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The standard wisdom on the origin of massless bosons in the spectrum of a quantum field theory (QFT)
describing the interaction of gauge fields coupled to matter fields is based on two well-known features:
gauge symmetry and spontaneous symmetry breaking of continuous global symmetries. However, we will
show in this article how the topological properties, which originate the Uð1ÞA axial anomaly in a QFT that
describes the interaction of fermion matter fields and gauge bosons, are the basis of an alternative
mechanism to generate massless bosons in the chiral limit, if the non-Abelian SUðNfÞA chiral symmetry is
fulfilled in the vacuum. We will also test our predictions with the results of a well-known two-dimensional
model, the two-flavor Schwinger model, which was analyzed by Coleman long ago, and will give a reliable
answer to some of the questions he asked himself on the spectrum of the model in the strong-coupling
(chiral) limit. We will also analyze what the expectations for the UðNÞ gauge-fermion model in two
dimensions are and will discuss the impact of our results in the chirally symmetric high-temperature phase
of QCD, which was present in the early Universe and is expected to be created in heavy-ion collision
experiments. To keep mathematical rigor, we perform our calculations using a lattice regularization and
Ginsparg-Wilson fermions.
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I. INTRODUCTION

There are two well-known mechanisms in quantum field
theory that allow us to understand the existence of massless
bosons in the spectrum of a given model of gauge fields
coupled to matter fields: gauge symmetry and spontaneous
symmetry breaking of continuous global symmetries. The
gauge symmetry is, for instance, responsible for the photon
not having mass. On the other hand, the spontaneous
breaking of the SUð2ÞA chiral symmetry in QCD allows
us to understand, via the Nambu-Goldstone theorem, why
pions are so light; indeed, they would be massless if the up
and down quark masses vanished.
However, there are also some well-known examples, for

instance, two-flavor quantum electrodynamics in (1þ 1)
dimensions, in which chiral quasimassless bosons appear in
the spectrum of the model near the chiral limit [1] and in
which the explanation of this phenomenon escapes the two
aforementioned mechanisms to generate massless bosons.
Hence, it is worth wondering if this happens because of

some uninteresting peculiarities of two-dimensional mod-
els or if there is a deeper and general explanation for this
phenomenon.
We want to show here how the topological properties of

quantum field theories, which describe the interaction of
fermion matter fields and gauge bosons and which exhibit
Uð1ÞA axial anomaly, can be the basis of an alternative
mechanism to generate massless bosons in the chiral limit.
More precisely, we will show, with the help of three
distinct argumentation lines, that a gauge-fermion quan-
tum field theory, with Uð1ÞA axial anomaly and in which
the chiral condensate vanishes in the chiral limit, typically
because of an exact non-Abelian chiral symmetry, should
exhibit a divergent correlation length in the correlation
function of the scalar condensate, in the chiral limit. The
nonanomalous Ward-Takahashi identities will tell us then
that, in such a case, also some pseudoscalar correlation
functions should exhibit a divergent correlation length,
associated to what would be the Nambu-Goldstone bosons
if the non-Abelian chiral symmetry were spontaneously
broken.
We will also test our predictions with the results of a

well-known two-dimensional model, the aforementioned
two-flavor Schwinger model [1], and will discuss what
expectations are for the UðNÞ gauge-fermion model in two
dimensions, the spectrum of which was analyzed some time
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ago in the large N limit [2] and later on by means of
bosonization techniques [3,4].
Some of the basic ideas here developed can be found in

Refs. [5] and [6]. However, and in order to make this article
self-contained, we will expose all of them in a detailed way.
Since the Q ¼ 0 topological sector will play a main role

in our physical discussions, we will devote Sec. II to
reviewing some results concerning the relation between
vacuum expectation values of local and nonlocal operators
computed in the Q ¼ 0 topological sector, with their
corresponding values in the full theory, taking into account
the contribution of all topological sectors, and will see how,
notwithstanding that the Q ¼ 0 sector breaks spontane-
ously the Uð1ÞA axial symmetry and shows a divergent
pseudoscalar susceptibility in the chiral limit, the associated
pseudoscalar correlation length remains finite in this sector,
and the Nambu-Goldstone theorem is not fulfilled. To this
end, we will analyze in this section the one-flavor model as
well as the Nf > 1-flavor theory, the latter in the case in
which the non-Abelian axial symmetry is spontaneously
broken, as happens in the low-temperature phase of QCD.
In Sec. III, we will analyze what the physical expectations
are for the Nf > 1 model when the non-Abelian SUðNfÞA
chiral symmetry is fulfilled in the vacuum and will show,
with the help of three distinct argumentation lines, how a
theory that verifies the aforementioned properties should
exhibit, in the chiral limit, a divergent correlation length
and a rich spectrum of massless chiral bosons. Section IV is
devoted to testing the main prediction of this paper with
well-known results of the two-flavor Schwinger model. In
Sec. V, we analyze our expectations for the UðNÞ gauge-
fermion model in two dimensions, and in the last section,
we report our conclusions and discuss the possible impli-
cations of our results in the high-temperature chiral
symmetry restored phase of QCD.

II. SOME RELEVANT FEATURES OF THE
Q= 0 TOPOLOGICAL SECTOR

In this article, we are interested in the analysis of some
physical phenomena induced by the topological properties
of a fermion-gauge theory with Uð1ÞA axial anomaly. In
this analysis, the Q ¼ 0 topological sector will play an
essential role, and this is the reason why we devote this
section to reviewing some results concerning the relation
between vacuum expectation values of local and nonlocal
operators computed in the Q ¼ 0 sector, with their corre-
sponding values in the full theory, in which we take into
account the contribution of all topological sectors. In
particular, we will recall that the vacuum expectation value
of local or intensive operators computed in the Q ¼ 0
topological sector is equal, in the infinite volume limit, to
their corresponding value in the full theory. While this
property is, in general, not true for nonlocal operators, we
will see later that there are exceptions. We will also show
how, even if the aforementioned property implies that the

Uð1ÞA symmetry is spontaneously broken in the Q ¼ 0
topological sector, the Goldstone theorem is not realized
because the divergence of the pseudoscalar susceptibility
does not come from a divergent correlation length [5].
To begin, let us write the continuum Euclidean

Lagrangian for the most popular gauge-fermion system
with Uð1ÞA axial anomaly, QCD in four space-time
dimensions. We want to remark, however, that all the
results reported in this paper apply to any gauge-fermion
system withUð1ÞA anomaly, and, indeed, in Secs. IVand V,
we will analyze the Schwinger model (two-dimensional
QED) and the UðNÞ model in two dimensions. The one-
flavor QCD Euclidean action in the presence of a θ-vacuum
term reads as

S ¼
Z

d4x

�
ψ̄ðxÞðγμDμðxÞ þmÞψðxÞ þ 1

4
Fa
μνðxÞFa

μνðxÞ

þ iθ
g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ

�
; ð1Þ

where DμðxÞ is the covariant derivative and

Q ¼ g2

64π2

Z
d4xϵμνρσFa

μνðxÞFa
ρσðxÞ ð2Þ

is the topological charge of the gauge configuration, which
is an integer number.
To give mathematical rigor to all developments through-

out this paper, we will avoid ultraviolet divergences with
the help of a lattice regularization. We will also assume
Ginsparg-Wilson (G-W) fermions [7], the overlap fermions
[8,9] being an explicit realization of them. G-W fermions
share with the continuum formulation all essential ingre-
dients. Indeed, G-W fermions show an explicit Uð1ÞA
anomalous symmetry [10], good chiral properties, and a
quantized topological charge and allow us to establish and
exact index theorem on the lattice [11]. We recall here a few
essential features of Ginsparg-Wilson fermions that will be
useful for understanding the rest of the paper.
The lattice fermionic action for a massless G-W fermion

can be written in a compact form as

SF ¼ ψ̄Dψ ; ð3Þ

where D, the Dirac-Ginsparg-Wilson operator, obeys the
essential anticommutation equation

