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We perform SUð2Þ Yang-Mills lattice simulation of the electric field distribution in the Coulomb gauge
for different values of β to further investigate the nature of the Coulomb flux tube.
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I. INTRODUCTION

In the SUðNÞ Yang-Mills theory in the Coulomb gauge,
there is an instantaneous interaction between color charges,
which is analogous to the Coulomb force between electric
charges. The key difference, however, is that unlike QED
where the Coulomb energy is a function of the distance
between sources, in the non-Abelian case it is a functional
of the gauge field. Therefore, in order to obtain the
Coulomb potential, it is necessary to specify the state of
the gluons. The Coulomb potential is conventionally
referred to the state in which external, static sources are
suddenly added to a vacuum. In the following, we refer to
this as the bare state. This is different from the adiabatic
situation, when gluons have time to respond to the presence
of the external charges resulting in the true QCD eigenstate.
We refer to the later as the minimal energy or Wilson state,
since its energy is related to the expectation value of the
large Wilson loop.
The Coulomb potential, VCðrÞ, evaluated on a state

containing a static quark-antiquark pair is of special
interest. In the past few years, it has been extensively
studied [1–14] both within continuum and lattice
approaches, which contributed to a better understanding
of the quark confinement [15–17]. In particular, it has
been shown that the Coulomb confinement is necessary
for the Wilson confinement [4]. This has been confirmed
on the lattice [6,7] where it was found that the Coulomb
potential rises linearly for large quark-antiquark separa-
tion r, with the associated string tension σC larger by
approximately a factor of 3 compared to the minimal

one, σ, obtained from the expectation value of the large
Wilson loop.
Since both potentials are confining, it is reasonable to ask

how other gauge-field-related observables compare in the
two states. Numerical studies with SUð2Þ and SUð3Þ lattice
Yang-Mills theories have established a picture of a flux
tube formation between a quark and an antiquark in the
minimal energy state [18–29]. Phenomenologically, it was
established that both the action and energy densities vanish
exponentially in a direction perpendicular to the line
joining the quark sources. In principle, these observables
can be obtained by measuring a (normalized) correlation
function between a large Wilson loop Wðr; tÞ and appro-
priately placed plaquette UP, which serves as a chromo-
electric (or chromomagnetic) field probe [27].
The analogous question concerning the bareQQ̄ statewas

recently addressed by Chung and Greensite in Ref. [30].
There it was found that also the bare state has the flux-tube-
like characteristicswith an exponentially decaying transverse
profile. This is an interesting and unexpected result since
analysis of the Coulomb energy density distribution and
related observables, e.g., the ghost propagator in the infinite
volume [3,8,31,32] typically predicts a power-law falloff.
Also one could argue that the Gribov-Zwanzinger confine-
ment proposal [15,16] implies long-range van der Waals
forces and thus the absence of flux tubes [8].
The aim of this paper is to shed more light on this result.

Specifically, we extend the calculations of [30] that were
performed at β ¼ 2.5 to a considerably better precision for
data at larger transverse distances, y away from the QQ̄
axis, and we also performed the calculation for β ¼ 2.3 and
2.7. Additionally, to understand the flux tube development,
we investigated the Euclidean time evolution of the energy
density profile. Finally, we performed an analysis of the
data using both power-law and exponential profiles.
The paper is organized in the following way. In Sec. II,

we give a summary of the lattice setup and describe the
measured observables. In Sec. III A, we present the key
results of our simulations for different β’s and discuss the
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analytic models. Results of the Euclidean time evolution
are presented in Sec. III B followed by summary and
conclusions in Sec. IV. The complete data set is given in
Appendix.

