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The realization of center and chiral symmetries in AV = 1 super Yang-Mills theory (SYM) is investigated
on a four-dimensional Euclidean lattice by means of Monte Carlo methods. At zero temperature this theory
is expected to confine external fundamental charges and to have a nonvanishing gaugino condensate, which
breaks the nonanomalous Z,y chiral symmetry. In this work we find, for the first time, a nonvanishing
condensate at zero temperature and zero gaugino mass with Wilson fermions. This is achieved by means
of the renormalization properties of the Yang-Mills and fermion gradient flows, which are independent of
the lattice regularization. At finite temperatures, we find that the phase transitions corresponding to

deconfinement and chiral restoration occur at roughly the same critical temperature for SU(2) gauge group,

implying the saturation of the bound T¢. < T

chiral

dec?

recently obtained through anomaly matching. We

furthermore discuss the agreement of our findings with conjectures from superstring theory.
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I. INTRODUCTION

Supersymmetric Yang-Mills theories (SYM) have been a
useful laboratory to extend our understanding of non-
perturbative phenomena. For instance, the study of super-
symmetry combined with gauge symmetry has led to the
discovery of duality as a feature of supersymmetric gauge
theories. Besides the well-known gauge-gravity duality
between the conformal AV =4 SYM and string theory
on the curved space AdSs x S°, electromagnetic duality has
been conjectured for N' =2 SYM and N = 1 supersym-
metric QCD [1-3]. The most interesting open challenge is
the search for theories that are more similar to QCD and
still allow for an analytical understanding of confinement
and strong interactions due to supersymmetry. N = 1
SYM is the supersymmetric extension of the pure gauge
sector of QCD describing the strong interactions of gluons
and gauginos. It shares many interesting aspects with QCD
while retaining minimal supersymmetry. It is expected that
this theory should exhibit confinement, chiral symmetry
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breaking and formation of a mass-gap [4-7]. V' = 1 SYM is
therefore a perfect candidate for the analytical understanding
of nonpertubative phenomena of non-Abelian gauge theo-
ries, like confinement and chiral symmetry breaking.

Numerical lattice simulations are the natural tool to
explore nonperturbatively the phase diagram of strongly
interacting gauge theories, such as AN =1 SYM, and
complement the analytical investigations. The aim of this
work is to apply numerical methods in a search for
interesting patterns in the phase transitions of A =1
SYM and to relate them to analytical arguments. In a
previous study we have found an interesting indication for a
coincidence of the chiral and deconfinement transition of
this theory without an analytical explanation. In this work
we find that this signal persists at finer lattice spacings and
using refined numerical methods. Moreover we show that it
is confirmed by analytical arguments from a string theory
perspective. Another interesting open aspect of our pre-
vious study is the relation of the numerical data to the
analytic prediction for the gluino condensate at zero
temperature. The gradient flow methods that we apply in
the current work allow the first step toward this relation: we
are able to extrapolate the finite value of the gluino
condensate in the chiral limit without additive renormal-
ization. The remaining issue that is left open in our
investigations is the multiplicative renormalization required
to match the scheme of the analytical predictions.

The investigations of chiral symmetry breaking of
N'=1 SYM on the lattice requires additional considerations.

Published by the American Physical Society
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We use the Wilson fermion discretization that breaks chiral
symmetry explicitly. In addition, the lattice discretization
also unavoidably breaks supersymmetry. We have seen in
our previous studies that it is possible to recover both
symmetries in the continuum limit if the gaugino mass is
tuned to the chiral limit. However, the breaking still leads to
a divergent additive renormalization of the chiral condensate.

Recently the gradient flow has been proposed as a
regularization-scheme independent smoothing technique
that is able to simplify drastically the renormalization of
lattice bare composite operators [8—10]. In particular, the
flowed chiral condensate is free from the additive renorm-
alization of Wilson fermions [10]. In recent years the
gradient flow has found a growing spectrum of applica-
tions. In particular the investigations of finite temperature
QCD including the chiral transition have shown the
benefits of this method [11,12]. Furthermore, a novel
approach to compute operator dimensions in conformal
field theories was recently proposed in [13], which exploits
the relation between the gradient flow and renormalization
group transformations. The application for supersymmetric
theories has been suggested in [14,15], where it can help to
renormalize the supercurrent. In several works also a
supersymmetric version of the method has been developed
[16,17], which might even avoid the necessity of a
multiplicative renormalization of the fermions.

