
 

String confinement in two-form lattice gauge theory

Tomoya Hayata 1 and Arata Yamamoto2
1Nishina Center, RIKEN, Wako 351-0198, Japan

2Department of Physics, The University of Tokyo, Tokyo 113-0031, Japan

(Received 3 September 2019; published 15 October 2019)

We study the confinement between vortex strings in the lattice gauge theory of the dual Abelian
Higgs model. The dual lattice gauge theory is described by a two-form gauge field coupled with a one-form
gauge field. We calculate the string-antistring potential from the surface operator of the two-form gauge
field. The linear confining potential appears in the string confinement phase, and it disappears in the string
deconfinement phase. The phase diagram of the theory is also obtained.
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I. INTRODUCTION

A quantum vortex string is a one-dimensional topologi-
cal soliton. The existence of vortex strings was exper-
imentally confirmed in superconductors [1] and superfluids
[2]. It is also believed to exist in compact stars [3] and the
Universe [4]. The circulation around a vortex string is
quantized due to the single valuedness of a field variable.
The quantized circulation is topologically protected, and
thus, the vortex string is stable. The stability ensures the
description as quasiparticles, e.g., interaction and dynamics
of vortex strings.
The field theory with vortex strings is a dual to anti-

symmetric rank-2 tensor, i.e., two-form, gauge theory. The
world sheets of vortex strings are described by the surface
operator of a two-form gauge field. This is an analog of the
Wilson loop operator in one-form gauge theory. The
Wilson loop operator corresponds to the world lines of
charged particles. The expectation value of the Wilson loop
operator tells us the interaction, e.g., the confinement,
between the particles. Similarly, the interaction between the
vortex strings can be investigated from the surface operator
of the two-form gauge field.
The two-form gauge theory can be nonperturbatively

formulated by lattice regularization [5–10]. This is a
higher-form generalization of the conventional lattice
gauge theory, i.e., the lattice regularization of one-form
gauge theory. The higher-form lattice gauge theory is
sometimes called lattice gerbe theory [11,12]. The two-
form lattice gauge theory enables us to study nonperturba-
tive properties of a vortex string from first principles.

Although the vortex string is frequently studied in semi-
classical analysis, it misses quantum fluctuation. First-
principles analysis is necessary to take into account
quantum fluctuation, e.g., percolation [13–16] and super-
position [17,18]. Such an analysis is particularly important
near phase transitions or in finite volumes, where quantum
fluctuation is non-negligible.
In this work, we study the confinement phenomenon in

two-form lattice gauge theory. In Sec. II, we review the
lattice formulation of two-form gauge theory. We consider
the two-form gauge theory coupled with a one-form gauge
field. This theory is dual to the Abelian Higgs model in
the continuum limit [19]. The theory exhibits the confine-
ment-deconfinement phase transition of vortex strings. We
confirm this based on two analyses. In Sec. III, we define
the Wilson surface operator and calculate the potential
between a string and antistring. In Sec. IV, we draw the
phase diagram of this theory by calculating a susceptibility.

II. ABELIAN TWO-FORM LATTICE
GAUGE THEORY

We consider a novel lattice gauge theory in four-
dimensional Euclid spacetime. The theory contains two
kinds of Abelian gauge fields: the one-form gauge field
AμðxÞ and the two-form gauge field BμνðxÞ. The one-form
gauge field is defined as a link variable between x and
xþ μ̂,

UμðxÞ ¼ eiaAμðxÞ: ð1Þ

Here, x denotes a site in a hypercubic lattice, μ̂ denotes the
unit vector along the μ direction, and a is lattice spacing.
The two-form gauge field is defined as a plaquette variable
whose vertices are at x, xþ μ̂, xþ ν̂, and xþ μ̂þ ν̂,

ΓμνðxÞ ¼ eia
2BμνðxÞ: ð2Þ
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These variables are U(1) elements. The lattice action is
constructed from these variables as

