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We present a study on the double longitudinal-spin asymmetry of dihadron production in semi-inclusive
deep inelastic scattering (SIDIS), in which the total transverse momentum of the final-state hadron pairs is
integrated out. In particular, we investigate the origin of the cosϕR azimuthal asymmetry for which we take
into account the coupling of the helicity distribution g1 and the twist-3 dihadron fragmentation function
D̃∢. We calculate the s-wave and p-wave interference term D̃∢

ot in a spectator model. We estimate the
cosϕR asymmetry at the kinematics of COMPASS which is collecting data on dihadron production in
polarized deep inelastic scattering. The prediction of the same asymmetry at JLab 12 GeV and a future
electron-ion collider are also presented. Our study indicates that measuring the cosϕR asymmetry in SIDIS
may be a ideal way to probe the dihadron fragmentation function D̃∢.
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I. INTRODUCTION

The spin and azimuthal asymmetries in the semi-
inclusive deep inelastic scattering (SIDIS) process [1–5]
have been recognized as useful tools for exploring both the
partonic structure of the nucleon and the hadronization
mechanism of hadrons, which are among the main tasks in
QCD and hadronic physics. According to factorization [6],
the cross section of the SIDIS process can be expressed as
the convolution of the parton distribution function, the
fragmentation function, and the hard scattering factor.
Distribution and fragmentation functions are important
nonperturbative quantities encoding the internal parton
and spin structure of nucleon as well as the fragmentation
mechanism.
Recently, a great deal of attention has also been paid to

the higher-twist contributions [7–17] in SIDIS. Although
the rigorous proof on factorization at the twist-3 level in
SIDIS has not been achieved [18,19], it is shown [5,20] that
those effects are related to the twist-3 distributions and
fragmentation functions based on the tree-level calculation:
the spin- or azimuthal-dependent structure function can be
expressed as the convolution of the twist-3 distribution/
fragmentation functions and the twist-2 fragmentation/
distribution functions. Moreover, there are existing and
ongoing experimental measurements on the azimuthal

asymmetries of single-hadron and hadron pair (dihadron
from a single jet) production at a higher-twist level in
polarized SIDIS by COMPASS, HERMES, and CLAS at
JLab, not only for single-hadron production [21–26], but
also for dihadron production [27]. For the latter case, the
azimuthal asymmetry at the twist-2 level has been mea-
sured and was applied to extract [28–31] transversity from
SIDIS data [32–34] based on the coupling of transversity
and the chiral-odd dihadron fragmentation function H∢

1

[35–42] in the collinear factorization.
In this work, we study the azimuthal asymmetry of

dihadron production in double longitudinally polarized
SIDIS l→ þ p→ → lþ h1 þ h2 þ X in the case that the
total transverse momentum of the dihadron is integrated
out. As shown in Ref. [20], in this particular process, there
are two twist-3 terms that might give rise to the asymmetry
with a cosϕR modulation. The first one is the coupling of
the T-odd twist-3 distribution eLðxÞ and the twist-2
dihadron H∢

1 , while the second one is the combination
of the helicity distribution g1ðxÞ and the twist-3 dihadron
fragmentation function (DiFF) D̃∢ originating from quark-
gluon-quark correlation. Here the symbol ∢ denotes that
the corresponding DiFF is the interference fragmentation
function. However, if the time reversal invariance is
imposed and the gauge link is the only source of a T-
odd distribution, eLðxÞ should vanish [4] and the eLðxÞH∢

1

term will not contribute to the cosϕR asymmetry. Based on
this consideration, only one term, the g1ðxÞD̃∢ term, should
give rise to the asymmetry. This is different from the single-
hadron production in SIDIS in which usually several twist-
3 terms contribute to one observable. Thus, investigating
the cosϕR asymmetry in double polarized SIDIS provides
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an opportunity to study the unknown twist-3 DiFF D̃∢ in a
less ambiguous way.
The remaining content of the paper is organized as

follows. In Sec. II, we will briefly review the theoretical
framework of the cosϕR asymmetry of dihadron produc-
tion in doubly polarized SIDIS. In Sec. III, we use a
spectator model to calculate the twist-3 dihadron fragmen-
tation function D̃∢. As there is no measurement on D̃∢,
model calculation is important for accessing information on
this unknown DiFF. In Sec. IV, we numerically estimate the
DIFF D̃∢ and the AcosϕR

LL double longitudinal-spin asym-
metry at the kinematics of COMPASS, JLab 12 GeV, and
electron-ion collider (EIC). Finally, in Sec. V, we provide
the conclusion for this paper.