In this work we present an extended study of the phase
diagram of N’ =1 SYM with the gauge group SU(2) at
zero and nonzero temperature using the gradient flow. This
method is summarized in Sec. I'V. The details of our lattice
discretization as well as the expected phase transitions are
explained in Secs. II and III. We measure the chiral
condensate expectation value at positive flow time. We
show strong evidences that chiral symmetry is spontane-
ously broken at zero temperature by a nonvanishing
expectation value of the gaugino condensate in Sec. V.
At high temperature chiral symmetry is restored and that a
phase transition occurs in the massless limit. In Sec. VI, we
provide evidence that there are only two phases in the mass-
less limit, characterized by both chiral symmetry breaking
and confinement at low temperature and chiral symmetry
restoration and deconfinement at high temperature. We
have not found any indications of mixed phases where
deconfinement occurs while chiral symmetry is broken in
our numerical data. This section contains also an inter-
pretation of our results from the point of view of super-
string/M-theory.

IL. M =1 SUPER YANG-MILLS THEORY
ON THE LATTICE

N =1 super Yang-Mills theory is the minimal four-
dimensional gauge theory consistent with supersymmetry. It
is therefore the supersymmetric gauge theory most similar
to Yang-Mills theory and QCD. The four-dimensional
Euclidean on-shell action is

1 1. _
S = / dx <Z FOFf, + 5 1°DA + 2

0

+ W €;41//)5Fa”UFalm> s (1)

where F is the usual Yang-Mills (YM) field strength, 1 the
gaugino, a Majorana spinor in the adjoint representation, and
D the covariant derivative. The mass term m breaks super-
symmetry softly. The last term is a topological term, whose
space-time integration yields the winding number Q,,,, of the
gauge field, which we neglect in our investigations.

On the lattice, spinors are site variables and Yang-Mills
fields A” are represented as links through the parallel
transporter U, = — lvadyy being a the lattice spacing and 7%
the Lie generators in the fundamental representation.
We employ the following SYM lattice action in our
simulations [18]

sm—ZReu{ S (3Pt~ 5 Rut)) |

¢ ptv

+ EZZ(y)DW[V [y, X)A(y),

where the Dirac-Wilson operator

D,,(x,y)A(y) (X)A(x + p)

- K‘Z [(1- 7’;4
+ 1+ m)Vu(x —wA(x = p)].

has parallel transporters V in the adjoint representation,
defined as V ( Jap = 2r(U,(x)"e5 U, (x)7}). Here p is

equal to e P,, and R, are the plaquette and the 2 x 1

rectangular WllSOIl loop, respectively. One-level stout
smearing with parameter p = 0.15 has been employed
for the links in the fermion action. Finally, x = 2m‘ 13 is
the hopping parameter. Our simulations also include runs
with a clover improved fermion action in order to test the
lattice artefacts comparing two different discretizations.

A nonzero gaugino mass breaks supersymmetry softly
and the bare parameter m must be tuned to the point of a
vanishing physical mass. A numerical accurate and in-
expensive way to achieve that is by means of the adjoint-
pion a-z. Although this is not a physical degree of freedom
of the theory, its mass is related to the gaugino mass as
m2_, ~ m, as was shown in [19] within the framework of
partially quenched perturbation theory. The lattice discre-
tization breaks supersymmetry, but it is recovered in the
massless and continuum limit, as confirmed by super-
symmetric Ward identities [20].
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III. THE PHASE DIAGRAM OF N =1
SUPER YANG-MILLS THEORY

N =1 SYM shares several features with QCD, as itis a
confining theory without scalars and it includes spinor
fields interacting with a gauge field. As explained in this
section, these properties transform N =1 SYM to an
important laboratory to gain a deeper understanding of
nonperturbative phenomena of QCD such as chiral sym-
metry breaking and confinement. These phenomena are
usually more accessible in supersymmetric theories due to
the constraints that supersymmetry imposes.

A. Confinement of static fundamental charges

At zero temperature, the YM vacuum is expected a
confining medium for external static color-electric charges.
It can be probed through the Polyakov loop, which is the path
ordered product of the links in the fundamental representa-
tion along a line which wraps in the compact direction

P, = N,1V3 ;Tr{ﬂ Uy (X, t)}, (2)

=

where V5 denotes the three-dimensional lattice volume of the
noncompact directions. The Polyakov loop can be related to
the exponential of the free energy of an isolated static
fundamental quark. Hence confinement is detected by a
vanishing vacuum expectation value of P;, indicating that
isolated fundamental quarks are states with infinite free
energy. As the temperature is increased, the vacuum expect-
ation value of the Polyakov loop becomes nonvanishing at
some critical temperature, where quark deconfinement
occurs.

