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The pressure and energy density of the quark-gluon plasma at finite baryon chemical potential are
calculated using the complex Langevin equation. The stout smearing procedure is generalized for the
SLð3; CÞ manifold allowing the usage of an improved action in the complex Langevin setup. Four
degenerate flavors of staggered quarks with mπ ¼ 500–700 MeV are used with a tree-level Symanzik
improved gauge action on 163 × 8 lattices. Results are compared to the Taylor expansion and good
agreement is found for small chemical potentials.
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I. INTRODUCTION AND OVERVIEW

The strong interactions are described by quantum
chromodynamics (QCD). The determination of the QCD
phase diagram is one of the great challenges of the
theoretical study of this theory. It is phenomenologically
relevant in many areas, such as in the early Universe, in
relativistic heavy-ion collision experiments as well as in
astronomy describing neutron stars. The lattice discretiza-
tion of the theory allows for the precise calculation of the
equation of state (EoS), the exploration of the hadronic and
the quark-gluon plasma phase at zero baryonic density and
the phase transition between them [1–3]. The EoS of the
QCD matter can be calculated on the lattice using various
methods. Usually the partition function is constructed by
measuring its derivatives and integrating from a starting
point at vacuum [4,5], but other approaches are also
available [6–9]. However, the lattice formulation of QCD
suffers from a problem at nonzero chemical potential: the
partition sum of the theory is written in terms of a complex
measure due to the fermion determinant, thus the standard
importance sampling approaches are invalid. This is called
the QCD sign problem. Several different strategies have
been proposed to circumvent the sign problem (see reviews
[10–13]). The EoS at μ > 0 is traditionally calculated via
Taylor expansion or reweighting [14–19] and analytical
continuation [20,21]. In this study the complex Langevin
equation (CLE) is used to carry out simulations directly
at μ > 0.

The complexification of the Langevin equation was
proposed long ago [22,23]. The idea is to circumvent the
sign problem by complexifing the field manifold of the
theory and defining a stochastic process on this manifold
using analiticity. After an initial excitement it was noticed
that the Complex Langevin equation sometimes gives
wrong results [24,25] and also practical problems (run-
away trajectories) appeared. Recently, the method has
enjoyed renewed attention and many of its problems have
been solved. It has been proved that provided the action is
holomorphic and the distributions of the variables decay
fast enough, the complex Langevin equation will con-
verge to the correct results [26–28]. In a recent study
it has been proposed that using a certain observable
the magnitude of the “boundary term” at infinity can be
estimated [29], with an observable that is cheap to
calculate also for lattice systems [30]. Gauge theories
pose an additional problem: the complexification of the
gauge degrees of freedom, which in turn leads to large
fluctuations and the breakdown of the simulation. The
procedure of gauge cooling [31,32] was introduced to
mitigate this problem. With the help of gauge cooling it
became possible to simulate HDQCD (heavy dense QCD)
where the quarks are kept static [31,32], as well as full
QCD using light quarks in the staggered [33–38] and the
Wilson formulation [39], as well as QCD with a theta
term [40].
Reaching is the continuum limit in lattice calculations is

a nontrivial task. The usual strategy is to use improved
actions which are more expensive numerically but they
ensure a quicker convergence. Using an improved gauge
action with CLE is straightforward, but fermionic improve-
ments can be more involved. In this paper the stout
smearing procedure [41] is generalized to ensure appli-
cability in the complex Langevin setup.
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In Sec. II a brief overview of the complex Langevin
method is given. In Sec. III the strategy of the calculation of
the pressure and energy density is discussed. Afterwards,
the stout smearing procedure is generalized to the com-
plexified manifold of the link variables in Sec. IV. In Sec. V
the numerical results are presented. Finally, conclusions are
offered in Sec. VI.

II. THE COMPLEX LANGEVIN EQUATION

The Langevin equation for Ux;ν ∈ SUðNÞ, the link
variables of a gauge theory, in discretized form with
Langevin timestep ϵ is written as [42]:

Ux;νðτ þ ϵÞ ¼ exp

�
i
X
a

λaðϵKaxν þ
ffiffiffi
ϵ

p
ηaxνÞ

�
Ux;νðτÞ; ð1Þ

with λa the generators of the gauge group, i.e., the Gell-
Mann matrices, the drift force Kaxν ¼ −ðDaxνρ½U�Þ=ρ½U�
calculated from the measure ρ using the left derivative

DaxνfðUÞ ¼ ∂αfðeiαλaUx;νÞjα¼0: ð2Þ

For a complex measure the drift terms become complex
with Kaxν ∈ C. The manifold of the link variables is then
complexified to SLð3; CÞ. In the case of lattice QCD with
fermions the action is written as

Seff ¼ Sg − ln detMðμÞ; ð3Þ

with the determinant of the fermionic Dirac matrix MðμÞ.
The measure e−Seff ¼ e−Sg detMðμÞ generally has zeroes on
the complexified field manifold, resulting in meromorphic
drift terms. Simulating such a theory with the CLE can
potentially lead to incorrect results. It has been shown that
in the case of QCD at large temperatures these zeroes are
not reached by the process, thus the formal justification of
the complex Langevin method goes through [43].
The nonunitarity of the link variables can be monitored

using the unitarity norm

1

4Ω

X
x;μ

TrððUx;μUþ
x;μ − 1Þ2Þ; ð4Þ

where Ω ¼ N3
sNt is the space-time volume of the lattice.

