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We investigate the possibility of spontaneous supersymmetry breaking in a class of zero-
dimensional N ¼ 2 supersymmetric quantum field theories, with complex actions, using complex
Langevin dynamics and stochastic quantization. Our simulations successfully capture the presence or
absence of supersymmetry breaking in these models. The expectation value of the auxiliary field under
twisted boundary conditions was used as an order parameter to capture spontaneous supersymmetry
breaking in these models.
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I. INTRODUCTION

We can investigate numerous nonperturbative features
of quantum field theories using lattice regularized form of
the field theory path integral. Monte Carlo methods can
be used to reliably extract the physics of such systems.
The fundamental idea behind path integral Monte Carlo
is to generate field configurations with a probability
weight given by the exponential of the negative of the
action (in Euclidean spacetime) and then compute the
path integral by statistically averaging these importance
sampled ensemble of field configurations. However, when
the action is complex, for example, when studying QCD
at finite density or with a theta term, Chern-Simons
gauge theories or chiral gauge theories, it is not straight-
forward to apply path integral Monte Carlo. In these
cases we encounter a complex action problem or sign
problem. The basic aim of complex Langevin method
[1–4] is to overcome this problem by extending the idea
of stochastic quantization for ordinary field theoretic
systems with real actions to the cases with complex
actions. This also leads to complexification of the real
dynamical field variables that appear in the original path
integral. We can define a stochastic process for the
complexified field variables by Langevin equation with
a complex action. Then the expectation values in the
original path integral are calculated from an average of

corresponding quantities over this stochastic process.1 See
Ref. [11] for a pedagogical review on this method and
Ref. [12] for a recent review in the context of the sign
problem in quantum many-body physics.
Complex Langevin dynamics has been used successfully

in various models in the recent past [13–22]. There have
also been studies of supersymmetric matrix models based
on complex Langevin dynamics [23–25]. In Ref. [26] the
authors used complex Langevin simulations to observe
Gross-Witten-Wadia [27–29] transitions in large-N matrix
models. In this paper, we make use of complex Langevin
dynamics to study certain classes of zero-dimensional
N ¼ 2 supersymmetric quantum field theories with com-
plex actions.
The central theme of stochastic quantization is that

expectation values of observables are obtained as equilib-
rium values of a stochastic process. In Langevin dynamics,
this is implemented by evolving the system in a fictitious
time direction, τ, subject to a stochastic noise. We could
think of applying Langevin dynamics when the actions
under consideration are complex. In such cases, the field
variables become complexified during Langevin evolution
since the gradient of the action, the drift term, is complex.
The complex Langevin equation in Euler discretized

form reads

ϕðτ þ ΔτÞ ¼ ϕðτÞ − Δτ
�
δS½ϕ�
δϕðτÞ

�
þ

ffiffiffiffiffiffi
Δτ

p
ηðτÞ; ð1Þ

where Δτ is the Langevin time step, and ηðτÞ is a Gaussian
noise satisfying
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1Another recently proposed method, which is also based on
complexification of the original real field variables, is the
Lefschetz thimble method [5–10].
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hηðτÞi ¼ 0; hηðτÞηðτ0Þi ¼ 2δττ0 : ð2Þ

In our simulations, we use real Gaussian stochastic noise to
tame excursions in the imaginary directions of the field
configurations [30–32].
For an arbitrary operator O, we can define a noise

averaged expectation value

hO½ϕðτÞ�iη ¼
Z

dϕP½ϕðτÞ�O½ϕ�; ð3Þ

where the probability distribution P½ϕðτÞ� satisfies the
Fokker-Planck equation

∂P½ϕðτÞ�
∂τ ¼ δ

δϕðτÞ
�

δ

δϕðτÞ þ
δS½ϕ�
δϕðτÞ

�
P½ϕðτÞ�: ð4Þ

When the action is real, it can be shown that in the limit
τ → ∞, the stationary solution of the Fokker-Planck
equation

P½ϕ� ∼ exp ð−S½ϕ�Þ ð5Þ

will be reached guaranteeing convergence of the Langevin
dynamics to the correct equilibrium distribution. When the
action is complex we will end up in a not so easy situation.
The drift term will be complex and thus if we consider
Langevin dynamics based on the above equation we will
end up with complexified fields: ϕ ¼ Reϕþ iImϕ. We can
still consider Langevin dynamics with complex probabil-
ities [4,33–35] but proofs toward convergence to the
complex weight, expð−SÞ, will be nontrivial.
The paper is organized as follows. In Sec. II we apply

complex Langevin dynamics to a class of zero-dimensional
bosonic field theories with complex actions, to compute
expectation values of correlators and then compare them
with analytical results. We discuss supersymmetry breaking
in a zero-dimensional model with N ¼ 2 supersymmetry
and with a general form of the superpotential in Sec. III. In
Sec. IV, using complex Langevin dynamics, we explore
supersymmetry breaking in these models with real and
complex actions for different forms of superpotentials.
In Sec. V we conclude and provide possible future
directions. In Appendix A 1 we study a correctness
criterion of our simulations using the Fokker-Planck
operator. In Appendix A 2 we study reliability of our
simulations by examining the probability distributions of
the magnitude of the drift terms. In Appendix B we provide
the set of simulation data tables.

II. BOSONICMODELSWITHCOMPLEXACTIONS

Let us consider actions of zero-dimensional quantum
field theories derived from a general potential of the form

WðϕÞ ¼ −
g

ð2þ δÞ ðiϕÞ
ð2þδÞ; ð6Þ

with ϕ being a real scalar field, g a coupling parameter and
δ a real number.
A class of (Euclidean) scalar quantum field theories, that

are not symmetric under parity reflection, has been inves-
tigated in the literature using the above form of the potential
[36]. We can, for example, write down a two-dimensional
Euclidean Lagrangian of the form

L ¼ 1

2
ð∂μϕÞ2 þ

1

2
m2ϕ2 þWðϕÞ ðδ > −2Þ; ð7Þ

for a scalar field with mass m.
Such theories are very interesting from the point of

view that they exhibit non-Hermitian Hamiltonians. Even
more interesting is that there is numerous evidence that
these theories possess energy spectra that are real and
bounded below.
One can think of making the above Lagrangian super-

symmetric by adding the right amount of fermions. The
supersymmetric two-dimensional Lagrangian takes the
form

L ¼ 1

2
ð∂μϕÞ2 þ

1

2
iψ̄=∂ψ þ 1

2
ψ̄W00ðϕÞψ þ 1

2
½W0ðϕÞ�2; ð8Þ

where ψ , ψ̄ are Majorana fermions.
This supersymmetric Lagrangian also breaks parity

symmetry. It would be interesting to ask whether the
breaking of parity symmetry induces a breaking of super-
symmetry. This question was answered in Ref. [36]. There,
through a perturbative expansion in δ, the authors found
that supersymmetry remains unbroken in this model. We
could think of performing nonperturbative investigations
on SUSY breaking in this model using complex Langevin
method. We leave this investigation for future work [37].
(Clearly, a nonperturbative investigation based on path
integral Monte Carlo fails since the action of this model can
be complex, in general.)
Let us consider the 0-dimensional version of the bosonic

Lagrangian with m ¼ 0. The Euclidean action is the same
as the one given in Eq. (6)