In the case of QCD, there is no real confinement-
deconfinement phase transition but a crossover. In the
confined phase, the quark-antiquark potential grows lin-
early until it is screened by another quark-antiquark pair
popping up from the vacuum. In contrast, the identification
of the deconfinement phase transition is clear for NV = 1
SYM, as adjoint fermion fields are unable to provide string
breaking to fundamental quark-antiquark pairs. The
Polyakov loop represents a good order parameter for the
deconfinement phase transition for N'=1 SYM and a
singularity of the partition function is expected at a critical
nonzero temperature.

B. Chiral symmetry

N =1 supersymmetric Yang-Mills theory is invariant
under chiral transformations when no soft SUSY-breaking
mass term is included in the action. Chiral symmetry
coincides with the U(1) R-symmetry of the theory'

n this section A% is a Weyl spinor, as this notation is more
natural for the massless theory.

A4 — elapa,

This symmetry is broken at the quantum level by instanton
contributions, as the U(1) chiral rotation is equivalent to

0 — 60 —2N,a,

where N, is the number of colors. The path integral is
therefore invariant only for @ = kz/N,., i.e., the chiral
symmetry of the quantum theory is actually the discrete
subgroup Z,y C U(1). As the gaugino condensate is
not invariant with respect to the full Z,y group, ie.,
(2924) — €*@()24), an interesting question is whether the
quantum chiral symmetry is further spontaneously broken
by a nonvanishing (1949). Indeed, analytical calculations
show that the answer is affirmative [4—7,18,21-23]. Thanks
to remarkable properties of supersymmetric theories like
nonrenormalization and holomorphicity of the effective
superpotential with respect to fields and couplings, it was
proven [24,25] that if the effective theory at long distances
is massive with color-singlets as degrees of freedom, the
gaugino condensate takes on the form

(A929) = A, (3)

The global Z,y_symmetry is therefore spontaneously broken
down to its discrete subgroup Z,, i.e., to the sign flip
A4 — —2%. As a consequence, there are N degenerate vacua
connected by Zy_ chiral transformations and domain walls
interpolating between different vacua are expected [26].

The exact value of the proportionality constant ¢ in (3) has
been computed based on strong coupling and weak coupling
instanton analysis. The differences of these approaches have
been addressed in compactified SYM, where the semi-
classical analysis leads to a controlled approximation [27].

There have been many attempts to generalize the
calculations of the condensate towards other gauge theo-
ries. The computed value has been compared to the results
of one-flavour QCD based on the orientifold planar
equivalence. This comparison is based on several assump-
tions that are discussed in Sec. V.

C. The phase diagram at nonzero temperatures

In thermal quantum field theory, temperature corre-
sponds to the inverse radius of a compactified direction
of the path integral with thermal boundary conditions, i.e.,
periodic for bosons and antiperiodic for fermions. The
phases of A/ =1 SYM are related to the response of the
mentioned properties of the zero temperature vacuum to
the finite temperature. At some critical temperature the
condensate is expected vanish and the spontaneously
broken chiral symmetry is restored. In addition, center
symmetry breaks spontaneously at the deconfinement
temperature and the Polyakov loop should acquire a non-
vanishing expectation value. An interesting question is
whether both critical temperatures coincide, as it would be
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expected if confinement and chiral symmetry breaking
share the same nonperturbative origin. This question is far
from trivial. Although QCD, for example, is also charac-
terized by confinement and broken chiral symmetry at low
energies, some theories have been found to exhibit only one
of those [28]. In many numerical studies of QCD it has
been found that chiral restoration and deconfinement phase
transition occur at nearly the same critical temperature.
However, taking QCD as a starting point implies the
difficulty that these phase transitions are actually cross-
overs due to the finite-massive fundamental color charges,
and no exact order parameter can be found which unam-
biguously signals the pseudocritical temperature.

Fortunately, both the Polyakov loop and the gaugino
condensate are exact order parameters for the respective
phase transitions in A =1 SYM. Consequently, the
question of the relation between the chiral and deconfine-
ment transition can be answered by studying these quan-
tities in a systematic way, the only remaining complications
being related to the regularization and the renormalization
of the chiral condensate. The lattice realization with Wilson
fermions on the lattice breaks chiral symmetry, which
implies besides the multiplicative renormalization factor
(Z;,) an additional additive renormalization (by) of the
gaugino condensate

(Ah)r = Z3,(P)((A4)8 = by ().