II. FORMALISM OF cosϕR ASYMMETRY
IN DIHADRON PRODUCTION IN SIDIS

We consider the following dihadron SIDIS process:

l→ðlÞ þ N→ðPÞ → lðl0Þ þ h1ðP1Þ þ h2ðP2Þ þ X; ð1Þ
in which a longitudinally polarized lepton collides on the
longitudinally polarized target protonN via the exchange of
a virtual photon. Here the arrow→ denotes the longitudinal
polarization of the beam or the proton target. The corre-
sponding 4-momenta are given in parentheses in the above
formula; then the virtual photon has the momentum
q ¼ l − l0. P is the momentum of the target with mass
M. In this process, the final-state quark with momentum
k ¼ pþ q then fragments into two final-state hadrons, hþ
and h−, plus unobserved state X. The momenta of the
pair are denoted by P1 and P2, respectively. We present
the following kinematical variables that are necessary to
describe the differential cross section and express the
DiFFs:

x ¼ kþ

Pþ ; y ¼ P · q
P · l

; zi ¼
P−
i

k−
; ð2Þ

z¼ P−
h

k−
¼ z1 þ z2; Q2 ¼ −q2; s¼ ðPþ lÞ2; ð3Þ

Ph ¼ P1 þ P2; R ¼ ðP1 − P2Þ=2; Mh ¼
ffiffiffiffiffiffi
P2
h

q
:

ð4Þ

Furthermore, the 4-vectors are given in terms of the light-
cone coordinates aμ ¼ ðaþ; a−; aTÞ, where the light-cone
components are defined as a� ¼ ða0 � a3Þ= ffiffiffi

2
p

, and aT is a
bidimensional vector of the transverse component.
Therefore, x represents the light-cone momentum fraction
of the initial quark, and zi is the light-cone momentum
fraction of hadron hi found in the fragmented quark.
Finally, Mh, Ph, and R are the invariant mass, the total
momentum, and the relative momentum of the hadron pair,
respectively.

We work in the lab frame, in which the momenta Pμ
h, k

μ,
and Rμ can be decomposed to [43,44]

Pμ
h ¼

�
P−
h ;

M2
h

2P−
h
; 0⃗

�
;

kμ ¼
�
P−
h

z
;
zðk2 þ k⃗2TÞ

2P−
h

; k⃗T

�
;

Rμ ¼
�jR⃗jP−

h

Mh
cos θ;−

jR⃗jMh

2P−
h

cos θ; jR⃗j sin θ cosϕR;

jR⃗j sin θ sinϕR

�
:

¼
�jR⃗jP−

h

Mh
cos θ;−

jR⃗jMh

2P−
h

cos θ; R⃗x
T; R⃗

y
T

�
: ð5Þ

Here, as shown in Fig. 1, ϕR is the angle between the lepton
plane and the dihadron plane defined as

cosϕR ¼ q̂ × ⃗l

jq̂ × ⃗lj
·
q̂ × R⃗T

jq̂ × R⃗T j
; sinϕR ¼

⃗l × R⃗T · q̂

jq̂ × ⃗ljjq̂ × R⃗T j
;

ð6Þ

where q̂ ¼ q⃗=jq⃗j and RT is the component of R perpendi-
cular to Ph. The angle θ is the polar angle between the
direction of P1 in the center of mass frame of the hadron
pair and the direction of Ph in the lab frame.
There are several useful expressions for the scalar

products as follows:

Ph · R ¼ 0; ð7Þ

Ph · k ¼ M2
h

2z
þ z

k2 þ jk⃗T j2
2

; ð8Þ

FIG. 1. Sketch of the dihadron production in SIDIS process in
the lab frame, including the relevant azimuthal angles. The
nucleon is assumed to be longitudinally polarized either along
or against the direction of the incoming lepton.
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R · k ¼
�
Mh