S ¼ −
g
N
ðiϕÞN; ð9Þ

where N ¼ 2þ δ.
The partition function of this model is

Z ¼ 1

2π

Z
∞

−∞
dϕ e−S ð10Þ

¼ 1

2π

Z
∞

−∞
dϕ exp

�
g
N
ðiϕÞN

�
: ð11Þ
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We can look at the k-point correlation functions, Gk of
this model. We have

Gk ¼ hϕki ¼ 1

Z
1

2π

Z
∞

−∞
dϕϕk exp

�
g
N
ðiϕÞN

�

¼
R∞
−∞ dϕϕk exp ½ gN ðiϕÞN �R
∞
−∞ dϕ exp ½ gN ðiϕÞN �

: ð12Þ

The one-point correlation function, G1 can be evaluated
as [38]

G1 ¼ −i
�
4N
g

�
1=N Γð1N þ 1

2
Þ cosðπNÞffiffiffi
π

p ; ð13Þ

and the two-point correlation function, G2 as

G2 ¼
�
N
g

�
2=N Γð3NÞ½sin2ðπNÞ − 3cos2ðπNÞ�

Γð1NÞ
: ð14Þ

Similarly we can compute higher moments of ϕ. In
Table I we compare our results from complex Langevin
simulations for G1 and G2 with their corresponding
analytical results.

In Fig. 1 we show the complexified ϕ field configura-
tions on the complex ϕR − ϕI plane as it evolves in
Langevin time. The Langevin time history of G1 for the
case N ¼ 3 is shown in Fig. 2. In Fig. 3 we show the
Langevin time history of G1 and G2 for the case N ¼ 4.

III. SUPERSYMMETRY BREAKING IN
ZERO-DIMENSIONAL FIELD THEORIES

Let us consider a 0-dimensional supersymmetric model.
For a general supersymmetric potential,WðϕÞ, the action is
given by

S ¼ 1

2
B2 þ iBW0 þ ψ̄W00ψ ; ð15Þ

where ϕ is a bosonic field, ψ and ψ̄ are fermionic fields, and
B is an auxiliary field. The prime denotes derivative of the
superpotential with respect to ϕ. There is a symmetry in the
above action that exchanges fermionic fields with bosonic
fields and this symmetry is known as supersymmetry.
We define two independent supersymmetry charges Q
and Q̄ corresponding to an N ¼ 2 supersymmetry.
This action can be derived from dimensional reduction

TABLE I. The simulated values of the correlation functions G1 and G2 obtained from complex Langevin
dynamics for 0-dimensional − g

N ðiϕÞN theory for N ¼ 3, 4. The simulations were performed with coupling
parameter g ¼ 0.5, adaptive Langevin step size Δτ ≤ 0.02, thermalization steps Ntherm ¼ 104, generation steps
Ngen ¼ 106 and measurements taken every 100 steps. We have used an average of 102 such simulation chains with
random initial configurations. The table compares these numerically simulated values with the exact results.

N Gexact
1 GcL

1
Gexact

2 GcL
2

3 0.0 − i0.9185 −0.0003ð12Þ − i0.9225ð4Þ � � � � � �
4 0.0 − i1.1630 −0.0005ð8Þ − i1.1678ð4Þ −0.9560þ i0.0 −0.9602ð6Þ − i0.0009ð24Þ

-3

-2

-1

 0

 1

-3 -2 -1  0  1  2  3

Φ
I

ΦR

  N = 3 

-4
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-2

-1

 0

 1

-4 -3 -2 -1  0  1  2  3  4

Φ
I

ΦR

  N = 4 

FIG. 1. Scatter plot of complexified field configurations on the ϕR − ϕI plane for the 0-dimensional − g
N ðiϕÞN theory with g ¼ 0.5.

Black dots represent the trajectories of the fields during complex Langevin evolution. (Left) CaseN ¼ 3. The field configuration starts at
point ð0.5;−0.1Þ and with the aid of a stochastic noise, it drifts toward the equilibrium configuration, forming a cloud averaging around
0.0 − i0.9185. (Right) Case N ¼ 4. The field starts at point ð0.5;−0.1Þ and with the aid of a stochastic noise, it drifts toward the
equilibrium configuration, forming a cloud averaging around 0.0 − i1.163.
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of a one-dimensional theory, that is, a supersymmetric
quantum mechanics with two supercharges.
We can see that the above action is invariant under the

following supersymmetry transformations

Qϕ ¼ ψ ; ð16aÞ
Qψ ¼ 0; ð16bÞ
Qψ̄ ¼ −iB; ð16cÞ
QB ¼ 0; ð16dÞ

and

Q̄ϕ ¼ −ψ̄ ; ð17aÞ

Q̄ ψ̄ ¼ 0; ð17bÞ

Q̄ψ ¼ −iB; ð17cÞ

Q̄B ¼ 0: ð17dÞ

The supercharges Q and Q̄ satisfy the algebra

fQ;Qg ¼ 0; ð18aÞ

fQ̄; Q̄g ¼ 0; ð18bÞ

fQ; Q̄g ¼ 0: ð18cÞ

We also note that the action can be expressed in Q- or
QQ̄- exact forms. That is,

S ¼ Qψ̄

�
i
2
B −W0

�
; ð19Þ

¼ QQ̄

�
1

2
ψ̄ψ þW

�
: ð20Þ

The auxiliary field B has been introduced for off-shell
completion of the supersymmetry algebra. It is possible to
integrate out this field using its equation of motion

B ¼ −iW0: ð21Þ
It is easy to show that the action is invariant under the

two supersymmetry charges

QS ¼ 0; ð22Þ
Q̄S ¼ 0: ð23Þ
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FIG. 2. Langevin time history of the field variable (one-point
correlation function G1) for the i g

3
ϕ3 theory at coupling param-

eter g ¼ 0.5. Simulations were performed with adaptive Langevin
step size Δτ ≤ 0.02, generation steps Ngen ¼ 106 and measure-
ments taken every 100 steps. Simulated field configurations are
an average of 102 such simulation chains with random initial-
ization. Solid and dashed lines represent the exact values.
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FIG. 3. Langevin time history of one-point (Left) and two-point (Right) correlation functions for the − g
4
ϕ4 theory at fixed coupling

constant g ¼ 0.5. Simulations were performed with adaptive Langevin step size Δτ ≤ 0.02, generation steps Ngen ¼ 106 and
measurements taken every 100 steps. Simulated field configurations are an average of 102 such simulation chains with random field
initialization. Solid and dashed lines represent the exact values.
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The partition function of the model is

Z ¼ 1

2π

Z
dBdϕdψdψ̄e−S

¼ 1

2π

Z
dBdϕdψdψ̄ exp

�
−
�
1

2
B2 þ iBW0 þ ψ̄W00ψ

��
:

ð24Þ

Completing the square and integrating over the auxiliary
field it becomes

Z ¼ 1ffiffiffiffiffiffi
2π

p
Z

dϕdψdψ̄ exp

�
−
�
1

2
W02 þ ψ̄W00ψ

��
: ð25Þ

Integrating over the fermions it takes the form

Z ¼ −
1ffiffiffiffiffiffi
2π

p
Z

dϕW00 exp
�
−
1

2
W02

�
: ð26Þ

When SUSY is broken, the supersymmetric partition
function vanishes. In that case, the expectation values of
observables normalized by the partition function could be
ill defined.
The expectation value of the auxiliary field B is crucial in

investigating SUSY breaking. It can be evaluated as

hBi ¼ 1

Z
1

2π

Z
dBdϕdψdψ̄ Be−S

¼ 1

Z
iffiffiffiffiffiffi
2π

p
Z

dϕW0W00 exp
�
−
1

2
W02

�

¼ −
1

Z
iffiffiffiffiffiffi
2π

p
Z

dϕ
∂
∂ϕ

�
exp

�
−
1

2
W02

��
: ð27Þ

Thus, in this model, the normalized expectation value of
B is indefinite (it is of the form 0=0) when SUSY is broken.
In order to overcome this difficulty we can introduce an

external field and then eventually take a limit where it goes
to zero. We usually introduce some external field to detect
spontaneous breaking of ordinary symmetry so that the
ground state degeneracy is lifted to specify a single broken
ground state. We take the thermodynamic limit of the
theory, and after that, the external field is turned off. The
value of the corresponding order parameter then would tell
us if spontaneous symmetry breaking happens in the model
or not. (Note that to detect the spontaneous magnetization
in the Ising model, we use the external field as a magnetic
field, and the corresponding order parameter then would be
the expectation value of the spin operator.) We will also
perform an analogues method to detect SUSY breaking in
the system. Introduction of an external field can be
achieved by changing the boundary conditions for the
fermions to twisted boundary conditions.

A. Theory on a one-site lattice

Let us consider the above 0-dimensional theory as a
dimensional reduction of a one-dimensional theory, which
is a supersymmetric quantum mechanics. The action of the
one-dimensional theory is an integral over a compactified
time circle of circumference β in Euclidean space. We have
the action

S ¼
Z

β

0

dτ

�
1

2
B2 þ iBð _ϕþW0Þ þ ψ̄ð _ψ þW00ψÞ

�
: ð28Þ

Here the dot denotes derivative with respect to Euclidean
time τ ∈ ½0; β�. Note that the Q̄ supersymmetry will not be
preserved in the quantum mechanics theory.
Let us discretize the theory on a one-dimensional lattice

with T sites, using finite differences for derivatives. We
have the lattice action

S ¼
XT−1
n¼0

�
1

2
B2ðnÞ þ iBðnÞðϕðnþ 1Þ − ϕðnÞ þW0Þ

þ ψ̄ðnÞðψðnþ 1Þ − ψðnÞ þW00ψðnÞÞ
�
; ð29Þ

with n denoting the lattice site. We have rescaled the fields
and coupling parameters such that the lattice action is
expressed in terms of dimensionless variables. The lattice
action preserves one of the supercharges, Q. The Q̄ super-
symmetry will not be a symmetry on the lattice when T ≥ 2.
Let us consider the simplest case of one lattice point, that

is, when T ¼ 1. The action becomes

S ¼
�
1

2
B2ð0Þ þ iBð0Þðϕð1Þ − ϕð0Þ þW0Þ

þ ψ̄ð0Þðψð1Þ − ψð0Þ þW00ψð0ÞÞ
�
; ð30Þ

where ϕð1Þ and ψð1Þ are dependent on the boundary
conditions. In the case of periodic boundary conditions,

ϕð1Þ ¼ ϕð0Þ; ð31aÞ

ψð1Þ ¼ ψð0Þ; ð31bÞ

ψ̄ð1Þ ¼ ψ̄ð0Þ; ð31cÞ

Bð1Þ ¼ Bð0Þ; ð31dÞ
the action reduces to

S ¼ 1

2
B2 þ iBW0 þ ψ̄W00ψ : ð32Þ

Thus the action for the 0-dimensional supersymmetric
model with N ¼ 2 supersymmetry is equivalent to the
dimensional reduction of a one-dimensional theory
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(a supersymmetric quantum mechanics) with periodic
boundary conditions.

B. Twisted boundary conditions

Now, instead of periodic boundary conditions, let us
introduce twisted boundary conditions for fermions (ana-
logues to turning on an external field), with the motivation
to regularize the indefinite form of the expectation values
we encountered earlier.2 We have

ϕð1Þ ¼ ϕð0Þ; ð33aÞ

ψð1Þ ¼ eiαψð0Þ; ð33bÞ

ψ̄ð1Þ ¼ e−iαψ̄ð0Þ; ð33cÞ

Bð1Þ ¼ Bð0Þ: ð33dÞ
The action in this case has the form

Sα ¼
1

2
B2 þ iBW0 þ ψ̄ðeiα − 1þW00Þψ : ð34Þ

We see that supersymmetry is softly broken by the
introduction of the twist α

QSα ¼ −iQ̄Sα ¼ ψ̄ðeiα − 1Þψ : ð35Þ

In the limit α → 0 supersymmetry is recovered.
The partition function is

Zα ¼
1

2π

Z
dBdϕdψdψ̄e−Sα

¼ −
1ffiffiffiffiffiffi
2π

p
Z

dϕðeiα − 1þW00Þ exp
�
−
1

2
W02

�
: ð36Þ

The expectation of auxiliary field B is given by

hBiα ¼
1

Zα

1

2π

Z
dBdϕdψdψ̄Be−Sα

¼ 1

Zα

iffiffiffiffiffiffi
2π

p
Z

dϕW0ðeiα − 1þW00Þ exp
�
−
1

2
W02

�
:

ð37Þ

It is important to note that the quantity hBiα is now well
defined. Here, the external field α plays the role of a
regularization parameter and it regularizes the indefinite
form, hBi ¼ 0=0, of the expectation value under periodic
boundary conditions and leads to the nontrivial result.
Vanishing expectation value of auxiliary field, hBiα in the
limit α → 0 indicates that SUSY is not broken, while a
nonzero value indicates SUSY breaking.

We can write down the effective action of the model with
twisted boundary conditions as

Seffα ¼ 1

2
W02 − ln ½eiα − 1þW00�: ð38Þ

The drift term needed for the application of complex
Langevin method in Sec. IV has the form

∂Seffα

∂ϕ ¼ ∂
∂ϕ

�
1

2
W02 − ln ½eiα − 1þW00�

�

¼ W0W00 −
W000

ðeiα − 1þW00Þ : ð39Þ

IV. MODELS WITH VARIOUS
SUPERPOTENTIALS

In this section, we investigate spontaneous supersymmetry
breaking in various zero-dimensional models using complex
Langevin method. Wherever possible, we also compare our
numerical results with corresponding analytical results.

A. Double-well potential

Let us begin with a case where the action is real. We
consider the case when the derivative of the superpotential
is a double-well potential

W0 ¼ gðϕ2 þ μ2Þ; ð40Þ
where g and μ are two parameters in the theory.
When μ2 > 0, the classical minimum is given by the

field configuration ϕ ¼ 0 with energy

E0 ¼
1

2
g2μ4 > 0; ð41Þ

implying spontaneous SUSY breaking.
The ground state energy can be computed as the expect-

ation value of the bosonic action at the classical minimum

E0jϕ¼0 ¼ hSBi

¼ 1

2
B2 þ iBW0

¼ −
1

2
ðW0Þ2 þ ðW0Þ2 ¼ 1

2
ðW0Þ2jϕ¼0

¼ 1

2
g2μ4: ð42Þ

We can also see from SUSY transformations

Qψ̄ ¼ −gμ2; ð43Þ

Q̄ψ ¼ −gμ2; ð44Þ

that SUSY is broken in the model.
2Twisted boundary conditions were considered in the context

of supersymmetric models by Kuroki and Sugino in Refs. [39,40].
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The twisted partition function is