In previous investigations [29], the additive constant by
was removed by subtracting the bare condensate at zero
temperature,

(AA)s = (ANE™ = Ak

The downside of this approach is the fact that the subtracted
condensate is forced to vanish at 7 = 0. Although this
subtraction should preserve the behavior of the order
parameter near the critical temperature, it is not possible
to determine whether the renormalized condensate at zero
temperature is nonzero. Hence, the picture of the realization
of chiral symmetry in N =1 SYM is, following this
method, incomplete. As it will be explained in the next
section, the additive renormalization is not necessary when
the gradient flow is used, allowing the computation of the
condensate at zero temperature and, moreover, allowing a
comparison to fermion discretizations which satisfy the
Ginsparg-Wilson relation.

IV. THE GRADIENT FLOW

A. Flow equations

Motivated in the context of trivializing maps [30],
Liischer studied correlation functions of fields flowed
through the equations 97

*The term D,0,B, is a gauge parameter, which is included for
mere technical reasons.

o,B,=D,G,, +D,0,B,, B,| A, (4

=0 —

G

nv

—9,B,—9,B, + B, B, (5)

)(|t=0 =y )_(ltz() =v,
A =D,D", (6)

Oy =0y Oj=rxA,

where B (resp. A) and G are the Yang-Mills gauge field and
field strength, respectively. y and y are spinor fields and D,
is the gauge-covariant derivative in the adjoint representa-
tion. The parameter ¢ € R describes a flow on the vector
space of gauge fields.

The flow equations have a smoothening effect on the
fields, which are Gaussian-like smeared over an effective
radius 7, = /81, as it can be easily seen by integrating
equation (4) in the noninteracting limit [B, B] ~ 0,

B, (1.x) = / PYK,(x — y)A, ().

2
K,(z) = / PP ipcent i
f 22)P (@nt)P2’

where D is the number of space-time dimensions and K

the heat-kernel. The term e~'7* regularizes the integral in
momentum space when ¢ > 0, removing the UV divergen-
ces at large momenta. Some years ago it was shown that
through the gradient flow the smearing property remains
at all orders in perturbation theory [9]. Correlation
functions of monomials of flowed gauge-fields are renor-
malized without extra counterterms, while spinor operators
renormalize multiplicatively according to the field content
[10]. An advantage of the gradient flow is its intrinsic
regularization-scheme independence, and the renormaliza-
tion properties of the flow hold also once discretized on the
lattice. Therefore, currents and densities which are explic-
itly broken by the lattice discretization should be easily
accessible at positive flow-time. In particular, the compli-
cations of explicit chiral symmetry breaking of the Wilson
discretization of the fermion action are solved in the sense
that the flowed chiral condensate renormalizes only
multiplicatively.

Written explicitly, the flowed bare gaugino condensate
is [10]

(A, 1)A(x, 1)

——/dedDwK(t,x;O, v)S(v,w)K(t,x;0,w)".  (7)

The flowed condensate is equivalent to the action of the
heat-kernel on the fermion propagator S. The condensate at
a fixed flow time that is computed in this way is propor-
tional to any other renormalized condensate. It defines a
correct order parameter for the chiral symmetry breaking
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even for Wilson fermions. The multiplicative factor in
comparison to the MS scheme can be determined from a
small flow-time expansion. Consequently, it is possible to
study if (A1) # 0 at T = 0 even with Wilson fermions. The
value of Zj, is irrelevant if the bare lattice gauge coupling is
kept fixed.

The numerical integration of the flow is relatively
straightforward, and the methods we employ to compute
the flowed gluino condensate are described in Appendix A.

V. GAUGINO CONDENSATE AT ZERO
TEMPERATURE

The gradient flow method allows for the computation of
the gaugino condensate at zero temperature, without an
additive renormalization. We consider four ensembles from
our previous investigations of SU(2) SYM at f = 1.75on a
323 x 64 lattice with hopping-parameter values

Kk € {0.1490,0.1492,0.1494,0.1495}.

These four points are used to extrapolate to the chiral point,
i.e., to vanishing renormalized gaugino mass. The scale in
physical units is set by the gradient flow observables ¢,
which is defined as

1

Pe()imy =03, &(t) = 7 GG (0),
with ¢ the field energy density and Gy, the flowed Yang-
Mills field strength. The f, values for each x value are
summarized in Table I. For the computation of the flowed
condensate, a mass-independent scheme was used, i.e., a
common flow time was chosen corresponding to the chiral
extrapolated 7M™ = 12.81(35). The flow equations were
integrated up to 7, and the condensate obtained from
Eq. (Al). In the following we use the condensate in units
of t, defined as:

(32) = 1§ GA(D)) | =

As shown in Fig. 1, we obtain a nonzero value of the
gluino condensate in the chiral limit. For the numerical
simulations with Wilson fermions, this is the first clear
evidence that the discrete chiral symmetry is spontaneously

TABLE 1. The gradient flow scale 7, and the values of the
gluino condensate for each of the ensembles.