The uncontrolled growth of the unitarity norm observed in
naive complex Langevin simulations can be countered
using complexified gauge transformations after each update
such that the unitarity norm is decreased, i.e., gauge cooling
[31,32] (see also [44] for the inclusion of gauge cooling
into the formal proof of correctness). It has been observed
that gauge cooling is effective as long as the β parameter of
the theory is not too small [45]. The minimal β corresponds
to a maximal lattice spacing, such that the continuum limit

can be carried out in the safe region, allowing the mapping
of the phase diagram of the HDQCD theory [46].
In this study the naive plaquette and staggered action is

used as well as the tree-level Symanzik improved gauge
action with stout smeared staggered fermions [41]. The
implementation of the gauge actions is straightforward: one
ensures the holomorphicity of the action by replacing the
matrix adjungate with the matrix inverse for the plaquette
and extended plaquette variables appearing in the action.
The naive fermionic drift is calculated with the help of
noise vectors [33], and the implementation of the stout
smearing is detailed in Sec. IV.

III. THERMODYNAMICS AT NONZERO
CHEMICAL POTENTIAL

Using the grand canonical ensemble the pressure in
units of T4 is calculated from the grand partition function
ZðT; μÞ:

p
T4

¼ lnZ
VT3

ð5Þ

For the purposes of this study we assume that the
pressure calculation at zero chemical potential has been
carried out by some method. Our primary interest here is
the change of the pressure as the chemical potential is
increased at a fixed temperature, since a direct calculation
at μ > 0 is not possible with the usual importance sampling
simulations

Δ
�
p
T4

�
¼ p

T4

����
T;μ

−
p
T4

����
T;μ¼0

: ð6Þ

Usually one Taylor-expands this difference at μ ¼ 0 to
allow calculations of the coefficients using Monte-Carlo
simulations [16,17]

Δ
�
p
T4

�
¼

X
n>0;even

cnðTÞ
�
μ

T

�
n
; ð7Þ

with

cnðTÞ ¼
1

n!
N3

t

N3
s

∂n lnZ
∂ðμNtÞn

����
μ¼0

: ð8Þ

From the symmetry of the partition function ZðμÞ ¼ Zð−μÞ
we see that only the even coefficients c2k are nonzero. The
derivatives in cn can be expressed as expectation values of
traces of operators involving M−1 and ∂μM, measured at
μ ¼ 0. For example, c2 is evaluated using

∂2 lnZ
∂μ2 ¼

�
NF

4

∂2 lndetM
∂μ2

	
þ
��

NF

4

∂ lndetM
∂μ

�
2
	
; ð9Þ
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where the derivatives of ln detM are given by

∂ ln detM
∂μ ¼ TrðM−1∂μMÞ

∂2 ln detM
∂μ2 ¼ TrðM−1∂2

μMÞ − TrðM−1ð∂μMÞM−1∂μMÞ:

ð10Þ

Higher derivatives involving more and more terms and
higher powers of M−1 and ∂μM can be found in e.g., [17].
Using the complex Langevin equation we can simulate at

nonzero chemical potential so the pressure is accessible as:

Δ
�
p
T4

�
¼ lnZðT; μÞ − lnZðT; 0Þ

VT3

¼ 1

VT3

Z
μ

0

dμ0
∂ lnZðT; μ0Þ

∂μ0
¼ 1

VT3

Z
μ

0

dμ0Ωnðμ0Þ; ð11Þ

where we have defined the charge density (using the space-
time volume Ω ¼ N3

sNt)

n ¼ 1

Ω
∂ lnZ
∂μ ¼ Nf

4Ω
hTrðM−1∂μMÞi ð12Þ

This means we can calculate the pressure at high chemical
potentials at the cost of measuring the density at several
chemical potentials in between and performing the inte-
gral (11). The density is a cheap observable with relatively
small fluctuations. In contrast, for the Taylor expansion
one needs to measure the cn coefficients at μ ¼ 0, however
these are quite costly, as they involve many inversions as n
increases, and they tend to be very noisy with increasing
n, such that state of the art calculations can measure
coefficients up to c6 with a great effort [19], but also other
approaches exist based on imaginary chemical potentials
[47,48]. The extrapolated results to μ > 0 have error bars
increasing such that they quickly lose predictive power
above μ=T ∼ 1.
Once the pressure is calculated, i.e., the grand partition

function is reconstructed, other thermodynamical observ-
ables can be calculated from it using various derivatives.
The μ dependence of the density and fluctuations of the
density can be directly measured in a simulation at the μ
value of interest. Below the calculation of the energy
density is detailed, the calculation of further quantities
such as entropy density, speed of sound, charge suscep-
tibilities, etc., is beyond the scope of this study.
The energy density ϵ can be accessed from the grand

partition function through the trace anomaly

ϵ − 3p
T4

¼ −
1

VT3
a

�∂β
∂a

�
LCP

�∂ lnZ
∂β þ

�∂m
∂β

�
LCP

∂ lnZ
∂m

�
;