Zα ¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðeiα − 1þW00Þ exp

�
−
1

2
ðW0Þ2

�

¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðeiα − 1þ 2gϕÞ exp

�
−
1

2
g2ðϕ2 þ μ2Þ2

�

¼ −
μ

2
ffiffiffi
π

p ðeiα − 1Þe−1
4
g2μ4Bessel K

�
1

4
;
g2μ4

4

�
∀ Reðg2Þ > 0 and Reðg2μ2Þ > 0: ð45Þ

When α → 0 we have

Zαjα¼0 ¼ 0: ð46Þ

Hence, SUSY is broken for W0 ¼ gðϕ2 þ μ2Þ.
Let us consider the observable

hBiα ¼ −
1

Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕð−iW0Þðeiα − 1þW00Þ exp

�
−
1

2
W02

�

¼ −ig
R∞
−∞ dϕðϕ2 þ μ2Þ exp ½− 1

2
g2ðϕ2 þ μ2Þ2�R

∞
−∞ dϕ exp ½− 1

2
g2ðϕ2 þ μ2Þ2� : ð47Þ

The above expression, once evaluated, becomes

hBiα ¼ −
i
2
gμ2

ðBessel Kð1
4
; g

2μ4

4
Þ þ Bessel Kð3

4
; g

2μ4

4
ÞÞ

Bessel Kð1
4
; g

2μ4

4
Þ

∀ Reðg2Þ > 0 and Reðg2μ2Þ > 0: ð48Þ

In Fig. 4 we show our results from Langevin simulations of this model. We show linear and quadratic extrapolations to
α → 0 limit in Figs. 5 and 6. The results are tabulated in Table II. The simulation results are in good agreement with the
analytical predictions, and strongly suggest that SUSY is broken for this model.
We also consider the case when the derivative of the superpotential is complex,

W0 ¼ igðϕ2 þ μ2Þ; ð49Þ
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FIG. 4. The observable B against Langevin time for regularization parameter α ¼ 0.4. Simulations were performed for superpotential
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W0 ¼ gðϕ2 þ μ2Þ. Simulations were performed with g ¼ 3 and μ ¼ 2. We have used adaptive Langevin step size Δτ ≤ 10−4,
thermalization steps Ntherm ¼ 104, generation steps Ngen ¼ 106 and measurements were taken every 100 steps. The dashed red lines are
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fits to hBiα in α, and filled black diamonds are the quadratic extrapolation values at α ¼ 0. The α → 0 limit values obtained from these
plots are given in Table II.
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where g and μ are again two parameters in the theory. We
show Langevin time history of the auxiliary B field,
and linear and quadratic extrapolations to α → 0 limit in
Figs. 7–9, respectively. The results are tabulated in Table III.
We have successfully simulated the complex double-well
superpotential using complex Langevin and our results
strongly suggest that SUSY is preserved for this model.
The results mentioned above can be partly motivated by

classical dynamics, that is, in the absence of stochastic noise.
In Fig. 10, we show the classical flow diagrams on the
ϕR − ϕI plane for the above discussed double-well models.
The arrows indicate normalized drift term evaluated at the
particular field point. In the same figure, we have also shown

the scatter plot of complexified field configurations. These
plots demonstrate how equilibrium configurations are
attained during complex Langevin dynamics.

B. General polynomial potential

Let us extend our analyses to the case where the
derivative of superpotential, W0, is a general polynomial
of degree k,

W0 ¼ gkϕk þ gk−1ϕk−1 þ � � � þ g0: ð50Þ

The twisted partition function is written as

Zα ¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðeiα − 1þW00Þ exp

�
−
1

2
W02

�

¼ −
ðeiα − 1Þffiffiffiffiffiffi

2π
p

Z
∞

−∞
dϕ exp

�
−
1

2
W02

�
−

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕW00 exp

�
−
1

2
W02

�
: ð51Þ

For the second term in the above equation, assuming the coefficients of the polynomial potential to be real, we have

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
W00e½−1

2
W02� ¼

�
sgnðgkÞ k∶ odd
0 k∶ even:

ð52Þ

Upon turning off the external field, the first term of Eq. (51) vanishes, hence

Zαjα→0 ¼
�−sgnðgkÞ k∶ odd

0 k∶ even:
ð53Þ

Thus, for a general polynomial superpotential, W0 of the degree even (odd), the SUSY is broken (preserved).
The expectation value of the auxiliary B field is

hBiα ¼ −
1

Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕð−iW0Þðeiα − 1þW00Þ exp

�
−
1

2
W02

�

¼ i
Zα

ðeiα − 1Þffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕW0 exp

�
−
1

2
W02

�
þ i
Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕW0W00 exp

�
−
1

2
W02

�
: ð54Þ

The second term of Eq. (54) vanishes for a polynomial
superpotential. (Since we have twisted partition function in
denominator, this term is not indefinite.) Hence, we have

hBiα ¼

8>>><
>>>:

iðe
iα−1Þffiffiffi
2π

p
R

∞
−∞

dϕW0e½−
1
2
W02 �

−ðeiα−1Þffiffiffi
2π

p
R

∞
−∞

dϕe½−
1
2
W02 �−sgnðgkÞ

k∶ odd

−i
R

∞
−∞

dϕW0e½−
1
2
W02 �R

∞
−∞

dϕ e½−
1
2
W02 � k∶ even:

ð55Þ

Now, turning external field off, α → 0,

hBiαjα→0 ¼
8<
:

0 k∶ odd
−i
R

∞
−∞

dϕW0e½−
1
2
W02 �R

∞
−∞

dϕ e½−
1
2
W02 � ≠ 0 k∶ even:

ð56Þ

The above expression confirms that SUSY is preserved
(broken) for odd (even) degree of derivative of a real
general polynomial superpotential.
Let us consider polynomial superpotential with real

coefficients. In this case the above argument for SUSY
breaking is valid. Later, we will also discuss a specific
case of complex polynomial potential. For simplicity we
assume that gk ¼ gk−1 ¼ � � � ¼ g0 ¼ 1, then for k ¼ 3, 4
we have

W0½k ¼ 3� ¼ ϕ3 þ ϕ2 þ ϕþ 1; ð57Þ

and

W0½k ¼ 4� ¼ ϕ4 þ ϕ3 þ ϕ2 þ ϕþ 1: ð58Þ
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We have learned from Eq. (53) and (56) that SUSY
is broken (preserved) for k ¼ 4 (k ¼ 3). In Fig. 11 we
show Langevin time history of hBiα for the above
two polynomial models. We show linear and quadratic

extrapolations to α → 0 limit in Fig. 12. The results
are tabulated in Table IV. The simulation results are in
good agreement with the corresponding analytical
predictions.
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FIG. 11. Langevin time history of the field B for α ¼ 0.4. Simulations were performed for superpotentialW0ðϕÞ ¼ gkϕk þ gk−1ϕk−1 þ
� � � þ g0 with gk ¼ gk−1 ¼ � � � ¼ g0 ¼ 1. In these simulations, we have used adaptive Langevin step size Δτ ≤ 5 × 10−5, generation
steps Ngen ¼ 107 and measurements were taken every 500 steps. (Left) k ¼ 3 case. (Right) k ¼ 4 case.
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FIG. 12. The expectation value, hBiα against the regularization parameter, α for superpotential W0ðϕÞ ¼ gkϕk þ gk−1ϕk−1 þ � � � þ g0
with gk ¼ gk−1 ¼ � � � ¼ g0 ¼ 1. (Top-Left) Real part and (Top-Right) imaginary part of hBiα for k ¼ 3. (Bottom-Left) Real part and
(Bottom-Right) imaginary part of hBiα for k ¼ 4. The simulations were performed with adaptive Langevin step size Δτ ≤ 5 × 10−5,
thermalization steps Ntherm ¼ 5 × 104, generation steps Ngen ¼ 107 and measurements taken every 500 steps. The dashed red lines are
the linear fits to hBiα in α, and red dots are the linear extrapolation value at α ¼ 0. The solid black lines represent the quadratic fits to
hBiα in α, and black dots are the quadratic extrapolation value at α ¼ 0. The α → 0 limit values obtained from these plots are given in
Table IV.
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Now, let us consider the case with complex polynomial
superpotential. We modify the real double-well potential
discussed in the previous section as follows,