Dγ5 þ γ5D ¼ aDγ5D; ð4Þ

where a is the lattice spacing, and thus the right-hand side
of (4) vanishes in the naive continuum limit, a → 0.
It can be easily shown that action (3) is invariant under

the following lattice Uð1ÞA chiral rotation:
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ψ → eiαγ5ðI−aDÞψ ; ψ̄ → ψ̄eiαγ5 : ð5Þ

However, the integration measure of Grassmann variables
is not invariant, and the change of variables (5) induces a
Jacobian,

e−i2α
a
2
trðγ5DÞ; ð6Þ

where

a
2
trðγ5DÞ ¼ n− − nþ ¼ Q ð7Þ

is an integer number, the difference between left-handed
and right-handed zero modes, which can be identified with
the topological charge Q of the gauge configuration. Thus,
Eqs. (6) and (7) show us how Ginsparg-Wilson fermions
reproduce the Uð1ÞA axial anomaly.
We can also add a symmetry-breaking mass term,

mψ̄ð1 − a
2
DÞψ , to action (3), so G-W fermions with mass

are described by the fermion action

SF ¼ ψ̄Dψ þmψ̄

�
1 −

a
2
D

�
ψ ; ð8Þ

and it can also be shown that the scalar and pseudoscalar
condensates

S ¼ ψ̄

�
1 −

a
2
D

�
ψ P ¼ iψ̄γ5

�
1 −

a
2
D

�
ψ ð9Þ

transform, under the chiral Uð1ÞA rotations (5), as a vector,
just in the same way as ψ̄ψ and iψ̄γ5ψ do in the continuum
formulation.
The partition function of the Nf-flavor model in a

finite lattice is the sum over all topological sectors, Q,
of the partition function in each topological sector times a
θ-phase factor,

Z ¼
X
Q

ZQeiθQ; ð10Þ

where Q, which takes integer values, is bounded at finite
volume by the number of degrees of freedom. At large
lattice volume, the partition function should behave as

Zðβ; mf; θÞ ¼ e−VEðβ;mf;θÞ; ð11Þ

where Eðβ; mf; θÞ is the free energy density, β is the inverse
gauge coupling, mf is the f-flavor mass, and V ¼ Vs × Lt

is the lattice volume in units of the lattice spacing.
Moreover, the partition function and the mean value of
any local or intensive operatorO, as, for instance, the scalar
and pseudoscalar condensates, or any correlation function,
in the Q ¼ 0 topological sector, can be computed, respec-
tively, as

ZQ¼0 ¼
1

2π

Z
dθZðβ; mf; θÞ ð12Þ

hOiQ¼0 ¼
R
dθhOiθZðβ; mf; θÞR
dθZðβ; mf; θÞ

; ð13Þ

where hOiθ, which is the mean value of O computed with
the lattice regularized integration measure (1), is a function
of the inverse gauge coupling β, flavor masses mf, and θ,
and it takes a finite value in the infinite lattice volume limit.
Then, since the free energy density, as a function of θ,
has its absolute minimum at θ ¼ 0 for nonvanishing
fermion masses, the following relations hold in the infinite
volume limit,

EQ¼0ðβ; mfÞ ¼ Eðβ; mf; θÞθ¼0
ð14Þ

hOiQ¼0 ¼ hOiθ¼0; ð15Þ

where EQ¼0ðβ; mfÞ is the vacuum energy density of the
Q ¼ 0 topological sector.1 As we will show below, Eq. (15)
is in general not true ifO is a nonlocal operator, while there
are exceptions to this rule.
We will devote the rest of this section to showing that

Eq. (15) is consistent with the Uð1ÞA axial anomaly. To this
end, let us start with the analysis of the one-flavor model at
zero temperature.
In the one-flavor model, the only axial symmetry is an

anomalous Uð1ÞA symmetry. The standard wisdom on the
vacuum structure of this model in the chiral limit is that it is
unique at each given value of θ, the θ vacuum. Indeed, the
only plausible reason to have a degenerate vacuum in the
chiral limit would be the spontaneous breakdown of chiral
symmetry, but since it is anomalous, actually there is no
symmetry. Furthermore, due to the chiral anomaly, the
model shows a mass gap in the chiral limit, and therefore all
correlation lengths are finite in physical units. Since the
model is free from infrared divergences, the vacuum energy
density can be expanded in powers of the fermion massmu,
treating the quark mass term as a perturbation [12]. This
expansion will be then an ordinary Taylor series,

Eðβ; mu; θÞ ¼ E0ðβÞ − ΣðβÞmu cos θ þOðm2
uÞ; ð16Þ

giving rise to the expansions for the scalar and pseudoscalar
condensates

hSui ¼ −ΣðβÞ cos θ þOðmuÞ ð17Þ
hPui ¼ −ΣðβÞ sin θ þOðmuÞ; ð18Þ

whereSu andPu are the scalar and pseudoscalar condensates
(9) normalized by the lattice volume. The topological

1We want to notice that, as we will see later, Eq. (15) is, in
general, wrong if some fermion mass vanishes.

INTERPLAY BETWEEN SUðNFÞ CHIRAL SYMMETRY, … PHYS. REV. D 100, 074511 (2019)

074511-3



susceptibility χT is given, on the other hand, by the following
expansion:

χT ¼ ΣðβÞmu cos θ þOðm2
uÞ: ð19Þ

The resolution of the Uð1ÞA problem is obvious if we set
down the Ward-Takahashi identity, which relates the pseu-
doscalar susceptibility χη ¼

P
x hPuðxÞPuð0Þi, the scalar

condensate hSui, and the topological susceptibility χT,

χη ¼ −
hSui
mu

−
χT
m2

u
: ð20Þ

Indeed, the divergence in the chiral limit of the first term in
the right-hand side of (20) is canceled by the divergence of
the second term in this equation, giving rise to a finite
pseudoscalar susceptibility and a finite nonvanishing mass
for the pseudoscalar η boson.
Now, we can apply Eq. (13) to the computation of

vacuum expectation values of local operators, as the two-
point pseudoscalar correlation function, but before that, we
want to notice two relevant features of the Q ¼ 0 topo-
logical sector:
(1) In the Q ¼ 0 sector, the integration measure is

invariant under global Uð1ÞA chiral transformations
because the full topological charge vanishes for any
gauge configuration. This means that the global
Uð1ÞA axial symmetry is not anomalous in this
sector.

(2) If we apply Eq. (13) to the computation of the
vacuum expectation value of the scalar condensate,
which is an intensive operator, we get that the Uð1ÞA
symmetry is spontaneously broken in the Q ¼ 0
sector because the chiral limit of the infinite volume
limit of the scalar condensate, the limits taken in this
order, does not vanish.