II. ELECTRIC FIELD DISTRIBUTION IN THE
PRESENCE OF STATIC QUARKS

In Ref. [6], it was shown that on the lattice in the
Coulomb gauge, both the Coulomb and Wilson energies
can be calculated from the expectation value of two Wilson
lines

aVðr; tÞ ¼ log
hTr½Ltð0ÞL†

t ðrÞ�i
hTr½Ltþað0ÞL†

tþaðrÞ�i
; ð1Þ

where a is the lattice spacing, and LtðxÞ is a timelike
Wilson line of length t starting at position ð0; xÞ. In the
(Euclidean time) limit t → ∞, potential Vðr; tÞ becomes
the Wilson eigenenergy VminðrÞ. In the limit t → 0
this quantity, up to an additive, r-independent constant,
approaches the lattice version of VCðrÞ, defined as a
correlation of short timelike links

aVðr; 0Þ ¼ − log

�
1

N
Tr½U0ð0; 0ÞU†

0ð0; rÞ�
�
; ð2Þ

where UμðxÞ is a link variable at position x ¼ ðx0; xÞ in the
direction of μ ∈ ½0; 3�. Four-vectors ð0; 0Þ and ð0; rÞ re-
present positions of the quark and the antiquark, respec-
tively. One can understand both limits as a starting and
ending point of an equilibration process, which takes a set
of gauge fields unperturbed by the presence of the QQ̄ pair
and thermalizes it to the true ground state of the theory.
As mentioned earlier, in the SUð2Þ Yang-Mills theory, it
was found that at fixed value of β, the string tension σC
computed from Vðr; tÞ as a function of r decreases with
increasing t and approaches that of the Wilson energy at
large times. In the Coulomb limit t → 0, it is found [6] to be
larger by approximately a factor of 3.
In the Coulomb gauge, the longitudinal component of

the chromoelectric field EL is determined by charge
distribution (as in the classic theory) via the Gauss’ law.
Thus, one can determine distribution of this field in a state
at any time, as the expectation value of hTrE2

Li. Since it is
expected that the main contribution to the energy density
comes from the field component parallel to the QQ̄ axis,
which we assume to lie in the x direction; here we calculate
this one component contribution as in Ref. [30] using

QTðR; yÞ ¼
hTr½LTð0ÞL†

TðRÞ� 12TrUPðp; TÞi
hTr½LTð0ÞL†

TðRÞ�i
−
1

2
hTrUPi;

ð3Þ
wherewe have switched to dimensionless distancesR ¼ r=a
and T ¼ t=a. Plaquette UPðp; TÞ is defined analogously to

UPðp; 0Þ in Eqs. (25) and (26) of Ref. [30], i.e., it is oriented
in xt plane and placed at position

p ¼
(

R
2
êx þ yêy; for even R;

R−1
2
êx þ yêy; for odd R;

ð4Þ

but at a different time slice T=2 for even T, or ðT − 1Þ=2 for
odd T. Here y ¼ y⊥=a is a distance from the QQ̄ axis.
In other words, the computations are limited to a plane
perpendicular to the charge separation axis with the same
distance to both charges. The plaquette acts as a probe
of the x component of the longitudinal chromoelectric
field at point p, therefore allows to see how QT changes
with the transverse distance y. The key quantity, which is
the numerator of the first term in Eq. (3), is depicted
schematically in Fig. 1.
The observable QTðR; yÞ is a generalized version of

QðR; yÞ introduced in Eq. (24) of Ref. [30] and reduces to
the latter for T ¼ 1, i.e., when the Wilson line is equal to
one temporal link LT¼1ðxÞ ¼ U0ð0; xÞ. From QðR; yÞ, in
Ref. [30], the energy distribution in the Coulomb state was
obtained. The generalization given by Eq. (3) allows us to
make a connection with the minimal energy flux tube
measured as a normalized correlation function between
a large Wilson loop and a plaquette [27]. Since in the
Coulomb gauge spatial links become very close to the
identity matrix, the Wilson loop can be approximated as a
product of two temporal Wilson lines, and thus one should
be able to observe the convergence of the bare state field
distribution to the Wilson state field distribution as increas-
ing T is considered.

