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We investigate the possibility of spontaneous supersymmetry breaking in a class of zero-
dimensional N =2 supersymmetric quantum field theories, with complex actions, using complex
Langevin dynamics and stochastic quantization. Our simulations successfully capture the presence or
absence of supersymmetry breaking in these models. The expectation value of the auxiliary field under
twisted boundary conditions was used as an order parameter to capture spontaneous supersymmetry

breaking in these models.
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I. INTRODUCTION

We can investigate numerous nonperturbative features
of quantum field theories using lattice regularized form of
the field theory path integral. Monte Carlo methods can
be used to reliably extract the physics of such systems.
The fundamental idea behind path integral Monte Carlo
is to generate field configurations with a probability
weight given by the exponential of the negative of the
action (in Euclidean spacetime) and then compute the
path integral by statistically averaging these importance
sampled ensemble of field configurations. However, when
the action is complex, for example, when studying QCD
at finite density or with a theta term, Chern-Simons
gauge theories or chiral gauge theories, it is not straight-
forward to apply path integral Monte Carlo. In these
cases we encounter a complex action problem or sign
problem. The basic aim of complex Langevin method
[1-4] is to overcome this problem by extending the idea
of stochastic quantization for ordinary field theoretic
systems with real actions to the cases with complex
actions. This also leads to complexification of the real
dynamical field variables that appear in the original path
integral. We can define a stochastic process for the
complexified field variables by Langevin equation with
a complex action. Then the expectation values in the
original path integral are calculated from an average of
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corresponding quantities over this stochastic process.1 See
Ref. [11] for a pedagogical review on this method and
Ref. [12] for a recent review in the context of the sign
problem in quantum many-body physics.

Complex Langevin dynamics has been used successfully
in various models in the recent past [13—22]. There have
also been studies of supersymmetric matrix models based
on complex Langevin dynamics [23-25]. In Ref. [26] the
authors used complex Langevin simulations to observe
Gross-Witten-Wadia [27-29] transitions in large-N matrix
models. In this paper, we make use of complex Langevin
dynamics to study certain classes of zero-dimensional
N =2 supersymmetric quantum field theories with com-
plex actions.

The central theme of stochastic quantization is that
expectation values of observables are obtained as equilib-
rium values of a stochastic process. In Langevin dynamics,
this is implemented by evolving the system in a fictitious
time direction, 7, subject to a stochastic noise. We could
think of applying Langevin dynamics when the actions
under consideration are complex. In such cases, the field
variables become complexified during Langevin evolution
since the gradient of the action, the drift term, is complex.

The complex Langevin equation in Euler discretized
form reads

Pt + A7) = ¢(r) — AT(%) +VAm(z), (1)

where Az is the Langevin time step, and 7(7) is a Gaussian
noise satisfying

' Another recently proposed method, which is also based on
complexification of the original real field variables, is the
Lefschetz thimble method [5-10].
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() =0.  (n(x)n(e)) = 26,0 2)
In our simulations, we use real Gaussian stochastic noise to
tame excursions in the imaginary directions of the field
configurations [30-32].

For an arbitrary operator O, we can define a noise
averaged expectation value

(Olp(2)]), = / dpP[p(2)|O[4], (3)

where the probability distribution P[¢(7)] satisfies the
Fokker-Planck equation

OP[p(7)] 1) ( 1) n

o op(r) \6g(z)

When the action is real, it can be shown that in the limit

T — oo, the stationary solution of the Fokker-Planck
equation

P[] ~ exp (=S[¢]) (5)

will be reached guaranteeing convergence of the Langevin
dynamics to the correct equilibrium distribution. When the
action is complex we will end up in a not so easy situation.
The drift term will be complex and thus if we consider
Langevin dynamics based on the above equation we will
end up with complexified fields: ¢ = Re¢ + ilm¢. We can
still consider Langevin dynamics with complex probabil-
ities [4,33-35] but proofs toward convergence to the
complex weight, exp(—S), will be nontrivial.

The paper is organized as follows. In Sec. II we apply
complex Langevin dynamics to a class of zero-dimensional
bosonic field theories with complex actions, to compute
expectation values of correlators and then compare them
with analytical results. We discuss supersymmetry breaking
in a zero-dimensional model with N/ = 2 supersymmetry
and with a general form of the superpotential in Sec. III. In
Sec. 1V, using complex Langevin dynamics, we explore
supersymmetry breaking in these models with real and
complex actions for different forms of superpotentials.
In Sec. V we conclude and provide possible future
directions. In Appendix A1 we study a correctness
criterion of our simulations using the Fokker-Planck
operator. In Appendix A2 we study reliability of our
simulations by examining the probability distributions of
the magnitude of the drift terms. In Appendix B we provide
the set of simulation data tables.

II. BOSONIC MODELS WITH COMPLEX ACTIONS

Let us consider actions of zero-dimensional quantum
field theories derived from a general potential of the form

G D, (6)

W(g) = -
with ¢ being a real scalar field, g a coupling parameter and
0 a real number.

A class of (Euclidean) scalar quantum field theories, that
are not symmetric under parity reflection, has been inves-
tigated in the literature using the above form of the potential
[36]. We can, for example, write down a two-dimensional
Euclidean Lagrangian of the form

L= S @07 +5mF T W) (6>-2). ()

for a scalar field with mass m.

Such theories are very interesting from the point of
view that they exhibit non-Hermitian Hamiltonians. Even
more interesting is that there is numerous evidence that
these theories possess energy spectra that are real and
bounded below.

One can think of making the above Lagrangian super-
symmetric by adding the right amount of fermions. The
supersymmetric two-dimensional Lagrangian takes the
form

1 1 1 1
L =30, + 51wy +39W' (@) +35 [W ()P, (8)
where y, | are Majorana fermions.

This supersymmetric Lagrangian also breaks parity
symmetry. It would be interesting to ask whether the
breaking of parity symmetry induces a breaking of super-
symmetry. This question was answered in Ref. [36]. There,
through a perturbative expansion in J, the authors found
that supersymmetry remains unbroken in this model. We
could think of performing nonperturbative investigations
on SUSY breaking in this model using complex Langevin
method. We leave this investigation for future work [37].
(Clearly, a nonperturbative investigation based on path
integral Monte Carlo fails since the action of this model can
be complex, in general.)

Let us consider the O-dimensional version of the bosonic
Lagrangian with m = 0. The Euclidean action is the same
as the one given in Eq. (6)

g .
§= —N(“f’)N’ )

where N =2 4 6.
The partition function of this model is

1 0

Z=5-| dpe (10)
_ L[ g,
=3 _ood(ﬁ exp [ﬁ(ld’)ﬂ (11)
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TABLE 1.
dynamics for O-dimensional —& (igh)"

The simulated values of the correlation functions G; and G, obtained from complex Langevin
theory for N = 3, 4. The simulations were performed with coupling

parameter g = 0.5, adaptive Langevin step size Az < 0.02, thermalization steps Nypem = 10*, generation steps
Ngen = 10° and measurements taken every 100 steps. We have used an average of 10? such simulation chains with
random initial configurations. The table compares these numerically simulated values with the exact results.

