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We perform a zero temperature analysis of a non-Abelian lattice gauge model corresponding to an SU(3)
Yang-Mills theory in 1þ 1D at low energies. Specifically, we characterize the model ground states via
gauge-invariant matrix product states, identifying its phase diagram at finite density as a function of the
matter-gauge interaction coupling, the quark filling, and their bare mass. Overall, we observe an extreme
robustness of baryons: For positive free-field energy couplings, all detected phases exhibit colorless
quasiparticles, a strong numerical hint that QCD does not deconfine in 1D. Additionally, we show that,
having access to finite-density properties, it is possible to study the stability of composite particles,
including multibaryon bound states such as the deuteron.
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I. INTRODUCTION

The theory ruling the strong interactions within and
among hadrons, quantum chromodynamics (QCD), is the
main focus of much of the current experimental and
theoretical effort in high energy physics [1]. Many of
the collective phenomena arising from this theory, includ-
ing the phase diagram, have yet to be fully characterized,
especially at finite density [2,3]. In fact, nonperturbative
numerical approaches based on lattice formulations [4–7],
such as Monte Carlo simulations, suffer by the notorious
sign problem for complex actions, e.g., in the presence of
fermions, such as quarks, or at finite chemical potentials
[8]. A promising alternative route to simulate gauge
theories modeled on a lattice based on tensor network
(TN) ansatz states has recently been put forward. Indeed,
TNs have already shown significant capabilities, delivering
quantitative predictions for lattice gauge theories in one
spatial dimension [9–12]. Mostly, Abelian lattice gauge
theories have been investigated [13–21], with a few non-
Abelian exceptions [22–24]. Yet, to our knowledge, no
further attempt at capturing the phase properties of a
microscopic dynamics analogous to QCD has been made.
Here we present the TN study of a one-dimensional

lattice gauge theory with SU(3) symmetry as a quantum
link model [25–28], and specifically the formulation of
Ref. [29]. The model involves flavorless Kogut-Susskind
matter fermions [5] and SU(3) Yang-Mills gauge fields,
truncated to the first nontrivial Casimir operator excitation.
We investigate the equilibrium properties of this QCD-like
model at finite density, at zero temperature and finite lattice

spacing l. We show that TN enables investigation of the
confinement problem in models of increasing complexity
and by means of different tools, identifying phases, order
properties, and binding energies of composite particles. In
particular, for zero quark bare mass, we detect a Luttinger
liquid of baryons at finite nonzero charge density. Only at
no charge imbalance does the theory exhibit insulating
phases, one spontaneously breaking chiral symmetry at low
interactions, and another forming dimers in open-boundary
conditions for large interactions. Finite bare masses open
energy gaps for weak interactions, resulting in insulating
phases even at finite density. Finally, we show by directly
evaluating the binding energy that it is more energetically
favorable to form colorless baryons then colorful particles,
and that in this theory the deuteron is not energetically
stable.
These results foster further development of analogous

modelizations in two or more dimensions, as well as the
development of quantum simulation strategies [30–36], on
atomic-molecular-optical platforms, capable of implement-
ing such interesting lattice gauge physics, such as the
recently proposed hybrid simulators [37–39].

II. MODEL

We consider a lattice gauge model in one spatial
dimension equipped with an SU(3) local gauge symmetry.
The matter-field sublattice, labeled with sites fjg, hosts
colorful (spinless, flavorless) Kogut-Susskind (KS) fer-
mions [5,40] cj;a, with fcj;a; c†j0;b0g ¼ δj;j0δa;b: Odd sites
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f2j − 1g host quark fermions, with each possessing a
fundamental representation q ¼ ð1; 0Þ ¼ fr; g; bg for its
color degree of freedom (d.o.f.). Even sites f2jg host
antiquark fermions, with an antifundamental representation
q̄ ¼ ð0; 1Þ. Via a particle-hole transformation performed on
even sites, common to KS Hamiltonians, we convert them
to be quarklike (q) fermions again, as sketched in Fig. 1(a).
The gauge field (gluon) sublattice, labeled with links

fj; jþ 1g, is defined via its left-hand Lμ
j;jþ1 and right-hand

Rμ
j;jþ1 non-Abelian “electric” field operators [here μ ∈

f1; 8g corresponds to the eight generators of the SU(3)
group], and by its parallel transporters operators Ua;a0

j;jþ1,
with a; b ∈ fr; g; bg, which must obey the commutation
relations: ½Lμ

j;jþ1; U
a;a0
j0;j0þ1

� ¼ − 1
2
δj;j0

P
k λ

μ
a;kU

k;a0
j;jþ1 and

½Rμ
j;jþ1; U

a;a0
j0;j0þ1

� ¼ 1
2
δj;j0

P
k U

a;k
j;jþ1λ

μ
k;a0 , where the factors

λμ are the eight Gell-Mann matrices. The SU(3) Gauss’s
law at every site thus reads Qμ

j jΨphysi ¼ 0, ∀ μ ∈ f1; 8g
and ∀ j ∈ f1;Lg, where

Qμ
j ¼ Rμ

j−1;j þ
Xr;g;b
a;a0

λμa;a0

2
c†j;acj;a0 þ Lμ

j;jþ1; ð1Þ

unambiguously determining the subspace of physical states
jΨphysi. Equivalently, Gauss’s law requires that each matter
field, fused with the gluon to its left (right-hand side) and
with the gluon to its right (left-hand side) forms a color
singlet (0,0) overall.
The truncated one-dimensional, flavorless, lattice QCD

Hamiltonian that we adopt commutes with all of the Gauss
law generators Qμ

j and reads

HSUð3Þ ¼ −
t
l

XL−1
j¼1

Xr;g;b
a;a0

ðc†j;aUa;a0
j;jþ1cjþ1;a0 þ H:c:Þ

þ gl
XL−1
j¼1

ðCðLÞ
j;jþ1 þ CðRÞ

j;jþ1Þ

−m
XL
j¼1

Xr;g;b
a

ð−1Þjc†j;acj;a; ð2Þ

where the Dirac fermionic operators cð†Þj;a with a ∈ fr; g; bg
describes the KS matter field and obeys the usual Clifford
algebra fcj;a; cj0;a0 g ¼ 0 and fc†j;a; cj0;a0g ¼ δj;j0δa;a0 .