K am, 1o (A4)
0.1490 0.23847(41) 9.851(32) 0.00025455(89)
0.1492 0.20346(54) 10.545(69) 0.00025177(80)
0.1494 0.1604(15) 11.262(72) 0.0002448(14)
0.1495 0.1294(24) 12.49(18) 0.0002386(12)

0.00025 y -

0.00020

0.00015

0.00010

0.00005

N PRI E I R SR BN B
0.00000 0.00 0.01 0.02 0.03 0.04 0.05 0.06

(ama—r)?

FIG. 1. Extrapolation of the chiral condensate to vanishing
renormalized gaugino mass. The gaugino condensate scales almost
linearly with the lattice spacing a, while some mild quadratic
dependence is noticeable as the gaugino mass grows. Most
importantly, the condensate does not vanish at the chiral point,
which implies the spontaneously symmetry breaking of the Zyy,
symmetry. The extrapolated values are (A1) .y = 0.0002304(19)
(linear) and (AA) i = 0.0002235(36) (quadratic).

broken at zero temperature and zero gaugino mass. In
previous studies without the method of the gradient flow,
only an indirect observation of the nonzero condensate has
been possible from a double peak of the histogram that
appears in rather unstable simulations on small volumes
close to the chiral point [31,32].

Our results are of the same significance as the ones
obtained with domain-wall and overlap fermions in
[33-37]. In these simulations the renormalization factor
of the condensate has not been determined and therefore the
results are, as in our case, proportional to the renormalized
condensate in MS scheme. The gradient flow method opens
up the possibility to study the different phases at zero
temperature without the computational more expensive
Ginsparg-Wilson fermions. A direct comparison of the
results with different lattice actions would have been
possible from the small flow-time expansion combined
with finite-volume methods.

The comparison of our numerical result with strong and
weak coupling instanton calculations (3) requires two
further important steps, as already outlined in the com-
parison of one-flavor QCD with numerical results [38]. The
first step is the matching of scale A, which, according to
[38], can be set to the value in the MS scheme. We have

already done this analysis and found a value of AMS in
SYM that is quite compatible to QCD [39]. The second step
requires the determination of the renormalization factor Zj,
of the condensate for the exact result. The analysis of [38]
shows that the renormalization scheme dependence can be
rephrased in terms of a second proportionality factor ¢
multiplied to ¢ in (3). This factor is assumed to have a
subleading correction in the large N, expansion, but there is
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so far no clear determination at small N.. Without an
analytic prediction for the additional factor, it is not
possible to match the semiclassical predictions to any
numerical value.

VI. DISCRETE CHIRAL SYMMETRY
RESTORATION AND QUARK DECONFINEMENT

The second main purpose of this study is to investigate
the realization of chiral and center symmetries in SU(2)
SYM at finite temperature. Some first results in this
direction were obtained in [29], and now we revise our
early investigation using the gradient flow on four different
new lattice ensembles at f# = 1.75 and hopping parameter
k € {0.1480,0.1490,0.14925}. To further cross-check the
validity of our results, we have also analyzed a set of
ensembles generated at f = 1.65 and x = 0.175 using the
tree-level clover improved fermion action with unsmeared
links. Nonzero temperatures were achieved by fixing the
lattice parameters and compactifying one dimension on a
circle, imposing thermal boundary conditions on the fields,
i.e., anti(periodic) for fermions (bosons). Thus, the lattice
size was set to 24° x N, for N, € {4,5,6, ...,48}, with the
upper bound parametrizing the zero-temperature limit. For
this finite-temperature analysis, a mass-dependent scale
setting was used. This means that the flow time of the
gaugino condensate is different for each « value, in contrast
to the zero-temperature measurements. One reason for this
choice is that the integration of the adjoint flow equation
gets very expensive as the flow time grows. A second
reason is that the possible range of ¢ is limited at smaller N,.
A reliable value can not be obtained once the smearing
radius becomes compatible with N,. We have checked that
around the mass dependent value of #;, the condensate
shows only a very weak ¢ dependence. Therefore we expect
no relevant change of the results for a mass independent
choice of ¢,.