W0 ¼ igϕðϕ2 þ μ2Þ: ð59Þ

In this complex potential case, the argument given in
Eq. (53) and (56) are not valid. We investigate SUSY
breaking using complex Langevin dynamics. In Fig. 13,
we show Langevin time history of the auxiliary B field
for regularization parameter, α ¼ 0.4. We show linear
and quadratic extrapolations to α → 0 limit in Figs. 14
and 15. The results are tabulated in Table V. Our
simulation results imply that expectation value of aux-
iliary field, hBiα does not vanish in the limit, α → 0.
Hence SUSY is broken in this model.

C. PT -symmetric models inspired δ-potentials

Let us consider the superpotential

WðϕÞ ¼ −
g

ð2þ δÞ ðiϕÞ
ð2þδÞ; ð60Þ

which is the same as the one we considered earlier for the
case of the bosonic models.
The twisted partition function takes the form

Zα ¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕ ðeiα − 1þW00Þe½−1

2
W02�

¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕ ðeiα − 1þ gð1þ δÞðiϕÞδÞe½12g2ðiϕÞ2ð1þδÞ�:

ð61Þ
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FIG. 13. The Langevin time history of B for α ¼ 0.4. The simulations were performed for superpotentialW0ðϕÞ ¼ igϕðϕ2 þ μ2Þ with
μ ¼ 2. In these simulations, we have used adaptive Langevin step size Δτ ≤ 5 × 10−5, generation steps Ngen ¼ 107 and measurements
were taken every 500 steps. (Left) g ¼ 1 case. (Right) g ¼ 3 case.
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FIG. 14. Real (Left) and imaginary (Right) parts of hBiα against the regularization parameter, α for supersymmetric potential
W0 ¼ igϕðϕ2 þ μ2Þ. Simulations were performed with g ¼ 1 and μ ¼ 2. We have used adaptive Langevin step size Δτ ≤ 5 × 10−5,
thermalization steps Ntherm ¼ 5 × 104, generation steps Ngen ¼ 107 and measurements were taken every 500 steps. The dashed red lines
are the linear fits to hBiα in α, and red dots are the linear extrapolation value at α ¼ 0. The solid black lines represent the quadratic fits to
hBiα in α, and black dots are the quadratic extrapolation value at α ¼ 0. The α → 0 limit values obtained from these plots are given in
Table V.
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The expectation value of the auxiliary field is

hBiα ¼ −
1

Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕ ð−iW0Þðeiα − 1þW00Þ

× e½−1
2
W02�

¼ 1

Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕ gðiϕÞ1þδ

× ðeiα − 1þ gð1þ δÞðiϕÞδÞe½12g2ðiϕÞ2ð1þδÞ�: ð62Þ

Let us consider various integer cases of δ and check
whether SUSY is broken or preserved in these cases.
For the case, δ ¼ 0 one can easily perform analytical

evaluations. We have the twisted partition function

Zα½δ ¼ 0� ¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðeiα − 1þ gÞe½−1

2
g2ϕ2�

¼ −
1ffiffiffiffiffiffi
2π

p ðeiα − 1þ gÞ
ffiffiffiffiffiffi
2π

g2

s
: ð63Þ

Turning the external field off, α → 0, we get a nonzero
value for the partition function

Zα¼0½δ ¼ 0� ¼ −
1ffiffiffiffiffiffi
2π

p g

ffiffiffiffiffiffi
2π

g2

s
¼ −1; ð64Þ

implying that SUSY is preserved in the system.

Also we have

hBiα½δ ¼ 0� ¼ 1

Zα

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðigϕÞ

× ðeiα − 1þ gÞe½−1
2
g2ϕ2�

¼ −
ig
R
∞
−∞ dϕϕðeiα − 1þ gÞe½−1

2
g2ϕ2�

ðeiα − 1þ gÞ
ffiffiffiffi
2π
g2

q

¼ −
ig
R
∞
−∞ dϕϕ exp ½− 1

2
g2ϕ2�ffiffiffiffi

2π
g2

q
¼ 0: ð65Þ

Since hBiα½δ ¼ 0� ¼ 0, we infer that SUSY is preserved
in the theory when δ ¼ 0.
For the case δ ¼ 2, we have the twisted partition

function

Zα½δ ¼ 2� ¼ −
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕðeiα − 1 − 3gϕ2Þ

× e½−1
2
g2ϕ6�

¼ −
ðeiα − 1Þffiffiffiffiffiffi

2π
p

Z
∞

−∞
dϕ e½−1

2
g2ϕ6�

þ 3gffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕϕ2 e½−1

2
g2ϕ6�: ð66Þ

Turning the external field off, α → 0, we get a nonzero
partition function
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FIG. 15. Real (Left) and imaginary (Right) parts of hBiα against the regularization parameter, α for supersymmetric potential
W0 ¼ igϕðϕ2 þ μ2Þ. Simulations were performed with g ¼ 3 and μ ¼ 2. We have used adaptive Langevin step size Δτ ≤ 5 × 10−5,
thermalization steps Ntherm ¼ 5 × 104, generation steps Ngen ¼ 107 and measurements were taken every 500 steps. The dashed red lines
are the linear fits to hBiα in α, and red dots are the linear extrapolation value at α ¼ 0. The solid black lines represent the quadratic fits
to hBiα in α, and black dots are the quadratic extrapolation value at α ¼ 0. The α → 0 limit values obtained from these plots are given
in Table V.
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Zα¼0½δ ¼ 2� ¼ 3gffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕϕ2 e½−1

2
g2ϕ6�

¼ 1; ð67Þ

indicating that SUSY is preserved in the system.
The expectation value of the B field is

hBiα½δ ¼ 2� ¼ −
1

Zα

igffiffiffiffiffiffi
2π

p
Z

∞

−∞
dϕϕ3

× ðeiα − 1 − 3gϕ2Þe½−1
2
g2ϕ6�

¼ 0; ð68Þ

confirming that SUSY is preserved for the case δ ¼ 2. One
can perform similar calculations for the case δ ¼ 4 and
show that SUSY is preserved in the theory.
We simulate the δ-potential using complex Langevin

dynamics for δ ¼ 1, 2, 3 and 4. The drift term coming from
the δ-potential is

∂Seffα

∂ϕ ¼ ∂
∂ϕ

�
1

2
W02 − ln ½eiα − 1þW00�

�

¼ W0W00 −
W000

ðeiα − 1þW00Þ
¼ −ig2ð1þ δÞðiϕÞ2δþ1

−
igδð1þ δÞðiϕÞδ−1

ðeiα − 1þ gð1þ δÞðiϕÞδÞ : ð69Þ

In Fig. 16 we show the Langevin time history of
the auxiliary B field for δ ¼ 1, 2, 3 and 4. We show
linear and quadratic extrapolations to α → 0 limit in
Fig. 17 for δ ¼ 1, 3 and Fig. 18 for δ ¼ 2, 4, respec-
tively. The results are tabulated in Table VI and VII.
It is clear from our simulation results that the expect-
ation value of auxiliary field, hBiα, vanishes in the
limit α → 0. Hence we conclude that SUSY is not
broken in the model with δ-potential for values of
δ ¼ 1, 2, 3, 4.
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FIG. 16. The Langevin time history of field B for α ¼ 0.4. The simulations were performed for superpotential W0ðϕÞ ¼ −igðiϕÞð1þδÞ

with g ¼ 0.5. In these simulations, we have used adaptive Langevin step size Δτ ≤ 5 × 10−5, generation steps Ngen ¼ 107 and
measurements were taken every 500 steps. The plots show δ ¼ 1 case (Top-Left), δ ¼ 2 case (Top-Right), δ ¼ 3 case (Bottom-Left) and
δ ¼ 4 case (Bottom-Right).
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V. CONCLUSIONS AND FUTURE DIRECTIONS