Slat ¼ κ
X
x;μ<ν

�
1 −

1

2
ðŨμνðxÞ þ Ũ†

μνðxÞÞ
�

þ β
X

x;μ<ν<λ

�
1 −

1

2
ðΓμνλðxÞ þ Γ†

μνλðxÞÞ
�
; ð3Þ

with

UμνðxÞ ¼ U†
νðxÞU†

μðxþ ν̂ÞUνðxþ μ̂ÞUμðxÞ; ð4Þ

ŨμνðxÞ ¼ UμνðxÞΓμνðxÞ; ð5Þ

ΓμνλðxÞ ¼ Γ†
λμðxþ ν̂ÞΓ†

νλðxþ μ̂ÞΓ†
μνðxþ λ̂Þ

× ΓλμðxÞΓνλðxÞΓμνðxÞ: ð6Þ

Here, κ and β are dimensionless coupling constants. In the
continuum limit, this lattice gauge theory is dual to the
Abelian Higgs model [19].
This theory has two kinds of local gauge symmetry. The

one-form gauge transformation is defined with a unitary
matrix eiθðxÞ as

UμðxÞ → eiθðxþμ̂ÞUμðxÞe−iθðxÞ: ð7Þ

The minimal gauge-invariant observable is the plaquette
operator Uμν. Since the action is written only by Uμν, it is
manifestly invariant under the one-form gauge transforma-
tion. The two-form gauge transformation is defined with a
unitary matrix eiλμðxÞ as

ΓμνðxÞ → eiλνðxÞeiλμðxþν̂ÞΓμνðxÞe−iλνðxþμ̂Þe−iλμðxÞ ð8Þ

and simultaneously

UμðxÞ → eiλμðxÞUμðxÞ: ð9Þ

The minimal gauge-invariant observable is the plaquette
operator Ũμν and the unit cube operator Γμνλ. Since the
action is written by Ũμν and Γμνλ, it is manifestly invariant
under the two-form gauge transformation.
The expectation value of an operator Ô is given by using

the path integral as

hÔi ¼
R
DAμDBμνe−SlatOR
DAμDBμνe−Slat

: ð10Þ

Since e−Slat is real and positive, we can compute hÔi on the
basis of the standard techniques of Monte Carlo sampling.
In this work, we generated gauge configurations by the heat

bath algorithm. We also adopted the over-relaxation
method [20] between the heat bath updates.

III. INTERSTRING POTENTIAL

Before discussing the interstring potential in the two-
form lattice gauge theory, let us recall the interparticle
potential in one-form lattice gauge theory. Considering a
rectangle with length r and width T in the μ-ν plane, we can
construct a gauge-invariant observable as

WLðr;TÞ¼hU†
νðx;TÞU†

μðxþTν̂;rÞUνðxþrμ̂;TÞUμðx;rÞi
ð11Þ

with

Uμðx; rÞ ¼ Πr−1
l¼0Uμðxþ lμ̂Þ: ð12Þ

The schematic figure is shown in Fig. 1. This is the so-
called Wilson loop. The Wilson loop corresponds to the
world lines of an infinitely heavy particle and antiparticle.
The ground state energy of the particle-antiparticle pair,
i.e., the interparticle potential, is obtained by

aVqðrÞ ¼ lim
T→∞

log
WLðr; TÞ

WLðr; T þ 1Þ : ð13Þ

The area law of the Wilson loop gives the linear confining
potential between the particles. We remark here that this
Wilson loop is always zero in our two-form lattice gauge
theory because it is not gauge invariant under the two-form
gauge transformation. In terms of the Abelian Higgs model,
this implies the gauge dependence of magnetic monopoles.
This potential calculation can be generalized to the two-

form lattice gauge theory. Considering a cuboid with the
length r, width L, and height T in the μ-ν-λ space, we can
construct a gauge-invariant observable as

T

T

L

r r

FIG. 1. Wilson loop (left) and Wilson surface (right). In the
Wilson loop, the two red lines correspond to the trajectories of a
particle and an antiparticle. In the Wilson surface, the two red
surfaces correspond to the trajectories of a vortex string and an
antivortex string. The blue lines and surfaces connect these
trajectories to make the operators gauge invariant.
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WSðr; L; TÞ
¼ hΓ†

λμðxþ Lν̂; T; rÞΓ†
νλðxþ rμ̂; L; TÞΓ†

μνðxþ Tλ̂; r; LÞ
× Γλμðx; T; rÞΓνλðx; L; TÞΓμνðx; r; LÞi ð14Þ

with

Γμνðx; r; LÞ ¼ Πr−1
l¼0ΠL−1

m¼0Γμνðxþ lμ̂þmν̂Þ; ð15Þ

as shown in Fig. 1. In the limit of L → ∞, this Wilson
surface corresponds to the world sheets of an infinitely
heavy and infinitely long string and antistring. The ground
state energy is obtained by

aVSðrÞ¼ lim
T;L→∞

log
WSðr;L;Tþ1ÞWSðr;Lþ1;TÞ
WSðr;L;TÞWSðr;Lþ1;Tþ1Þ : ð16Þ

This is the interstring potential per unit length. The volume
law of the Wilson surface gives the linear confining
potential between the strings.
We computed the Wilson surface in the Monte Carlo