N G?xact GTL ngact GEL
3 0.0 — i0.9185 —0.0003(12) — i0.9225(4) - .
4 0.0 — i1.1630 —0.0005(8) — i1.1678(4) —0.9560 + i0.0 —0.9602(6) — i0.0009(24)

We can look at the k-point correlation functions, G, of
this model. We have

— ) =555 [ abd e | )

_ R dg ¢ exp [ (ig)"]
J%% dg exp [ (ip)™]

(12)

The one-point correlation function, G; can be evaluated
as [38]

G =—i<w>l/N1W

g vr ’
and the two-point correlation function, G, as

G, — <N> 2N T(5)[sin?(F) — 3cos?(§)] ‘

g r()

(13)

(14)

Similarly we can compute higher moments of ¢. In
Table I we compare our results from complex Langevin
simulations for G; and G, with their corresponding
analytical results.

In Fig. 1 we show the complexified ¢ field configura-
tions on the complex ¢p —¢; plane as it evolves in
Langevin time. The Langevin time history of G, for the
case N =3 is shown in Fig. 2. In Fig. 3 we show the
Langevin time history of G; and G, for the case N = 4.

III. SUPERSYMMETRY BREAKING IN
ZERO-DIMENSIONAL FIELD THEORIES

Let us consider a O-dimensional supersymmetric model.
For a general supersymmetric potential, W(¢), the action is
given by

1
S = 532 +iBW + g W'y, (15)

where ¢ is a bosonic field, y and  are fermionic fields, and
B is an auxiliary field. The prime denotes derivative of the
superpotential with respect to ¢. There is a symmetry in the
above action that exchanges fermionic fields with bosonic
fields and this symmetry is known as supersymmetry.
We define two independent supersymmetry charges Q
and Q corresponding to an A =2 supersymmetry.
This action can be derived from dimensional reduction

N=3 N=4
0 -

0 L
& -1r

ol

-3 . 4 .

-3 2 1 0 1 2 3 -4 3 2 1 0 1 2 3 4
Py Pr
FIG. 1. Scatter plot of complexified field configurations on the ¢z — ¢; plane for the O-dimensional —% (ig)N theory with g = 0.5.

Black dots represent the trajectories of the fields during complex Langevin evolution. (Left) Case N = 3. The field configuration starts at
point (0.5, —0.1) and with the aid of a stochastic noise, it drifts toward the equilibrium configuration, forming a cloud averaging around
0.0 — i0.9185. (Right) Case N = 4. The field starts at point (0.5,—0.1) and with the aid of a stochastic noise, it drifts toward the
equilibrium configuration, forming a cloud averaging around 0.0 — i1.163.
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FIG. 2. Langevin time history of the field variable (one-point
correlation function G) for the i %(]33 theory at coupling param-
eter g = 0.5. Simulations were performed with adaptive Langevin
step size Az < 0.02, generation steps Ngye, = 10° and measure-
ments taken every 100 steps. Simulated field configurations are
an average of 10% such simulation chains with random initial-
ization. Solid and dashed lines represent the exact values.

of a one-dimensional theory, that is, a supersymmetric
quantum mechanics with two supercharges.

We can see that the above action is invariant under the
following supersymmetry transformations

0 =y, (16a)
Qy =0, (16b)
Oy = —iB, (16¢)
0B =0, (16d)
and
4 T T T :
N=4, =05
Re [®]
Im [@]
ExactRe [@] ——
ExactIm [®] - - - - ]

0 1000 2000 3000 4000 5000
Langevin Time

¢ = -y, (17a)
0y =0, (17b)
Oy = —iB, (17¢)
OB = 0. (17d)
The supercharges Q and Q satisfy the algebra
{0.0} =0, (18a)
{0.0} =0, (18b)
{0.0}=0. (18c)

We also note that the action can be expressed in Q- or
QQ- exact forms. That is,

s- on(a-w).

_ (1
= QQ(EV_/W‘FW)-

(19)

(20)

The auxiliary field B has been introduced for off-shell
completion of the supersymmetry algebra. It is possible to

integrate out this field using its equation of motion
B =—iW'. (21)

It is easy to show that the action is invariant under the
two supersymmetry charges

QS =0, (22)
0S = 0. (23)
4 T T T T
N=4, g=0.5
Im [oi]
Re [@]
ExactRe [®]] ——
ol Exact Im [®7] - - - -

4 . . . .
0 1000 2000 3000 4000 5000
Langevin Time

FIG. 3. Langevin time history of one-point (Left) and two-point (Right) correlation functions for the —%454 theory at fixed coupling
constant g = 0.5. Simulations were performed with adaptive Langevin step size Az <0.02, generation steps Ngep = 10° and
measurements taken every 100 steps. Simulated field configurations are an average of 10 such simulation chains with random field

initialization. Solid and dashed lines represent the exact values.
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The partition function of the model is

1
zZ= —/dBdgbdl//dy'/e_S
2n
1 _ 1 2 . / — 1!
=5 dBd¢dydyexp |— EB + iBW +yWhy | |.
/4
(24)

Completing the square and integrating over the auxiliary
field it becomes

= r / dpdy iy exp[ ( W2 4+ W'y )} (25)

Integrating over the fermions it takes the form

Z= \/_ dep W" exp {—5 W’2] (26)

When SUSY is broken, the supersymmetric partition
function vanishes. In that case, the expectation values of
observables normalized by the partition function could be
ill defined.

The expectation value of the auxiliary field B is crucial in
investigating SUSY breaking. It can be evaluated as

11
B) = Bdpdydy B
(B) =75 /d $pdydiy Be
L1 dep WW" exp {—EW/Z]
Z\ 2% 2

b i)

Thus, in this model, the normalized expectation value of
B is indefinite (it is of the form 0/0) when SUSY is broken.

In order to overcome this difficulty we can introduce an
external field and then eventually take a limit where it goes
to zero. We usually introduce some external field to detect
spontaneous breaking of ordinary symmetry so that the
ground state degeneracy is lifted to specify a single broken
ground state. We take the thermodynamic limit of the
theory, and after that, the external field is turned off. The
value of the corresponding order parameter then would tell
us if spontaneous symmetry breaking happens in the model
or not. (Note that to detect the spontaneous magnetization
in the Ising model, we use the external field as a magnetic
field, and the corresponding order parameter then would be
the expectation value of the spin operator.) We will also
perform an analogues method to detect SUSY breaking in
the system. Introduction of an external field can be
achieved by changing the boundary conditions for the
fermions to twisted boundary conditions.

