
 

Sivers distribution functions of sea quarks in a proton
with the chiral Lagrangian

Fangcheng He1,2 and P. Wang 1,3

1Institute of High Energy Physics, CAS, P.O. Box 918(4), Beijing 100049, China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

3Theoretical Physics Center for Science Facilities, CAS, Beijing 100049, China

(Received 16 April 2019; published 29 October 2019)

We propose a mechanism for the Sivers distribution function in a proton with the chiral Lagrangian. By
introducing the gauge link of the vector meson, the transverse momentum dependent distribution of a pion
in the nucleon is redefined, which is locally SUð2ÞV invariant as the Lagrangian. The eikonal propagator is
generated from the gauge link, and this scenario is proven to be equivalent to the final state interaction. By
combining the calculated splitting function and the valence q̄ distribution in π from the recent fit, the sea
quark Sivers function in a proton is obtained. We find reasonable numerical results for the first momentum

xΔNfð1Þq̄ ðxÞ without any fine tuning of the free parameters.
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I. INTRODUCTION

In the recent decades, the transverse partonic structure of
hadrons has been the subject of a lot of theoretical and
experimental investigations. The so called transverse
momentum dependent (TMD) parton distributions are
of great interest since they offer insight in the three-
dimensional structure of hadrons in terms of the QCD
degrees of freedom (d.o.f.) [1]. At leading twist there are
totally eight TMD parton distributions. Among them, two
distributions, i.e., Boer-Mulders (BM) and Sivers distribu-
tions, are time-reversal odd [2]. Compared with the BM
distributions, more data of Sivers distributions were
extracted from semi-inclusive deep inelastic scattering
(SIDIS) collected by the HERMES and COMPASS col-
laborations [3,4]. Sivers function describes the asymmetric
distribution of unpolarized quarks in a transversely polar-
ized parent hadron. It is very essential to explain the single-
spin asymmetries (SSAs) in SIDIS which have been
observed experimentally for a long time [5–7].
Theoretically, it is very difficult to calculate parton

distribution functions (PDFs) from the first principle due
to the nonperturbative behavior of QCD. Since PDFs are
defined in Minkowski space, originally, it is also impos-
sible to simulate on the Euclidean lattice. Though the quasi-
PDFs are proposed to be calculated on lattice based on the

large momentum effective theory (LaMET) [8], the sim-
ulation of PDFs on lattice is still in the early stage. For the
Sivers distribution function, most calculations are based on
the phenomenological quark models, such as the spectator
model [9–16], the MIT bag model [17], the constituent
quark model [18,19], etc. In these model calculations, the
gluon field is introduced as the gauge link. The T-odd
parton distributions are zero without this gauge link
because of the time reversal invariance. Dynamically,
T-odd PDFs emerge from the gauge link structure of the
parton correlation functions which describe the initial/final
state interactions [20,21].
In the deep inelastic scattering (DIS) process, the calcu-

lations of meson cloud effects were performed by Sullivan,
where the nucleon is composed ofmesons (pions, kaons) and
a bare baryon [22]. It is well known that effective field theory
(EFT) is a very good and systematic method to study hadron
physics. There are a lot of applications of EFTon the hadron
spectrum, form factors, and hadron-hadron interaction. In
particular, for the partondistributions, it can beobtained from
the convolution form, where the splitting function can be
derived with the chiral Lagrangian [23,24]. Without fine
tuning, the obtained PDFs as well as the integrated moments
are in reasonable agreement with the experimental data
[25,26]. However, there is no such kind of calculation for
the T-oddTMDPDFswith EFT. The reason is that on the one
hand, if we use the same approach, the splitting function is
zero for the Sivers distributions. One the other hand, the
colored gluon field introduced from the gauge link is not
consistent with the framework of EFTwhich is formulated in
terms of hadronic d.o.f.
Therefore, in this paper, we will provide a mechanism to

generate the T-odd TMD PDFs with the chiral Lagrangian.
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The bilocal operator constructed for the splitting function is
invariant under the flavor SUð2Þ symmetry instead of color
gauge symmetry. With this approach, we will calculate the
sea quark Sivers distribution functions in a proton, which
have not been estimated theoretically even in the quark
models. Sea quark Sivers functions are important to explain-
ing azimuthal asymmetries for π� and K� production off a
proton target in SIDIS and the asymmetrical cross sections
for a vector boson in the polarizedDrell-Yan process [27,28].
It is also crucial to testing the sign change of Sivers functions
between SIDIS and the Drell-Yan process. Though the sea
quark Sivers functions have been extracted from the experi-
ments [29–32], the theoretical explanation is still lacking.
The calculation here is for the Sivers functions of sea quarks
in a proton, and it is straightforward to generally apply it to
any T-odd distributions.