We have successfully used complex Langevin dynamics
with stochastic quantization to investigate supersymmetry
breaking in a class of zero-dimensional N ¼ 2 super-
symmetric models with real and complex actions. We
looked at double-well superpotential, general polynomial
superpotential and also PT -symmetric models inspired
δ-potentials. In some cases we were able to cross check the
presence or absence of supersymmetry breaking wherever
analytical results were available. Our simulations strongly
suggest that SUSY is preserved for PT -symmetric models
inspired δ-potentials. We have also investigated the reli-
ability of complex Langevin simulations by monitoring
Fokker-Planck equation as correctness criterion (in
Appendix A 1) and also by looking at the probability
distributions of the magnitude of the drift terms (in
Appendix A 2).

It would be interesting to study complex Langevin
dynamics in the above models, generalized to non-
Abelian cases, for example with SUðNÞ symmetry.
Supersymmetry may be restored in the large-N limit of
these models. It would also be interesting to explore
spontaneous SUSY breaking when δ in the superpotential
is a continuous parameter. Other possibilities include
extending our investigations to 1- and 2-dimensional
models with same superpotentials. These results will
appear in an upcoming work [37].

ACKNOWLEDGMENTS

The work of A. J. was partially supported by the Seed
Grant from Indian Institute of Science Education and
Research (IISER) Mohali. A. K. was partially supported
by IISER Mohali and a CSIR Research Fellowship
(Fellowship No. 517019).

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8

R
e 

[<
B

>
α]

α

Linear fit: y =-0.1229*x-0.1931
Quadratic fit: y=-0.2406*x*x+0.1984*x-0.2935

Re [<B>α]
Linear extrapolation

Quadratic extrapolation

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

Im
 [

<
B

>
α]

α

Linear fit: y=-0.3395*x-0.1191
Quadratic fit: y=0.9499*x*x-1.592*x+0.2676

Im [<B>α]
Linear extrapolation

Quadratic extrapolation

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
e 

[<
B

>
α]

α

Linear fit: y=0.1063*x+0.02937
Quadratic fit: y=-0.1955*x*x+0.3091*x-0.01853

Re [<B>α]
Linear extrapolation

Quadratic extrapolation
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Im
 [

<
B

>
α]

α

Linear fit: y=-0.2019*x+0.5313
Quadratic fit: y=-0.5777*x*x+0.4515*x+0.3625

Im [<B>α]
Linear extrapolation

Quadratic extrapolation

FIG. 17. The expectation values of B against the regularization parameter, α for superpotential W0ðϕÞ ¼ −igðiϕÞð1þδÞ with g ¼ 0.5.
(Top-Left) Real part and (Top-Right) imaginary part of hBiα for δ ¼ 1. (Bottom-Left) Real part and (Bottom-Right) imaginary part of
hBiα for δ ¼ 3. The simulations were performed with adaptive Langevin step size Δτ ≤ 5 × 10−5, thermalization steps
Ntherm ¼ 5 × 104, generation steps Ngen ¼ 107 and measurements taken every 500 steps. The dashed red lines are the linear fits to
hBiα in α, and red dots are the linear extrapolation value at α ¼ 0. The solid black lines represent the quadratic fits to hBiα in α, and black
dots are the quadratic extrapolation value at α ¼ 0. The α → 0 limit values obtained from these plots are given in Table VI.
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APPENDIX A: RELIABILITY OF COMPLEX
LANGEVIN SIMULATIONS

In this section we would like to justify the simulations
used in this work.We look at two of the methods proposed in
the recent literature. One is based on the Fokker-Planck
equation as a correctness criterion and the other is based on
the probability distribution of the magnitude of the drift term.

1. Fokker-Planck equation as correctness criterion

The holomorphic observables of the theory O½ϕ; τ�
evolve according to [30,31,41]

∂O½ϕ; τ�
∂τ ¼ L̃O½ϕ; τ�; ðA1Þ

where L̃ is the Langevin operator

L̃ ¼
� ∂
∂ϕ −

∂
∂ϕ S½ϕ�

� ∂
∂ϕ : ðA2Þ

Once the equilibrium distribution is reached, assuming
that it exists, we can remove the τ dependence from the
observables. Then we have

CO ≡ hL̃O½ϕ�i ¼ 0; ðA3Þ

and this can be used as a criterion for correctness of
the complex Langevin method. This criterion has been
investigated in various models in Refs. [30,31,41]. The
criterion for correctness, in principle, needs to be satis-
fied for a complete set of observables O½ϕ�, in a suitably
chosen basis [31]. It leads to an infinite tower of
identities, which as a collection, resembles to the
Schwinger-Dyson equations.
For the observable O, as the auxiliary B field, we have

L̃O ¼ L̃B

¼ −iW000 þ iW0W002 −
iW00W000

ðeiα − 1þW00Þ : ðA4Þ
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FIG. 18. The expectation values of B against the regularization parameter, α for superpotential W0ðϕÞ ¼ −igðiϕÞð1þδÞ with g ¼ 0.5.
(Top-Left) Real part and (Top-Right) imaginary part of hBiα for δ ¼ 2. (Bottom-Left) Real part and (Bottom-Right) imaginary part of
hBiα for δ ¼ 4. The simulations were performed with adaptive Langevin step size Δτ ≤ 5 × 10−5, thermalization steps
Ntherm ¼ 5 × 104, generation steps Ngen ¼ 107 and measurements were taken every 500 steps. The dashed red lines are the linear
fits to hBiα in α, and red dots are the linear extrapolation value at α ¼ 0. The solid black lines represent the quadratic fits to hBiα in α, and
black dots are the quadratic extrapolation value at α ¼ 0. The α → 0 limit values obtained from these plots are given in Table VII.
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We show the Langevin history of the above mentioned
correctness criterion, L̃B, with regularization parameter
α ¼ 0.4 for the superpotentialsW0 ¼ gðϕ2 þ μ2Þ andW0 ¼
−igðiϕÞ1þδ in Figs. 19 and 20, respectively. In Table VIII

we provide the simulated values of hL̃Biα for superpotential
W0 ¼gðϕ2þμ2Þwith coupling parameter g¼1, 3 andvarious
values of regularization parameter, α. In Tables IX and X, we
tabulate the simulated values of hL̃Biα for superpotential
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FIG. 19. The Langevin time history of L̃B for regularization parameter, α ¼ 0.4. Simulations were performed for superpotential
W0 ¼ gðϕ2 þ μ2Þ with μ ¼ 2, g ¼ 1 (Left) and g ¼ 3 (Right). In these simulations, we have used adaptive Langevin step size
Δτ ≤ 10−4, generation stepsNgen ¼ 106 and measurements taken every 100 steps. The exact value is L̃B ¼ 0 at equilibrium distribution.
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FIG. 20. The Langevin time history of L̃B for regularization parameter, α ¼ 0.4. Simulations were performed for superpotential
W0ðϕÞ ¼ −igðiϕÞð1þδÞ with g ¼ 0.5 for various values of delta: δ ¼ 1 (Top-Left), δ ¼ 2 (Top-Right), δ ¼ 3 (Bottom-Left) and δ ¼ 4