A. Theory on a one-site lattice

Let us consider the above O-dimensional theory as a
dimensional reduction of a one-dimensional theory, which
is a supersymmetric quantum mechanics. The action of the
one-dimensional theory is an integral over a compactified
time circle of circumference f in Euclidean space. We have
the action

S = / dr L B> +iB(¢p+ W)+ @y +W'y)|.  (28)
0

Here the dot denotes derivative with respect to Euclidean
time 7 € [0, A]. Note that the Q supersymmetry will not be
preserved in the quantum mechanics theory.

Let us discretize the theory on a one-dimensional lattice
with T sites, using finite differences for derivatives. We
have the lattice action

T-1
=2 b
n=0

+y(n)(p(n+1)

+lB

(n)(p(n +1) = p(n) + W)

—y(n) + Why(n))|. (29)

with n denoting the lattice site. We have rescaled the fields
and coupling parameters such that the lattice action is
expressed in terms of dimensionless variables. The lattice
action preserves one of the supercharges, Q. The Q super-
symmetry will not be a symmetry on the lattice when 7" > 2.

Let us consider the simplest case of one lattice point, that
is, when T = 1. The action becomes

1
S=|-B
2

+(0)(w(1)

(0) +iB(0)(¢(1) — $(0) + W')
—y(0) + W"y(0))], (30)

where ¢(1) and (1) are dependent on the boundary
conditions. In the case of periodic boundary conditions,

#(1) = ¢(0), (31a)
w(1) =y (0). (31b)
w(1) =w(0), (31c)
B(1) = B(0), (31d)
the action reduces to
S = %B2 + iBW + Wy (32)

Thus the action for the 0-dimensional supersymmetric
model with N' =2 supersymmetry is equivalent to the
dimensional reduction of a one-dimensional theory
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(a supersymmetric quantum mechanics) with periodic
boundary conditions.

B. Twisted boundary conditions

Now, instead of periodic boundary conditions, let us
introduce twisted boundary conditions for fermions (ana-
logues to turning on an external field), with the motivation
to regularize the indefinite form of the expectation values
we encountered earlier.” We have

P(1) = ¢(0), (33a)
(1) = e“y(0), (33b)
(1) = ep(0), (33¢)
B(1) = B(0) (33d)

The action in this case has the form
1 .
S, = EB2 + iBW + (e =1+ W"y. (34)

We see that supersymmetry is softly broken by the
introduction of the twist o

QS{I = _iQS{l = l/_/(ela - ])l/‘/' (35)

In the limit @ — O supersymmetry is recovered.
The partition function is

1
Z,=— / dBdpdydjre -
2r
L dgp(e™ — 1+ W")exp {—EW’Z]. (36)
\2r 2

The expectation of auxiliary field B is given by

11
B) =—— [ dBdpdydiBe>:
(B) o 7 pdydiyBe
- iL/dq& W/ (e — 1+ W") exp [—lwﬂ].
Za \/27T 2

(37)

It is important to note that the quantity (B), is now well
defined. Here, the external field a plays the role of a
regularization parameter and it regularizes the indefinite
form, (B) = 0/0, of the expectation value under periodic
boundary conditions and leads to the nontrivial result.
Vanishing expectation value of auxiliary field, (B), in the
limit & — O indicates that SUSY is not broken, while a
nonzero value indicates SUSY breaking.

*Twisted boundary conditions were considered in the context
of supersymmetric models by Kuroki and Sugino in Refs. [39,40].

We can write down the effective action of the model with
twisted boundary conditions as

1 .
ngf — E W/2 —In [em -1+ W”]' (38)

The drift term needed for the application of complex
Langevin method in Sec. IV has the form

o8t 9 /1 .
TR (5 W2 —Inle™ -1+ W”])
W///
_ ! _
= WWw W (39)

IV. MODELS WITH VARIOUS
SUPERPOTENTIALS

In this section, we investigate spontaneous supersymmetry
breaking in various zero-dimensional models using complex
Langevin method. Wherever possible, we also compare our
numerical results with corresponding analytical results.

A. Double-well potential

Let us begin with a case where the action is real. We
consider the case when the derivative of the superpotential
is a double-well potential

W= g4+ 1) (40)

where g and y are two parameters in the theory.
When p? > 0, the classical minimum is given by the
field configuration ¢ = 0 with energy

1
Ey= 592,“4 >0, (41)

implying spontaneous SUSY breaking.
The ground state energy can be computed as the expect-
ation value of the bosonic action at the classical minimum

E0|¢:o = <SB>
1
= 532 + iBW'
1
— _E(W/)z 4 (W/)z —

1

= — ut. 42
9K (42)

(W)2lp=0

| =

We can also see from SUSY transformations
Oy = —gp®, (43)

Qw = —gii?, (44)

that SUSY is broken in the model.
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The twisted partition function is

1 [e ‘ 1
7 = d i@ _ 1 W// _ W/2
o= [ Capte =1 W exp | -5 (v
1 o ‘ 1
— _ d ia _ 2 2042 2\2
= [T ane -1 12 e |- S )
=~ (eie —1)e i Bessel K l,ﬂ V Re(¢?) >0 and Re(g*u?) > 0. (45)
2\m 47 4
When a — 0 we have
Z(l|a:0 =0. (46)

Hence, SUSY is broken for W' = g(¢?* + u?).
Let us consider the observable

Bla==5 5= [ bW = 14 W exp |- W

S5 A0 ) exp -1 (0 4 )]

47
[, 46 exp =178 + 127 7
The above expression, once evaluated, becomes
j Bessel K(1,24) + Bessel K(3, 2
(B), = —igﬂz( @5 - G5y Re(¢?) >0 and Re(g%2) > 0. (48)
2 Bessel K(}, 74

In Fig. 4 we show our results from Langevin simulations of this model. We show linear and quadratic extrapolations to
a — 0 limit in Figs. 5 and 6. The results are tabulated in Table II. The simulation results are in good agreement with the
analytical predictions, and strongly suggest that SUSY is broken for this model.

We also consider the case when the derivative of the superpotential is complex,

(A 2 2
W’ = ig(¢” + ). (49)
4 = 10 T T T T T T AT
Im [By] Im [B,]
Re [By] Re [B,]
2t Exact Re [B,] —— [q 5t Exact Re [B,] —— [
ExactIm [B,] - - - - ExactIm [B,] - - - -
O P ANV RSN VST AR T et 0
3 3
m 2 m 5
-10F
-15[
-8 L L L L L L L L L -20 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Langevin Time Langevin Time