A. Lattice framework

We performedMonte Carlo simulation of the pure SUð2Þ
Yang-Mills theory using Wilson’s action [33]. We used
lattice of size V ¼ 324 with periodic boundary conditions,
at couplings β ¼ 2.3, 2.5, 2.7. They correspond, respec-
tively, to lattice spacings a ¼ 0.165, 0.085, 0.045 fm, fixed
by value of the string tension [34]. Field configurations
were generated using the heat-bath algorithm [35], and
we considered the lattice equilibrated after initial 10 000
sweeps for each β. Lattice configurations used for data
extraction were separated by 300 sweeps to minimize the

FIG. 1. Schematic picture of the arrangement of links which,
after normalization, corresponds to the observable QTðR; yÞ
defined in Eq. (3). The minimal energy flux tube is measured
for large T’s with two Wilson lines LTð0Þ and L†

TðRÞ replaced by
the Wilson loop WðR; TÞ of size R × T [27].
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impact of autocorrelations. The Coulomb gauge was
assumed to be fixed whenΔF ¼ jFi − Fiþ1j < 10−7, where

Fi ¼
1

4V

X3
μ¼1

X
x

TrUμðxÞ ð5Þ

is a value of the functional to be minimized, after the ith
gauge fixing iteration. We found that the more strict con-
dition ΔF < 10−8 did not affect the results noticeably.
To speed up the gauge fixing procedure, we implemented
an overrelaxation method [36,37] with ω ¼ 1.75.
As a check, we repeated the simulation of Ref. [30] with

increased statistics by generating 30 000 lattice configura-
tions at β ¼ 2.5, to obtainQT¼1ðR; yÞ. In addition, we used
approximately 11 000 configurations to compute Q for
β ¼ 2.3 and β ¼ 2.7. The Euclidean time dependence was
obtained also from the same number of configurations at
β ¼ 2.5 and for T ¼ 1, 2, 3, 4, 5. For each configuration,
we averaged the value of the observables over four possible
translations and three 90° spatial rotations. Expectation
values of observables and statistical errors were obtained
from the jackknife method. We do not investigate here the
systematic errors due to, e.g., finite lattice size or gauge
fixing quality and assume they do not affect the main
conclusion of our work.

III. RESULTS

A. Results for different lattice couplings

In the case of the Wilson state, it was shown in [24] that
the profile of the Wilson flux tube, for small separations R,
can be calculated from perturbation theory1 and to the
leading order in αs, falls off as 1=y6. For large quark
separations, it is observed that the Wilson energy density
profile changes from power law to exponential [27]. In this
subsection, we discuss the energy distribution in the
Coulomb state, QT¼1ðR; yÞ calculated at different values
of the coupling β. To understand dependence on the
transverse distance y, we first try two simple models:
one is the power law (PL),QPL, motivated by Ref. [24] and
the other exponential (EXP), QEXP, used in Ref. [30]

QPLðR; yÞ ¼
16aR2

ðR2 þ 4y2Þb ; ð6Þ

QEXPðR; yÞ ¼ exp ð−A − ByÞ: ð7Þ
While b ¼ 3 is predicted for the Wilson state for small R,
analytical calculations in the Coulomb gauge predict b ≈ 2
independent of R for the bare state [8]. Thus, in the
Coulomb gauge, one might expect power-law behavior of
QT¼1 in y for small values of R and as a consequence, it is
the y behavior of the energy profile at large R that should
be examined to discriminate between an exponential and
power-law decay.

Our most precise measurement was performed at
β ¼ 2.5. Sample plots of the energy transverse profile
for (“small”) R ¼ 2 and (“large”) R ¼ 7 are shown in
Fig. 2, and for all other quark separations are summarized
in Fig. 9 in Appendix. The fit parameters, fit intervals, and
corresponding values of χ2=d:o:f: for EXP and PL models
are presented in Tables I and II. Details of the fitting
procedure are given in Appendix. It appears that the data
favor the PL model over the simple exponential; however, it

(a)

(b)

FIG. 2. Dependence of QT¼1 on transverse distance y at fixed
quark-antiquark separation R (in lattice units). Red, solid line is
an exponential fit (EXP), and green, dashed line is a power-law
(PL) fit, both described in Sec. III A. Data points were obtained
from 30 000 gauge-fixed lattice configurations at β ¼ 2.5, for
lattice volume V ¼ 324.

TABLE I. The EXP fit parameters for different R’s at β ¼ 2.5.
We followed the fitting procedure from Ref. [30] and deviated
from it only for R ¼ 6, 7, 8, for which fit intervals are [2, 7]
compared to [1, 7] in Ref. [30]. For R ≤ 5, our values agree with
Table I in Ref. [30].