The operators CðLÞ
j;jþ1 ¼ P

8
μ¼1ðLμ

j;jþ1Þ2 and CðRÞ
j;jþ1 ¼P

8
μ¼1ðRμ

j;jþ1Þ2 are the quadratic Casimir operators, respec-
tively, for the left-hand side and the right-hand side of the
gluon at fj; jþ 1g, and they define the free gluon-field
energy term in the Hamiltonian (2). The first line in Eq. (2)
represents the coupling between the matter and gauge fields
and describes a process of quark-antiquark pair creation/
annihilation, which in the staggered fermion language reads
as a nearest-neighbor hopping term, while the gluon in the
middle link is updated to protect Gauss’s law. The last
term in the Hamiltonian represents the bare mass of quarks
and antiquarks, and it appears as a staggered chemical
potential according to the KS prescription. The straight
chemical potential is absent as we run simulations at finite
quark density.
In this work, we consider a static cutoff of the gluon field

in accordance to its pure energy density. Precisely, we
truncate all of the irreducible representations of the gluon
field with energy higher than the first nonzero eigenvalue of
the Casimir CðLÞ and CðRÞ (that is, 4

3
). Therefore, the gluon

space we are considering is composed by a colorless-
colorless ð0; 0Þ ⊗ ð0; 0Þ state with energy 0, nine quark-
antiquark q ⊗ q̄ states with energy 8gl=3, and nine
antiquark-quark q̄ ⊗ q states with energy 8gl=3, for a
total of 19 gluon-field states. In order to increase the cutoff
energy [41], it may be possible to follow an approach
analogous to Ref. [24] adapted to SU(3); however, we do
not perform this study in the present work.

(a)

(b)

Gauge sublattice
Matter sublattice

FIG. 1. (a) Schematic description of the d.o.f. KS fermions live
on the matter sublattice: They represent quarks (odd sites) or
antiquark holes (even sites) and have three colors (r, g, b). Listing
the eight local matter states according to the total filling high-
lights the corresponding SU(3) irreducible representation (irrep):
The empty state is a color singlet (gray bullet), the singly filled
states form a q irrep (∇ triangle), the doubly filled states form a q̄
irrep (Δ triangle), and the triply filled state form another color
singlet. The truncated gluon field space we consider includes 19
states: one singlet-singlet state, nine q ⊗ q̄ states, and nine q̄ ⊗ q
states. (b) The phase diagram of the bare-massless case m ¼ 0,
plotted as a function of the filling ν and the matter-gauge
interaction t.
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Hereafter, we fix the energy scale by setting g ¼ 3=4 and
characterize the ground state jΨ0i of the Hamiltonian (2), as
a function of t, m and the fermion filling

ν ¼ L−1
XL
j¼1

Xr;g;b
a

c†j;acj;a; ½HSUð3Þ; ν� ¼ 0; ð3Þ

which is a global U(1) symmetry generator. Notice that
ν ∈ ½0; 3�, and that ν ¼ 3=2 represents the KS vacuum
sector, where there is no matter-antimatter imbalance. The
aforementioned truncation allows us to implement ab initio
manipulations onto the model protecting the SU(3) gauge
symmetry, which we carry out in Appendix B, starting
from the quantum link formulation of Refs. [27,29]. In
order to numerically simulate the quantum system, we use a
matrix product state (MPS) description of the many-body
quantum state that embeds both the gauge and the global
symmetries [10], and we use a time-evolving block
decimation (TEBD) algorithm in imaginary time to
approximate the ground state jΨ0i. Running simulations
with bond-link dimension of the MPS up toD ∼ 400 allows
us to measure local quantities and correlators with a
convergence precision of ∼10−6, which is sufficient to
characterize the phase properties.

III. RESULTS: (1) NO DECONFINEMENT

We explore various parameter ranges, searching for
phases which exhibit Luttinger liquid (LL) order where

the quasiparticles are, respectively, quarklike, mesonlike,
and baryonlike. Single-particle (quarklike) excitations can-
not be colorless, so they appear with gluon strings attached.
It is possible to define a unique string correlator acting as
order parameter of such quarklike LL behavior as

Cj;j0 ¼
X
a;a0

c†j;aS
a;a0
j;j0 cj0;a0 : ð4Þ

The string-body operator Sa;a
0

j;j0 , which acts on all of the
gluons between sites j and j0, satisfies important properties:
It transforms covariantly both at its left-hand side and its
right-hand side so that Cj;j0 is a gauge-invariant quantity.