The results are summarized in Figs. 2—4 and Table II.
The condensate is in general considerably reduced as the
temperature increases, but a clear phase transition is
difficult to identify for the larger gaugino masses corre-
sponding to smaller values of k. This smooth behavior of the
chiral condensate at larger masses is expected since the jump
of the order parameter around the pseudocritical temperature
is less pronounced for a larger explicit symmetry breaking.
At the smallest gaugino mass (k = 0.14925) the signal is
considerably better and a jump at the critical temperature can
be identified. This suggests, as expected, that the chiral
restoration becomes indeed a true phase transition and the
gaugino condensate an adequate order parameter in the chiral
(and supersymmetric) limit. This can be more clearly seen
from the disconnected chiral susceptibility in Fig. 4. It is

The disconnected part of the susceptibility is expected to
represent the largest contribution to the phase transition’s
peak [29].
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FIG. 2. Temperature dependence of the bare gaugino conden-
sate is shown for x = 0.1480,0.1490 and 0.14925, with the
smallest x in the uppermost plot. On the undermost graphic, the
point corresponding to the highest temperature appears to show a
growth in the condensate. This is however a nonphysical over-
smoothing artefact due to the fact that /8%, > N, in that region.

remarkable that the phase transition appears at 7 =
\/1o/N; ~0.25 also with the improved lattice action,
see Fig. 4.
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FIG. 3. Binder cumulant of the Polyakov loop for the same x
values of Fig. 2.

This temperature approximately coincides with the
deconfinement phase transition, which was found in [29]
to be second order and to have the critical behavior of the
Z, Ising model. The deconfinement transition occurs thus
at the point where the Binder cumulant of the Polyakov
loop
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FIG. 4. At the top: Chiral susceptibility for x = 0.14925. The
gray band denotes the critical temperature of the Polyakov loop.
At the bottom: gaugino condensate at f# = 1.65 and x = 0.175.
The phase transition occurs at N{ = 7, which roughly agrees in
dimensionless units with the critical temperature for f = 1.75.

By(Pp)=1-

reaches the critical value B§ = 0.46548(5) [40]. This point
is shown in the plots of Fig. 3. In the fixed scale approach,
the temperature can be changed only by discrete steps. In
order to precisely estimate the critical point of the decon-
finement phase transition, we perform a linear interpolation
of the Binder cumulant at two temperatures where B,
approaches Bj both from the left and from the right. After
finding the critical temperature for each « value, the results
were extrapolated to the chiral limit by means of a linear fit
(see Fig. 5 and Table III).

Our results show that, up to numerical uncertainties,
in ' =1 SU(2) supersymmetric Yang-Mills theory, the
deconfinement phase transition and restoration of the
discrete Z,y, chiral symmetry occur simultaneously. This
fact is far from trivial. Indeed, some nonsupersymmetric
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FIG. 5. Chiral extrapolation of the deconfinement phase tran-
sition. The deconfinement temperature extrapolated to the chiral
limit is T[,, _o = 0.2574(26).

QCD-like theories, like YM with several adjoint spinors,
have been observed to exhibit phases with mixed deconfin-
ing and broken chiral symmetry phases [41]. In our
previous investigations, we have not provided analytical
confirmation for our finding. Here we provide arguments
that predict the coincidence of the transitions in Sec. VI A.

The agreement of the two transitions is obtained up to the
systematic uncertainties of our numerical determination
which includes possible supersymmetry breaking lattice
artefacts. Based on our previous investigations of particle
spectrum and Ward identities [20], the role of these lattice
artefacts is expected to be small. Furthermore our current
results obtained with an improved lattice action and at a
smaller lattice spacing are consistent with our earlier
findings [29]. Consequently, we expect any systematic
effect to be much smaller than the large difference of the
two transition observed in [41].

An interesting final quantity determined by our
study is the deconfinement temperature in the chiral/
supersymmetric limit. We compare our result to the
deconfinement critical temperature of SU(2) YM found
in [42] through the ratio

T.(SYM)  0.2574(26)
T.(YM)  0.3082(2)

= 0.8352(90), (8)

where the two temperatures are compared in dimensionless
units as /7y/Ny, and the scale £, for pure gauge has
been computed in [43]. This value is compatible with
our previous investigations in [29] at a smaller . The
ratio furthermore roughly agrees with an analytical pre-
diction found in [44], where it is claimed that

LEYM) \/% ~ (.82. It is important to stress that the ratio

T.(YM)
of Eq. (8) depends on the observable used to set the scale of
the two different theories, in our case \/% however a

general agreement is expected among scales defined from
purely gluonic operators.

A. Prediction for the relation of chiral and
deconfinement transition from string theory
and t’Hooft anomaly matching

The result that deconfinement and restoration of chiral
symmetry occur at the same critical point is far from trivial
and can only be confirmed by nonperturbative methods.
Lattice simulations can compute an estimation of the
order parameters, but they do not provide immediately a
qualitative physical interpretation of the mechanisms
responsible for such results. A deep understanding of the
dynamics of non-Abelian gauge theories in general and
QCD in particular is, indeed, still missing and concepts like
supersymmetry and string theory arose in the attempt to
achieve it. An interpretation developed in the context of
string theory might indeed provide such a deeper under-
standing of the mechanism behind our results. We provide
here some rough arguments based on t’Hooft anomaly
matching and a more detailed picture derived from the
string theory perspective.