The two-point pseudoscalar correlation function
hPuðxÞPuð0Þi is also an intensive operator, and Eq. (13)
tell us that, in the infinite volume limit and for mu ≠ 0, we
can write

hPuðxÞPuð0ÞiQ¼0 ¼ hPuðxÞPuð0Þiθ¼0: ð21Þ

This equation implies that the mass of the pseudoscalar
boson, mη, which can be extracted from the long-distance
behavior of the two-point correlation function, computed in
the Q ¼ 0 sector, is equal to the value we should get in the
full theory, taking into account the contribution of all
topological sectors. On the other hand, the topological
susceptibility, χT , vanishes in the Q ¼ 0 sector, and hence
the Ward-Takahashi identity (20)) in this sector reads as
follows:

χQ¼0
η ¼ −

hSuiQ¼0

mu
: ð22Þ

This identity gives us an expected result: the pseudoscalar
susceptibility in the Q ¼ 0 sector diverges in the chiral
limit mu → 0 because the Uð1ÞA symmetry is spontane-
ously broken in this sector. Even if expected, this is,
however, a very surprising result because it suggests that
the pseudoscalar boson would be a Goldstone boson, and
therefore its mass, mη, would vanish in the limit mu → 0.
The loophole to this paradoxical result is that in systems

with a global constraint the divergence of the susceptibility
does not necessarily imply a divergent correlation length.
The susceptibility is the infinite volume limit of the integral
of the correlation function over all distances, in this order,
and in systems with a global constraint, the infinite volume
limit and the space integral of the correlation function do
not necessarily commute. A very simple and illustrative
example is the Ising model at infinite temperature with an
even number of spins and vanishing full magnetization as a
global constraint [5]. In such a case, one has for the spin-
spin correlation function

hs2i i ¼ 1

hsisji ¼ −
1

V − 1
i ≠ j:

The integral of the infinite volume limit of the correlation
function is equal to 1, whereas the infinite volume limit of
the integrated correlation function vanishes. The correlation
function has a contribution of order 1=V, which violates
cluster at finite volume, and vanishes in the infinite volume
limit, but that gives a finite contribution to the integrated
correlation function. We will see in what follows how this is
qualitatively what happens when computing the pseudo-
scalar correlation function in the Q ¼ 0 sector.
The hPuðxÞPuð0ÞiQ¼0 correlation function at any finite

space-time volume V verifies the equation

hPuðxÞPuð0ÞiQ¼0 ¼
R
dθhPuðxÞPuð0Þiθe−VEðβ;m;θÞR

dθe−VEðβ;m;θÞ ; ð23Þ

and we are interested not only in the infinite volume limit of
this expression but also in the Oð1VÞ corrections.
On the other hand, it is standard wisdom that QCD

has no phase transition at θ ¼ 0, and hence we can expand
the pseudoscalar correlation function in powers of the θ
angle as

hPuðxÞPuð0Þiθ ¼ hPuðxÞPuð0Þiθ¼0 þ hðx;muÞθ2 þOðθ4Þ;
ð24Þ

where

hðx;muÞ ¼ hSuðxÞSuð0Þiθ¼0 − hPuðxÞPuð0Þiθ¼0 þOðmuÞ:
ð25Þ
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OðmuÞ in (25) stays to indicate terms that vanish at least
linearly with mu as mu → 0, in contrast with the first two
terms in the right-hand side of (25) that take a nonvanishing
value in the chiral limit.
The vacuum energy density can also be expanded in

powers of θ as

Eðβ; mu; θÞ ¼ E0ðβ; muÞ −
1

2
χTðβ; muÞθ2 þOðθ4Þ: ð26Þ

Taking into account Eqs. (23), (24), and(26) and making
an expansion around the saddle-point solution, we can
write the expansion in powers of 1

V of the pseudoscalar
correlation function in the zero-charge topological sector,

hPuðxÞPuð0ÞiQ¼0

¼ hPuðxÞPuð0Þiθ¼0

þ 1

V
hSuðxÞSuð0Þiθ¼0 − hPuðxÞPuð0Þiθ¼0 þOðmuÞ

χT

þO
�

1

V2

�
; ð27Þ

which shows, as in the simple Ising model case, a violation
of cluster at finite volume for the pseudoscalar correlation
function in the zero-charge topological sector, as follows
from the fact that

lim
jxj→∞

hSuðxÞSuð0Þiθ¼0 ¼ Σ2: ð28Þ

The cluster-violating term is of the order of 1
V, and because

the topological susceptibility χT ¼ muΣ is linear inmu, it is
singular at mu ¼ 0. It is just this term that is responsible
for the divergence of the pseudoscalar susceptibility in the
Q ¼ 0 sector in the chiral limit. However, in the infinite
volume limit, the pseudoscalar correlation function in
the zero-charge topological sector and in the full theory
at θ ¼ 0 agree, as expected.
In what concerns the pseudoscalar susceptibility,

Eqs. (23) and (24) allow us to relate this quantity in the
Q ¼ 0 sector and in the full theory as

χQ¼0
η ¼ χηθ¼0

þ ðhSuiθ¼0 −muχηθ¼0
Þ2

χT
; ð29Þ

which shows explicitly how χQ¼0
η diverges as Σ

mu
when

mu → 0.
Summarizing, we have shown that, even if the Q ¼ 0

topological sector breaks spontaneously the Uð1ÞA axial
symmetry to give account of the anomaly, the Goldstone
theorem is not fulfilled because the divergence of the
pseudoscalar susceptibility does not come from a divergent
correlation length but from some peculiar features of the

pseudoscalar correlation function which can emerge in
systems with global constraints.
The inclusion of more flavors does not change the

qualitative results reported in this section when the
SUðNfÞ chiral symmetry is spontaneously broken, as
happens in the low-temperature phase of QCD. The quanti-
tative changes are essentially reduced to replace the
one-flavor scalar and pseudoscalar condensates by the
flavor-singlet scalar and pseudoscalar condensates, respec-
tively, and the topological susceptibility χT by N2

fχT in
Eqs. (20), (23)–(25), and (25)–(29).
The case in which the SUðNfÞ chiral symmetry is

fulfilled in the vacuum will be discussed in detail in the
next section.

III. TWO FLAVORS AND EXACT SUð2Þ
CHIRAL SYMMETRY

We will discuss in this section the physical expectations
in a fermion-gauge theory with two (or more flavors), exact
SUð2Þ chiral symmetry, and a Uð1ÞA axial anomaly. In this
discussion, the main ideas developed in the previous
section will play an essential role. We will see how a
theory that verifies the aforementioned properties should
show, in the chiral limit, a divergent correlation length and a
rich spectrum of massless chiral bosons. In Sec. III A, we
will give, under very general assumptions, a short dem-
onstration of this result. Section III B contains a qualitative
but powerful argument supporting the results of Sec. III A,
and in Sec. III C, we will show how we can get the same
qualitative result using general properties of the spectral
density of the Lee-Yang zeros of the partition function of
the zero charge topological sector.

A. Vacuum energy density of the
Q= 0 topological sector

As previously stated, we consider a fermion-gaugemodel
with two flavors, up and down, with masses mu and md,
exact SUð2ÞA chiral symmetry, and a Uð1ÞA axial anomaly,
for instance, the two-flavor Schwinger model or the high-
temperature phase of QCD. We will assume that the flavor-
singlet scalar susceptibility χσðmu;mdÞ and hence also the
flavor-singlet pseudoscalar susceptibility χηðmu;mdÞ take a
finite value in the chiral limit and will show that, in such a
case, we get a quite surprising result: the scalar χσðmu;mdÞ
and pseudoscalar χηðmu;mdÞ susceptibilities are equal in the
chiral limit, in contrast with what we would expect in a
theory with two flavors and a Uð1ÞA anomaly.
To start the proof, let us write the Euclidean fermion-

gauge action (8) for the two-flavor model,

SF ¼ muψ̄u

�
1 −

a
2
D

�
ψu þmdψ̄d

�
1 −

a
2
D

�
ψd

þ ψ̄uDψu þ ψ̄dDψd; ð30Þ
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where D is the Dirac-Ginsparg-Wilson operator. This
action can be written in a compact form as

SF ¼ mþψ̄
�
1 −

a
2
D

�
ψ −m−ψ̄

�
1 −

a
2
D

�
τ3ψ þ ψ̄Dψ ;

ð31Þ

where mþ ¼ muþmd
2

and m− ¼ md−mu
2

. ψ is a Grassmann
field carrying site, Dirac, color, and flavor indices and τ3 is
the third Pauli matrix acting in flavor space.
The vacuum energy density Eðmþ; m−; βÞ of our model

is a function of the quark masses, mþ; m−, and the inverse
gauge coupling β. Since we are assuming that the flavor-
singlet scalar susceptibility χσ and hence χη are finite in the
chiral limit, and because the pseudoscalar susceptibility χη
is equal to the δ-meson susceptibility χδ in this limit due to
the exact SUð2ÞA axial symmetry, we can write a second-
order Taylor expansion for the free energy density as