Moreover, Sa;a
0

j;j0 is unitary, so Cj;j0 can capture long-range
order (see Appendix D). Two-particle (mesonlike) excita-
tions, revealing color superconductor order, are captured by
C2j;j0 ¼ ðCj;j0 Þ2 and also possess a string attached. Finally,
the correlator

C3j;j0 ¼ ðCj;j0 Þ3 ¼ c†j;rc
†
j;gc

†
j;bcj0;bcj0;gcj0;r ð5Þ

captures a LL order of baryons, or three-particle excita-
tions, which are colorless and thus carry no string. For each
of these quasi-long-range order parameters Cκj;j0 with
κ ∈ f1; 2; 3g, we can evaluate the correlation length ξκ,
which is well approximated by the expression

ξκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l≠0ðjlj − 1Þ2C̄ðκÞlP
l≠0C̄

ðκÞ
l

vuut ; ð6Þ

where C̄ðκÞl ¼ 1
L−l

P
jhΨ0jCκj;jþljΨ0i are the spatially aver-

aged correlation functions. Compatible with the Mermin-
Wagner theorem [42], a LL order of κ-particle excitations is
revealed by a diverging correlation length ξκ → ∞ for
increasing system sizes L → ∞. We carefully searched
different parametric ranges of the model couplings, and we
observed that, as long as g > 0 (positive energy densities of
the gluon field), only the baryonic Luttinger liquid ξ3
emerges as a spontaneous quasi-long-range order in the
truncated lattice QCD model of Eq. (2). The quarklike and
mesonlike order parameter exhibit correlation lengths
which never go beyond ten sites [a typical example is
shown in Figs. 2(a) and 2(b)] regardless of t, m, and ν; thus
such order is not established. Such observation leads to the
conclusion that there are no phases (for g > 0) with mobile
colored quasiparticles, and thus the SU(3) theory under
study is strongly confined. This is in contrast to the
truncated SU(2) Yang-Mills lattice theory previously stud-
ied by some of us [22], which instead exhibited liquid
phases with (colored) single-particle excitations. For con-
sistency, we remark that such a strong confinement effect is
energetic and not a by-product of symmetry protection. To
stress this, we show that, simply by setting a (nonphysical)

(a) (b)

(c) (d)

FIG. 2. Correlation lengths ξκ , with κ ¼ 1, 2, 3, of the Luttinger
liquid order parameters at free-field coupling (a)–(c) g > 0 and,
for consistency, check (d) g < 0. (a)–(c) Here ν ¼ 1, m ¼ 0, and
g ¼ 1: Only baryonic liquid order emerges. (d) Here ν ¼ −3=2,
m ¼ 0, and g ¼ −1: A quark liquid appears. System sizes are
L ¼ 48 (magenta), 72 (red), 96 (orange), 120 (yellow), 144
(green), 168 (cyan), 192 (blue).
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negative free-field coupling g < 0, without changing the
gluon field truncation, indeed we activate the quark-liquid
and meson-liquid orders. This is shown in Fig. 2(d).

IV. (2) PHASE DIAGRAM

We explored various parameter regimes after setting
g ¼ 3=4, simulating the ground state of the truncated lattice
QCD Hamiltonian for various finite system sizes L. We
estimated the phase properties, reported in Fig. 1(b), by
extrapolating the observable quantities at the thermody-
namical limit L → ∞. The MPS representation for the
variational many-body wave function grants access to the
entanglement entropies

Sl ¼−Tr½ρ1…l logρ1…l�; with ρ1…l ¼Trlþ1…L½jΨ0ihΨ0j�;
ð7Þ

under any left-right bipartion of the system f1…ljlþ
1…Lg. We then discriminate between gapped and gapless
phases by estimating the central charge c of the corre-
sponding conformal theory (see Fig. 4), via [43]

Sl ≃
c
6
log ðL sinðπl=LÞÞ þ S0lðkFÞ þ c0; ð8Þ

where the correction

S0lðkFÞ ¼ a0 cosð2kFðl − L=2ÞÞ sin−b0 ðπl=LÞ ð9Þ
takes into account Fermi oscillations and allows us to
access the effective Fermi wave vector kF, while a0, b0, and
c0 are fitting constants [44,45].
In the bare massless case (m ¼ 0), gapped phases are

found only in the KS vacuum, which corresponds to filling
ν ¼ 3=2 in the fermion language. A weak-interacting

insulator is detected for t < tðAÞc ≃ 0.57ð1Þ. This phase
exhibits chiral order, as it spontaneously breaks the

reflection symmetry P centered on a link (or equivalently
the particle-hole symmetry C). Such a phase appears as a
charge-density-wave insulator with wave vector k ¼ π, and
we characterize it by the order parameter

ζπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

LðLþ 1Þ
X
j≠j0

eiπðj−j0Þhðnj − νÞðn0j − νÞi
s

: ð10Þ

The latter is reported in Fig. 3, where nj ¼
Pr;g;b

a c†aca is
the local density operator. The presence of this phase at low
values of the matter-gluon coupling t ≪ g confirms our
predictions based on second-order and third-order degen-
erate perturbation theories in t=g [46], which are carried out
analytically in Appendix E. A second insulating phase
exhibiting a different type of order is observed at strong

matter-gauge interactions t > tðBÞc ¼ 0.61ð1Þ. This phase
displays a considerable staggerization of entanglement,
showing higher entanglement when the bipartition is
performed on an odd-even bond, while lower entanglement
on an even-odd bond (also shown in Fig. 4). We interpret
this effect as the formation of entangled dimers, resembling
what is found in the J1-J2 model [47]. If the boundary
conditions were periodic, we would expect to see a trans-
lationally invariant resonant valence bond state. However,
owing to the presence of open boundaries, a specific dimer
state is favored, with highly entangled pairs sitting on odd-
even f2j − 1; 2jg bonds. Ultimately, the bulk, and thus the
thermodynamical limit of this phase, will be strongly
sensitive to the boundary conditions. As the local order
parameter to capture this phase, we adopt the staggered
spatial average η of the matter-gauge interaction. Precisely,
since we always simulate an even number of sites L, we set