The coincidence of the transitions is in agreement with
the predictions of [45,46]. As shown in these references
based on anomaly matching arguments, the unbroken
center symmetry must imply broken Z,y_chiral symmetry
in N =1 supersymmetric Yang-Mills, meaning that
Téiral = Teconfinement- THE same constraint was also found
from anomaly matching for SU(N,) with adjoint and
fundamental matter in [47]. Our results indicate that this
inequality is saturated, as predicted remarkably for adjoint
QCD and SYM on R3 x S! in [48-51].

In [52] Witten considered certain brane configuration
consisting of two differently oriented NS five-branes and
N, D-four-branes stretching between them in weakly
coupled ITA superstring theory.4 The effective theory on
the world-volume of the four-brane is a 3 4+ 1 dimensional
SU(N,) gauge theory with N = 1 supersymmetry. This
theory has N, vacua, which can be identified with the
pattern of chiral symmetry breaking of the supersymmetric
QFT. Witten succeeded to show that the confining string
emanating from an external quark is topologically equiv-
alent to the ITA fundamental string. Furthermore he found
that the BPS-saturated domain wall can actually be iden-
tified with a D-brane, on which the confining strings can
end. This fact directly relates confinement and chiral
symmetry breaking. Indeed, the domain wall is expected
to have restored chiral symmetry in its core, while a color-
electric source sufficiently near the wall behaves as a free
quark, and the Polyakov loop expectation value does not
vanish. This was investigated further in [53] by means of an

“The framework is actually M-theory. The brane model is not
equivalent to SYM but is in the same universality class. SYM is
obtained when taking the IIA, i.e., ten dimensional limit.
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effective field theory for the gaugino condensate and the
Polyakov loop. The authors found that, for N, = 3,74
restoration implies Z§ breaking and that the results of
Witten, i.e., that the confining strings end on the domain
wall, can only hold if both phase transitions occur
simultaneously.

VII. CONCLUSIONS AND OUTLOOK

The gradient flow has enabled us to explore the con-
fining and the chiral properties of the N’ = 1 SYM both at
zero and finite temperature. We have been able to extrapo-
late the chiral condensate at zero temperature to the
massless limit and to prove that chiral symmetry is broken.
Our findings with the Wilson fermion action are in agree-
ment with previous studies with Ginsparg-Wilson fer-
mions, avoiding, however, the huge numerical cost of
preserving chiral symmetry on the lattice. A precise
quantitative comparison of the results obtained with the
different fermion actions is possible once a common
renormalization scheme is chosen to fix the multiplicative
renormalization constant. The matching to the semiclass-
ical predictions of the condensate would be interesting from
the theoretical point of view, however a deeper under-
standing of the exact calculations of the gluino condensate
is required. Any prediction or numerical value of (1) holds
only in a given scheme, i.e., up to a multiplicative factor,
and provides the same information as the condensate at a
finite flow time. A comparison to the semiclassical calcu-
lations of the gluino condensate would need to find first
the missing perturbative connection of the exact formulas
of [6] to the MS scheme.

We have also explored the phase diagram of the theory at
nonzero temperature. The chiral condensate provides a
signal compatible with a second order phase transition at
smaller gaugino masses. In comparison to our previous
investigations without gradient flow in [29], the signal of
the order parameter’s expectation value is clearer and thus
more significant, which reflects the advantages of the
method. The Binder cumulant of the Polyakov loop has
been important to locate precisely the deconfinement phase
transition. Through the identification of both phase tran-
sitions, we found that the critical temperatures are in fact
coincident. This leads us to the remarkable conclusion that
chiral symmetry restoration and deconfinement are not
independent and uncorrelated nonperturbative phenomena
in A/ = 1 supersymmetric Yang-Mills theory, but they may
obey a common underlying dynamics. As pointed out in the
end of the present work, this observation is in agreement
with predictions found through certain brane configuration
in IIA superstring/M-theory.