ð13Þ

where β and m are the bare parameters of the action, and
this formula is also valid at μ > 0 [16]. As indicated, the
derivatives in the formula above are understood to be
defined along the line of constant physics (LCP), where the
pion mass is kept fixed in physical units. In the importance
sampling formulation Eq. (13) is Taylor expanded in μ
similarly to the pressure. For the first nonzero coefficient
of the Taylor expansion (at the second order) one then
measures the observables

∂3 lnZ
∂β∂μ2 ;

∂3 lnZ
∂m∂μ2 ; ð14Þ

using

∂hOi
∂β ¼ −

�
O
∂Sg
∂β

	
þ hOi

�∂Sg
∂β

	
;

∂hOi
∂m ¼

�∂O
∂m

	
þ ΩhOχi −ΩhOihχi ð15Þ

with the chiral condensate χ ¼ ðNF=4ΩÞ∂ ln detM=∂m. In
the complex Langevin setup however the μ dependence

Δ
�
ϵ − 3p
T4

�
¼ ϵ − 3p

T4

����
μ

−
ϵ − 3p
T4

����
μ¼0

ð16Þ

can be directly calculated using two simulations at the
μ value of interest and at μ ¼ 0. The observables
needed for this calculation are the gauge action average
hSgi ¼ −∂ lnZ=∂β and the chiral condensate χ ¼
ð∂ lnZ=∂mÞT=V. The beta function að∂β=∂aÞLCP and
the derivative ð∂m=∂βÞLCP can be estimated by indepen-
dent simulations at zero temperature and μ ¼ 0.

IV. STOUT SMEARING

To use stout smearing in complex Langevin simulations,
we must generalize its domain of definition from SU(N)
to SLð3; CÞ matrices, using a holomorphic function. The
weighted staple sum corresponding to a link variableUνðxÞ
is given by

CνðxÞ ¼
X
σ≠ν

ρνσðUσðxÞUνðxþ σ̂ÞU−1
σ ðxþ ν̂Þ

þ U−1
σ ðx − σ̂ÞUνðx − σ̂ÞUσðx − σ̂ þ ν̂ÞÞ; ð17Þ

where ρνσ are some real weights. Since we cannot use
adjungation, we also need the sum of the inverse paths:
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ZνðxÞ ¼
X
σ≠ν

ρνσðUσðxþ ν̂ÞU−1
ν ðxþ σ̂ÞU−1

σ ðxÞ

þ U−1
σ ðx − σ̂ þ ν̂ÞU−1

ν ðx − σ̂ÞUσðx − σ̂ÞÞ: ð18Þ

We than define

ΩνðxÞ ¼ CνðxÞU−1
ν ðxÞ;

Ωi
νðxÞ ¼ UνðxÞZνðxÞ;

XνðxÞ ¼ iQνðxÞ

¼ 1

2
ðΩνðxÞ −Ωi

νðxÞÞ −
1

2N
TrðΩνðxÞ −Ωi

νðxÞÞ
ð19Þ

and finally the smeared field is given by U0
νðxÞ ¼

eiQνðxÞUνðxÞ. This definition coincides with the usual stout
smearing if the gauge fields are in SU(N), and the matrix
QνðxÞ is Hermitian in this case. On SLð3; CÞ QνðxÞ is no
longer Hermitian but it is still traceless, so U0

νðxÞ is also an
element of SLðN; CÞ. Typically one takes multiple smearing
steps with

U → Uð1Þ → … → UðnÞ ð20Þ

and the measure becomes e−SðUÞ ¼ e−SgðUÞ det ðMðUðnÞÞÞ,
where SgðUÞ is the gauge action and MðUÞ is the Dirac
matrix describing the fermionic degrees of freedom.
For the calculation of the drift terms we need to evaluate

DaνxSðUÞ. Since the gauge part does not involve smearing
we write SðUÞ ¼ SgðUÞ þ SfðUÞ and we only consider the
fermionic drift DaνxSfðUÞ below.
Let us consider one smearing step first where

U0
ν ¼ eXνUν, and iλaD0

aσSfðU0Þ ¼ F0
σ is the standard force

for unimproved fermions (with D0
aσ the left derivative with

respect to variable U0
σ), and the space-time indices are

suppressed. Our aim is to calculate Fν ¼ iλaDaνSfðUÞ, the
force of the unsmeared field. For multiple smearing steps
the procedure detailed below is repeated iteratively. For
the drift term we will need to evaluate the left derivative
DaνU0

σ , which can be represented as

Dabνσ ¼ −
i
2
TrðλbðDaνU0

σÞU0−1
σ Þ; ð21Þ

such that to first order in αa

U0
σðeiαaλaUνÞ ¼ eiαaDabνσλbU0

σ; ð22Þ

and the chain rule is written as DaνS½U� ¼ DabνσD0
bσS½U0�.