η ¼
���� 2L

XL=2
j¼1

hHinter
2j−1;2ji −

2

L − 2

XL=2−1
j¼1

hHinter
2j;2jþ1i

����; ð11Þ

(a) (b) (c)

FIG. 3. Order parameters at filling ν ¼ 3=2 (KS vacuum), as a function of the matter-gauge interaction t: (a) chiral insulator ζπ,
(b) baryonic liquid ξ3, and (c) dimer insulator η. System sizes are L ¼ 48 (magenta), 72 (red), 96 (orange), 120 (yellow), 144 (green),

168 (cyan), 192 (blue). The shaded region denotes the extrapolated liquid phase tðAÞc < t < tðBÞc , as determined from finite-size scaling
analysis (insets). The panel frames are color coded according to the phase diagram of Fig. 1 and show the order parameter of the
corresponding phase.
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with Hinter
j;jþ1 ¼

Pr;g;b
a;a0 ðc†j;aUa;a0

j;jþ1cjþ1;a0 þ H:c:Þ, as the
dimer order parameter signaling a spontaneous breaking
of the translation by one site, and we observe as it
converges to a finite value in the dimer phase (see

Fig. 3). We located the critical values tðAÞc and tðBÞc via a
standard finite-size scaling procedure [48]. We also

detected a narrow window tðAÞc < t < tðBÞc , at filling
ν ¼ 3=2, where the competition between the two insulating
orders actually favors a liquid order: Within this window,
we again observe the Luttinger liquid order of baryons,
identified by ξ3 (also shown in Fig. 3). We interpret these
results as a vanishing of the mass gap between the lower
and upper bands of the baryon conductor. Such a phase,
where baryons are effectively massless, emerges in such a
narrow interval of the t=g ratio that we expect it to vanish in
the limits of the continuum theory. The phase transition

points tðAÞc and tðBÞc appear to be compatible with a second-
order phase transition, as suggested by the finite-size
scaling analysis shown in the Fig. 3 insets. Adopting the

scaling function ζπðt;LÞ ¼ L−βðAÞ=νðAÞfA½ðt − tðAÞc Þ · L1=νðAÞ �
delivers the critical exponents νðAÞ ¼ 2.5ð2Þ, βðAÞ ¼ 1.5ð1Þ,
as reported in Table I. Similarly, the exponents
νðBÞ ¼ 2.0ð2Þ, βðBÞ ¼ 0.6ð1Þ result from the scaling func-

tion ηðt;LÞ ¼ L−βðBÞ=νðBÞfB½ðt − tðBÞc Þ · L1=νðBÞ � with nonuni-
versal fA and fB.
For any filling other than the KS vacuum, that is,

ν ≠ 3=2, the system behaves as a band conductor of
baryons. Specifically, we observe a divergence with L of
the correlation length ξ3 related to the Luttinger liquid order

of baryons. Similarly, we fit a nonzero central charge c ≥ 1
[roughly c ≃ 1.3ð1Þ] and a Fermi wave vector kF ≃ π

3
ν,

suggesting that we encounter a single band of weakly
interacting, quasifree baryons for 0 < ν < 3=2, and another
band for 3=2 < ν < 3.
When considering finite bare masses m > 0, we detect

two main changes in the phase diagram. First of all the
narrow window of the baryon liquid at the KS vacuum
filling ν ¼ 3=2 disappears completely, and we observe a
simple transition between the (induced) chiral insulator
and dimer phases. Moreover, we observe the emergence
of effectively insulating phases when t ≪ m for any
filling ν. However, this regime is extremely hard to
simulate via imaginary TEBD, and we cannot rule out
metastabilities.

V. (3) BINDING ENERGIES

We also studied the mass gaps, at finite size, of the SU(3)
lattice gauge theory. This is possible thanks to our
canonical treatment of the particle number symmetry,
which allows us to study the system with one or a few
excess quarks on top of the KS vacuum, and thus to
measure the binding energies between them. This analysis
revealed that while each baryon (three quarks) is a strongly
bound state, two baryons (six quarks) weakly repel each
other. This suggests that (flavorless) lattice QCD in 1D
disfavors the creation of multibaryon bound states, such as
atomic nuclei, in sharp contrast with QCD in three
dimensions (see the appendixes for more details).

VI. CONCLUSIONS

We simulate in this paper the equilibrium properties of a
compact one-dimensional flavorless lattice QCD: The
theory is strongly confined, as it exhibits only colorless
quasiparticles. Only at the Kogut-Susskind vacuum
(ν ¼ 3=2) do insulating phases appear: Precisely, we
observe a competition between a chiral and a dimer phase,
separated by a small gapless window only at zero bare
mass. Moreover, in this framework, baryons do not form
aggregates. Our approach shows once again the power of a
tensor network for treating nonperturbatively lattice gauge
theories in low dimensions, while exactly capturing the

FIG. 4. Central charge c, as a function of the filling ν at t ¼ 2.0,
obtained from fitting the theoretical prediction (see the text) to the
entanglement entropy profile Sl, over partition-size l at system
size L ¼ 96. The sharp dip at ν ¼ 3=2 signals the insulating
dimer phase. The panels show a few examples of the Sl profiles
and the corresponding fits.