Eðmþ;m−;βÞ¼
1

2
m2þχσðβÞþ

1

2
m2

−χηðβÞþE2ðmþ;m−;βÞ;
ð32Þ

where E2ðmþ; m−; βÞ verifies that

lim
mþ;m−→0

E2ðmþ; m−; βÞ
m2þ þm2

−
¼ 0:

We have shown in Sec. II, Eq. (14), that the vacuum
energy density of the Q ¼ 0 topological sector is equal, in
the thermodynamic limit, to the vacuum energy density in
the full theory at θ ¼ 0. Hence, we can write

EQ¼0ðmþ; m−; βÞ ¼ Eðmþ; m−; βÞ: ð33Þ

We can perform, in the Q ¼ 0 topological sector, an
Abelian axial rotation of the up quark in the path integral,
with angle θ ¼ π, while leaving the down quark
unchanged. This variable change, the Jacobian of which
is trivial in this sector, is equivalent to interchange mþ and
m−, and so we get the following symmetry relation:

EQ¼0ðmþ; m−; βÞ ¼ EQ¼0ðm−; mþ; βÞ: ð34Þ

Equations (32), (33), and (34) can only be verified if
χσðβÞ ¼ χηðβÞ, and this concludes the proof.
This result tells us that a finite value of the flavor-

singlet scalar susceptibility in the chiral limit seems to be
incompatible with the presence of the Uð1ÞA axial anomaly
in the two-flavor model. In the next subsection, we will
give an argument pointing also to the divergence of the
flavor-singlet scalar susceptibility in the chiral limit for
any Nf ≥ 2.

B. Phase diagram and the Landau approach

We have shown in Sec. III A that a fermion-gauge theory
with Uð1ÞA anomaly and exact SUð2Þ chiral symmetry
should exhibit a divergent correlation length in the scalar
sector in the chiral limit. In this section, we want to give
what is perhaps the strongest indication supporting this
result, which comes from a qualitative but powerful argu-
ment. To this end, we will explore the expected phase
diagram of the model in the Q ¼ 0 topological sector [6]
and will apply the Landau theory of phase transitions to it.
Since the SUð2Þ chiral symmetry is assumed to be

fulfilled in the vacuum and the flavor singlet scalar
condensate is an order parameter for this symmetry, its
vacuum expectation value hSi ¼ 0 vanishes in the limit in
which the fermion mass m → 0. However, if we consider
two nondegenerate fermion flavors, up and down, with
masses mu and md, respectively, and take the limit mu → 0
keeping md ≠ 0 fixed, the up condensate Su will reach a
nonvanishing value

lim
mu→0

hSui ¼ suðmdÞ ≠ 0 ð35Þ

because the Uð1Þu axial symmetry, which exhibits our
model when mu ¼ 0, is anomalous, and the SUð2Þ chiral
symmetry, which would enforce the up condensate to be
zero, is explicitly broken if md ≠ 0.
Obviously, the same argument applies if we interchange

mu and md, and we can therefore write an equation
symmetric to (35) for the down condensate,

lim
md→0

hSdi ¼ sdðmuÞ ≠ 0; ð36Þ

and since when mu, md → 0 the SUð2Þ chiral symmetry is
recovered and fulfilled in the vacuum, we get

lim
md→0

suðmdÞ ¼ lim
mu→0

sdðmuÞ ¼ 0: ð37Þ

Let us consider now our model, with two nondegenerate
fermion flavors, restricted to the Q ¼ 0 topological sector.
As discussed in Sec. II, the mean value of any local or
intensive operator in the Q ¼ 0 topological sector will be
equal, if we restrict ourselves to the region in which both
mu > 0 and md > 0, to its mean value in the full theory in
the infinite lattice volume limit.2 We can hence apply this
result to hSui and hSdi and write the following equations:

lim
mu→0

hSuiQ¼0 ¼ suðmdÞ ≠ 0

lim
md→0

hSdiQ¼0 ¼ sdðmuÞ ≠ 0: ð38Þ

2Since the two-flavor model withmu < 0 andmd < 0 at θ ¼ 0
is equivalent to the same model with mu > 0 and md > 0, this
result is also true if both mu < 0 and md < 0.
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In theQ ¼ 0 sector, theUð1Þu axial symmetry of our model
at mu ¼ 0 and the Uð1Þd symmetry at md ¼ 0 are good
symmetries of the action because the Jacobian associated to
a chiral Uð1Þu;d transformation is the unit. Then, Eq. (38)
tells us that both the Uð1Þu symmetry at mu ¼ 0, md ≠ 0
and the Uð1Þd symmetry at mu ≠ 0, md ¼ 0 are sponta-
neously broken. This is not surprising at all since the
present situation is similar to what happens in the one-
flavor model discussed in Sec. II, and, as in that case, the
Goldstone theorem is not verified because the divergence of
the pseudoscalar up or down susceptibilities does not come
from a divergent correlation length.
Figure 1 is a schematic representation of the phase

diagram for the two-flavor model in the Q ¼ 0 topological
sector and in the ðmu;mdÞ plane, which emerges from the
previous discussion. The two coordinate axes show first-
order phase transition lines. If we perpendicularly cross the
md ¼ 0 axis, the mean value of the down condensate jumps
from sdðmuÞ to −sdðmuÞ, and the same is true if we
interchange up and down. All first-order transition lines
end, however, at a common point, the origin of coordinates
mu ¼ md ¼ 0, where all condensates vanish because at this
point we recover the SUð2Þ chiral symmetry, which is
assumed to be also a symmetry of the vacuum. Notice that
if the SUð2Þ chiral symmetry is spontaneously broken, as
happens, for instance, in the low-temperature phase of
QCD, the phase diagram in the ðmu;mdÞ plane would be
the same as that of Fig. 1 with the only exception that the
origin of coordinates is not an end point.
Landau’s theory of phase transitions predicts that the end

point placed at the origin of coordinates in the ðmu;mdÞ
plane is a critical point, the scalar condensate should show a

nonanalytic dependence on the fermion masses mu and md
as we approach the critical point, and hence the scalar
susceptibility should diverge. But since the vacuum energy
density in the Q ¼ 0 topological sector matches the
vacuum energy density in the full theory, and therefore
the same is true for the critical equation of state, Landau’s
theory of phase transitions predicts a nonanalytic depend-
ence of the flavor-singlet scalar condensate on the fermion
mass and a divergent correlation length in the chiral limit of
our full theory, in which we take into account the
contribution of all topological sectors.
More precisely, we can apply the Landau approach to

analyze the critical behavior around the two first-order
transition lines in Fig. 1 near the end point or critical point.
In the analysis of the md ¼ 0 transition line, we consider
md as an external “magnetic field”and mu as the ”temper-
ature,” and vice versa for the analysis of the mu ¼ 0 line.
Then, the standard Landau approach tells us that the up and
down condensates verify the two equations of state

muhSui−3 ¼ −C1mdhSui−2 þ C2

mdhSdi−3 ¼ −C1muhSdi−2 þ C2; ð39Þ

where C1 and C2 are two positive constants. If we fix the
ratio of the up and down masses mu

md
¼ λ, the equations of

state (39) allow us to write the following expansions for the
up and down condensates:

hSui ¼ m
1
3
u

��
1

4C2

�1
3 þ C1

3ð2C2
2Þ

1
3λ
m

1
3
u þ � � �

�

hSdi ¼ m
1
3

d

��
1

4C2

�1
3 þ C1λ

3ð2C2
2Þ

1
3

m
1
3

d þ � � �
�
: ð40Þ

Equation (40) explicitly shows the nonanalytical behavior
of the up and down condensates. The flavor-singlet scalar