FIG. 4. The observable B against Langevin time for regularization parameter & = 0.4. Simulations were performed for superpotential
W' = g(¢? + u?) with ¢ = 2. In these simulations, we have used adaptive Langevin step size Az < 107*, generation steps N gen = 10°
and measurements were taken every 100 steps. (Left) Case g = 1. The exact value is (B) = 0.0 — i4.115 corresponding to a system with
broken SUSY. (Right) Case g = 3. The exact value is (B) = 0.0 — i12.041 again indicating that SUSY is broken in the model.
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0.02 T T T T T T T T T -4.14
0.015 | 1 -4.16 1
0.01 1
-4.18 1
—, 0.005 I
N 242 ]
A 0 1 g
A N
) g -4.22 1
#.0.005 {1 =
0.01 -4.24 R
: Linear fit: y=0.008338"x-0.001483 — — - Linear fit: y=0.09837"x-4.239 — — -
Quadratic fit: y=0.05227*x*x-0.02992*x+0.0009335 —— Quadratic fit: y=0.1054*x*x+0.01138"x-4.229 ——
-0.015 | Re [<B>,] —®— -4.26 1 Im [<B>y] —@—
Linear extrapolation —ll— Linear extrapolation —ll—
Quadratic extrapolation —&— Quadratic extrapolation —&—
-0.02 L— -4.28— -
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
o o

FIG. 5. Plot of real (Left) and imaginary (Right) parts of (B), against the regularization parameter, a for supersymmetric potential
W' = g(¢* + p?). Simulations were performed with g =1 and p =2. We have used adaptive Langevin step size Az < 1074,
thermalization steps Ny,em = 10%, generation steps N gen = 10% and measurements were taken every 100 steps. The dashed red lines are
the linear fits to (B),, in @, and filled red squares are the linear extrapolation values at @ = 0. The solid black lines represent the quadratic
fits to (B),, in a, and filled black diamonds are the quadratic extrapolation values at @« = 0. The a — 0 limit values obtained from these
plots are given in Table II.

0.002 — T T T T T T T T -12.05 — T T T T T T T T
0.0015
0.001 -12.06
—, 0.0005 —
N N
m 0 /M -12.07
A A
9 £
& -0.0005 =
0.001 -12.08 P N
e i Linear fit: y=0.0005132*x+5.948e-05 — — - Linear fit: y=0.0334"x-12.085 — — -
Quadratic fit: y=0.001118*x*x-0.0002361*x+0.0001039 —— - Quadratic fit: y=0.0244*x*x+0.0133*x-12.083 ——
-0.0015 L ] Re [<B>(] —@— Im [<B>,] —®—
Linear extrapolation —li— Linear extrapolation —ll—
Quadratic extrapolation —&— -12.09 1 Quadratic extrapolation —&—
-0.002 L~ . .
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
o ol

FIG. 6. Plot of real (Left) and imaginary (Right) parts of (B), against the regularization parameter, a for supersymmetric potential
W' = g(¢> + u?). Simulations were performed with g =3 and u =2. We have used adaptive Langevin step size Az < 1074,
thermalization steps Ny, = 10%, generation steps N. gen = 10° and measurements were taken every 100 steps. The dashed red lines are
the linear fits to (B),, in @, and filled red squares are the linear extrapolation values at @ = 0. The solid black lines represent the quadratic
fits to (B), in a, and filled black diamonds are the quadratic extrapolation values at & = 0. The @ — 0 limit values obtained from these
plots are given in Table II.

10 T T T 10 T T T
0=04, g=1. u=2 0=0.4. g=3. u=2
Im[B,] - Im [B,]
Re[Byl o Re[By] o
5+ R 5t 1

20 40 60 80 100 0 20 40 60 80 100
Langevin Time Langevin Time

FIG. 7. The Langevin time history of B for regularization parameter o = 0.4. Simulations were performed for complex superpotential
W' = ig(¢* + u?) with u = 2. In these simulations, we have used adaptive Langevin step size Ar < 107*, thermalization steps
Nperm = 10*, generation steps N gen = 10% and measurements were taken every 100 steps. (Left) g = 1. (Right) g = 3.
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Plot of real (Left) and imaginary (Right) parts of (B), against the regularization parameter, « for supersymmetric potential

W' = ig(¢* + u?). The simulations were performed with parameters g = 1 and u = 2. We have used adaptive Langevin step size
At < 1074, thermalization steps Nyem = 10%, generation steps N gen = 10° and measurements were taken every 100 steps. The dashed
red lines are the linear fits to (B), in a, and filled red squares are the linear extrapolation values at @ = 0. The solid black lines represent
the quadratic fits to (B),, in a, and filled black diamonds are the quadratic extrapolation values at « = 0. The & — 0 limit values obtained

from these plots

are given in Table III.
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FIG. 9. Real (Left) and imaginary (Right) parts of (B), against the regularization parameter « for supersymmetric potential
W' = ig(¢> + u?). The simulations were performed with g =3 and u = 2. We have used adaptive Langevin step size Az < 1074,
thermalization steps Ny,em = 10%, generation steps N, gen = 10° and measurements were taken every 100 steps. The dashed red lines are
the linear fits to (B),, in , and filled red squares are the linear extrapolation values at @ = 0. The solid black lines represent the quadratic
fits to (B),, in a, and filled black diamonds are the quadratic extrapolation values at « = 0. The @ — 0 limit values obtained from these
plots are given in Table III.
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FIG. 10. The scatter plot of field configurations (red dots) and classical flow diagram (arrows) on the ¢ — ¢; plane. The red dots
represent trajectories of the fields during Langevin evolution for superpotential (Left) W' = g(¢? + p?) and (Right) W' = ig(¢?* + u?).
In these simulations, we have used g = 1.0, u = 2.0 and a = 0.4. The first 10> points are plotted with measurements taken every 10?
steps. In both cases, the field start at point (1.5, —1.0) and with the aid of a stochastic noise it drifts toward equilibrium configuration.
Filled circles and squares, represent the stable and unstable fixed points, respectively.
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where g and p are again two parameters in the theory. We
show Langevin time history of the auxiliary B field,
and linear and quadratic extrapolations to @ — 0 limit in
Figs. 7-9, respectively. The results are tabulated in Table III.
We have successfully simulated the complex double-well
superpotential using complex Langevin and our results

strongly suggest that SUSY is preserved for this model.
The results mentioned above can be partly motivated by
classical dynamics, that s, in the absence of stochastic noise.
In Fig. 10, we show the classical flow diagrams on the
¢r — ¢; plane for the above discussed double-well models.
The arrows indicate normalized drift term evaluated at the
particular field point. In the same figure, we have also shown
|

1
Zy=———

V2r J-
(e -1)

% |
=" deg exp |—=W"?
\/271’ /;m ¢ P |: 2

|-

the scatter plot of complexified field configurations. These
plots demonstrate how equilibrium configurations are
attained during complex Langevin dynamics.

B. General polynomial potential

Let us extend our analyses to the case where the
derivative of superpotential, W', is a general polynomial
of degree &,

W = gid* + i1 4+ + go. (50)

The twisted partition function is written as

1
d¢( i _ 1 + W//) exp |:_2W/2:|

dgp W" exp [—%W’Z] (51)

For the second term in the above equation, assuming the coefficients of the polynomial potential to be real, we have

vl

0 k: even.