R A B Fit interval χ2=d:o:f

1 3.20(6) 2.45(6) [1,3] 779
2 3.89(7) 1.89(7) [1,3] 2586
3 4.81(3) 1.29(4) [1,4] 1038
4 5.40(3) 1.01(2) [1,6] 394
5 6.046(8) 0.732(5) [1,7] 28
6 6.298(7) 0.643(3) [2,7] 1.5
7 6.58(2) 0.554(8) [2,7] 15
8 6.79(3) 0.50(1) [2,7] 271See Eq. (33) in Sec. III of Ref. [24].
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does so with varying quality depending on R. Specifically,
for large R, we could not reach conclusive results and
both models appear to be deficient, e.g., for R ¼ 7 the EXP
model seems to be better, while for R ¼ 8 the PL model
prevails, both having large values of χ2=d:o:f: This may
indicate that at β ¼ 2.5, QT¼1ðR; yÞ does not properly
reproduce the Coulomb energy density distribution. Since
the Coulomb energy is obtained in the continuum limit, or

at least for large values of β, it would appear that β ¼ 2.5 is
not large enough.
We thus hypothesize that QT¼1ðR; yÞ evolves from a

power-law behavior for large β to an exponential (small β)
and consequently performed a calculation at β ¼ 2.3 and
β ¼ 2.7. These values correspond to approximately con-
stant ratios of the lattice spacing aβ¼2.3=aβ¼2.5 ≈ aβ¼2.5=
aβ¼2.7 ≈ 2. For example, the energy distribution profile at
β ¼ 2.5 for R ¼ 2 can be compared with that at β ¼ 2.3 for
R ¼ 1, and at β ¼ 2.7 for R ¼ 4, and all of them corre-
spond to r ¼ aR ≈ 0.17 fm. In Fig. 3, we show the energy
profiles for the three values of β. One can see that indeed for
larger β’s the Coulomb energy density profile appears to
follow a power law, while at the lowest value, β ¼ 2.3,
already starting at low values of R, R ¼ 2, it appears much
closer to an exponential.
Taking a closer look at the β ¼ 2.3 data, shown in Fig. 8

in Appendix, we see a clear exponential decay for large R.
To see if the energy distribution for this value of the
coupling β can be described by theWilson flux tube profile,
we employed an “improved” exponential model (iEXP)

QiEXP ¼ exp

�
−
2

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ν2

q
− 2

ν

λ

�
; ð8Þ

proposed2 in Ref. [27]. Here ν and λ are free parameters
and their values for our data set can be found in Table III.
The EXP and iEXP models are similar, as they both
describe the exponential decay for large y. However,
iEXP model also includes flattening of the energy profile
close to the QQ̄ axis. From the plots in Fig. 8 it can be seen
that the fit accuracy is improved as R increases. For R ¼ 1,
were a power law is expected, we fitted the β ¼ 2.3 data
with PL model in an interval y ∈ ½3; 8�, obtaining
b ¼ 2.83ð7Þ, which is close to the perturbative prediction
of b ¼ 3 for the minimal state energy density shape. Even

TABLE II. PL fit parameters for different R’s at β ¼ 2.5. It is
worth noticing that the power b ≈ 2 is in agreement with a
prediction for the large y behavior of the flux tube transverse
profile from Ref. [8]. Using larger fit intervals usually increases
the value of b to b ≈ 2.3–2.7.

R a b Fit interval χ2=d:o:f

1 0.008(3) 2.20(9) [3,8] 1.41
2 0.00421(6) 2.114(4) [2,8] 0.33
3 0.00255(7) 1.996(8) [2,8] 2.52
4 0.0025(3) 2.01(3) [3,8] 4.40
5 0.0026(4) 2.02(4) [3,8] 10
6 0.0025(2) 2.01(2) [2,8] 13
7 0.0029(4) 2.04(3) [2,8] 19
8 0.0044(7) 2.12(4) [2,8] 15

(a)

(b)

FIG. 3. Dependence of βQT¼1 on transverse distance y⊥ ¼ ay
at fixed quark-antiquark separation r ¼ aR. (a) shows result for
physical separations r ≈ 0.34 and (b) for r ≈ 0.51 fm. The dotted
lines represent the best fits: EXP for β ¼ 2.3, PL for β ¼ 2.5, and
for β ¼ 2.7. The energy density shape for β ¼ 2.3 shows a
different behavior from the profiles at larger values of the
coupling, even for relatively small values of R.