condensate scales as m
1
3
u þm

1
3

d near the critical point, and
for the degenerate flavor case, mu ¼ md ¼ m, we get

hSi ¼ hSui þ hSdi ¼
�

2

C2

�1
3

m
1
3 þ � � �

χσðmÞ ¼ 1

3

�
2

C2

�1
3

m−2
3 þ � � � ; ð41Þ

which explicitly shows the divergence of the flavor-singlet
scalar susceptibility in the chiral limit.
The power law dependence of the scalar condensate (41)

in the Landau approach reproduces the mean field critical
exponents. In general, mean field exponents are expected to
be correct in four or higher dimensions. In lower dimen-
sions, the effect of fluctuations can change the critical
exponents, and this means that in these cases the Landau
approach give us a good qualitative description of the phase

critical point

md

mu

FIG. 1. Phase diagram of the two-flavor model in the Q ¼ 0
topological sector. The coordinate axes in the ðmu;mdÞ plane are
first-order phase transition lines. The origin of coordinates is the
end point of all first-order transition lines. The vacuum energy
density, its derivatives, and expectation values of local operators
of the two-flavor model at θ ¼ 0 only agree with those of the
Q ¼ 0 sector in the first ðmu > 0; md > 0Þ and third ðmu <
0; md < 0Þ quadrants (the darkened areas).
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diagram but fails in its quantitative predictions of critical
exponents.
In general, and beyond the Landau approach, we can

parametrize the critical behavior of the flavor-singlet scalar
condensate for degenerate flavors with a critical exponent
δ > 1,

hSim→0 ∼m
1
δ; ð42Þ

which gives us a divergent scalar susceptibility χσðmÞ ∼
m

1−δ
δ and hence a massless scalar boson as m → 0.
If on the other hand, we write the Ward-Takahashi

identity for the isotriplet of “pions,” which follows from
the SUð2ÞA nonanomalous chiral symmetry

χπ̄ðmÞ ¼ hSi
m

; ð43Þ

we get that also χπ̄ðmÞ diverges when m → 0 as m
1−δ
δ , and a

rich spectrum of massless bosons ðσ; π̄Þ emerges in the
chiral limit.
To conclude this section, we would like to point out that

the results reported here can be generalized in a straightfor-
ward way to a number of flavors Nf > 2.

C. Spectral density of the Lee-Yang zeros
of the partition function

The results of Secs. III A and III B have been obtained
with the help of some general properties of the vacuum
energy density of the Q ¼ 0 topological sector. In view of
the relevance of these results, it is worth it to explore some
alternative way to corroborate it. In this section, we will
show how we can get, using general properties of the
spectral density of the Lee-Yang zeros of the partition
function of the zero charge topological sector, the same
qualitative result in an independent way.
We consider here a generic gauge-fermion model with

Uð1ÞA axial anomaly and two fermion flavors of equal
mass, in which the SUð2Þ chiral symmetry is fulfilled in
the ground state for massless fermions. Our starting
assumption here, as in Sec. III A, is that the flavor-
singlet scalar susceptibility, χσðmÞ, is a continuous func-
tion of the quark mass, m, at m ¼ 0, in the full theory,
taking into account the contribution of all topological
sectors. Under this assumption, we will prove that the
flavor-singlet scalar susceptibility, χQ¼0

σ ðmÞ, in the Q ¼ 0
topological sector, is also a continuous function of the
quark mass, m, at m ¼ 0, a result that, together with the
identities

χQ¼0
σ ðm ¼ 0Þ ¼ 1

2
χσðm ¼ 0Þ þ 1

2
χηðm ¼ 0Þ

χQ¼0
σ ðmÞ ¼ χσðmÞ ∀ m ≠ 0; ð44Þ

will lead us to the same paradoxical conclusion,
χσðm ¼ 0Þ ¼ χηðm ¼ 0Þ, obtained in Sec. III A.3

The zeros in the complex quark mass plane of the
partition function of the zero charge topological sector are
distributed following several symmetry properties. If we
denote with μ the absolute value of a given zero, and with α
its phase, the density of zeros ρðμ; αÞ in the infinite lattice
volume limit verifies the symmetry relations

ρðμ; αÞ ¼ ρðμ;−αÞ
ρðμ; αÞ ¼ ρðμ; π þ αÞ; ð45Þ

and then we can write the following expressions for the
scalar condensate and the flavor-singlet scalar susceptibil-
ity, the last for massless fermions, in the Q ¼ 0 topological
sector

hSiQ¼0ðmÞ

¼−2m
Z

dα
Z

dμ
m2−μ2cosð2αÞ

m4−2m2μ2cosð2αÞþμ4
ρðμ;αÞ ð46Þ

χQ¼0
σ ðm ¼ 0Þ ¼ 2

Z
dα

Z
dμ

cos ð2αÞ
μ2

ρðμ; αÞ; ð47Þ

where α runs in the interval ð0; πÞ, while it is true that, using
the symmetry relations (45), the interval in α can be further
reduced to ð0; π=2Þ.
Since we are assuming that the flavor-singlet scalar

susceptibility, χσðmÞ, takes a finite value when the quark
mass goes to zero, the scalar condensate at small fermion
mass will be linear in the fermion mass, plus higher-order
corrections. Furthermore, as discussed in previous sections,
the scalar condensate and the scalar susceptibility com-
puted in the Q ¼ 0 topological sector agree, in the infinite
lattice volume limit, with the corresponding quantities
computed in the full theory taking into account the
contribution of all topological sectors. Hence, the chiral
limit of χσQ¼0ðmÞ can be computed as

lim
m→0

χQ¼0
σ ðmÞ

¼ lim
m→0

hSiQ¼0ðmÞ
m

¼− lim
m→0

2

Z
dα

Z
dμ

m2−μ2 cosð2αÞ
m4−2m2μ2 cosð2αÞþμ4

ρðμ;αÞ;

ð48Þ

and the rest of this section will be devoted to showing that
the chiral limit (48) is the massless flavor-singlet scalar
susceptibility χQ¼0

σ ðm ¼ 0Þ (47).

3The first of these identities can be easily derived from the θ
dependence of the massless scalar susceptibility in the full two-
flavor theory, χσðθÞ ¼ cos2 θ

2
χσðm ¼ 0Þ þ sin2 θ

2
χηðm ¼ 0Þ.
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We should remark that the denominator in the right-hand
side integral of (48) vanishes atm2 ¼ μ2e�i2α, but since we
assume that the model has no phase transitions in the
fermion mass m near m ¼ 0, except at most at m ¼ 0, the
zeros of the partition function should stay at a finite
distance of the real positive axis in the complex mass
plane. Hence, the only candidate to be a singular point in
the integrand of (48) ism ¼ 0, μ ¼ 0. This means that if we
split the μ integral into two regions, μ < ϵ, and μ > ϵ, with
ϵ ≪ 1, we can write

lim
m→0

2

Z
dα

Z
μ>ϵ

dμ
m2 − μ2 cos ð2αÞ

m4 − 2m2μ2 cos ð2αÞ þ μ4
ρðμ; αÞ

¼ −2
Z

dα
Z
μ>ϵ

dμ
cos ð2αÞ

μ2
ρðμ; αÞ; ð49Þ

and therefore we will concentrate on the chiral limit of the
integral in the μ < ϵ region.
Since we assume a finite massless scalar susceptibility

χσðm ¼ 0Þ, χQ¼0
σ ðm¼ 0Þ¼ 1

2
χσðm¼ 0Þþ 1

2
χηðm¼ 0Þ will

also be finite, and Eq. (47) tells us that the spectral density
of zeros ρðμ; αÞ should vanish when μ → 0 fast enough in
order to keep the μ ¼ 0 singularity integrable. Hence, we
can parametrize the behavior of the spectral density of zeros
near μ ¼ 0 as