Upon turning off the external field, the first term of Eq. (51) vanishes, hence

—sgn k: odd
Zieo={ " (53)
0 k: even.
Thus, for a general polynomial superpotential, W’ of the degree even (odd), the SUSY is broken (preserved).
The expectation value of the auxiliary B field is
(B), = / —iW') (e — 1+ W")exp [—lW’z]
“ Z \/271 2
= () dgb W' exp {—l W/Z} / dp WW" exp { W/z} . (54)
Zy V27 J-x 2 Zo\/27 2

The second term of Eq. (54) vanishes for a polynomial
superpotential. (Since we have twisted partition function in
denominator, this term is not indefinite.) Hence, we have

) [ g wrel BV
""f“’qus([/w] = k: odd
e —sgn( gy
Bo=1 T (55)
_lf*‘”('b—f,z k: even.
G
Now, turning external field off, @ — 0,
0 k: odd
_ i [ ’ [*-W/]
<B>a|a—>0 - f d¢W ;é 0 k: even. (56)

[ e

The above expression confirms that SUSY is preserved
(broken) for odd (even) degree of derivative of a real
general polynomial superpotential.

Let us consider polynomial superpotential with real
coefficients. In this case the above argument for SUSY
breaking is valid. Later, we will also discuss a specific
case of complex polynomial potential. For simplicity we
assume that g, = g4_y = -+ = go = 1, then for k =3, 4
we have

Wk=3=¢>+¢*+¢+1, (57)

and

Wihk=4=¢*+d +¢> +¢+ 1. (58)
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FIG. 11. Langevin time history of the field B for @ = 0.4. Simulations were performed for superpotential W’(¢) = gy ¢* + gr_1*~" +
-+ go with g = gy_; = --- = go = 1. In these simulations, we have used adaptive Langevin step size At <5 x 107>, generation
steps Ngen = 107 and measurements were taken every 500 steps. (Left) k = 3 case. (Right) k = 4 case.

We have learned from Eq. (53) and (56) that SUSY
is broken (preserved) for k =4 (k= 3). In Fig. 11 we

extrapolations to a — 0 limit in Fig. 12. The results
are tabulated in Table IV. The simulation results are in

show Langevin time history of (B), for the above  good agreement with the corresponding analytical
two polynomial models. We show linear and quadratic =~ predictions.
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FIG. 12. The expectation value, (B),, against the regularization parameter, « for superpotential W' (¢) = gi* + giei ' + -+ + g0

with g, = g4y = - - = go = 1. (Top-Left) Real part and (Top-Right) imaginary part of (B), for k = 3. (Bottom-Left) Real part and
(Bottom-Right) imaginary part of (B), for k = 4. The simulations were performed with adaptive Langevin step size Az <5 x 107,
thermalization steps Nyem = 5 X 10%, generation steps N, gen = 107 and measurements taken every 500 steps. The dashed red lines are
the linear fits to (B), in a, and red dots are the linear extrapolation value at a = 0. The solid black lines represent the quadratic fits to
(B), in a, and black dots are the quadratic extrapolation value at @ = 0. The @ — 0 limit values obtained from these plots are given in

Table IV.
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FIG. 13.
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The Langevin time history of B for a = 0.4. The simulations were performed for superpotential W' (¢p) = igp(¢p> + u?) with

u = 2. In these simulations, we have used adaptive Langevin step size Az < 5 x 107>, generation steps Noen = 107 and measurements

were taken every 500 steps. (Left) g = 1 case. (Right) g = 3 case.

Now, let us consider the case with complex polynomial
superpotential. We modify the real double-well potential
discussed in the previous section as follows,

W' = igh(p* + ). (59)
In this complex potential case, the argument given in
Eq. (53) and (56) are not valid. We investigate SUSY
breaking using complex Langevin dynamics. In Fig. 13,
we show Langevin time history of the auxiliary B field
for regularization parameter, o = 0.4. We show linear
and quadratic extrapolations to @ — 0 limit in Figs. 14
and 15. The results are tabulated in Table V. Our
simulation results imply that expectation value of aux-
iliary field, (B), does not vanish in the limit, a — 0.
Hence SUSY is broken in this model.

0.002
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Quadratic fit: y=-0.001929*x*x-0.003106*x+7.182e-06 ——
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FIG. 14. Real (Left) and imaginary (Right) parts of (B)

a

C. P7T -symmetric models inspired d-potentials

Let us consider the superpotential

W(e) = -

9 - 1N (2+6)
l ’
(2+9) (ig)
which is the same as the one we considered earlier for the
case of the bosonic models.
The twisted partition function takes the form

(60)

1 ® ia Al
Zy=——= dp (e — 14+ W")el™:
V 27 J -
L[ 4 (e )5l )19
=——=[ dp(e—=1+g(1+5)(ig)°)e" :
27 J-
(61)
3.365 ' Linear fit: y=-0.0316*x+3.36 — — -
Quadratic fit: y=-0.02966"x*x-0.007084*x+3.357 ——
336} ) Im [<B>] 1
N Linear extrapolation —ll—
~ Quadratic extrapolation +——
3.355} T 1
—~ 335} RN
3 RN
/\ r ~
5 3345 SN
E o
= 3.34
3.335
3.33+ J
3.325

0 01 02 03 04 05 06 07 08 09
o

against the regularization parameter, a for supersymmetric potential

W' = iggp(¢* + p?). Simulations were performed with g = 1 and g = 2. We have used adaptive Langevin step size Az <5 x 107,
thermalization steps Nypem = 5 X 10, generation steps N, gen = 107 and measurements were taken every 500 steps. The dashed red lines
are the linear fits to (B),, in a, and red dots are the linear extrapolation value at « = 0. The solid black lines represent the quadratic fits to
(B), in a, and black dots are the quadratic extrapolation value at « = 0. The @ — 0 limit values obtained from these plots are given in

Table V.
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against the regularization parameter, a for supersymmetric potential

W' = igp(¢* + u?). Simulations were performed with g = 3 and u = 2. We have used adaptive Langevin step size Az <5 x 107,

thermalization steps Nypem = 5 X 10, generation steps N, gen = 107 and measurements were taken every 500 steps. The dashed red lines
are the linear fits to (B),, in @, and red dots are the linear extrapolation value at @ = 0. The solid black lines represent the quadratic fits
to (B), in a, and black dots are the quadratic extrapolation value at « = 0. The @ — 0 limit values obtained from these plots are given

in Table V.

The expectation value of the auxiliary field is

(B), = - Zm/ dep (—iW') (el = 1+ W)
« el
1+5
Zm/ dep o)

l+§]

x (¢ =1+ g(1 + 8)(igp)?) el 97 (62)

Let us consider various integer cases of ¢ and check
whether SUSY is broken or preserved in these cases.

For the case, 6 = 0 one can easily perform analytical
evaluations. We have the twisted partition function

r e~

— 1 ( ia 1+ ) 27[
B \V2r g 7

Turning the external field off, @ — 0, we get a nonzero
value for the partition function

Z(t:0[6 = O] = _\/%g\/zzz =-1,

implying that SUSY is preserved in the system.