simulation. The lattice volume is V ¼ 164. The APE
smearing was employed to compute the interstring poten-
tial efficiently [21]. The result is shown in Fig. 2. At small
κ, we clearly see the linearly rising potential. This is
interpreted as the confinement between a string and anti-
string. We call it “string confinement” to distinguish it from
the ordinary confinement between point particles. The
linear potential disappears as κ increases, which means
“string deconfinement.” This result suggests a new type of
the phase transition characterized by the (de-)confinement
of extended objects. This is the main result of this paper.
The numerical calculation was done in finite interstring

distance. Does the linear confining potential persist in
infinite distance? To answer this question, let us introduce
another gauge-invariant observable

W0
Sðr; L; TÞ ¼ hŨνλðx; L; TÞŨ†

νλðxþ rμ̂; L; TÞi ð17Þ

with

Ũμνðx; r; LÞ ¼ Πr−1
l¼0ΠL−1

m¼0Ũμνðxþ lμ̂þmν̂Þ: ð18Þ

The physical picture of this observable is the world sheets
of a string and antistring attached with the one-form gauge
field. Since the string and antistring are independently
gauge invariant, they are not confined but weakly coupled.
In this theory, WSðr; L; TÞ and W0

Sðr; L; TÞ have the same
quantum number. The two states, the confined and non-
confined states, are mixed. Since the ground state is the one
with lower energy, the nonconfined state will be favored in
large distance. Therefore, the corresponding potential will
not be linear but constant. This is the same as the string
breaking in quantum chromodynamics. The potential
between a quark and antiquark is linear in short distance
but constant in long distance. The confining string con-
necting the quark and antiquark is broken by dynamical
quark-antiquark pair creation. In our case, the confining
surface connecting a string and antistring will be broken by
the one-form gauge field in the long-range limit. This
should be called “surface breaking.” The critical distance rc
where the surface breaking takes place can be estimated
by the energy balance relation VSðrcÞ ¼ 2M. Here, M is
the mass of one gauge-invariant string defined by
limT;L→∞hŨνλðx; L; TÞi ∝ expð−MLTÞ. In this simulation,
the typical values are 2aM ≃ 0.38 at β ¼ 4.1 and
κ ¼ 1.035, 2aM ≃ 0.14 at β ¼ 4.1 and κ ¼ 1.065, and
2aM ≃ 0.13 at β ¼ 4.1 and κ ¼ 1.105. We see that the data
in Fig. 2 are below the critical distance. The direct
simulation of the surface breaking would be an interesting
future work. In principle, bothWSðr; L; TÞ andW0

Sðr; L; TÞ
can give the same correct result in the limit T; L → ∞.
In practice, however, special treatment is necessary for
technical reasons [22].

IV. PHASE DIAGRAM

We draw the phase diagram of this theory in the
parameter space of κ and β. We calculated the susceptibility

χκ ¼
1

V

��∂Slat
∂κ −

�∂Slat
∂κ

��
2
�

ð19Þ

to determine the position and the order of the phase
transition. Parallel tempering was employed to compute
χκ [23]. As examples, we show the volume dependence of
χκ at β ¼ 4.0 and 4.1 in Fig 3. At β ¼ 4.1, we observed the
double peak structure implying metastable states and the
volume growth of the susceptibility χκ ∝ V. Both are strong
evidence of the first-order phase transition.
The obtained phase diagram is shown in Fig. 4. The

finite-size scaling analysis was done for three lattice

FIG. 2. Interstring potential with β ¼ 4.1, and various κ. The
confining linear potential is clearly seen in the confinement phase
at small κ, while it disappears in the deconfinement phase at
large κ.
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volumes V ¼ 124, 144, and 164. There are two phases: the
string confinement phase and the string deconfinement
phase. In small β, the two phases are smoothly connected
by a crossover. In large β, the two phases are separated by a
first-order phase transition. In the limit of β → ∞, the
lattice action (3) reduces to the conventional one-form

compact U(1) gauge action. There must be a first-order
phase transition in this limit. This is consistent with our
observation. The first-order phase-transition line ends at a
critical point. The position of the critical point was
estimated as κc ≃ 1.036 and βc ≃ 4.1.
This is the phase diagram in the case of the unit charge.

The theory can be generalized to the charge N representa-
tion by replacing Ũμν ¼ UμνΓμν → UμνðΓμνÞN in the lattice
action (3). This is analogous to the phase diagram with the
charge-N Higgs field [24]. The phase diagram for the
chargeN > 1would be more interesting because the theory
has ZN topological order.
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