ρðμ; αÞμ≤ϵ ≈ μpðαÞfðαÞ ð50Þ

with pðαÞ > 1.4

To compute the chiral limit of

2

Z
π

0

dα
Z

ϵ

0

dμ
m2 − μ2 cos ð2αÞ

m4 − 2m2μ2 cos ð2αÞ þ μ4
ρðμ; αÞ; ð51Þ

we perform a change of variables and replace the spectral
density of zeros in the previous expression by its small μ
value (50), and so we get

2

Z
π

0

dα
Z

ϵ

0

dμ
m2 − μ2 cos ð2αÞ

m4 − 2m2μ2 cos ð2αÞ þ μ4
ρðμ; αÞ

¼ 2

m

Z
π

0

dαmpðαÞfðαÞ
Z ϵ

m

0

dt
1 − t2 cos ð2αÞ

1 − 2t2 cos ð2αÞ þ t4
tpðαÞ:

ð52Þ

It is easy to check that, for pðαÞ > 1,

lim
m→0

2

m

Z
dαmpðαÞfðαÞ

Z ϵ
m

0

dt
1 − t2 cos ð2αÞ

1 − 2t2 cos ð2αÞ þ t4
tpðαÞ

¼ −2
Z

dα
fðαÞ cos ð2αÞ
pðαÞ − 1

ϵpðαÞ−1; ð53Þ

and since the right-hand side of Eq. (53) vanishes when
ϵ → 0, we get that

lim
ϵ→0

lim
m→0

2

Z
dα

Z
ϵ

0

dμ
m2−μ2 cosð2αÞ

m4−2m2μ2 cosð2αÞþμ4
ρðμ;αÞ¼ 0;

ð54Þ

a result that, together Eqs. (48) and (49), allows us to write

lim
m→0

χQ¼0
σ ðmÞ¼ lim

ϵ→0
2

Z
π

0

dα
Z
μ>ϵ

dμ
cosð2αÞ

μ2
ρðμ;αÞ; ð55Þ

which tells us that the chiral limit of the flavor-singlet scalar
susceptibility in the Q ¼ 0 topological sector agrees with
the massless scalar susceptibility in this sector, and there-
fore the scalar susceptibility is a continuous function of the
fermion mass, m, at m ¼ 0, in the Q ¼ 0 sector. We should
also notice that logarithmic violations to the power law
behavior of the spectral density ρðμ; αÞ (50) do not change
the previous qualitative result.

IV. SCHWINGER MODEL

The Schwinger model, or quantum electrodynamics in
(1þ 1) dimensions, is a good laboratory to test the results
reported in the previous sections. The model is confining
[13], exactly solvable at zero fermion mass, has nontrivial
topology, and shows explicitly the Uð1ÞA axial anomaly
[14] through a nonvanishing value of the chiral condensate
in the chiral limit in the one-flavor case. Furthermore, in the
multiflavor Schwinger model, the SUðNfÞA nonanomalous
axial symmetry in the chiral limit is fulfilled in the vacuum,
and this property makes this model a perfect candidate to
check the main conclusion of this article, namely, the
existence of light scalar and pseudoscalar bosons in the
spectrum of the model, the mass of which vanishes in
the chiral limit.
The Euclidean continuum action is

S ¼
Z

d2x

�XNf

f¼1

ψ̄fðxÞγμð∂μ þ iAμðxÞÞψfðxÞ

þm
XNf

f¼1

ψ̄fðxÞψfðxÞ þ
1

4e2
F2
μνðxÞ

�
; ð56Þ

where m is the fermion mass and e is the electric charge or
gauge coupling, which has the same dimension as m.

4A value of pðαÞ ≤ 1 could also give a finite massless
susceptibility (47) if large cancellations when performing the
α integral happen in a fine-tuning way. For instance, if we assume
pðαÞ constant and less than 1, Eq. (47) would be still finite ifR
dα cos ð2αÞfðαÞ ¼ 0. However, it can be shown that, in such an

unlikely case, the qualitative results obtained in this section do
not change.
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FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ and γμ are 2 × 2 matrices
satisfying the algebra

fγμ; γνg ¼ 2gμν: ð57Þ

This action is apparently invariant in the chiral limit under
SUðNfÞA and Uð1ÞA chiral transformations. However, the
Uð1ÞA axial symmetry is broken at the quantum level
because of the axial anomaly. The divergence of the axial
current is

∂μJAμ ðxÞ ¼
1

2π
ϵμνFμνðxÞ; ð58Þ

where ϵμν is an antisymmetric tensor and hence does not
vanish. The axial anomaly induces a topological θ term in
the action of the form iθQ, where

Q ¼ 1

4π

Z
d2xϵμνFμνðxÞ ð59Þ

is the quantized topological charge.
The Schwinger model was analyzed years ago by

Coleman [1], computing some quantitative properties of
the theory in the continuum for both weak coupling, em ≪ 1,
and strong coupling e

m ≫ 1.
For the one-flavor model, Coleman computed the par-

ticle spectrum of the model, which shows a mass gap in the
chiral limit, and conjectured the existence of a phase
transition at θ ¼ π and some intermediate fermion mass
m separating a weak-coupling phase (em ≪ 1) in which the
Z2 symmetry of the model at θ ¼ π is spontaneously
broken from a strong-coupling phase (em ≫ 1) in which
the Z2 symmetry is realized in the vacuum. A simple
analysis of this model on the lattice also suggests that it
should undergo a phase transition at some intermediate
fermion mass m and θ ¼ π, even at finite lattice spacing.
Indeed, the lattice model is analytically solvable in the
infinite fermion mass limit (pure gauge two-dimensional
electrodynamics with topological term) [15], and it is well
known that the density of topological charge approaches a
nonvanishing vacuum expectation value at θ ¼ π for any
value of the inverse square gauge coupling β, showing
spontaneous symmetry breaking. On the other hand, by
expanding the vacuum energy density in powers of m,
treating the fermion mass as a perturbation, one gets for the
vacuum expectation value of the density of topological
charge the θ dependence

h−iqi ¼ mΣ sin θ þ 1

2
m2 sin ð2θÞðχσ − χηÞ þ…; ð60Þ

where Σ is the vacuum expectation value of the chiral
condensate in the chiral limit and at θ ¼ 0 (Σ ¼ eγee=2π3=2

in the continuum limit) and χη and χσ are the pseudoscalar

and scalar susceptibilities, respectively. Equation (60)
shows how the Z2 symmetry at θ ¼ π is realized order
by order in the perturbative expansion of the topological
charge in powers of the fermion mass m. Therefore, a
critical point separating the large and small fermion mass
phases is expected, and this qualitative result has been
recently confirmed by numerical simulations of the
Euclidean-lattice version of the model [16].
What is, however, more interesting for the content of this

article is the Coleman analysis of the two-flavor model. The
theory has an internal SUð2ÞV × SUð2ÞA ×Uð1ÞV ×Uð1ÞA
symmetry in the chiral limit, and the Uð1ÞA axial symmetry
is anomalous. Since continuous internal symmetries cannot
be spontaneously broken in a local field theory in two
dimensions [17], the SUð2ÞA symmetry has to be fulfilled
in the vacuum, and the scalar condensate, which is an order
parameter for this symmetry, will therefore vanish in the
chiral limit, notwithstanding the chiral Uð1ÞA anomaly.
Hence, the two-flavor Schwinger model verifies all the
conditions we assumed in Sec. III.
We summarize here Coleman’s main findings for the

two-flavor model:
(1) For weak coupling, e

m ≪ 1, the results on the particle
spectrum are almost the same as for the massive
Schwinger model.