TABLE III. The iEXP fit parameters for different R’s at
β ¼ 2.3. As explained in the text, the small-β profile is expected
to be well described by the iEXP model, except for small R. For
R ¼ 1, the iEXP model was not able to reproduce the data. In this
case, the PL fit was used in an interval y ∈ ½3; 8�, and with
parameters a ¼ 0.23ð5Þ, b ¼ 2.83ð7Þ yielding χ2=d:o:f: ¼ 0.71.

R ν λ Fit interval χ2=d:o:f:

1 � � � � � � � � � � � �
2 1.73(3) 1.31(1) [3:8] 1.38
3 1.77(1) 1.438(6) [3:8] 0.77
4 1.93(1) 1.567(5) [3:8] 0.54
5 2.11(2) 1.699(8) [3:8] 1.24
6 2.314(4) 1.820(2) [2:8] 0.51
7 2.587(4) 1.973(3) [1:8] 0.84
8 2.835(7) 2.106(5) [1:8] 0.97

2Here we write −2ν=λ compared to their þ2ν=λ in the
exponential.
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though it might look that the plots for R ¼ 2 and even
R ¼ 3might follow a power law, we were not able to obtain
a good fit with such models.
For β ¼ 2.7, the energy density transverse profile can be

successfully described using power law for all values of R;
see Figs. 4 and 10 in Appendix. The best PL fit parameters
can be found in Table IV. The fit indicates that the profile
falls off approximately as 1=y4 with a transverse distance y,

in agreement with Ref. [8]. The exact power depends on an
interval used for fitting, converging to two when more of
the low-y points are excluded from the fit. The profile of
the bare state energy density close to the QQ̄ axis could
not be satisfactorily reconstructed by the straightforward
PL model, which should be improved, e.g., by inclusion of
a factor correcting the small-R and small-y dependence.
Such an factor should also mimic the change of the power
b ≈ 2.7 for small R to b ≈ 2 for large R. We have tried to
employ a perturbative prediction from Eq. (28) of Ref. [8]
obtained from the Dyson-Schwinger equations in the
Coulomb gauge. It did not lead to conclusive results,
predicting even more severe flattening of the small-y shape
at any value of R, than the PL model. In particular, it
predicts a falloff of the energy density at the middle point
between quarks, y ¼ 0, as Q ∝ R−2, while our data set
favors a higher power; see Fig. 5. Finally, it is worth noting
that in the case of β ¼ 2.7 we were able use the EXP model
albeit for large-R, R ¼ 7, 8, which makes it difficult to
make a final conclusion about the nature of the Coulomb
state. A definite answer will most likely require calcula-
tions in larger volumes to probe even larger values of y.

B. The Euclidean time dependence

As already discussed, the time development of the
Coulomb potential and its evolution toward the minimal
potential in principle can be analyzed by considering the
large t limit in Eq. (1). We extracted the behavior of the
string tension as the Euclidean time progresses and observe
its convergence to the minimal string tension, see Fig. 6,
which agrees with Ref. [6].
We have already seen that, as one takes relatively small

value of β, it is possible to obtain an exponential falloff of

FIG. 5. The log-log plot of QT¼1 at the middle point y ¼ 0 as
a function of the quark-antiquark separation R. Green, dashed
line is the Q ¼ a=Rb fit, with parameters b ¼ 3.4ð1Þ and
a ¼ 0.20ð2Þ. The R ¼ 1 point was excluded from the fit, because
it does not satisfy μR ≫ 1 condition from Ref. [8] for μ ¼ 0.63.
The dotted, orange line represents theoretical prediction
βQ ¼ 32σC=π3R2. The Coulomb string tension σC at β ¼ 2.7
was obtained as a by-product of the energy density profile
calculation from Eq. (2). It was extracted from the fit
VCðRÞ ¼ σCRþ β=Rþ γ, with free parameters σC; γ; β, and is
equal to σC ¼ 0.0409ð3Þ.