The drift term is then written (also using the product
rule DaðeXUÞ ¼ ðDaeXÞU þ eXDaU and the identity
−ðiλa=2ÞTrðiλaWÞ ¼ W − ð1=NÞTrW)

Fν ¼ iλaDaνS½U�

¼ −
iλa
2

TrðF0
σðDaνU0

σÞU0−1
σ Þ

¼ −
iλa
2

Trðe−XσF0
σDaνeXσÞ þ e−XνF0

νeXν

−
1

N
Trðe−XνF0

νeXνÞ ð23Þ

Wewrite Trðe−XσF0
σDaνeXσÞ ¼ TrðLσðX;F0ÞDaνXσÞwhere

one can take LσðX;F0Þ to be traceless (and anti-Hermitian
for unitary link variables). Using the definition of X we
obtain (for isotropic smearing with ρνσ ¼ ρ):

FνðxÞ ¼ iλaDaνxS ¼
�
e−XνðxÞF0

νðxÞeXνðxÞ −
1

2
ðLνðxÞΩνðxÞ þ Ωi

νðxÞLνðxÞÞ

þ ρ

2

X
σ≠ν

ðUνðxÞUσðxþ νÞU−1
ν ðxþ σÞU−1

σ ðxÞLσðxÞ þ LσðxÞUσðxÞUνðxþ σÞU−1
σ ðxþ νÞU−1

ν ðxÞ

þUνðxÞU−1
σ ðxþ ν − σÞU−1

ν ðx − σÞLνðx − σÞUσðx − σÞ þ U−1
σ ðx − σÞLνðx − σÞUνðx − σÞUσðxþ ν − σÞU−1

ν ðxÞ
−U−1

σ ðx − σÞLσðx − σÞUνðx − σÞUσðxþ ν − σÞU−1
ν ðxÞ − UνðxÞU−1

σ ðxþ ν − σÞU−1
ν ðx − σÞLσðx − σÞUσðx − σÞ

−UσðxÞUνðxþ σÞU−1
σ ðxþ νÞLσðxþ νÞU−1

ν ðxÞ −UνðxÞLσðxþ νÞUσðxþ νÞU−1
ν ðxþ σÞU−1

σ ðxÞ
þUνðxÞUσðxþ νÞU−1

ν ðxþ σÞLνðxþ σÞU−1
σ ðxÞ þ UσðxÞLνðxþ σÞUνðxþ σÞU−1

σ ðxþ νÞU−1
ν ðxÞ

þUνðxÞU−1
σ ðxþ ν − σÞLσðxþ μ − σÞU−1

ν ðx − σÞUσðx − σÞ

þU−1
σ ðx − σÞUνðx − σÞLσðxþ μ − σÞUσðxþ μ − σÞU−1

ν ðxÞÞ
�
traceless part

: ð24Þ
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Finally, to calculate the matrix LσðX;F0Þ one can
proceed using the following theorem [49]: For a matrix
X of size N × N, we write expðtXÞ as

expðtXÞ ¼ Vdiagðexpðtλ0Þ;…:; expðtλnÞÞV−1 ð25Þ

Where λi are the eigenvalues and V is the matrix whose jth
column is the eigenvector of λj. We than have

∂etX
∂θ ¼ VðG × EÞV−1; ð26Þ

where the cross-product is defined as ðG × EÞij ¼ GijEij

(no summation), and G ¼ V−1ð∂X=∂θÞV. The matrix E is
defined as

Eij ¼
ðetλi − etλjÞ
λi − λj

for i ≠ j

Eii ¼ tetλi for i ¼ j: ð27Þ

This leads to TrðRDaeXÞ¼TrðVððV−1RVÞ×EÞV−1DaXÞ.
Alternatively, using the Cayley-Hamilton theorem any
analytical function of a traceless 3 × 3 matrix can be
written as:

fðXÞ ¼ f0 þ f1X þ f2X2; ð28Þ

where fi depends on the invariants of the matrix, c0 ¼
detX ¼ TrðX3Þ=3, c1 ¼ TrðX2Þ=2 (recall that TrX ¼ 0).
Consequently the derivative is written as:

DafðXÞ ¼ Daf0 þDaf1X þDaf2X2 þ f1DaX

þ f2ððDaXÞX þ XDaXÞ;

Dafi ¼
∂fi
∂c0 TrðX

2DaXÞ þ
∂fi
∂c1 TrðXDaXÞ: ð29Þ

Calculating the coefficients fi and their derivatives for the
exponential function needed here proceeds by using a
polynomial approximation to a fixed order ensuring
correct results up to machine precision. Finally we write
TrðRDaeXÞ ¼ TrðBDaXÞ, with