TABLE I. Properties of the critical points, including
estimated critical exponents, at zero excess charge density
(ν ¼ 3=2) for the massless quark case (m ¼ 0), in units of
g ¼ 3=4. Critical points separate the chiral insulator, baryon
liquid, and dimer insulator phases.

tðÞc νðÞ βðÞ t < tðÞc t > tðÞc

Crit. point A 0.57(1) 2.5(2) 1.5(1) Chiral Liquid
Crit. point B 0.61(1) 2.0(2) 0.6(1) Liquid Dimer
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gauge symmetry content, even when it is a complex non-
Abelian structure such as the SU(3) group.
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APPENDIX A: QUANTUM LINK MODEL
DERIVATION

In this section, we discuss how to explicitly obtain the
19-state truncated SU(3) lattice gauge model under our
study from a quantum link model perspective, following the
mapping discussed in Refs. [27,29]. This pathway allows
us to easily compute all of the relevant matrix elements for
the various effective operators of the many-body model so
that we can export them on a numerical simulation platform
(see Appendix B). In this paradigm, each gauge field d.o.f.
fj; jþ 1g is replaced by a pair of quark-colored fermionic
modes, or “rishons,” fj; Lg and fjþ 1; Rg. Hence, the
substitutions

Ua;a0
j;jþ1 → ψ j;L;aψ

†
jþ1;R;a0 ;

Lμ
j;jþ1 →

1

2

X
a;a0

ψ†
j;L;aλ

μ
a;a0ψ j;L;a0 ; and

Rμ
j;jþ1 →

1

2

X
a;a0

ψ†
jþ1;R;aλ

μ
a;a0ψ jþ1;R;a0 ; ðA1Þ

provide the correct commutation relations between
Ua;a0

j;jþ1 and Lμ
j;jþ1 and Rμ

j;jþ1, respectively. Such splitting
generates an Abelian link symmetry [49] as a by-product,
generated by N j;jþ1 ¼ nj;L þ njþ1;R ¼ P

a ψ
†
j;L;aψ j;L;a þP

a ψ
†
jþ1;R;aψ jþ1;R;a. Specifically, we work in the symmetry

sector N j;jþ1jΨphysi ¼ 3jΨphysi, where the representation
of a left rishon mode is always linked to its dual
representation in the right rishon mode. This produces
automatically a 20-dimensional gluon-field space which
contains the desired 19-state truncated space. Precisely, the
two states with nj;L ¼ 0 and nj;L ¼ 3 transform both as
colorless-colorless ð0; 0Þ ⊗ ð0; 0Þ states, while the nine
states with nj;L ¼ 1 correspond to the quark-antiquark
q ⊗ q̄ states, and finally the nine states nj;L ¼ 2 correspond
to the antiquark-quark states q̄ ⊗ q. Under these

considerations, we can formally rewrite the (bare) free-
field term of the truncated lattice QCD Hamiltonian as

Hff ¼
3

8
g0

XL−1
j¼1

ðCðLÞ
j;jþ1 þ CðRÞ

j;jþ1Þ

¼ g0
4

XL−1
j¼1

nj;Lð3 − nj;LÞ þ njþ1;Rð3 − njþ1;RÞ; ðA2Þ

where now the two colorless-colorless states have energy 0,
and the other 18 states have energy g0.
In addition to the aforementioned splitting, quantum link

formulations of gauge theories add an extra term in the
Hamiltonian whose purpose is to break the artificial U(1)
symmetry, generated by Qj ¼ nj;R þP

a c
†
j;acj;a þ nj;L.

This symmetry is unwanted, as it changes the gauge
transformations from an SU(3) group into a U(3) group.
The dynamical breaking terms thus typically takes the form

Hbreak ¼ −ε
XL−1
j¼1

ðψ†
j;L;rψ

†
j;L;gψ

†
j;L;b

× ψ jþ1;R;bψ jþ1;R;gψ jþ1;R;r þ H:c:Þ; ðA3Þ

also acting solely on the gauge d.o.f. and rightfully
preserving all of the other symmetries. This extra compo-
nent also has the merit of breaking the energy degeneracy
of the two colorless-colorless gluon states, producing one
reflection-symmetric state at energy −ε and one reflection-
antisymmetric state at energy þε. We can now recover
exactly the desired 19-state representation by energetically
eliminating one of these two states, i.e., by setting g0 ¼
ð8
3
gl − εÞ and ε ≫ gl. As we approach ε → þ∞, the

original free-field Hamiltonian is recovered (apart from a
constant).

APPENDIX B: COMPOSITE-SITE
GAUGE-INVARIANT BASIS AND
GAUGE GROUP REDUCTION

In the following sections, we perform some analytic
manipulations of the truncated lattice QCD model in order
to simplify the many-body quantum problem in a format
which is fit for numerical simulation. First of all we
construct all of the possible gauge-invariant quasilocal
states and show that it is possible to express them in a
color-transparent occupation basis. We will then be able to
evaluate all of the matrix elements of the truncated lattice
QCD Hamiltonian on this basis.
To represent the matter states, we write sites j0i as the

bare staggered vacuum (empty matter, full antimatter), then
the singly occupied states jri ¼ c†r j0i, jgi ¼ c†gj0i, and
jbi ¼ c†bj0i (red, green, and blue, respectively), followed
by the doubly occupied states jyi ¼ c†rc

†
gj0i, jci ¼ c†gc

†
bj0i,
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and jmi ¼ −c†rc†bj0i (cyan, yellow, and magenta), and
finally the triply occupied state j3i ¼ c†rc

†
gc

†
bj0i.