2z
− z

k2 þ jk⃗T j2
2Mh

�
jR⃗j cos θ − k⃗T · R⃗T: ð9Þ

In particular, there is a relation between the R⃗ and Mh:

jR⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h

4
−m2

h

r
: ð10Þ

We will focus on the case when the lepton beam and
proton target are both longitudinally polarized as well as
the case when the total transverse momentum is integrated
out. For convenience, in the following formula we intro-
duce the subscripts U and L for the cross section σXY to
indicate the unpolarized or longitudinally polarized
states. Also, the polarizations with respect to the beam
and the target are indicated by the first label X and the
second label Y of σXY , respectively. We can then summarize
the unpolarized and double polarized cross sections as
follows [20]:

d6σUU

dcosθdM2
hdϕRdzdxdy

¼ α2

Q2y

�
1−yþy2

2

�X
a

e2afa1ðxÞDa
1ðz;M2

h;cosθÞ; ð11Þ

d6σLL
d cos θdM2

hdϕRdzdxdy

¼ α2

Q2y
SL

X
a

e2ay

�
y
2
− 1

�
ga1ðxÞDa

1ðz;M2
h; cos θÞ

þ α2

Q2y
SL

X
a

e2a2y
ffiffiffiffiffiffiffiffiffiffiffi
2 − y

p M
Q

jRj
Mh

cosϕR

×

�
xeaLðxÞH∢;a

1 ðz;M2
h; cos θÞ

−
Mh

Mz
ga1ðxÞD̃∢;aðz;M2

h; cos θÞ
�
: ð12Þ

In Eq. (11), fa1ðxÞ and Da
1ðz;M2

h; cos θÞ denote the unpo-
larized parton distribution function (PDF) and unpolarized
DiFF for flavor a. The first line in Eq. (12) represents the
leading twist contribution, while the second line denotes
the twist-3 terms which contribute to the cosϕR asymmetry.
In detail, there are two individual contributions that might
give rise to the asymmetry. The first one is eLðxÞH∢

1 , in
which eLðxÞ ¼

R
d2kTeLðx; k2TÞ is a T-odd twist-3 distri-

bution, and H∢;a
1 is the twist-2 DiFF. The second one is

g1ðxÞD̃∢, where g1ðxÞ is the twist-2 helicity distribution
and D̃∢ is the twist-3 DiFF, with the symbol∢ denoting the
interference nature of the DiFF. However, as shown in
Ref. [4], if eLðx; k2TÞ only receives a contribution from the
gauge link, the time-reversal invariance of QCD implies the
constraint

R
d2kTeLðx; k2TÞ ¼ 0; therefore, the contribution

eLðxÞH∢
1 vanishes in the collinear limit. Based on this

observation, in this work we only need to consider the
g1ðxÞD̃∢ term.
The partial-wave analysis of the DiFFs D1 and D̃∢ up to

p-wave level yields [20]

Da
1ðz; cos θ;M2

hÞ ¼ Da
1;ooðz;M2

hÞ þDa
1;olðz;M2

hÞ cos θ
þDa

1;llðz;M2
hÞð3 cos2 θ − 1Þ; ð13Þ

H∢a
1 ðz; cos θ;M2

hÞ ¼ H∢a
1;otðz;M2

hÞ þH∢a
1;ltðz;M2

hÞ cos θ:
ð14Þ

D̃∢ðz; cos θ;M2
hÞ ¼ D̃∢

otðz;M2
hÞ þ D̃∢

lt ðz;M2
hÞ cos θ: ð15Þ

Here, Da
1;ooðz;M2

hÞ comes from the pure s-wave and p-
wave contributions; Da

1;ol and D̃∢
otðz;M2

hÞ arise from the
interference between a pair in the s-wave and a pair in the
p-wave.
Following the similar arguments in Ref. [43], in this

paper we will not consider the cos θ-dependent terms in the
expansion of DiFFs. When integrating out the angular θ in
the interval ½0; π�, which is our case, the cos θ-dependent
terms should vanish. Therefore, we focus on the functions
Da

1;oo and D̃
∢
ot. In this scenario, the cosϕR asymmetry of the

dihadron production contribution to the double longitudi-
nally polarized asymmetry can be expressed as

AcosϕR
LL ðx; z;M2

hÞ ¼ −
P

ae
2
a
jR⃗j
Q ½1z g1ðxÞD̃∢

otðz;M2
hÞ�P

ae
2
afa1ðxÞDa

1;ooðz;M2
hÞ

: ð16Þ

Following the convention used by COMPASS in Ref. [27],
the depolarization factors are not included in the numerator
or the denominator.