B ¼ Tr

�
R
X2
i¼0

∂fi
∂c0 X

i

�
X2 þ Tr

�
R
X2
i¼0

∂fi
∂c1 X

i

�
X

þ f1Rþ f2ðRX þ XRÞ: ð30Þ

To check that the implementation is correct I have
benchmarked the CLE results with results from the usual
hybrid Monte Carlo (HMC) implementation at μ ¼ 0, see
in Fig. 1. The comparison used the Symanzik gauge
action and n ¼ 2 stout smeared staggered fermions with
NF ¼ 4 and isotropic smearing with ρ ¼ 0.15. The
simulations were started from an SU(3) configuration,
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FIG. 1. Comparing HMC and CLE calculations with improved action at μ ¼ 0.
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smearing with ρ ¼ 0.15.
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the observables are averaged between Langevin times
10 < τ < 20. Agreement within statistical error bars is
observed as long as the β parameter is chosen large
enough. For smaller β values the gauge cooling becomes
less effective, the unitarity norm rises quickly and the
simulations become instable, just as it was observed for
the naive action [50].
In Fig. 2 the effect of the smearing on a typical

configuration from a CLE simulation is shown. The
plaquette average nears 1.0 as it does also in the usual
smearing of an SU(3) configuration. The unitarity norm
of the configuration also increases slightly during the
smearing procedure. If the initial unitarity norm of the

configuration is higher ≳0.1, the smearing might cause a
numerical overflow on the computer, especially if the ρ
parameter of the smearing is not small. This is similar to the
“runaway” behavior known to occur in complex Langevin
simulations. For the simulations in this study parameters
are chosen such that this breakdown is very unlikely
to occur.

V. RESULTS

Two actions used in this study, this gives a very rough
estimate of the cutoff effects, and it allows for the testing of
the stout staggered fermionic action with the complex

TABLE I. The lattice spacing and the pion mass using the plaquette action with naive staggered fermions with
NF ¼ 4, m ¼ 0.01, measured on a 243 × 48 lattice.

β a (fm) mπa T (MeV) for NT ¼ 8 pion mass (MeV)

5 0.2892� 0.0002 0.2595� 0.0002 85.3 177
5.1 0.1895� 0.0005 0.2881� 0.0002 130 300
5.2 0.1105� 0.0004 0.2965� 0.0004 223 529
5.3 0.0822� 0.0003 0.2727� 0.0005 300 654
5.4 0.0633� 0.0005 0.2496� 0.0016 389 777
5.5 0.0503� 0.0005 0.2253� 0.0016 490 883
5.6 0.0433� 0.0006 0.2229� 0.0015 570 1020

TABLE II. The lattice spacing and the pion mass using the Symanzik gauge action with stout smeared staggered
fermions with NF ¼ 4, m ¼ 0.02, n ¼ 2, ρ ¼ 0.15, measured on a 243 × 48 lattice.

β a (fm) mπa T (MeV) for NT ¼ 8 pion mass (MeV)

3.5 0.1474� 0.0004 0.3111� 0.0004 167 417
3.6 0.1159� 0.0003 0.2790� 0.0004 213 475
3.7 0.0946� 0.0005 0.2515� 0.0005 261 525
3.8 0.0769� 0.0004 0.2259� 0.0009 321 579
3.9 0.0644� 0.0004 0.2088� 0.0016 383 640
4 0.0535� 0.0004 0.1987� 0.0024 461 733
4.1 0.0415� 0.0006 0.2119� 0.0052 594 1010

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2  2.5  3

Δ 
( 

p 
/ T

4  )

μ/T

Taylor exp. 6th order
Taylor exp. 4th order

Taylor exp. 2nd order
CLE

4th order fit
6th order fit

163*8, β=5.3, NF=4, m=0.01

  T ≈ 300 MeV
mπ ≈ 655 MeV

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2  2.5  3

Δ 
( 

p 
/ T

4  )

μ/T

Taylor exp. 6th order
Taylor exp. 4th order
Taylor exp. 2nd order

CLE
4th order fit
6th order fit

163*8, β=5.4, NF=4, m=0.01

  T ≈ 390 MeV
mπ ≈ 780 MeV

FIG. 3. The pressure difference defined in Eq. (6) for the naive action for two different lattice spacings.