To represent the rishon sites (either the left or right side
of a gluon field), we similarly adopt jri, jgi, jbi to character-
ize the quarklike q subspace, jyi, jci, jmi to characterize
the antiquarklike q̄ subspace, and j0i to represent the
colorless (0,0) subspace.
We can now list the gauge-invariant states of the

quasilocal space, which includes a matter site j, the right
rishon space R of the gluon to its left fj − 1; jg, and the left
rishon space L of the gluon to its right fj; jþ 1g:

j0; 0; 0i;

j1; 0; 2i ≔ 1ffiffiffi
3

p ðjr; 0; ci þ jg; 0; mi þ jb; 0; yiÞ;

j2; 0; 1i ≔ 1ffiffiffi
3

p ðjc; 0; ri þ jm; 0; gi þ jy; 0; biÞ;

j0; 1; 2i ≔ 1ffiffiffi
3

p ðj0; r; ci þ j0; g; mi þ j0; b; yiÞ;

j1; 1; 1i ≔ 1ffiffiffi
6

p ðjr; g; bi þ jg; b; ri þ jb; r; giþ

− jg; r; bi − jr; b; gi − jb; r; giÞ;

j2; 1; 0i ≔ 1ffiffiffi
3

p ðjc; r; 0i þ jm; g; 0i þ jy; b; 0iÞ;

j1; 2; 0i ≔ 1ffiffiffi
3

p ðjr; c; 0i þ jg;m; 0i þ jb; y; 0iÞ;

j2; 2; 2i ≔ 1ffiffiffi
6

p ðjc; y; mi þ jy;m; ci þ jm; c; yiþ

− jc;m; yi − jm; y; ci − jy; c; miÞ;
j0; 3; 0i;

j1; 3; 2i ≔ 1ffiffiffi
3

p ðjr; 3; ci þ jg; 3; mi þ jb; 3; yiÞ;

j2; 3; 1i ≔ 1ffiffiffi
3

p ðjc; 3; ri þ jm; 3; gi þ jy; 3; biÞ; ðB1Þ

for a total of 12 composite-site gauge-invariant states.
It is immediately visible that such an occupation basis
expansion jχR; χM; χLi, with χR, χL ∈ f0; 1; 2g and
χM ∈ f0; 1; 2; 3g, bears no further color ambiguity once
Gauss’s law is set, so it can be comfortably used for
numerical simulations. We remark that the χR=L basis
notation differs from the nR=L basis notation in the sense
that one the two colorless-colorless gluon basis states has
already been removed (see Appendix A).
In this basis, it is straightforward to see that the non-

Abelian SU(3) Gauss law can be recast, within the truncated
space, as an Abelian Z3 Gauss law, where Z3 is the
Abelian cyclic group with three elements (g, g2 ¼ g−1,
and g3 ¼ 1), the center of SU(3). Namely, let us define at

every composite site j the unitary operator ΓjχR; χM; χLi ¼
e
2iπ
3
ðχRþχMþχLÞjχR; χM; χLi. The transformation Γ clearly

forms a Z3 group since Γ3 ¼ 1. In the truncated space,
the Gauss law of Eq. (1) can be cast simply in terms of the Γ
operators and reads ΓjjΨphysi ¼ jΨphysi∀ j ∈ f1;Lg. In
simple terms, the reduced Gauss law requires that, at every
site j, χR þ χM þ χL modulo 3 is equal to zero, which is
indeed aZ3 symmetry constraint. As a final remark, we also
point out that the link symmetry constraint, enforcing the
fact that the left and right representations of a bond are
mutually dual, can be similarly cast in a Z3 fashion since it
can be written as ðχj;L þ χjþ1;RÞ%3 ¼ 0.

APPENDIX C: MATRIX ELEMENTS OF THE
HAMILTONIAN

In this section, we derive the matrix elements for the
operators that appear in the Hamiltonian (1) when
expressed in the composite-site gauge-invariant basis we
constructed in Appendix B. These effective operators
directly follow from the quantum link modelization
(see Appendix A), from which we projected away the
reflection-antisymmetric colorless-colorless state

j∞ij;jþ1 ¼
1ffiffiffi
2

p ðψ†
j;L;rψ

†
j;L;gψ

†
j;L;bþ

þ ψ†
jþ1;R;rψ

†
jþ1;R;gψ

†
jþ1;R;bÞjΩi; ðC1Þ

where jΩi is the particle vacuum (“full antimatter universe”
in KS language). The effective 19-gluon-state Hamiltonian
is then obtained from the 20-gluon-state one in the first-
order perturbation theory sense Hð1Þ ¼ PHP, where the

projector P ¼ ⊗
L−1

j
ð1 − j∞ih∞jÞj;jþ1 removes the unwanted

colorless-colorless state from each link.
According to this prescription, the various components

of the truncated Hamiltonian (2) can be expressed as simple
operators in the color-transparent occupation basis: The
free-field term reads

Hð1Þ
ff ¼ 2gl

3

XL−1
j¼1

χj;Lð3−χj;LÞþχjþ1;Rð3−χjþ1;RÞ; ðC2Þ

while the bare mass term reads

Hð1Þ
bm ¼ m

XL−1
j¼1

ð−1Þjχj;M; ðC3Þ

where now χ are meant as operators. The matter-gauge
interaction term of the Hamiltonian can be comfortably

written as Hð1Þ
inter ¼ − t

l

P
L−1
j¼1 A

L†
j AR

jþ1 þ H:c:, where the
single composite-site operators AL† and AR are
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AL† ¼
ffiffiffi
9