TABLE IV. Best PL fit parameters for different values of R at
β ¼ 2.7. Again b ≈ 2 agrees with Ref. [8]. The power depends
significantly on an interval ½ymin; 8� used for fitting and becomes
closer to the asymptotic value b ¼ 2 for larger ymin. It signalizes
that the simple PL fit describes the large y behavior correctly but
needs to be improved to incorporate the close-to-axis shape.

R a b Fit interval χ2=d:o:f:

1 0.02(4) 2.75(5) [2:8] 0.73
2 0.0055(5) 2.46(3) [2:8] 0.94
3 0.00305(3) 2.330(4) [1:8] 0.57
4 0.0022(3) 2.28(3) [2:8] 2.05
5 0.0013(1) 2.16(2) [2:8] 1.30
6 0.0013(2) 2.17(4) [2:8] 2.09
7 0.0008(1) 2.07(4) [2:8] 0.97
8 0.0009(1) 2.09(3) [2:8] 0.55

(a)

(b)

FIG. 4. Dependence of QT¼1 on transverse distance y at fixed
quark-antiquark separationR (in lattice units). Green, dashed curve
is the PL fit. The red one is the EXP fit included to exemplify the
inability to distinguish between exponential and power-law behav-
ior. Data points were obtained from 11 000 gauge-fixed lattice
configurations at β ¼ 2.7, for lattice volume V ¼ 324.
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the bare state energy density transverse profile for large
values of R. An interesting question arises if it converges to
the minimal flux tube when the limit T → ∞ is taken in
Eq. (3) for larger values of β, for which a power-law
behavior was found instead. As already discussed, in the
Coulomb gauge the spatial links can be approximated by
the identity matrix. If we thus made an assumption that the
Wilson loop WðR; TÞ ≈ Tr½LTð0ÞL†

TðRÞ�, then for large
values of T Eq. (3) would agree with Eq. (7) from Ref. [27],

i.e., the formula for the chromoelectric contribution to the
energy density profile of the minimal flux tube. To answer
this question, we investigated QTðR; yÞ for T from T ¼ 1
up to T ¼ 5, and the results are presented in Fig. 7 for
R ¼ 2 and R ¼ 7, and Fig. 11 in Appendix for all R’s.
From the plots, it seems that the quantitative behavior of the
profile does not change with the growing T; it increases
globally (i.e., for all values of y) but the functional form of
the profile appears unaltered. This is quite surprising. It
might indicate that the flux tube described by QT¼1 at
β ¼ 2.5 is already “equilibrated” in a sense that it repre-
sents closely the minimal flux tube rather than the bare state
energy density distribution, and one should move closer
toward the continuum limit (larger β) to see a noticeable
difference. This requires further investigation, with a better
statistics and in a larger volume, where larger values of
R, y, and T can be considered.

IV. CONCLUSIONS

In this paper, we have extended the calculation of [30] to
other β values. We found that our numerical results for
QT¼1 at β ¼ 2.5 agree with those presented in Ref. [30]
with increased statistics. The concussion from [30] was that
the Coulomb flux tube vanishes exponentially with the
transverse distance and has a width larger than the minimal
flux tube. This is difficult to reconcile with theoretical
prediction. We performed a somewhat different analysis
of the same quantity by emphasizing large-y values.
Furthermore, we showed that with increasing β, it is likely
that the genuine Coulomb flux tube with power-law falloff
develops. As a consequence, we concluded that it is
possible that the energy density profile evolves from the
Wilson-like to the Coulomb one in the continuum limit.
This was supported by our study of the Euclidean time
development of the profile; however, quantitative analysis
requires better statistics and in larger volumes.
The power-law model was not able to describe the small-y

data properly, predicting too small values of the energy
density near the QQ̄ axis. The same happened with the
theoretical prediction of Ref. [8]. This might indicate that on
the axis the Coulomb energy density contains a significant
nonperturbative contribution which should be explained.
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FIG. 6. Dependence of the string tension on T. It was obtained
following the procedure of Ref. [6], for β ¼ 2.5 and around 1700
lattice configurations. The horizontal line is the asymptotic value
from Ref. [24].