DÉNES SEXTY PHYS. REV. D 100, 074503 (2019)

074503-6



Langevin equation. First I use the plaquette gauge action
with the naive staggered formulation using NF ¼ 4 and the
mass parameter m ¼ 0.01. Second the Symanzik gauge
action is used with a stout smeared staggered action using
n ¼ 2, ρ ¼ 0.15, NF ¼ 4, m ¼ 0.02. The lattice spacing
(measured with the w0 parameter [51]) and the mass of the
lightest pion taste is shown in Tables I, II.
In Fig. 3 the pressure difference (6) is shown for the

naive ensemble for two different lattice spacings. To
estimate the Taylor coefficients,≈1000 configurations were
generated using a HMC simulation and on each configu-
ration the cn were estimated using 128 noise vectors. The
temperature of the system is above the deconfinement
transition for both lattice spacings. The Taylor coefficients
are listed in Table III. Note that while in the continuum
limit the Stefan-Boltzmann(SB) limit of c2 is NF=2 ¼ 2, in
the Nt ¼ 8 discretization the SB limit is expected to be
≈2.8 [16]. To apply the integration method (11) the integral
is discretized with the step size aΔμ ¼ 0.025, and CLE
simulations are carried out at each chemical potential. The
simulations used a partially second order update scheme
[52] with adaptive control of the Langevin step size [53],
using control parameters such that the time step was
typically in the range ð0.5–1Þ10−4. The simulations are
started from a configuration where the link variables are

initialized with white noise in SU(3) directions only. The
thermalization of physical quantities such as the plaquette
average, Polyakov loop average, density, etc., follows the
expected exponential relaxation ∼e−τ=τ0 with τ0 < 1 for all
parameters. 3 runs are used to collect averages for Langevin
times 10 < τ < 20. The pressure is then reconstructed
numerically and statistical errors are estimated using the
jackknife method by splitting the stream of measurements
to 10 pieces. Since the density as a function of the chemical
potential is reasonably smooth at the high temperatures
employed here, the systematic error coming from the
discretization of this integral is small (smaller than the
statistical errors in this case), as can be estimated by
employing different Δμ step sizes. Quark chemical poten-
tials up to μ ¼ 4T are used, this corresponds to μa ¼ 0.5.
The complex Langevin setup can be used for calculations at
even higher chemical potentials, however cutoff effects will
become important there. One observes good agreement of
the Taylor expansion and the integration method. Note that
while the error bars of the pressure calculated from the
integration method are small, the estimation of the coef-
ficients of the Taylor expansion includes the systematic
error corresponding to the choice of the fitting range.
In Fig. 4 the pressure difference is shown for the

improved ensemble for two lattice spacings. The param-
eters were chosen such that the setup roughly corresponds
to the same physical lattice spacings and pion masses as the
setup using the unimproved action. To measure the Taylor
coefficients ≈2000 configurations from a HMC simulation
were used with 64 noise vectors each. The Taylor coef-
ficients are listed in Table IV. Using the improved action the
importance sampling calculation of the cn coefficients is
slightly less noisy such that the c4 is also calculated with
relatively small errors. The calculation of the c6 coefficient
can also be attempted, however since it is quite small only
an upper limit on its magnitude is obtained. One observes
good agreement of the Taylor expansion and the integration

TABLE III. The coefficients of the Taylor expansion of the
pressure calculated at μ ¼ 0 using Eq. (8) (label “Taylor exp.”)
and by fitting a polynomial to the results of the integration
method (label “CLE”). The unimproved action with NF ¼ 4,
m ¼ 0.01 is used on a 163 × 8 lattice.

β c2 Taylor exp. c4 Taylor exp. c2 CLE c4 CLE

5.2 2.102� 0.059 0.233� 0.17 2.21� 0.2 0.15� 0.05
5.3 2.277� 0.026 0.095� 0.06 2.24� 0.1 0.18� 0.05
5.4 2.333� 0.016 0.146� 0.095 2.39� 0.1 0.16� 0.02
5.5 2.376� 0.019 0.125� 0.019 2.35� 0.1 0.18� 0.02

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4

163*8, Symanzik, β=3.7
2-stout. NF=4, m=0.02
  T ≈ 260 MeV
mπ ≈ 525 MeV

Δ 
( 

p 
/ T

4  )

μ/T

Taylor exp. 6th order
Taylor exp. 4th order

Taylor exp. 2nd order
CLE

6th order fit

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4

163*8, Symanzik, β=3.9
2-stout. NF=4, m=0.02
  T ≈ 380 MeV
mπ ≈ 640 MeV

Δ 
( 

p 
/ T

4  )

μ/T

Taylor exp. 6th order
Taylor exp. 4th order
Taylor exp. 2nd order

CLE
6th order fit

FIG. 4. The pressure difference defined in Eq. (6) for the improved action, using two different lattice spacings.
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method, with relatively small discrepancy of the CLE
and 4th order Taylor expansion results also at large μ=T,
suggesting that 6th and higher order terms have very small
coefficients.
In Fig. 5 the quantity

n
T2μ

¼ T
μ

∂ðp=T4Þ
∂ðμ=TÞ ð31Þ

is plotted as a function of ðμ=TÞ2. This allows for an
intuitive way of judging the performance of the Taylor
expansion. In this quantity, the second order term has a
constant contribution, the fourth order term gives a linear
behavior while the sixth order term adds a curvature. Note
that at small μ the magnitude of the density is small,
therefore the relative errors of n=ðT2μÞ are larger.
To calculate the energy density, the estimation of the