2

4

r
j0; 3; 0ih0; 2; 1j þ 2j0; 2; 1ih0; 1; 2j

þ
ffiffiffi
9

2

4

r
j0; 1; 2ih0; 0; 0j þ

ffiffiffi
2

4
p

j1; 2; 0ih1; 1; 1j

þ
ffiffiffi
2

p
j1; 1; 1ih1; 0; 2j þ

ffiffiffi
1

2

4

r
j1; 3; 2ih1; 2; 0j

þ
ffiffiffi
2

p
j2; 3; 1ih2; 2; 2j þ

ffiffiffi
2

4
p

j2; 2; 2ih2; 1; 0j

þ
ffiffiffi
1

2

4

r
j2; 1; 0ih2; 0; 1j ðC4Þ

and

AR ¼
ffiffiffi
9

2

4

r
j0; 0; 0ih2; 1; 0j þ 2j2; 1; 0ih1; 2; 0j

þ
ffiffiffi
9

2

4

r
j1; 2; 0ih0; 3; 0j þ

ffiffiffi
2

p
j2; 0; 1ih1; 1; 1j

þ
ffiffiffi
2

4
p

j1; 1; 1ih0; 2; 1j þ
ffiffiffi
1

2

4

r
j0; 2; 1ih2; 3; 1j

þ
ffiffiffi
2

4
p

j0; 1; 2ih2; 2; 2j þ
ffiffiffi
2

p
j2; 2; 2ih1; 3; 2j

þ
ffiffiffi
1

2

4

r
j1; 0; 2ih0; 1; 2j; ðC5Þ

respectively. These matrices can be comfortably used in
numerical simulations, such as the imaginary TEBD we
employed to obtain our results.

APPENDIX D: STRING OPERATORS FOR
FLUID CORRELATION FUNCTIONS

In this paragraph, we construct explicitly the unitary
string operator Sa;a

0
j;j0 , which we use in the evaluation of

single-quark fluidity correlation matrix hCj;j0 i. As men-
tioned in the paper, we require it to be a unitary space
propagator (in the truncated model) and to transform
covariantly so that the correlator Cj;j0 ¼

P
a;a0 c

†
j;aS

a;a0
j;j0 cj0;a0

preserves Gauss’s law at every site.
For such construction, it is extremely convenient

to work in the occupation basis jχR; χM; χLi, on which
Gauss’s law is expressed as the Z3 symmetry
½ðχj;R þ χj;M þ χj;LÞ%3�jΨphysi ¼ 0, and the link sym-
metry as ½ðχj;L þ χjþ1;RÞ%3�jΨphysi ¼ 0.
In this language, the correlators are simply expressed as

Cj;j0 ¼ TM†
j

�Yj0−1
k¼j

Bk;kþ1

�
TM
j0 ; ðD1Þ

where the order of the operators is not relevant as they all
commute. In fact, the “tail” operators TM act only on matter
modes and retain some freedom: For simplicity, we chose
them to be

TM ¼ j0ih1j þ j1ih2j þ j2ih3j: ðD2Þ

Each “body” operator Bj;jþ1 instead acts only on rishon
modes fj; Lg and fjþ 1; Rg. In order to preserve all link
and Gauss symmetries, they must be of the following form
(apart from phase factors),

Bj;jþ1 ¼ j0; 0ih1; 2j þ j1; 2ih2; 1j þ j2; 1ih0; 0j; ðD3Þ

which is a cyclic operator B3 ¼ 1. We employ those string
operators to investigate the presence of various Luttinger
liquid orders—respectively, liquid phases where the qua-
siparticles are quarklike (Cj;j0), mesonlike (C2j;j0), or baryon-

like (C3j;j0).

APPENDIX E: PERTURBATION
THEORY AT t ≪ g

In this section, we will derive an effective Hamiltonian,
corresponding to the second-order degenerate perturbation
theory in t, acting upon the ground space of the free-field
Hamiltonian, to better understand the phase diagram in the
limit t ≪ g (after setting l ¼ 1). First of all we identify the
ground space of the free-field Hamiltonian: Using the free-
field term in the form of Eq. (C2), we immediately see that
every link fj; jþ 1g must be in the colorless-colorless

state j0; 0i, the kernel of the positive Casimir operatorsCðLÞ
j

and CðRÞ
jþ1. Owing to the reduced Z3 Gauss law, and having

set the leftmost boundary to be colorless, we conclude
that each matter site can be in only either an empty state
or a triply occupied (baryon) state; thus either j0i or j3i ¼
c†rc

†
gc

†
bj0i. The ground space of the free-field Hamiltonian

is thus equivalent to a 1D lattice of spinless fermions, given
that baryon operators b† ¼ c†rc