III. CALCULATION OF THE DIFF D̃∢
ot

IN THE SPECTATOR MODEL

The twist-3 DiFF D̃∢ originates from the quark-gluon-
quark correlation [20],

Δ̃α
Aðk; Ph; RÞ ¼

1

2z

X
X

Z
dξþd2ξT
ð2πÞ3 eik·ξh0j

Z
ξþ

�∞þ
dηþUξT

ð∞þ;ξþÞ

× gF−α⊥ UξT
ðηþ;ξþÞψðξÞjPh; R;XihPh; R;Xjψ̄ð0ÞU0T

ð0þ;∞þÞU
∞þ
ð0T ;ξTÞj0ijηþ¼ξþ¼0;ηT¼ξT

: ð17Þ
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Here F−α⊥ is the field strength tensor of the gluon. Introducing the covariant derivative iDμðξÞ ¼ i∂μ þ gAμðξÞ, we can
recover also the relation

Δ̃α
Aðk; Ph; RÞ ¼ Δα

Dðk; Ph; RÞ − Δα∂ðk; Ph; RÞ; ð18Þ

where

Δα
Dðk; Ph; RÞ ¼ z2

X
X

Z
dξþ

2π
eik·ξh0jUþ

½0;ξ�ψðξÞiDαðξÞjPh; R;XihPh; R;Xjψ̄ð0Þj0ijξ−¼ξT¼0;

Δα∂ðk; Ph; RÞ ¼ z2kαT
X
X

Z
dξþ

2π
eik·ξh0jUþ

½0;ξ�ψðξÞjPh; R;XihPh; R;Xjψ̄ð0Þj0ijξ−¼ξT¼0: ð19Þ

After integrating out k⃗T , we get

Δ̃α
Aðz; cos θ;M2

h;ϕRÞ ¼
z2jR⃗j
8Mh

Z
d2k⃗TΔ̃α

Aðk; Ph; RÞ: ð20Þ

Then, the DiFF D̃∢ can be obtained by the trace

Rα
T

z
D̃∢ðz; cos θ;M2

hÞ ¼ 4πTr½Δ̃α
Aðz; cos θ;M2

h;ϕRÞγ−�:
ð21Þ

Following the approach developed in Ref. [43], we will
work in the framework of a spectator model for the
fragmentation process q → πþπ−X. Here, the sum over
all possible intermediate states X is replaced by an effective
on-shell state—the spectator, whose quantum numbers are
the same as the initial quark and whose mass is one of the
parameters of the model. The twist-2 DiFFsD1;oo andH

∢
1;ot

have been studied in Ref. [43] using the spectator model.
The model was also extended to calculate the twist-3 DiFF
G̃∢ in Ref. [45]. In the following, the calculation of the
unknown DiFF D̃∢

ot in the same model will be described in
detail.
The corresponding diagram to calculate the quark-gluon-

quark correlation for DiFF is shown in Fig. 2, in which the
left-hand side corresponds to the quark-hadron vertex
hPh; R;Xjψ̄ð0Þj0i, and the right-hand side corresponds to

the vertex h0jigF−α⊥ ðηþÞψðξþÞjPh; R;Xi which contains
gluon rescattering.
As given in detail in Ref. [43], there are a few prominent

channels contributing to the q → πþπ−X process:
(1) q → πþπ−X1;
(2) q → ρX2 → πþπ−X2;
(3) q → ωX3 → πþπ−X3;
(4) q → ωX0

4 → πþπ−X4 with X4 ¼ π0X0
4;

(5) q → ηX0
5 → πþπ−X5 with X5 ¼ χX0

5;
(6) q → K0X6 → πþπ−X6.
In the first process, the quark fragments into an “inco-

herent” πþπ− pair that are called the “background,” while
in the other five processes the πþpi− pair are produced
through the decays of the intermediate resonances ρ, ω, η,
and K0, responsible for the peaks at Mh ∼ 770 MeV,
782 MeV, 500 MeV, and 498 MeV, respectively.
As stated in Ref. [43], different channels could produce

spectators with different masses. For simplicity, here we
consider just a single spectator for all channels. The
spectator mass is denoted by Ms. The choice of using
the same spectator for all channels implies in particular that
the fragmentation amplitudes of all channels can interfere
with each other maximally. In reality, only a fraction of the
total events ends up in the same spectator and can thus
produce interference effects.
Using the above setup, we can write down the quark-

gluon-quark correlator for dihadron fragmentation pro-
duced by the s-wave and p-wave:

Δ̃α
Aðk; Ph; RÞ ¼ i

CFαs
2ð2πÞ2ð1 − zÞP−

h

1

k2 −m2

Z
d4l
ð2πÞ4 ðl

−gαμT − lαTg
−μÞ

×
ð=k − =lþmÞðFs⋆e

−k2

Λ2s þ Fp⋆e
− k2

Λ2p=RÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞðFse
−k2

Λ2s þ Fpe
− k2

Λ2p=RÞð=kþmÞ
ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2

s − iϵÞðl2 − iϵÞ :

ð22Þ
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Here,m and ms are the mass of the quark and the spectator,
respectively, and Λs and Λp are the cutoffs for the quark
momentum with the form [43]

Λs;p ¼ αs;pzβs;pð1 − zÞγs;p : ð23Þ

The exponential form factors are introduced to suppress the
contributions from higher quark virtuality [46]. The open

circle in Fig. 2 denotes the factor ðl−gαμT − lαTg
−μÞ coming

from the Feynman rule for the gluon field strength tensor in
the operator definition of the correlator (17). In addition, Fs

and Fp are the quark-dihadron-spectator vertices associated
with the s-wave and p-wave contributions; in particular, the
p-wave vertices contain the real part and image part, which
are both contributions to the twist-3 fragmentation function
D̃∢, respectively, and in Ref. [43] they are parametrized as

Fs ¼ fs;

Fp ¼ fρ
ðM2

h −M2
ρÞ − iΓρMρ

ðM2
h −M2

ρÞ þ Γ2
ρM2

ρ
þ fω

ðM2
h −M2

ωÞ − iΓωMω

ðM2
h −M2

ρÞ þ Γ2
ωM2

ω

− if0ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̂ðM2

ω;M2
h; m

2
πÞ

q
ΘðMω −mπ −MhÞ

4πΓ2
ω½4M2

ωm2
π þ λ̂ðM2

ω;M2
h;m

2
πÞ�14

: ð24Þ

Here, λ̂ðM2
ω; M2

h; m
2
πÞ ¼ ðM2

ω − ðMh þ mπÞ2ÞðM2
ω −

ðMh − mπÞ2Þ and Θ denotes the unit step function. The
first two terms of Fp can be identified with the contribu-
tions of the ρ and theω resonances decaying into two pions.
The masses and widths of the two resonances are taken
from the PDG [47]: Mρ ¼ 0.776 GeV, Γρ ¼ 0.150 GeV,
Mω ¼ 0.783 GeV, and Γω ¼ 0.008 GeV.
To identify the contributions from the correlator to D̃∢

ot,
we expand (22) in the following way:

Δ̃α
Aðz; cos θ;M2

h;ϕRÞ ¼ i
CFαsz2jR⃗j

16ð2πÞ5ð1 − zÞMhP−
h

Z
djk⃗T j2

Z
d4l

l−gαμT − lαTg
−μ

k2 −m2

×
�
þjFsje−

2k2

Λ2s
ð=k − =lþmÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ jFpje−
2k2

Λ2p
ð=k − =lþmÞ=Rð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞ=Rð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ ðFs⋆FpÞe−
2k2

Λ2sp
ð=k − =lþmÞð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞ=Rð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

þ ðFsFp⋆Þe−
2k2

Λ2sp
ð=k − =lþmÞ=Rð=k − =Ph − =lþmsÞγμð=k − =Ph þmsÞð=kþmÞ

ð−l− � iϵÞððk − lÞ2 −m2 − iϵÞððk − Ph − lÞ2 −m2
s − iϵÞðl2 − iϵÞ

�
; ð25Þ

where 2=Λ2
sp ¼ 1=Λ2

s þ 1=Λ2
p.

In the spectator model, the factor k2 in Eq. (25), compatible with the on-shell condition of the spectator, is given by

k2 ¼ z
1 − z

jk⃗T j2 þ
M2

s

1 − z
þM2

h

z
: ð26Þ

In Eq. (25), the first term corresponds to the pure s-wave contribution, the second term corresponds to the pure p-wave
contribution, whereas the third and fourth terms correspond to the interference of s- and p-wave contributions. According to
the partial-wave analysis for D̃∢, one can find that only the third and fourth terms contribute to D̃∢

ot. Integrating over the
internal momentum l yields the final expression for D̃∢

otðz;M2
hÞ:

FIG. 2. Diagrammatic representation of the correlation function
Δ̃α

A in the spectator model.

cosϕR ASYMMETRY OF DIHADRON PRODUCTION IN … PHYS. REV. D 100, 074033 (2019)