(2) For strong coupling, em ≫ 1, the low-energy effective
theory depends only on one mass parameter,
m

2
3e

1
3 cos

2
3
θ
2
; the vacuum energy density will be then

proportional to

Eðm; e; θÞ ∝ m
4
3e

2
3 cos

4
3
θ

2
; ð61Þ

and the chiral condensate at θ ¼ 0 is therefore

hψ̄ψi ∝ m
1
3e

2
3: ð62Þ

(3) The lightest particle in the theory is an isotriplet, and
the next lightest is an isosinglet. The isosinglet/
isotriplet mass ratio is

ffiffiffi
3

p
. If there are other stable

particles in the model, they must be Oð½em�
2
3Þ times

heavier than these. The light boson mass, M, has a
fractional power dependence on the fermion massm:

M ∝ m
2
3e

1
3

�
cos

θ

2

�2
3

: ð63Þ

Many of these results have been corroborated by several
authors both in the continuum [18–22] and using the lattice
approach [23,24]. Coleman concluded his paper [1] by
asking some questions concerning things he did not under-
stand, and we cite two of them here:
(1) Why are the lightest particles in the theory a

degenerate isotriplet?
(2) Why does the next-lightest particle have IPG ¼ 0þþ,

rather than 0−−?
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We think that the results of Sec. III allow us to give a
reliable answer to these questions. The interplay between
Uð1ÞA anomaly and exact SUð2ÞA chiral symmetry enfor-
ces the divergence of both the flavor-singlet scalar suscep-
tibility χσ, and the “pion” susceptibility χπ̄ in the chiral
limit. As discussed in Sec. III B, both susceptibilities have
the same fractional power dependence on the fermion mass
m, χσ,χπ̄ ∝ m

1−δ
δ e

δ−1
δ , and since

χσm→0 ∼
jh0jÔσjσij2

mσ
χπ̄m→0 ∼

jh0jÔπ̄jπ̄ij2
mπ̄

; ð64Þ

we expect the σ and π̄ masses have also the same
dependence on the fermion mass m,

mσ ∝ jh0jÔσjσij2mδ−1
δ e

1−δ
δ ; mπ̄ ∝ jh0jÔπ̄jπ̄ij2mδ−1

δ e
1−δ
δ : ð65Þ

Coleman’s analysis predicts δ ¼ 3, which is the mean field
critical exponent, and a finite nonvanishing value for
h0jÔσjσi and h0jÔπ̄jπ̄i in the chiral limit.
Concerning the σ meson pion mass ratio

mσ

mπ̄
¼

ffiffiffi
3

p

reported by Coleman in Ref. [1], we find a discrepancy. The
critical behavior of the flavor-singlet scalar condensate
hSim→0 ∼m

1
δ besides the nonanomalous Ward-Takahashi

identity (43) tells us that the ratio of the pion and σ meson
susceptibilities will reach the value δ in the chiral limit

lim
m→0

χπ̄ðm; eÞ
χσðm; eÞ ¼ δ; ð66Þ

and since the SUð2ÞA chiral symmetry is not spontaneously
broken in the chiral limit, we expect from (64) that

lim
m→0

χπ̄ðm; eÞ
χσðm; eÞ ¼ lim

m→0

mσ

mπ̄
; ð67Þ

which, for δ ¼ 3, gives us the value 3 instead of
ffiffiffi
3

p
for the

mass ratio. The origin of this discrepancy may reside in the
strong-coupling limit approximation made by Coleman in
Ref. [1]. Indeed, the bosonized two-flavor Schwinger
model is a generalized sine-Gordon model that cannot
be solved in closed form, but in the strong-coupling limit
ðem ≫ 1Þ approximation, the flavor-singlet pseudoscalar
field is treated as a static field, and the model is reduced
to a special case of the standard sine-Gordon model for the
isotriplet pseudoscalar field. It is inside the standard
sine-Gordon model where Coleman found that the σ − π̄
mass ratio is

ffiffiffi
3

p
, but when going from the generalized

sine-Gordon model to the standard sine-Gordon model, the
structure of the mass term in the two-flavor Schwinger
model is changed, and hence the nonanomalous

Ward-Takahashi identity (43), which depends on the
structure of the mass term, also changes. We want to
notice, in this context, that the results for the σ − π̄ mass
ratio of a numerical simulation of the two-flavor Schwinger
model with Kogut-Susskind fermions reported in Ref. [23]
show a systematic deviation, at large inverse gauge cou-
pling β ¼ 1

e2a2 and small values of the fermion mass, from

the
ffiffiffi
3

p
value, pointing to a larger value in the chiral limit.

This is, however, a rather old calculation, and an improve-
ment of the results of Ref. [23] could clarify this point.
We conclude this section by remarking that the results

reported in Sec. III tell us that the existence of quasimass-
less chiral bosons in the spectrum of the two-flavor
Schwinger model near the chiral limit does not originate
in some uninteresting peculiarities of two-dimensional
models but it should be a consequence of the interplay
between exact non-Abelian chiral symmetry and a Uð1ÞA
axial anomaly, and this is a picture that also holds,
for instance, in a much more interesting case, the high-
temperature phase of four-dimensional QCD. What is a
two-dimensional peculiarity is the fact that in the chiral
limit, when all fermion masses vanish, these quasimassless
bosons become unstable and the low-energy spectrum of
the model reduces to a massless noninteracting boson, in
accordance with Coleman’s theorem [17], which forbids
the existence of massless interacting bosons in two
dimensions.

V. UðNÞ MODEL IN TWO DIMENSIONS

The analysis of the previous section on the multiflavor
Schwinger model applies also to theUðNÞmodel in (1þ 1)
dimensions. The Euclidean continuum action is

S ¼
Z

d2x

�XNf

f¼1

ψ̄fðxÞðγμDμðxÞ þmfÞψfðxÞ

þ 1

4e2
Fa
μνðxÞFa

μνðxÞ
�
; ð68Þ

where DμðxÞ is the covariant derivative, ψfðxÞ is an N-
multiplet fermion field, mf is the mass of flavor f, and the
index a runs from 1 to N2. Since the Uð1Þ electromagnetic
field is also gauged in the UðNÞ model, the Uð1ÞA axial
symmetry is, like in the Schwinger model, also anomalous
in the UðNÞmodel in (1þ 1) dimensions. Furthermore, the
dimensionful coupling constant e has mass dimensions,
and the model is also superrenormalizable.
In the one-flavor model, we expect, as in the Schwinger

model or in one-flavor four-dimensional QCD, a mass gap
in the spectrum in the chiral limit because of the Uð1ÞA
axial anomaly. The spectrum of the UðNÞ model in (1þ 1)
dimensions was analyzed time ago in the large N limit by
’t Hooft [2], and he found, in the one-flavor case, a
spectrum of masses of the order of the gauge coupling,
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e, plus a single mass that vanishes with the fermion mass.
This massless boson appears in the large N limit because
the effects of the Uð1ÞA anomaly disappear at leading order
in this limit. Indeed, at finiteN, the one-flavor model shows
a mass gap in the chiral limit [3], as expected.
In what concerns the multiflavor UðNÞ model, we can

apply the main conclusions of this paper. In the multiflavor
case, the model has a SUðNfÞA nonanomalous chiral
symmetry and an anomalous Uð1ÞA axial symmetry in
the chiral limit. The SUðNfÞA chiral symmetry, as any
continuous symmetry in two dimensions, is not sponta-
neously broken [17], and hence the scalar condensate
hSi ¼ 0 vanishes in the chiral limit, notwithstanding the
Uð1ÞA anomaly. The results of Sec. III lead us to conclude
that the model should exhibit a divergent correlation length
in the chiral limit that, together with the Ward-Takahashi
identities analogous to (20), tells us that the spectrum of the
model should show N2

f quasimassless chiral bosons near
the chiral limit, one of them scalar and the other of them
N2

f − 1 pseudoscalar.