†
gc

†
b mutually anticommute

as Dirac fermions.
First-order perturbation theory on this effective subspace

provides no change since every matrix element of the
matter-field interaction Hamiltonian restricted to this sub-
space is identically zero: PHð1Þ

interP ¼ 0, where P is the
projector onto the subspace. At this point, we can consider
second-order processes on each pair of neighboring
sites since the free-field Hamiltonian is fully local
and the matter-field interaction acts on nearest neighbors
[46]. States of the type j0; 0; 0ijj0; 0; 0ijþ1 and
j0; 3; 0ijj0; 3; 0ijþ1 allow for no second-order processes.
On the other hand, the state j0; 0; 0ijj0; 3; 0ijþ1 canvirtually

excite to the state j0; 1; 2ijj1; 2; 0ijþ1 via Hð1Þ
inter, with

amplitude − 3
ffiffi
2

p
2
t. In turn, the state j0; 1; 2ijj1; 2; 0ijþ1,

after freely propagating with inverse excitation energy

ðHð1Þ
ff − E0Þ−1 equal to 3

8g, can go back to the subspace in

a single Hð1Þ
inter excitation only by returning to

j0; 0; 0ijj0; 3; 0ijþ1. Using the previous argument, we

SILVI, SAUER, TSCHIRSICH, and MONTANGERO PHYS. REV. D 100, 074512 (2019)

074512-8



conclude that the state j0; 0; 0ijj0; 3; 0ijþ1 acquires a per-
turbed energy equal to −27t2=ð16gÞ. By left-right reflection
symmetry, the state j0; 3; 0ijj0; 0; 0ijþ1 acquires the same

energy. The effective Hamiltonian Hð2Þ ¼ PHð1Þ
interðHð1Þ

ff −
E0Þ−1Hð1Þ

interP deriving from the second-order pertutbation
theory in t will thus read

Hð2Þ ¼ þ 27t2

32g

XL−1
j

σzjσ
z
jþ1 −

3m
2

XL
j¼1

ð−1Þjσz; ðE1Þ

where we reintroduced the bare mass term (which is
exact since it commutes with the free-field Hamiltonian),
and where we recast the baryon lattice into a spin
lattice via the Jordan-Wigner transformation, simply using
σzj ¼ 2b†jbj − 1. The additional parameter that we control in
our simulations, the particle filling ν, is equivalent to ν ¼
3
2
þ 1

L

P
j σ

z
j in this language.

In the bare-massless case, such a ZZ Hamiltonian is
gapped at the filling sector ν ¼ 3=2 (corresponding to zero
magnetization), and it has a doubly degenerate ground
state, corresponding to the two Z-aligned antiferromagnets.
This degeneracy spontaneously breaks the full spin-flip
(particle-hole) symmetry, and establishes the chiral order
parameter ζπ, which indeed we observed numerically

for t ≤ tðAÞc g.
For other particle fillings ν, at zero bare mass m, the

effective second-order Hamiltonian Hð2Þ has an extensive
degeneracy of the ground space; thus to better understand
the phases, we find that at t ≪ g, it is helpful to consider
additionally the third order of the perturbation theory.

Since PHð1Þ
interP ¼ 0, the only relevant contribution to the

third-order effective Hamiltonian is of the form Hð3Þ ¼
PHð1Þ

interðHð1Þ
ff − E0Þ−1Hð1Þ

interðHð1Þ
ff − E0Þ−1Hð1Þ

interP, which
leads to

Hð3Þ ¼ 81t3

32g2
XL−1
j

b†jbjþ1 þ H:c:

¼ 81t3

32g2
XL−1
j

σþj σ
−
jþ1 þ σ−j σ

þ
jþ1; ðE2Þ

where again we used the Jordan-Wigner transformation.
This effective tight-binding Hamiltonian for fermions
produces a finite bandwidth for the free-fermion modes,
which in turn will produce a fermionic band-conducting
phase for fillings ν ≠ 3=2. Nevertheless, activating the bare
mass m ≠ 0 dampens the hopping processes, resulting
again in an emergent insulating behavior.

APPENDIX F: BINDING ENERGIES

Here we report the estimation of binding energies of few-
body, eventually bound, states, based on the measurement
of the mass gaps m̄k of k quarks on top of the dressed
vacuum ν ¼ 3

2
. To do so, we numerically simulate the

ground state energies EðνÞ for ν ¼ 3
2
þ k=L, with excess

quark number k from the set k ∈ f0; 1; 3; 6g. The corre-
sponding k-quark mass gap (that is, the chemical potential
for k additional quarks) is thus m̄k ¼ Eð3

2
þ k=LÞ − Eð3

2
Þ.

We can then compare the various m̄k to estimate the binding
energies of composite particles.
We first consider the binding energy of a baryon, formed

by three quarks. Its binding energy, m̄3 − 3m̄1, is reported
in Fig. 5 (inset) as a function of t, for zero bare massm. We
observe not only that this binding energy is negative, but
also that it is insensitive to the system size. This suggest
that the three quarks indeed form a bound state, which has
finite size in the relative coordinates with respect to the
center of mass, once again corroborating the strong con-
finement of quarks [4] in our model.
Secondly, we consider the binding energy of a deuteron,

i.e., a state formed by two baryons, or six quarks; hence,
k ¼ 6. The main panel of Fig. 5 shows that the deuteron
binding energy m̄6 − 2m̄3 is positive, revealing that the two
baryons do not form a bound state, while instead they repel
each other. Moreover, we observe that such repulsion
energy decreases with the system size. We consider this
a signature that the effective interaction energy scales with
the distance of the two baryons: As the size L increases,
they have more space to sit far apart, and the resulting
interaction energy decreases. The repulsion between bary-
ons is thus somewhat “weak” compared to the color
confinement effects.

FIG. 5. Binding energy m̄6 − 2m̄3 of two baryons, as a function
of t, for system sizes L ¼ 48 (magenta), 72 (red), 96 (orange).
(Inset) Binding energy m̄3 − 3m̄1 of the three quarks forming a
single baryon. The sizes L are color coded as in the main panel.
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