Z,J6=0] = | 4 g)el4#

(63)

Also we have

(B).f5 =0 = 5= [~ dlian)

X (e — 14 g)el=7¢"]
_ig [, dp p(e® =1 + g)el2r ]

(e =1+ g)ﬁ
_ig [, dp § exp[-59°¢]
2z

7

=0. (65)

Since (B),[6 = 0] = 0, we infer that SUSY is preserved
in the theory when 6 = 0.

For the case 0 =2, we have the twisted partition
function

_ _L h o _ 1 _ 2
2o =2 == [ ape — 1 =300?)

[-1574°]
(eia—l)/“’ 1246
- _ dap el=359°]
Vir |
" dgp el ), (66)

Turning the external field off, @ — 0, we get a nonzero
partition function

074507-13



ANOSH JOSEPH and ARPITH KUMAR PHYS. REV. D 100, 074507 (2019)
30l d= ]I;g [g:]04 - 1 8k S = 21‘2 [g:]04 - i
Re [B,] Re[B,] -
Exact Re [B,] —— 6 Exact Re [B,] —— [
20+ ExactIm [Bg] - - - - [q ExactIm [Bg] - - - -

-

6F ]
-30F A . ‘ ] -8 | ]
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Langevin Time Langevin Time
12 ' ' ' ' ' ' 5=30.0=04 ] ' ' ' ' ' ' 5=4.0.0=04
Im [B,] 6 m[B, - |1
Re [By] Re [By]
ExactRe [B,] —— |] ExactRe [B,] ——
ExactIm [B,] - - - - 4 A ExactIm [By] - - - - |4

s

100 150 200 250 300 350 400 450
Langevin Time

0 50

100 150 200 250 300 350 400 450
Langevin Time

500

FIG. 16. The Langevin time history of field B for & = 0.4. The simulations were performed for superpotential W’ (¢) = —ig(i¢h)!'*+%)
with g = 0.5. In these simulations, we have used adaptive Langevin step size Az <5 x 1075, generation steps Ngen = 107 and
measurements were taken every 500 steps. The plots show & = 1 case (Top-Left), § = 2 case (Top-Right), d = 3 case (Bottom-Left) and

0 = 4 case (Bottom-Right).

3 © 1,246
Zoap=2)= 2% [T ap g eioe

=1, (67)
indicating that SUSY is preserved in the system.
The expectation value of the B field is
Erlo=2 =5 [" sy
“or B Za 27 J-co
x (el — 1 = 3ggp?)el29°¢")
=0, (68)

confirming that SUSY is preserved for the case 6 = 2. One
can perform similar calculations for the case 6 =4 and
show that SUSY is preserved in the theory.

We simulate the d-potential using complex Langevin
dynamics for 6 = 1, 2, 3 and 4. The drift term coming from
the d-potential is

st 9 (1 .
a _ 7 fW’z—ln[e"’—1+W”]
op O <2
— | w"
(eta _ 1 + W//)

~ig?(1 -+ 8) i)+

igd(1+ 8)(ig)™!
(" — 1+ g(1+0)(ig))’

(69)

In Fig. 16 we show the Langevin time history of
the auxiliary B field for 6 =1, 2, 3 and 4. We show
linear and quadratic extrapolations to @ — 0 limit in
Fig. 17 for 6 =1, 3 and Fig. 18 for 6 =2, 4, respec-
tively. The results are tabulated in Table VI and VII.
It is clear from our simulation results that the expect-
ation value of auxiliary field, (B),, vanishes in the
limit @ — 0. Hence we conclude that SUSY is not
broken in the model with §-potential for values of
o=1, 2, 3, 4.
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FIG. 17. The expectation values of B against the regularization parameter, a for superpotential W’(¢p) = —ig(i¢)'*%) with g = 0.5.
(Top-Left) Real part and (Top-Right) imaginary part of (B), for § = 1. (Bottom-Left) Real part and (Bottom-Right) imaginary part of
(B), for 6=3. The simulations were performed with adaptive Langevin step size Az <5 x 1075, thermalization steps
Niperm = 5 x 10*, generation steps Nogen = 107 and measurements taken every 500 steps. The dashed red lines are the linear fits to
(B), in a, and red dots are the linear extrapolation value at @ = 0. The solid black lines represent the quadratic fits to (B),, in @, and black
dots are the quadratic extrapolation value at & = 0. The a — 0 limit values obtained from these plots are given in Table VL

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have successfully used complex Langevin dynamics
with stochastic quantization to investigate supersymmetry
breaking in a class of zero-dimensional N =2 super-
symmetric models with real and complex actions. We
looked at double-well superpotential, general polynomial
superpotential and also P7 -symmetric models inspired
o-potentials. In some cases we were able to cross check the
presence or absence of supersymmetry breaking wherever
analytical results were available. Our simulations strongly
suggest that SUSY is preserved for P7 -symmetric models
inspired d-potentials. We have also investigated the reli-
ability of complex Langevin simulations by monitoring
Fokker-Planck equation as correctness criterion (in
Appendix A 1) and also by looking at the probability
distributions of the magnitude of the drift terms (in
Appendix A 2).

It would be interesting to study complex Langevin
dynamics in the above models, generalized to non-
Abelian cases, for example with SU(N) symmetry.
Supersymmetry may be restored in the large-N limit of
these models. It would also be interesting to explore
spontaneous SUSY breaking when § in the superpotential
is a continuous parameter. Other possibilities include
extending our investigations to 1- and 2-dimensional
models with same superpotentials. These results will
appear in an upcoming work [37].
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FIG. 18. The expectation values of B against the regularization parameter, a for superpotential W'(¢p) = —ig(i¢p)'+9) with g = 0.5.
(Top-Left) Real part and (Top-Right) imaginary part of (B), for 5§ = 2. (Bottom-Left) Real part and (Bottom-Right) imaginary part of
(B), for 6 =4. The simulations were performed with adaptive Langevin step size Az <5 x 1075, thermalization steps
Nperm = 5 x 10*, generation steps Ngen = 107 and measurements were taken every 500 steps. The dashed red lines are the linear
fits to (B),, in @, and red dots are the linear extrapolation value at a = 0. The solid black lines represent the quadratic fits to (B),, in @, and
black dots are the quadratic extrapolation value at @ = 0. The @ — 0 limit values obtained from these plots are given in Table VII.

APPENDIX A: RELIABILITY OF COMPLEX
LANGEVIN SIMULATIONS

In this section we would like to justify the simulations
used in this work. We look at two of the methods proposed in
the recent literature. One is based on the Fokker-Planck
equation as a correctness criterion and the other is based on
the probability distribution of the magnitude of the drift term.

1. Fokker-Planck equation as correctness criterion

The holomorphic observables of the theory O|g, 7]
evolve according to [30,31,41]

00|[¢, 7] e
T = LO[(]’), T}, (Al)
where L is the Langevin operator
- g 0 0
L= o~ 559 -

Once the equilibrium distribution is reached, assuming
that it exists, we can remove the 7 dependence from the
observables. Then we have

(A3)

and this can be used as a criterion for correctness of
the complex Langevin method. This criterion has been
investigated in various models in Refs. [30,31,41]. The
criterion for correctness, in principle, needs to be satis-
fied for a complete set of observables O[¢], in a suitably
chosen basis [31]. It leads to an infinite tower of
identities, which as a collection, resembles to the
Schwinger-Dyson equations.