(Bottom-Right). In these simulations, we have used adaptive Langevin step size Δτ ≤ 5 × 10−5, generation steps Ngen ¼ 107 and
measurements taken every 500 steps. The exact value at equilibrium distribution is L̃B ¼ 0.
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W0ðϕÞ ¼ −igðiϕÞð1þδÞ with coupling parameter g ¼ 0.5 and
various values of regularization parameter, α.

2. Decay of the drift terms

Another method to check the correctness of the complex
Langevin dynamics, as proposed in Refs. [42,43], is to look

at the probability distribution PðuÞ of the magnitude of the
drift term u at large values of the drift. We have the
magnitude of the drift term

u ¼
���� ∂S∂ϕ

����: ðA5Þ
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FIG. 21. The probability distribution PðuÞ of the magnitude of the drift term u for the superpotentialW0ðϕÞ ¼ gðϕ2 þ μ2Þ on a log-log
plot. Simulations were performed for g ¼ 1.0 (Left) and g ¼ 3.0 (Right) with μ ¼ 2.0. We used adaptive Langevin step size Δτ ≤ 10−4,
and generation steps Ngen ¼ 106.
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FIG. 22. The probability distribution PðuÞ of the magnitude of the drift term u for the superpotential W0ðϕÞ ¼ −igðiϕÞð1þδÞ on a
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In Refs. [42,43] the authors demonstrated, in a few
simple models, that the probability of the drift term should
be suppressed exponentially at larger magnitudes in order
to guarantee the correctness of complex Langevin method.
However, in the models we investigated in this work we see
that the probability distribution falls off like a power law
with u, even though we have excellent agreements with
corresponding analytical results, wherever applicable. In

Fig. 21 we show the probability distribution PðuÞ against u
for the superpotential W0ðϕÞ ¼ gðϕ2 þ μ2Þ on a log-log
plot. In Fig. 22 we show the probability distribution PðuÞ of
the magnitude of drift term u for superpotential W0ðϕÞ ¼
−igðiϕÞð1þδÞ on a log-log plot. In both cases we see that the
distribution falls off like a power law for large u values.
This needs further investigations, and we save it for
future work.

APPENDIX B: SIMULATION DATA TABLES

TABLE IV. The expectation values hBiα obtained using com-
plex Langevin simulations for the models with superpotentials
W0¼gkϕkþgk−1ϕk−1þ���þg0 with gk ¼ gk−1 ¼ � � � ¼ g0 ¼ 1
and k ¼ 3, 4.

k α hBijα SUSY

3 0.05 0.0083ð15Þ − i0.0018ð447Þ Preserved
0.1 0.0162ð24Þ − i0.0023ð443Þ
0.2 0.0275ð37Þ − i0.0030ð454Þ
0.4 0.0531ð57Þ þ i0.0121ð440Þ
0.6 0.0677ð71Þ − i0.0078ð428Þ
0.8 0.0789ð82Þ − i0.0177ð437Þ

α → 0 0.0025ð40Þ − i0.0024ð761Þ
4 0.05 −0.0010ð10Þ − i1.2774ð70Þ Broken

0.1 −0.0032ð20Þ − i1.2738ð71Þ
0.2 −0.0158ð36Þ − i1.2649ð76Þ
0.4 −0.0425ð62Þ − i1.2571ð80Þ
0.6 −0.0519ð81Þ − i1.2373ð86Þ
0.8 −0.0719ð85Þ − i1.2044ð98Þ

α → 0 0.0044ð31Þ − i1.2800ð126Þ

TABLE II. The expectation values hBiα obtained using com-
plex Langevin simulations for the model with superpotential
W0 ¼ gðϕ2 þ μ2Þ. In the limit α → 0, hBiα ≠ 0. Thus SUSY is
broken in this model.

W0 μ g α hBijα
gðϕ2 þ μ2Þ 2.0 1.0 0.05 −0.0003ð12Þ − i4.2250ð72Þ

0.1 −0.0015ð23Þ − i4.2283ð72Þ
0.2 −0.0056ð37Þ − i4.2261ð72Þ
0.4 −0.0025ð65Þ − i4.2065ð72Þ
0.6 0.0076ð62Þ − i4.1820ð74Þ
0.8 0.0077ð61Þ − i4.1537ð74Þ
α → 0 −0.0003ð35Þ − i4.2340ð123Þ

3.0 0.05 0.0001ð1Þ − i12.0820ð11Þ
0.1 0.0001ð2Þ − i12.0813ð11Þ
0.2 0.0000ð4Þ − i12.0796ð11Þ
0.4 0.0002ð7Þ − i12.0735ð11Þ
0.6 0.0006ð9Þ − i12.0662ð11Þ
0.8 0.0004ð10Þ − i12.0567ð11Þ
α → 0 0.0001ð4Þ − i12.0840ð18Þ

TABLE V. The expectation values hBiα obtained using com-
plex Langevin simulations for the model with superpotential
W0 ¼ igϕðϕ2 þ μ2Þ with g ¼ 1, 3 and μ ¼ 2. We see that SUSY
is broken in this model.

W0 μ g α hBijα
igϕðϕ2 þ μ2Þ 2.0 1.0 0.05 −0.0002ð3Þ þ i3.3561ð23Þ

0.1 −0.0003ð4Þ þ i3.3562ð23Þ
0.2 −0.0008ð7Þ þ i3.3553ð23Þ
0.4 −0.0015ð12Þ þ i3.3482ð24Þ
0.6 −0.0026ð15Þ þ i3.3428ð24Þ
0.8 −0.0037ð17Þ þ i3.3322ð24Þ

α → 0 0.0000ð8Þ þ i3.3585ð40Þ
3.0 0.05 0.0000ð0Þ þ i9.3434ð7Þ

0.1 0.0000ð0Þ þ i9.3430ð7Þ
0.2 −0.0000ð0Þ þ i9.3425ð7Þ
0.4 −0.0002ð2Þ þ i9.3408ð7Þ
0.6 −0.0005ð2Þ þ i9.3380ð7Þ
0.8 −0.0007ð3Þ þ i9.3352ð8Þ

α → 0 0.0000ð1Þ þ i9.3440ð13Þ

TABLE III. The expectation values hBiα obtained using com-
plex Langevin simulations for the model with superpotential
W0 ¼ igðϕ2 þ μ2Þ. We see that, in the limit α → 0, hBiα ¼ 0.
Thus SUSY is preserved in this model.

