as
follows

LCP even
Y ¼ −

h
v
ðūDuuþ d̄DddÞ −

H
v
½ūðNuPR þ N†

uPLÞu
þ d̄ðNdPR þ N†

dPLÞd�; ð30Þ

where, we have suppressed again the generation indices
and imposed the alignment limit. To calculate the expres-
sions for Nu and Nd using Eq. (29), we need to know VR

andUR which can be obtained by diagonalizingM†
uMu and

M†
dMd respectively. In this way, we find

VR ¼ UR ¼

0
B@

− sin β cos β 0

0 0 1

cos β sin β 0

1
CA: ð31Þ

Now we can easily compute Nu and Nd as follows:

Nu ¼ −

0
B@

0 mc 0

0 0 0

mt 0 0

1
CA; Nd ¼ −

0
B@

0 ms 0

0 0 0

mb 0 0

1
CA:

ð32Þ

Clearly, due to small number of parameters in the Yukawa
sector, the FCNC couplings are completely determined in
terms of the known physical parameters. One should keep
in mind that Eq. (32) represents the FCNC couplings at the
leading order, i.e., when the CKM matrix is block-diagonal
and the first generation quark masses are zero. In a more
complete theory, these FCNC couplings are expected to
receive small corrections. But it is still encouraging to note
that already at this leading order, the FCNCs in the down
sector are suppressed at least by mb=v, which means they
are quite small in this model. Consequently, the lower limits
on the nonstandard scalar masses are brought down to
about 3 TeV as opposed to about 100 TeV for Oð1Þ FCNC
couplings [1,10]. This makes our model testable at the
collider experiments.
A more interesting scenario arises if one considers slight

departure from the exact alignment limit by turning on small
values of cosðβ − αÞ. But one should keep in mind that
FCNC couplings mediated by the SM-like Higgs boson, h,
will start to seep in via such a misalignment. However, as
mentioned earlier, since the FCNC couplings are already
suppressed, j cosðβ − αÞj≲ 3% will still be consistent with
the flavor data. Such a deviation from the alignment limit
can, in principle, be sensed as tiny deficits in theHiggs signal
strengths because the tree-level couplings ofh are suppressed
by sinðβ − αÞ. Now, we combine this with the measurement
of the trilinear Higgs coupling via Higgs pair production
which probes the following quantity,

κλ ¼
λhhh

ðλhhhÞSM
¼ sinðβ − αÞ

2m2
h sin 4β

½ðm2
H −m2

hÞ sin 4α

þ ðm2
H þm2

hÞ sin 4β þ 2ðm2
H −m2

hÞ sin 2ðαþ βÞ�:
ð33Þ

One can easily check that κλ ¼ 1, as expected in the
limit α ¼ β − π=2. Currently the bound on κλ is quite
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weak [11,12]. Note that, the values ofmh and β, appearing
on the right-hand side of Eq. (33), are known in our model.
Therefore, assuming that cosðβ − αÞ and κλ settle for some
nonstandard values, we can predict the value of mH. This
feature has been illustrated in Fig. 1, where we can see that
if, for example, the values of cosðβ − αÞ and κλ are found to
be 0.025 and −1 respectively, then we can conclude that
there should be a heavy neutral scalar appearing at around
5 TeV. Although probing such a tiny value of cosðβ − αÞ
might be an ambitious task for the near future, our model,
nevertheless, exemplifies how the Higgs precision

measurements can play a crucial role in pinning down
the scale of new physics.
To summarize, in this article we have pointed out an

intriguing possibility that there might be a connection
between the Cabibbo angle and tan β in a 2HDM. To our
knowledge, such a possibility has not been emphasized
earlier in the context of 2HDMs. We accomplish this in a
2HDM with a D4 symmetry which is only softly broken in
the scalar potential. Because of the small number of Yukawa
parameters, all the FCNC couplings are completely deter-
mined in our model. Additionally, the FCNC couplings are
sufficiently small so that relatively light scalars accessible at
the colliders can successfully negotiate the flavor con-
straints. Although the complete CKM matrix and the exact
nonzero masses of the first generation of quarks have not
been reproduced in our minimalistic scenario, we believe
that the interesting features of this model outweigh the
dissatisfaction with the small parameters in the quark sector.
Perhaps the present framework can be taken as the first step
toward a more complete theoretical construction which can
address the full structure of the quark masses and mixings.
Finally, it should be noted that, although there are quite a
few previous examples of the use of D4 symmetry to
understand the leptonic sector [13–18], instances where D4

symmetry has been employed to explain the quark masses
and mixings are rare [16,19] and use four Higgs-doublets.
Therefore, the current paper should be considered as a
simpler alternative and an interesting addition to the existing
literature on model building using D4 flavor symmetry.
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