For the observable O, as the auxiliary B field, we have

LO=LB
iW// Wl//

_ . 2
— —lWW"' lW/WN —m.

(A4)
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FIG. 19. The Langevin time history of LB for regularization parameter, @ = 0.4. Simulations were performed for superpotential
W' = g(¢* +u?) with u =2, g=1 (Left) and g =3 (Right). In these simulations, we have used adaptive Langevin step size
At < 107*, generation steps N, gen = 10° and measurements taken every 100 steps. The exact value is LB = 0 at equilibrium distribution.

we provide the simulated values of (LB), for superpotential
W' = g(¢> + u?) with coupling parameter g = 1, 3 and various
values of regularization parameter, . In Tables IX and X, we
tabulate the simulated values of (LB), for superpotential

We show the Langevin history of the above mentioned
correctness criterion, LB, with regularization parameter
a = 0.4 for the superpotentials W' = g(¢* + p?) and W' =
—ig(ih)'*° in Figs. 19 and 20, respectively. In Table VIII

5=10.0-04 5=20_0=04
1200 | Im[LB,] - 300 Im[LB,] - |7
Re [LBg] o Re [LBy] o
800 1 200 1
400 | ]
3
M 0
—
-400 -100 1
-800 1 -200 1
-1200 | 1 -300 1
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Langevin Time Langevin Time
5=30.0-04 5=4.0.0-04
1200 ¢ Im[LB,| - | 600 Im LB, -
Re LBy - Re [LBy] <
800 1 400 1
400
S
M 0
-
-400 ] -200f
-800 | 1 -400 1
-1200 | 1 -600 B
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Langevin Time Langevin Time

FIG. 20. The Langevin time history of LB for regularization parameter, « = 0.4. Simulations were performed for superpotential
W' (¢) = —ig(igp)1+?) with g = 0.5 for various values of delta: § = 1 (Top-Left), § = 2 (Top-Right), § = 3 (Bottom-Left) and 6 = 4
(Bottom-Right). In these simulations, we have used adaptive Langevin step size Az <5 x 107>, generation steps Ngen = 107 and
measurements taken every 500 steps. The exact value at equilibrium distribution is LB = 0.
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FIG.21. The probability distribution P(u) of the magnitude of the drift term u for the superpotential W’(¢) = g(¢* + ) on a log-log
plot. Simulations were performed for g = 1.0 (Left) and g = 3.0 (Right) with 4 = 2.0. We used adaptive Langevin step size Az < 1074,
and generation steps Ny, = 10°.

W(¢) = — ig(icﬁ)“*‘” with coupling parameter g = 0.5and  at the probability distribution P (u) of the magnitude of the
various values of regularization parameter, a. drift term u at large values of the drift. We have the
magnitude of the drift term

2. Decay of the drift terms oS

Another method to check the correctness of the complex = | (AS)
Langevin dynamics, as proposed in Refs. [42,43], is to look

2 2
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a=04 —— o=0.05 ——
1 = 1 o=0.1
10y ot 10 ot
=07 0=04
=08 o=0.6
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FIG. 22. The probability distribution P(u) of the magnitude of the drift term u for the superpotential W’ (¢) = —ig(i$p)!'*® on a
log-log plot. Simulations were performed for & = 1 (Top-Left), d = 2 (Top-Right), 6 = 3 (Bottom-Left) and 6 = 4 (Bottom-Right) with
coupling constant g = 0.5. We used adaptive Langevin step size At <5 x 10~ and generation steps Ngen = 107.
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In Refs. [42,43] the authors demonstrated, in a few
simple models, that the probability of the drift term should
be suppressed exponentially at larger magnitudes in order
to guarantee the correctness of complex Langevin method.
However, in the models we investigated in this work we see
that the probability distribution falls off like a power law
with u, even though we have excellent agreements with
corresponding analytical results, wherever applicable. In

Fig. 21 we show the probability distribution P(u) against u
for the superpotential W'(¢p) = g(¢p> + u*) on a log-log
plot. In Fig. 22 we show the probability distribution P(u) of
the magnitude of drift term u for superpotential W' (¢) =
—ig(ip)1+%) on a log-log plot. In both cases we see that the
distribution falls off like a power law for large u values.
This needs further investigations, and we save it for
future work.

APPENDIX B: SIMULATION DATA TABLES

TABLE II. The expectation values (B), obtained using com-
plex Langevin simulations for the model with superpotential

TABLE IV. The expectation values (B), obtained using com-
plex Langevin simulations for the models with superpotentials

W' = g(¢* + p?). In the limit @ — 0, (B), # 0. Thus SUSY is ~ W =g, ¢+ g ¢ ' +---+g, with gy =g = =gy =1
broken in this model. and k = 3, 4.
w! i g a (B)|, k a (B)|, SUSY
g(@*+u2) 20 1.0 005 —0.0003(12) - i4.2250(72) 3 0.05 0.0083(15) — i0.0018(447) Preserved
0.1 —0.0015(23) — i4.2283(72) 0.1 0.0162(24) — i0.0023(443)
02  —0.0056(37) — i4.2261(72) 0.2 0.0275(37) — i0.0030(454)
0.4  —0.0025(65) — i4.2065(72) 0.4 0.0531(57) + i0.0121(440)
0.6 0.0076(62) — i4.1820(74) 0.6 0.0677(71) — i0.0078(428)
0.8 0.0077(61) — i4.1537(74) 0.8 0.0789(82) — i0.0177(437)
a—0 —0.0003(35) — i4.2340(123) a—0 0.0025(40) — i0.0024(761)
3.0 0.05 0.0001(1) — i12.0820(11) 4 0.05 —0.0010(10) — i1.2774(70) Broken
0.1 0.0001(2) — i12.0813(11) 0.1 —0.0032(20) — i1.2738(71)
0.2 0.0000(4) — i12.0796(11 0.2 —0.0158(36) — i1.2649(76)
0.4 0.0002(7) — i12.0735(1 1) 0.4 —0.0425(62) — i1.2571(80)
0.6 0.0006(9) — i12.0662(11) 0.6 —0.0519(81) — i1.2373(86)
0.8 0.0004(10) — i12.0567(11) 0.8 —0.0719(85) — i1.2044(98)
a—0  0.0001(4)—i12.0840(18) a—0 0.0044(31) — i1.2800(126)

TABLE III. The expectation values (B), obtained using com-
plex Langevin simulations for the model with superpotential
W' = ig(¢* + u?). We see that, in the limit @ — 0, (B), = 0.
Thus SUSY is preserved in this model.