074033-5



D̃∢
otðz;M2

hÞ ¼ −
αsCFz2jR⃗j

4ð2πÞ4ð1 − zÞMh

Z
djk⃗T j2e

−2k2

Λ2sp
1

k2 −m2
fReðFs�FpÞC

þ ImðFs�FpÞms½ðk2 −m2ÞðAþ zBÞ − 2ðAk2 þ BPh · kÞ�g: ð27Þ

Here, the coefficient C corresponds to the real part of the integration over l and has the expression

C ¼ m
Z

1

0

dx
Z

1−x

0

dy
½xþ ð1 − zÞy − 2�ðk2 − 2k · Ph −m2

s þm2
hÞ þ ðxþ 2yÞk · Ph − ðxþ yÞk2 − ym2

h

xð1 − xÞk2 þ 2k · ðk − PhÞxyþm2xþm2
syþ yðy − 1Þðk − PhÞ2

: ð28Þ

Note that it is proportional to the fragmenting quark mass m. The factors A and B that appear in Eq. (27) have the forms

A ¼ I1
λðmh;msÞ

�
2k2ðk2 −m2

s −m2
hÞ
I2
π
þ ðk2 þm2

h −m2
sÞ
�
; ð29Þ

B ¼ −
2k2

λðmh;msÞ
I1

�
1þ k2 þm2

s −m2
h

π
I2

�
; ð30Þ

and the functions Ii have the forms [48]

I1 ¼
Z

d4lδðl2Þδððk − lÞ2 −m2Þ ¼ π

2k2
ðk2 −m2Þ; ð31Þ

I2 ¼
Z

d4l
δðl2Þδððk − lÞ2 −m2Þ
ðk − Ph − lÞ2 −m2

s
¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðmh;msÞ

p ln

�
1 −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðmh;msÞ

p
k2 −m2

h þm2
s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðmh;msÞ

p
�
; ð32Þ

with λðmh;msÞ ¼ ðk2 − ðmh þmsÞ2Þðk2 − ðmh −msÞ2Þ.

IV. NUMERICAL ESTIMATE FOR D̃∢
ot

AND THE DOUBLE SPIN ASYMMETRY

In order to obtain the numerical results of the fragmen-
tation function D̃∢

otðz;M2
hÞ, we need to know the values for

the model parameters ms, αs;p, βs;p, and γs;p. For these we
adopt them from Ref. [43]:

αs ¼ 2.60� 0.05 GeV2; βs ¼ −0.751� 0.008;

γs ¼ −0.193� 0.004; αp ¼ 7.07� 0.11 GeV2;

βp ¼ −0.038� 0.003; γp ¼ −0.085� 0.004;

fs ¼ 1197� 2 GeV−1; fρ ¼ 93.5� 1.6;

fω ¼ 0.63� 0.03; f0ω ¼ 75.2� 1.2;

Ms ¼ 2.97� 0.04Mh: ð33Þ

For the quark mass m, we will adopt two different
choices for comparison. The first one is m ¼ 0 GeV,
following the adoption in Ref. [43]. In this choice the C
term [Eq. (28)] vanishes since it is proportional to m.
Therefore, in this particular case only the term containing
IMðFs�FpÞ in Eq. (27) contributes to D̃∢

ot numerically.
In the second choice we adopt m ¼ 0.3 GeV, which is

consistent with the value for the quark mass chosen in
Refs. [49] and [50].
The results for D̃∢

ot divided by the unpolarized DiFF
D1;oo are plotted in Fig. 3. The left panel depicts the z-
dependence of the ratio (Mh is integrated out in the region
0.3 < Mh < 1.6), and the right panel depicts the Mh-
dependence of the ratio (z is integrated out over the region
0.2 < z < 0.9). The dashed line corresponds to the result
for m ¼ 0 GeV. The dashed-dotted line corresponds to the
result from the ImðFs�FpÞ term for m ¼ 0.3 GeV, while
the dotted line corresponds to the nonzero result from the C
term in Eq. (28) form ¼ 0.3 GeV. The solid line is the total
result for m ¼ 0.3 GeV, corresponding to the sum of the
dashed-dotted and dotted lines. We find that D̃∢

ot=D1;oo is
positive in the entire z and Mh region when Mh or z is
integrated out, respectively. We note that the cosRϕ

asymmetry in the unpolarized SIDIS is proportional to
the ratio D̃∢=D1 as suggested by Eq. (44) in Ref. [20];
therefore, the curve in Fig. 3 can be also viewed as an
approximate result for the cosϕR asymmetry in the
unpolarized SIDIS. We also observe that two different
choices of the quark massm lead to a 10% difference in the
ratio D̃∢

ot=D1;oo.
Using Eq. (16), one can express the double longitudi-

nally polarized asymmetry AcosϕR
LL in SIDIS as functions of

x, z, and Mh as follows:
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AcosϕR
LL ðxÞ ¼ −