(a)

(b)

FIG. 7. Dependence of QTðR; yÞ on transverse distance y at
fixed quark-antiquark separation R for different T’s. Lines joining
the points are included to guide the eye. Data points were
obtained from around 11 000 gauge-fixed lattice configurations at
β ¼ 2.5, for lattice volume V ¼ 324. Result for T ¼ 5 is not
presented for clarity of the plots.
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APPENDIX: PLOTS OF THE FLUX TUBE TRANSVERSE PROFILE FOR DIFFERENT β’s

On the next pages, we present our dataset ofQT¼1ðR; yÞ for all values of β, for R; y ∈ ½1; 8�, together with the fits. Also, in
Fig. 11, we show the plots of QTðR; yÞ at β ¼ 2.5 for different times T.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. Results forQT¼1ðR; yÞ for different quark separationsR, obtained for β ¼ 2.3 and 11 000 lattice configurations. The red line is the
best iEXP fit to the data. It can be seen how the results start agreeing with this model as quark and antiquark are separated further away. For
R ¼ 1, we used the PL fit in the interval [3, 8], obtaining a ¼ 0.23ð5Þ, b ¼ 2.83ð7Þ, and χ2=d:o:f: ¼ 0.71. The PL model was not able to
describe the behavior of the transverse profile for R ≥ 2 and thus is not included on the graphs. The fit parameters are given in Table III.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 9. Results forQ1ðR; yÞ for different quark sperations R, obtained for β ¼ 2.5 and 30 000 lattice configurations. The red, solid line
is the best exponential (EXP) fit to the data, performed following the procedure of Ref. [30] for R ≤ 5. The green, dashed line is the best
PL fit. Fit parameters for both fits are given in Tables I and II.
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Apart from the EXP model of Eq. (7) at β ¼ 2.5, the fits
for each R were performed in an interval y ∈ ½ymin; 8�, with
ymin ¼ 1, 2 or 3 depending on R. We claim it is important to
include large values of y (as long as they are not affected by

the finite volume effects) to discriminate between power-
law and exponential behavior. In general, only for large
transverse distances y, the difference between various
exponential and power-law models might become

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. Results for Q1ðR; yÞ for different quark spearations R, obtained for β ¼ 2.7 and around 11 000 lattice configurations. The
green, dashed line is the best PL fit. We also present the EXP fit (red, solid line) for R ¼ 7 and R ¼ 8, performed in the interval y ∈ ½2; 8�
and yielding χ2=d:o:f: equal to 1.06 and 0.32, respectively. The fit parameters for the PL fit are given in Table IV.
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significant. Moreover, examining Fig. 2(b), one can see that
for small y and large R the lines have curvature and are
flatter compared to a simple exponential. This indicates that
close to the quark-antiquark axis the EXP model may not

be accurate. Thus, the small y should be excluded when
fitting with this model. In practice, none of the models we
used was successfully in describing the data y dependence
close to the QQ̄ axis, and as a consequence, to obtain

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 11. Results for QTðR; yÞ for different quark sperations R and different T’s, obtained for β ¼ 2.5 and around 11 000 lattice
configurations. Lines joining the data points are included to guide the eye. The data point for R ¼ 5, y ¼ 8, and T ¼ 4 was negative, so
is not visible on the semilog scale.
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satisfactory values of χ2=d:o:f: We had to remove points
y ¼ 0, 1, and sometimes y ¼ 2, from fit intervals. These
points usually come with a small relative errors; thus, they
affect the value of χ2 significantly. The fit parameters are
summarized in Tables I–IV.
As an illustration of how a choice of the fitting interval

affects the quality of the fit, for the exponential modelQEXP

we followed the fit procedure of Ref. [30]. Specifically, we
used the same intervals as in [30] for small R, up to R ¼ 5.
For larger values of R, one may argue that as function of y,
QðR; yÞ falls off exponentially for y ≥ 2 and we excluded
the points y ¼ 0, 1 from the fit. Even with such an
“optimized” dataset, we find the resulting values of
χ2=d:o:f to be quite large as shown in Table I.
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