W0 μ g α hBijα
igðϕ2 þ μ2Þ 2.0 1.0 0.05 −0.0018ð41Þ − i0.0006ð337Þ

0.1 −0.0020ð41Þ þ i0.0008ð337Þ
0.2 −0.0026ð41Þ þ i0.0035ð336Þ
0.4 −0.0049ð41Þ þ i0.0084ð336Þ
0.6 −0.0084ð40Þ þ i0.0123ð338Þ
0.8 −0.0125ð40Þ þ i0.0150ð337Þ

α → 0 −0.0009ð70Þ − i0.0017ð576Þ
3.0 0.05 0.0002ð5Þ þ i0.0009ð133Þ

0.1 0.0002ð5Þ þ i0.0011ð133Þ
0.2 0.0001ð5Þ þ i0.0014ð133Þ
0.4 −0.0001ð5Þ þ i0.0021ð133Þ
0.6 −0.0005ð5Þ þ i0.0026ð133Þ
0.8 −0.0009ð5Þ þ i0.0031ð133Þ

α → 0 0.0003ð9Þ þ i0.0008ð227Þ
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TABLE VI. The expectation values hBiα obtained using com-
plex Langevin dynamics for the models with superpotential
W0ðϕÞ ¼ −igðiϕÞð1þδÞ with g ¼ 0.5 ad δ ¼ 1, 3, respectively.

δ α hBijα SUSY

1.0 0.4 −0.2498ð224Þ − i0.2109ð487Þ Preserved
0.5 −0.2580ð202Þ − i0.2998ð450Þ
0.6 −0.2617ð186Þ − i0.3504ð420Þ
0.7 −0.2726ð172Þ − i0.3719ð403Þ
0.8 −0.2858ð160Þ − i0.3998ð391Þ
0.9 −0.3113ð149Þ − i0.3978ð391Þ

α → 0 −0.2433ð2213Þ þ i0.0742ð5080Þ
3.0 0.3 0.0567ð32Þ þ i0.4452ð566Þ Preserved

0.4 0.0738ð32Þ þ i0.4544ð538Þ
0.5 0.0870ð34Þ þ i0.4387ð475Þ
0.6 0.0961ð43Þ þ i0.4284ð416Þ
0.7 0.1034ð53Þ þ i0.3946ð441Þ
0.8 0.1027ð64Þ þ i0.3539ð398Þ

α → 0 0.0054ð311Þ þ i0.3625ð4025Þ

TABLE VII. The expectation values hBiα obtained using
complex Langevin dynamics for the models with superpotential
W0ðϕÞ ¼ −igðiϕÞð1þδÞ with g ¼ 0.5 and δ ¼ 2, 4, respectively.

δ α hBijα SUSY

2.0 0.05 0.0014ð36Þ − i0.0609ð1416Þ Preserved
0.1 0.0102ð50Þ − i0.1986ð1101Þ
0.2 0.0079ð80Þ − i0.0679ð1004Þ
0.4 0.0134ð96Þ − i0.0627ð701Þ
0.6 0.0079ð120Þ − i0.0208ð655Þ
0.8 −0.0068ð126Þ þ i0.0294ð595Þ

α → 0 0.0019ð84Þ − i0.1423ð1932Þ
4.0 0.05 −0.0005ð20Þ − i0.0155ð1257Þ Preserved

0.1 −0.0017ð37Þ − i0.0435ð1043Þ
0.2 0.0059ð48Þ þ i0.0787ð817Þ
0.4 0.0016ð64Þ þ i0.0108ð648Þ
0.6 0.0132ð70Þ þ i0.0761ð526Þ
0.8 0.0063ð68Þ þ i0.0258ð418Þ

α → 0 −0.0018ð48Þ − i0.0092ð1712Þ

TABLE IX. The simulated values of L̃Bα for the models with
superpotential W0ðϕÞ ¼ −igðiϕÞð1þδÞ, with coupling parameter
g ¼ 0.5 and δ ¼ 1, 3, respectively.

δ α hL̃Bijα
1.0 0.4 −0.6263ð3592Þ þ i0.0042ð3062Þ

0.5 −0.1442ð2127Þ þ i0.0202ð1752Þ
0.6 −0.0239ð1517Þ þ i0.0400ð1375Þ
0.7 0.0198ð1192Þ þ i0.0387ð1171Þ
0.8 −0.0107ð1169Þ þ i0.0494ð988Þ
0.9 −0.0401ð990Þ þ i0.0104ð915Þ

α → 0 −1.2716ð2.421Þ − i0.1173ð2.122Þ
3.0 0.3 0.1846ð5176Þ þ i0.1366ð3738Þ

0.4 −0.3282ð1845Þ þ i0.0443ð3164Þ
0.5 −0.2215ð1856Þ þ i0.1869ð2377Þ
0.6 −0.2046ð1456Þ þ i0.2870ð1969Þ
0.7 0.0022ð1476Þ þ i0.2841ð2076Þ
0.8 −0.0483ð1412Þ þ i0.1976ð1960Þ

α → 0 −0.3031ð2.181Þ − i0.2210ð2.335Þ

TABLE VIII. The expectation values hL̃Biα obtained using
complex Langevin simulations for the models with superpotential
W0 ¼ gðϕ2 þ μ2Þ.
W0 μ g α hL̃Bijα
gðϕ2 þ μ2Þ 2.0 1.0 0.05 −0.0019ð78Þ þ i0.0020ð1379Þ

0.1 −0.0133ð130Þ þ i0.0792ð1388Þ
0.2 −0.0322ð264Þ þ i0.0996ð1368Þ
0.4 −0.0090ð420Þ þ i0.0486ð1329Þ
0.6 −0.0852ð685Þ − i0.0191ð1444Þ
0.8 −0.0252ð539Þ þ i0.0264ð1258Þ

α → 0 0.0023ð230Þ þ i0.0555ð2357Þ
3.0 0.05 0.0257ð250Þ − i0.0304ð1561Þ

0.1 −0.0682ð724Þ þ i0.0222ð1660Þ
0.2 0.0678ð966Þ − i0.0088ð1712Þ
0.4 0.1330ð1656Þ þ i0.2933ð2790Þ
0.6 0.0816ð2031Þ þ i0.4755ð2733Þ
0.8 −0.2429ð1627Þ þ i0.1306ð1682Þ

α → 0 0.0098ð778Þ − i0.0840ð3020Þ

TABLE X. The simulated values of L̃Bα for the models with superpotentialW0ðϕÞ ¼ −igðiϕÞð1þδÞ, with coupling
parameter g ¼ 0.5 and δ ¼ 2, 4, respectively.

δ α hL̃Bijα
2.0 0.05 0.0036ð49Þ − i0.1572ð1315Þ

0.1 0.0082ð94Þ − i0.2145ð1273Þ
0.2 0.0113ð156Þ − i0.1480ð1359Þ
0.4 0.0066ð246Þ − i0.1409ð1300Þ
0.6 −0.0014ð312Þ − i0.1029ð1280Þ
0.8 −0.0023ð348Þ − i0.1132ð1245Þ

α → 0 0.0034ð142Þ − i0.1906ð2223Þ
4.0 0.05 −0.0086ð127Þ þ i0.3919ð2944Þ

0.1 −0.0292ð202Þ þ i0.3050ð2945Þ
0.2 −0.0127ð310Þ þ i0.5222ð2910Þ
0.4 0.0295ð503Þ þ i0.4377ð2889Þ
0.6 0.0497ð595Þ þ i0.3674ð2690Þ
0.8 −0.0781ð1796Þ þ i0.1504ð3194Þ

α → 0 −0.0171ð361Þ þ i0.3794ð5019Þ
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