LCP and the beta function is necessary. Using zero
temperature simulations (with HMC) at μ ¼ 0 with slightly
shifted β values on 243 × 48 lattices the needed mass
parameters to keep the physical pion mass fixed are found
by bracketing and using a chiral perturbation theory
inspired ansatz for the fitting of the pion mass dependence
on the quark mass. Using finite differences we get the
following results:

a
∂β
∂a

����
LCP

¼ −0.28� 0.01;

∂m
∂β ¼ −0.04� 0.01 for the naive action at

β ¼ 5.3; m ¼ 0.01

a
∂β
∂a

����
LCP

¼ −0.41� 0.01;

∂m
∂β ¼ −0.06� 0.01 for the improved action at

β ¼ 3.8; m ¼ 0.02 ð32Þ

The μ dependence of the trace anomaly is given by
a linear combination of the μ dependence of the gauge
action average and the chiral condensate [see in Eq. (13)].
These quantities can be directly measured at nonzero μ
using CLE simulations. Alternatively their behavior can be
extrapolated using Taylor expansion from configurations at
μ ¼ 0. In Fig. 6 the μ dependence of the average gauge term
and the chiral condensate term from Eq. (13) is shown
(omitting the extra factors of the beta function and the mass
derivative) for the naive action at β ¼ 5.3 as well as for the
improved action at β ¼ 3.8. One observes that the chiral
condensate term is much better behaved with less fluctua-
tions for the CLE as well as the Taylor extrapolation, and

TABLE IV. The coefficients of the Taylor expansion of the pressure calculated at μ ¼ 0 using Eq. (8) (label “Taylor exp.”) and by
fitting a polynomial to the results of the integration method (label “CLE”). The 2-stout improved action is used with NF ¼ 4,m ¼ 0.02,
on a 163 × 8 lattice.

β c2 Taylor exp. c4 Taylor exp. c6 Taylor exp. c2 CLE c4 CLE c6 CLE

3.7 2.206� 0.009 0.156� 0.016 0.016� 0.013 2.33� 0.1 0.13� 0.02 0.002� 0.001
3.8 2.293� 0.007 0.171� 0.017 −0.01� 0.01 2.32� 0.1 0.14� 0.02 0.002� 0.002
3.9 2.312� 0.007 0.150� 0.007 0.001� 0.005 2.36� 0.04 0.14� 0.01 0.002� 0.001
4.0 2.371� 0.012 0.124� 0.009 −0.001� 0.006 2.43� 0.02 0.13� 0.01 0.002� 0.001
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one observes good agreement for small chemical potential.
The gauge action term however is much more noisy in both
the CLE and Taylor expansion approach. With the amount
of configurations at hand even the sign of the second order
term is not clear. In Fig. 7 the final result for the μ
dependence of ðϵ − 3pÞ=T4 including the beta function and
the mass derivative is presented. Since the mass derivative
is rather small the results are dominated by the gauge action
term, and thus the fluctuations are large. With the statistics
at hand we can see that the dependence of the anomaly term
on μ is significantly weaker than that of the pressure, but
further conclusions are hard to gather from the data.

VI. CONCLUSIONS

In this paper the thermodynamical properties of QCD at
nonzero baryon density are studied. The aim of the study is

to establish new methods offered by the availability of the
CLE simulations at μ > 0 where naive importance sam-
pling calculations are invalidated by the sign problem. The
results are compared to the approach relying on the Taylor
extrapolation of the results from the μ ¼ 0 axis. As the
complex Langevin equation has potential problems at
smaller temperatures related to the zeroes of the measure,
here only the high temperature phase, namely the quark-
gluon plasma state is investigated.
The pressure difference of the plasma between zero

density and finite density states is estimated using an
integration method where simulations are needed at inter-
mediate points. The chemical potential dependence of the
trace anomaly ϵ − 3p is also calculated, this quantity is
directly accessible in a CLE simulation at μ > 0.
Two lattice actions were investigated, the Wilson pla-

quette action with 4 flavors of naive staggered fermions and

-120

-100

-80

-60

-40

-20

 0

 20

 0  0.5  1  1.5  2  2.5  3

(∂
ln

 Z
/ ∂

β)
/Ω

T
4 , (

∂l
n 

Z
/ ∂

 m
)/

Ω
T

4

μ/T

Taylor exp. 2nd order gauge action
Taylor exp. 2nd order chiral condensate 

gauge action term
chiral condensate term

163*8, β=5.3, NF=4, m=0.01

-40

-30

-20

-10

 0

 10

 20

 0  0.5  1  1.5  2  2.5  3

(∂
ln

 Z
/∂

β)
/Ω

T
4 , (

∂l
n 

Z
/∂

 m
)/

Ω
T

4

μ/T

Taylor exp. 2nd order gauge action
Taylor exp. 2nd order chiral condensate 

gauge action term
chiral condensate term

163*8, Symanzik, β=3.8
2-stout. NF=4, m=0.02
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an improved action with the Symanzik improved gauge
action and stout smeared staggered fermions. To this end
the stout smearing procedure is generalized to the com-
plexified SLð3; CÞmanifold of the link variables. To reduce
the cost of the simulations relatively heavy pion masses
∼500–700 MeV are used.
Comparing with the usual Taylor expansion approach,

good agreement is found in the small chemical potential
region where the expansion is valid. The CLE approach can
be used to calculate at higher chemical potentials as well,
with relatively small errors. The results suggest that the
4th order expansion formula describes the dependence of
the pressure on the chemical potential relatively closely,
while the trace anomaly ϵ − 3p remains approximately
independent of the chemical potential for baryon chemical
potentials up to ∼9T.
The findings in this study show that the complex