We are currently working towards new applications of
the gradient flow. One immediate further step is to inves-
tigate thermal SYM for SU(3) gauge group. Another very

interesting direction is to take profit of the method to study
the vacuum’s structure of the theory at zero temperature.
In addition we plan to investigate possible applications for
the renormalization of the supercurrent in theories with
extended supersymmetry [15].
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APPENDIX A: NUMERICAL INTEGRATION OF
THE GRADIENT FLOW AND COMPUTATION
OF THE GLUINO CONDENSATE

In this Appendix we describe the path for the numerical
computation of the gradient flow [10,12]. First, one initial
gauge configuration V,_ is picked and flowed by integrat-
ing the discrete version of the gauge part of Eq. (4)

Vt(x7 M) = —{GX’MSW<V,)}V,(X, ﬂ)?
Ux, p) = Vi(x, 1) =0

up to some ¢t by means of the following Runge-Kutta
integrator with step-size e

Wo=V.
Wy = exp (1/4)Z,W,,
W, =exp (8/9)Z, — (17/36)Z, W,
Vive = exp (3/4)Z, = (8/9)Z, + (17/36)ZyW>,

where Z; = —€0, ,Sy(W;) and S,, is the Wilson plaquette
action. The intermediate fields are then kept on the
computer memory in order to access them during the
integration of the adjoint fermion equation. As a second
step one random source vector &,_, = 5 is generated on the
lattice and then integrated by means of the Runge-Kutta
integrator down to s = 0
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A3 =&ies
3
A = = A5,
2= g R
8
Al =13 +§Alﬂ2y

1 8
ﬂo = /11 +/12 +ZA0 (/11 —5/12>, with 56; = /10.

Further, the vector W(v) = >, D(v,w)™'&(£;0,w) is
computed, e.g., through conjugate gradient. Subsequently
it is contracted with £(¢; 0, v)" and the result averaged over
the lattice sites, i.e., one calculates —ﬁzvék(t;O,U)TW(v).

The discrete version of the gluino condensate
(A(x,1)A(x,t)) in Eq. (7) can be straightforwardly written:

-3 (K (1,350, 0) (D (0.0) K1, 350.0)'))

vw

where Dy, is the Wilson-Dirac operator and the trace runs
over space-time, spinor and color indices. Following [10],
the trace is estimated stochastically by inserting a complete

set of random complex vectors 7(x) with (7(x)) =0 and
{n(X)n(y)') = dxy:

(A1) = - S A1)

I' xer

E(ty s, w) = ZK(t,x;s,w)Tn(x). (A1)

Here (...) denotes the average with respect to both the
Monte-Carlo time and any internal group-symmetry rep-
resentations. Finally, to compute the new vectors &, the so-
called adjoint flow equation

Os&(t;s,w) = =A(V )E(t:s.w), E(t 1. w) = n(w),  (A2)

must be integrated from s = ¢ to s = 0, i.e., backwards in
comparison with the flow equations presented above. Here,
the gauge connection V in the covariant four-dimensional
Laplacian A is flowed up to the same ¢ as 7.

APPENDIX B: FINITE TEMPERATURE DATA

TABLE II.  Condensate, chiral susceptibility and Binder cumulant of the Polyakov loop at # = 1.75,24% x N,.

K to N, (A2) Susceptibility B,(Pp)
0.1480 6.332(48) 8 0.002557(12) 0.000076(14) 0.65531(86)
9 0.002738(20) 0.000082(6) 0.6417(27)
10 0.002913(51) 0.000203(41) 0.5796(94)
11 0.003289(16) 0.000073(13) 0.261(37)
12 0.003334(46) 0.000214(48) 0.332(27)
13 0.003614(34) 0.000165(34) —0.051(66)
14 0.003775(27) 0.000157(16) 0.031(27)
15 0.003861(17) 0.000154(22) —0.026(43)
16 0.0039778(93) 0.000109(6) 0.012(26)
0.1490 9.851(32) 8 0.001374(21) 0.000031(5) 0.65851(49)
10 0.001491(73) 0.000068(19) 0.6349(21)
11 0.001557(32) 0.000077(11) 0.6110(33)
12 0.001808(70) 0.000209(31) 0.530(15)
13 0.001880(35) 0.000101(23) 0.377(37)
14 0.002612(64) 0.000112(35) 0.079(38)
16 0.002733(29) 0.000061(23) 0.031(43)
0.14925 10.545(69) 8 0.001144(12) 0.000025(2) 0.6581(3)
10 0.001059(29) 0.000077(14) 0.6372(14)
11 0.001254(23) 0.000102(24) 0.6244(18)
12 0.001326(50) 0.000338(90) 0.5618(66)
13 0.001742(121) 0.000450(78) 0.424(18)
14 0.002013(92) 0.000155(21) 0.338(22)
15 0.002533(28) 0.000108(11) 0.026(38)
16 0.002564(57) 0.000116(17) —0.026(35)
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TABLE III. Adjoint pion masses for each « value.
K am,_,
0.1480 0.4119(39)
0.1490 0.23780(97)
0.14925 0.1896(17)
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