VI. CONCLUSIONS

The standard wisdom on the origin of massless bosons in
the spectrum of a quantum field theory describing the
interaction of gauge fields coupled to matter fields is based
on two well-known features: gauge symmetry and sponta-
neous symmetry breaking of continuous symmetries.
However, we have shown in this article that the topological
properties, which originate the Uð1ÞA axial anomaly in a
QFT that describes the interaction of fermion matter fields
and gauge bosons, are the basis of an alternative mecha-
nism to generate massless bosons in the chiral limit, if the
non-Abelian SUðNfÞA chiral symmetry is fulfilled in the
vacuum. More precisely, we have shown, with the help of
three distinct argumentation lines, that a gauge-fermion
QFT, with theUð1ÞA axial anomaly, and in which the chiral
condensate vanishes in the chiral limit, typically because of
an exact non-Abelian chiral symmetry, should exhibit a
divergent correlation length in the correlation function of
the scalar condensate, in the chiral limit. The nonanoma-
lous Ward-Takahashi identities tell us then that, in such a
case, also some pseudoscalar correlation functions should
exhibit a divergent correlation length, associated to what
would be the Nambu-Goldstone bosons if the non-Abelian
chiral symmetry were spontaneously broken.
The two-flavor Schwinger model, or quantum electro-

dynamics in two space-time dimensions, is a good test
bed for our predictions. Indeed, the Schwinger model
shows a nontrivial topology, which induces the Uð1ÞA
axial anomaly. Moreover, in the two-flavor case, the non-
Abelian SUð2ÞA chiral symmetry is fulfilled in the vacuum,
as required by Coleman’s theorem [17] on the impossibility
of spontaneously breaking continuous symmetries in two
dimensions.

The two-flavor Schwinger model was analyzed by
Coleman long ago in Ref. [1], in which he computed
some quantitative properties of the theory in the continuum
for both weak coupling, em ≪ 1, and strong coupling e

m ≫ 1.
In what concerns the strong-coupling results, the
Coleman’s main findings are qualitatively in agreement
with our predictions. The vacuum energy density (61) and
the chiral condensate (62) show a singular dependence
on the fermion mass, m, in the chiral limit, and the flavor-
singlet scalar susceptibility diverges when m → 0.
Moreover, our results establish a reliable answer to some
questions Coleman had himself [1] concerning the follow-
ing two things he did not understand about the low-energy
spectrum of the model:
(1) Why are the lightest particles in the theory a

degenerate isotriplet?
(2) Why does the next-lightest particle have IPG ¼ 0þþ,

rather than 0−−?
Indeed, the interplay between the Uð1ÞA anomaly and an
exact SUð2ÞA chiral symmetry enforces the divergence of
the flavor-singlet scalar susceptibility, χσ ∼m

1−δ
δ , δ > 1, in

the m → 0 limit, and the nonanomalous Ward-Takahashi
identity tells us that also the pion susceptibility χπ̄ ∼m

1−δ
δ

diverges in the chiral limit. The ratio value of these
susceptibilities

lim
m→0

χπ̄
χσ̄

¼ δ

implies, on the other hand, that the pion is lighter than the
σ meson.
The multiflavor UðNÞ model in 1þ 1 dimensions is

another test bed for our predictions, and we have analyzed
this model in Sec. V. The results of this analysis are
qualitatively similar to those of the multiflavor Schwinger
model; the model spectrum should show N2

f quasimassless
chiral bosons near the chiral limit, one of them scalar and
the other of them N2

f − 1 pseudoscalar.
It is worth wondering if the reason for the rich spectrum of

light chiral bosons near the chiral limit found in the
Schwinger and UðNÞ models lies in some uninteresting
peculiarities of two-dimensionalmodels or if there is a deeper
and general explanation for this phenomenon. We want to
remark, concerning this, that our results reported in Sec. III
tell us that the existence of quasimassless chiral bosons in
the spectrum of these models near the chiral limit
does not originate in some uninteresting peculiarities of
two-dimensional models but it should be a consequence
of the interplay between an exact non-Abelian chiral
symmetry and the Uð1ÞA axial anomaly. What is a two-
dimensional peculiarity is the fact that in the chiral limit,
when all fermion masses vanish, these quasimassless bosons
become unstable and the low-energy spectrum of the model
reduces to a massless noninteracting boson [3,4], in accor-
dance with Coleman’s theorem [17], which forbids the
existence of massless interacting bosons in two dimensions.
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In what concerns QCD, the analysis of the effects of the
Uð1ÞA axial anomaly in its high-temperature phase, in
which the non-Abelian chiral symmetry is restored in the
ground state, has aroused much interest in recent time
because of its relevance in axion phenomenology.
Moreover, the way in which the Uð1ÞA anomaly manifests
itself in the chiral symmetry restored phase of QCD at high
temperature could be tested when probing the QCD phase
transition in relativistic heavy-ion collisions.
The first investigations on this subject started a long time

ago. The idea that the chiral symmetry restored phase of
two-flavor QCD could be symmetric under Uð2Þ ×Uð2Þ
rather than SUð2Þ × SUð2Þ was raised by Shuryak in 1994
[25] based on an instanton liquid-model study. In 1996,
Cohen [26] also got this result formally from the QCD
functional integral under some assumptions. However,
immediately after, several calculations questioning this
result appeared [27–30]. On the other hand, a more recent
analytic calculation of two-flavor QCD in the lattice, with
overlap fermions, has shown [31] that the axial Uð1ÞA
anomaly becomes invisible in the scalar and pseudoscalar
meson susceptibilities, suggesting again that the effects of
the anomaly disappear in the high-temperature phase.
However, as stated by the authors of Ref. [31], their result
strongly relies on their assumption that the vacuum expect-
ation values of quark-mass independent observables, as the
topological susceptibility, are analytic functions of the
square quark mass, m2, if the non-Abelian chiral symmetry
is restored. Conversely, Coleman’s result for the topologi-
cal susceptibility in the two-flavor Schwinger model, which
follows from Eq. (61),

χT ∝ m
4
3e

2
3;

explicitly shows a nonanalytic quark-mass dependence and
casts serious doubts on the validity of this assumption.
The dilute instanton gas model [32–35] predicts, on the

other hand, a topological susceptibility for three light
flavors, χT ∼ 1

T8, which decays with a power law of the

temperature at high T, and a recent lattice calculation [36]
of the topological properties of full QCD with physical
quark masses and temperatures around 500 MeV gives as a
result a small but nonvanishing topological susceptibility,
although with large error bars in the continuum limit
extrapolations, suggesting that the effects of the Uð1ÞA
axial anomaly still persist at these temperatures.
We can therefore do the reasonable hypothesis that the

effects of the anomaly, although diminished, still persist in
the high-temperature phase of QCD, and under such an
assumption, the main conclusions of this paper should also
apply to this phase. Taking into account the recent lattice
determination of the light quark masses [37] (mu ≃ 2 MeV,
md ≃ 5 MeV, ms ≃ 94 MeV), we can consider QCD with
two quasimassless quarks as a good approach. Hence, our
results predict a large value for the σ and π̄ meson
susceptibilities and a spectrum of light σ and π̄ mesons at
T ⪆ Tc, and the presence of these light scalar and pseudo-
scalar mesons in the chirally symmetric high-temperature
phase of QCD could, on the other hand, significantly
influence the dilepton and photon production observed in
the particle spectrum [38] at heavy-ion collision experiments.
There are, on the other hand, two recent lattice calcu-

lations of mesonic screening masses in two- [39] and three-
flavor [40] QCD around and above the critical temperature.
The reported results are not enough to allow a good check
of our spectrum prediction. However, the results of
Ref. [40] show a small change of the pion screening mass
when crossing the critical temperature and a decreasing
screening mass, at T ⪆ Tc, when going from the ūs to the
ūd channel, compatible with a vanishing pion screening
mass in the chiral limit.
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