Langevin equation is a useful tool to access thermody-
namic quantities, and allows calculations at high chemical
potentials with small error bars. To allow for direct

applicability for the physical world some more work is
needed: the continuum limit and infinite volume extrapo-
lations still have to be carried out at the physical quark mass
values.

ACKNOWLEDGMENTS

I would like to thank Manuel Scherzer, Erhard Seiler,
Ion-Olimpiu Stamatescu for many discussions and collabo-
ration on related topics, and Szabolcs Borsányi for dis-
cussions. I gratefully acknowledge funding by the DFG
grant Heisenberg Programme (SE 2466/1-2), as well as the
Gauss Centre for Supercomputing (GCS) for providing
computer time on the supercomputers JURECA/
BOOSTER and JUWELS at the Jülich Supercomputing
Centre (JSC) under the GCS/NIC project ID HWU32. The
research was partially supported by the BMBF Grant
No. 05P18PXFCA. Some parts of the numerical calcula-
tions were done on the GPU cluster at the University of
Wuppertal.

[1] P. Petreczky, J. Phys. G 39, 093002 (2012).
[2] O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013).
[3] S. Borsanyi, EPJ Web Conf. 137, 01006 (2017).
[4] J. Engels, J. Fingberg, F. Karsch, D. Miller, and M. Weber,

Phys. Lett. B 252, 625 (1990).
[5] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[6] H. B. Meyer, Phys. Rev. D 80, 051502 (2009).
[7] L. Giusti and H. B. Meyer, Phys. Rev. Lett. 106, 131601

(2011).
[8] H. Suzuki, Prog. Theor. Exp. Phys. 2013, 083B03 (2013);

2015, 079201(E) (2015).
[9] M. Caselle, G. Costagliola, A. Nada, M. Panero, and A.

Toniato, Phys. Rev. D 94, 034503 (2016).
[10] Z. Fodor and S. D. Katz, arXiv:0908.3341.
[11] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010 [arXiv:

1005.0539].
[12] G. Aarts, Proc. Sci., LATTICE2012 (2012) 017 [arXiv:

1302.3028].
[13] D. Sexty, Proc. Sci., LATTICE2014 (2014) 016 [arXiv:

1410.8813].
[14] Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B 568, 73

(2003).
[15] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch,

E. Laermann, C. Schmidt, and L. Scorzato, Phys. Rev. D 66,
074507 (2002).

[16] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch,
E. Laermann, and C. Schmidt, Phys. Rev. D 68, 014507
(2003).

[17] C. R. Allton, M. Doring, S. Ejiri, S. J. Hands, O. Kacz-
marek, F. Karsch, E. Laermann, and K. Redlich, Phys. Rev.
D 71, 054508 (2005).

[18] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C.
Ratti, and K. K. Szabo, J. High Energy Phys. 08 (2012) 053.

[19] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017).
[20] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502

(2009).
[21] J. N. Guenther, R. Bellwied, S. Borsanyi, Z. Fodor, S. D.

Katz, A. Pasztor, C. Ratti, and K. K. Szabó, Nucl. Phys.
A967, 720 (2017).

[22] G. Parisi, Phys. Lett. 131B, 393 (1983).
[23] J. R. Klauder, Acta Phys. Austriaca Suppl. 25, 251 (1983).
[24] J. Ambjorn and S. Yang, Phys. Lett. 165B, 140 (1985).
[25] J. Ambjorn, M. Flensburg, and C. Peterson, Nucl. Phys.

B275, 375 (1986).
[26] G. Aarts, E. Seiler, and I.-O. Stamatescu, Phys. Rev. D 81,

054508 (2010).
[27] G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu, Eur.

Phys. J. C 71, 1756 (2011).
[28] E. Seiler, EPJ Web Conf. 175, 01019 (2018).
[29] M. Scherzer, E. Seiler, D. Sexty, and I.-O. Stamatescu, Phys.

Rev. D 99, 014512 (2019).
[30] M. Scherzer, E. Seiler, D. Sexty, and I.-O. Stamatescu

(to be published).
[31] E. Seiler, D. Sexty, and I.-O. Stamatescu, Phys. Lett. B 723,

213 (2013).
[32] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, and I.-O.

Stamatescu, Eur. Phys. J. A 49, 89 (2013).
[33] D. Sexty, Phys. Lett. B 729, 108 (2014).
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