R
dz

R
dMh2Mh

jR⃗j
Q

1
z ð4gu1ðxÞ þ gd1ðxÞÞD̃∢

otðz;M2
hÞR

dz
R
dMh2Mhð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
; ð34Þ

AcosϕR
LL ðzÞ ¼ −

R
dx

R
dMh2Mh

jR⃗j
Q

1
z ð4gu1ðxÞ þ gd1ðxÞÞD̃∢

otðz;M2
hÞR

dx
R
dMh2Mhð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
; ð35Þ

AcosϕR
LL ðMhÞ ¼ −

R
dx

R
dz jR⃗j

Q
1
z ð4gu1ðxÞ þ gd1ðxÞÞD̃∢

otðz;M2
hÞR

dx
R
dzð4fu1ðxÞ þ fd1ðxÞÞD1;ooðz;M2

hÞ
: ð36Þ

For the unpolarized distribution f1 and the helicity
distribution g1, we also apply a spectator model result
from Ref. [49] for consistency. As the scale dependence of
the DiFF D̃∢ still remains unknown, we assume that D̃∢
follows the same evolution as that of the DiFFD1 [51,52] in
the leading order. For the PDFs f1 and g1, we adopt the
leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution. We admit that the scale dependence
of D̃∢ might be more complicated than that of D1 because

D̃∢ is a twist-3 object. Since here the asymmetry is the ratio
between g1 ⊗ D̃∢ and f1 ⊗ D1, we assumed that the
evolution effect will not influence the results qualitatively.
The COMPASS Collaboration [27] is measuring the

above Acosϕ
LL asymmetry using a 160 or 190 GeV longitu-

dinally polarized muon beam on a longitudinally polarized
nucleon target. Using the numerical result for D̃∢

ot, we
estimate the asymmetry AcosϕR

LL at the kinematical region of
COMPASS:

FIG. 3. The twist-3 DiFF D̃∢
ot as the functions of z (left panel) and Mh (right panel) in the spectator model, normalized by the

unpolarized DiFFD1;oo. The dashed line corresponds to the result form ¼ 0 GeV. The dashed-dotted line corresponds to the result from
the ImðFs�FpÞ term for m ¼ 0.3 GeV, while the dotted line corresponds to the result from the C term in Eq. (28) for m ¼ 0.3 GeV.
The solid line is the total result for m ¼ 0.3 GeV, corresponding to the sum of the dashed-dotted and dotted lines.

FIG. 4. The cosϕR azimuthal asymmetry in dihadron production off the longitudinally polarized proton as functions of x (left panel),
z (central panel), and Mh (right panel) at COMPASS. The dashed and solid lines correspond to the results from m ¼ 0 GeV and
m ¼ 0.3 GeV.
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0.003<x<0.4; 0.1<y<0.9; 0.2<z<0.9;

0.3GeV<Mh<1.6GeV; 1GeV<Q2; W>5GeV:

ð37Þ
Here W is the invariant mass of the virtual photon-nucleon
system. The kinematical cuts in Eq. (37) are implemented
in the calculation numerically by imposing those con-
straints in the computation code.
In the left, central, and right panels of Fig. 4, we plot the

x-, z-, and Mh-dependent cosϕR asymmetry at the
COMPASS kinematics. The solid and dashed lines corre-
spond to the results for m ¼ 0.3 GeV and m ¼ 0 GeV,
respectively. Again, the difference between these two
results is about 10%. We find that the asymmetry is
negative due to the minus sign in Eq. (16). The asymmetry
roughly decreases with increasing x. The estimated mag-
nitude of the asymmetry at COMPASS is about 0.01, which
is smaller than the sinϕR asymmetry in single longitudi-
nally polarized SIDIS [27,45].
For comparison, we also predict the asymmetry AcosϕR

LL at
JLab 12GeVusing the following kinematical configuration:

0.072 < x < 0.532; 0.2 < y < 0.95;

0.2 < z < 0.8; 0.5 GeV < Mh < 1.2 GeV;

Ee ¼ 12 GeV; W > 4 GeV2;

1 < Q2 < 6.3 GeV2: ð38Þ

The corresponding results are shown in Fig. 5. In general, the
asymmetry at JLab 12 GeV is found to be larger than that at
COMPASS because theAcosϕR

LL asymmetry is a twist-3 effect
and the c.m. energy at JLab is smaller.
We also present the cosϕR asymmetry in double polar-

ized SIDIS at the kinematical configuration of a future EIC
facility [53]:

ffiffiffi
s

p ¼ 45 GeV; 0.001 < x < 0.4;

0.01 < y < 0.95; 0.2 < z < 0.8;

0.3 GeV < Mh < 1.6 GeV; Q2 > 1 GeV2;

W > 5 GeV: ð39Þ
The asymmetry vs x, z, andMh is plotted in the left, central,
and right panels of Fig. 6. We find that the overall tendency
of the asymmetry at the EIC is similar to that at COMPASS.
Although the size of the asymmetry is smaller due to the
higher-twist nature of the asymmetry, it is still measurable
at the kinematics of EIC.
Finally, we note that a recent measurement on the single-

transverse spin asymmetry of dihadron production in SIDIS
by COMPASS [34] shows that the asymmetry is similar
to the Collins asymmetry of single-hadron production in
SIDIS. This hints that the spin-dependent DiFFs could be
generated by the single-hadron spin-dependent fragmenta-
tion functions. The closed relation between the Collins
fragmentation function H⊥

1 and the spin-dependent DiFF

FIG. 5. The cosϕR azimuthal asymmetry in dihadron production off the longitudinally polarized proton as functions of x (left panel),
z (central panel), and Mh (right panel) at JLab 12 GeV. The dashed and solid lines correspond to the results from m ¼ 0 GeV and
m ¼ 0.3 GeV.

FIG. 6. The cosϕR azimuthal asymmetry in dihadron production off the longitudinally polarized proton as functions of x (left panel),
z (central panel), and Mh (right panel) at an EIC. The dashed and solid lines correspond to the results from m ¼ 0 GeV and
m ¼ 0.3 GeV.
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H∢
1 in the large Mh region has also been suggested in

Ref. [54], which showed that both the leading twist
unpolarized dihadron fragmentation function and the lead-
ing twist interference fragmentation function (IFF) can be
perturbatively computed in terms of the normal single-
hadron fragmentation function when the invariant mass is
sufficiently large. Therefore, there is the possibility that a
similar analysis can be applied to the twist-3 IFF case as
well. On the other hand, a calculation of single-spin
asymmetry in dihadron production based on the spectator
model result [43] for H∢

1 can also well describe the
COMPASS data (see solid blue lines in Fig. 5 of
Ref. [34]) for the x- and z-dependent shape, as well as
for the Mh-dependent shape in the ρ meson region. This
may suggest that the resonance interference mechanism
applied in our paper can also be responsible for the spin
asymmetry in dihadron production. Due to the lack of
further data, at the moment it is hard to say which
mechanism should be preferred. Further theoretical and
experimental studies are needed in order to discriminate
different mechanisms for the spin-dependent DiFFs.

V. CONCLUSION

In this work, we studied the origin of the cosϕR
asymmetry of hadron pair production in double polarized

SIDIS: l→ þ p→ → h1 þ h2 þ X. The asymmetry can
originate from the coupling of the twist-3 DiFF D̃∢
and the helicity distribution g1ðxÞ. Another potential
contribution, the coupling eLðxÞH∢

1 , will not give rise
to the asymmetry because of the time-reversal invariant
constraint

R
d2pTeLðx; p2

TÞ ¼ 0. We applied a spectator
model for the quark-gluon-quark correlator and calculated
the s-wave and p-wave interference DiFF D̃∢

ot, the
leading term of D̃∢ in the partial-wave expansion.
Using the numerical results for D̃∢

ot, we estimated the
cosϕR asymmetry as functions of x, z, and Mh at the
kinematics of COMPASS, JLab 12 GeV, and EIC. We
found that the asymmetry at COMPASS and JLab12 is
about 1–2% and may be measurable. Therefore, the
measurement of the cosϕR asymmetry at COMPASS
and JLab12 may provide unambiguous information
on D̃∢.
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