TABLE V. The expectation values (B), obtained using com-
plex Langevin simulations for the model with superpotential
W' = igp(¢* + u?) with g = 1, 3 and u = 2. We see that SUSY
is broken in this model.

4 o9 a (B)la

ig(¢> +42) 20 1.0 005 —0.0018(41) — i0.0006(337)
0.1  —0.0020(41) + i0.0008(337)
02  —0.0026(41) + i0.0035(336)
04  —0.0049(41) + i0.0084(336)
0.6  —0.0084(40) + i0.0123(338)
0.8  —0.0125(40) + i0.0150(337)
a—0 —0.0009(70) — i0.0017(576)

30 005  0.0002(5)+ i0.0009(133)

0.1 0.0002(5) + i0.0011(133)

02 0.0001(5) + i0.0014(133)

0.6  —0.0005(5) + i0.0026(133)
08  —0.0009(5) + i0.0031(133)

5)
5)
5)
04 —0.0001(5) + i0.0021(133)
(5
(5
0.0003(9) + i0.0008(227)

a—0

w’ g «a (B)la

igh(¢* +u?) 20 1.0 005  —0.0002(3) + i3.3561(23)
0.1  —0.0003(4) + i3.3562(23)
02  —0.0008(7) + i3.3553(23)
04  —0.0015(12) + i3.3482(24)
0.6  —0.0026(15) + i3.3428(24)
0.8  —0.0037(17) + i3.3322(24)

a—0  0.0000(8) + i3.3585(40)
3.0 005  0.0000(0) + i9.3434(7)
0.1 0.0000(0) + 9.3430(7)
02 —0.0000(0) + i9.3425(7)
04  —0.0002(2) + i9.3408(7)
0.6  —0.0005(2) + i9.3380(7)
08  —0.0007( (

3) +i9.3352(8)
) + i9.3440(13)

a—0

0.0000(1
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TABLE VI. The expectation values (B), obtained using com-
plex Langevin dynamics for the models with superpotential

W' (p) = —ig(ip)'+) with g = 0.5 ad § = 1, 3, respectively.

TABLE VIII. The expectation values (LB), obtained using
complex Langevin simulations for the models with superpotential

W' = g(¢* +u?).

8 a (B)|, SUSY w’ g o« (LB)|,
1.0 0.4 —0.2498(224) — i0.2109(487) Preserved g(¢2 + /42) 20 1.0 0.05 —0.0019(78) + i0. 0020(1379)
0.5 —0.2580(202) — i0.2998(450) 0.1 —0.0133(130) + i0.0792(1388)
0.6 —0.2617(186) — i0.3504(420) 0.2 —0.0322(264) + i0.0996(1368)
0.7 —0.2726(172) — i0.3719(403) 04 —0.0090(420) + i0.0486(1329)
0.8 —0.2858(160) — i0.3998(391) 0.6 —0.0852(685) — i0.0191(1444)
0.9 —0.3113(149) — i0.3978(391) 0.8 —0.0252(539) +i0.0264(1258)
a—0 —0.2433(2213) + i0.0742(5080) a—0 0.0023(230) + 0. 0555(2357)
3.0 0.3 0.0567(32) + 0. 4452(566) Preserved 3.0 0.05 0.0257(250) — i0.0304(1561)
0.4 0.0738(32) + 0.4544(538) 0.1 —0.0682(724) + i0.0222(1660)
0.5 0.0870(34) + i0.4387(475) 0.2 0.0678(966) — i0.0088(1712)
0.6 0.0961(43) + i0.4284(416) 04 0.1330(1656) + i0.2933(2790)
0.7 0.1034(53) + i0.3946(441) 0.6 0.0816(2031) + i0.4755(2733)
0.8 0.1027(64) + i0.3539(398) 0.8 —0.2429(1627) +i0.1306(1682)
a—0 0.0054(311) + 0. 3625(4025) a—0 0.0098(778) — i0.0840(3020)
TABLE VII. The expectation values <B>a obtained using TABLE IX. The simulated values of ZBa for the models with

complex Langevin dynamics for the models with superpotential
W' () = —ig(ip)'+) with g = 0.5 and & = 2, 4, respectively.

superpotential W’(¢) = —ig(i¢p)!'*%), with coupling parameter
g=0.5and 6 = 1, 3, respectively.

B a (B)|, SUSY 5 a (LB)|,
2.0 0.05 0.0014(36) — i0.0609(1416) Preserved 1.0 0.4 —0.6263(3592) + i0.0042(3062)
0.1 0.0102(50) — i0.1986(1101) 0.5 —0.1442(2127) + i0.0202(1752)
0.2 0.0079(80) — i0.0679(1004) 0.6 —0.0239(1517) + i0.0400(1375)
0.4 0.0134(96) — i0.0627(701) 0.7 0.0198(1192) + i0.0387(1171)
0.6 0.0079(120) — i0.0208(655) 0.8 —0.0107(1169) + i0.0494(988)
0.8 —0.0068(126) + i0.0294(595) 0.9 —0.0401(990) + i0.0104(915)
a—=0 0.0019(84) — i0.1423(1932) a—0 -1.2716(2.421) — i0.1173(2.122)
4.0 0.05 —0.0005(20) — i0.0155(1257)  Preserved 3.0 0.3 0.1846(5176) + i0.1366(3738)
0.1 —0.0017(37) — i0.0435(1043) 0.4 —0.3282(1845) + i0.0443(3164)
0.2 0.0059(48) + i0.0787(817) 0.5 —0.2215(1856) + i0.1869(2377)
0.4 0.0016(64) + i0.0108(648) 0.6 —0.2046(1456) + i0.2870(1969)
0.6 0.0132(70) + i0.0761(526) 0.7 0.0022(1476) + i0.2841(2076)
0.8 0.0063(68) + i0.0258(418) 0.8 —0.0483(1412) + i0.1976(1960)
a—0  —0.0018(48) —i0.0092(1712) a—0 -0.3031(2.181) — i0.2210(2.335)

TABLE X. The simulated values of LB, for the models with superpotential W' (¢p) = —ig(igh)('+?), with coupling
parameter g = 0.5 and § = 2, 4, respectively.

6 a (LB)],
2.0 0.05 0.0036(49) — i0.1572(1315)
0.1 0.0082(94) — i0.2145(1273)
0.2 0.0113(156) — i0.1480(1359)
0.4 0.0066(246) — i0.1409(1300)
0.6 —0.0014(312) — i0.1029(1280)
0.8 —0.0023(348) — i0.1132(1245)
a—0 0.0034(142) — i0.1906(2223)
4.0 0.05 —0.0086(127) + i0.3919(2944)
0.1 —0.0292(202) + i0.3050(2945)
0.2 —0.0127(310) + i0.5222(2910)
0.4 0.0295(503) + i0.4377(2889)
0.6 0.0497(595) + i0.3674(2690)
0.8 —0.0781(1796) + i0.1504(3194)
a—0 —0.0171(361) + i0.3794(5019)
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