II. SIVERS DISTRIBUTION FUNCTION

For the quark flavor q, according to the Trento con-
vention, the unpolarized and Sivers distributions f1ðx; k⃗⊥Þ
and f1Tðx; k⃗⊥Þ are defined as [33]:

fq1ðx; k⃗⊥Þ þ
ϵjiki⊥S

j
⊥

mp
fq1Tðx; k⃗⊥Þ

¼ 1

2

Z
dξ−d2ξ⃗⊥
ð2πÞ3 e−ixP

þξ−þik⃗⊥·ξ⃗⊥hP; S⃗⊥jOqjP; S⃗⊥i; ð1Þ

where S⃗⊥ is the transverse spin of a proton. The gauge
invariant bilocal operator Oq is defined as [34]:

Oq ¼ q̄ðξ−; ξ⃗⊥ÞL†
ξ⊥ð∞; ξ−ÞγþL0ð∞; 0Þqð0; 0Þ; ð2Þ

where L is the path-ordered light-cone color gauge link
expressed as

L†
ξ⊥ð∞; ξ−Þ ¼ Pe

−igc
R

∞
ξ−

Aþðz−;ξ⃗⊥Þdz− : ð3Þ

Similar to the quark distribution, for the pion distribution,
i.e., the splitting function, the operator can be defined from
the light-cone bilocal meson operator as

Oπþ ¼ i½π−ðy−; y⃗⊥Þ∂þπþð0Þ − ∂þπ−ðy−; y⃗⊥Þπþð0Þ�: ð4Þ

This kind of operator based on hadronic d.o.f. has been
applied for the calculation of pion distributions in the EFT
[25,35]. However, the above operator gives no contribution
to the T-odd Sivers function. Therefore, we need to
construct a bilocal operator for the meson fields which
has the time reversal asymmetry. In Refs. [36–38], vector
meson Vμ is introduced as a dynamical gauge boson to
guarantee the local SUð2ÞV hidden symmetry. The matrix
of Vμ is written as

Vμ ¼ ρ
→μ

· τ⃗ ¼
� 1ffiffi

2
p ρ0 ρþ

ρ− − 1ffiffi
2

p ρ0

�μ

: ð5Þ

The Lagrangian for the meson fields can be written as

L ¼ f2πTr½αμαμ�; ð6Þ

where αμ is defined as

αμ ¼
1

2i
ðDμξL · ξ†L −DμξR · ξ†RÞ: ð7Þ

The covariant derivatives are expressed as

DμξL=R ¼ ∂μξL=R þ igVμξL=R þ iξL=RLμ=Rμ; ð8Þ

where Lμ and Rμ are the external fields. The coupling

constant g ¼ gρππ=
ffiffiffi
2

p
and gρππ is related to the vector

meson mass Mρ through the Kawarabayashi-Suzuki-
Fayyazuddin-Riazuddin relation M2

ρ ¼ 2g2ρππf2π [39,40].
fπ ¼ 92.1 MeV is the pion decay constant [41]. In
the chiral Lagrangian, ξ†L ¼ ξR ¼ ξ ¼ expðiπ=fπÞ with
π ¼ π⃗ · τ⃗=

ffiffiffi
2

p
. When matching quark currents to the hadron

level, Lμ and Rμ are expressed as Lμ ¼ Rμ ¼ τqvμ, where
τq ¼ diagðδqu; δqdÞ are diagonal 2 × 2 quark flavor matri-
ces. vμ is the external vector field. From Eq. (6), we can get
the local current for a given quark flavor [24]. To get the
bilocal operator at the hadron level, the nonlocal action is
written as

S ¼
Z

dx dy f2πTr½αμðyÞWðy; xÞαμðxÞW†ðy; xÞ�; ð9Þ

where the gauge link function Wðy; xÞ is introduced to
guarantee the nonlocal Lagrangian is locally SUð2ÞV
invariant like the local one. Wðy; xÞ is defined as

Wðy; xÞ ¼ PeIðx;yÞ ¼ Pe−ig
R

y

x
dzνVνðzÞ: ð10Þ

At the leading order of g, the current that couples to the
external field vμ can be obtained from Eq. (9) as

J μ
q=π ¼ 2iTrf½∂μπðyÞπðxÞ−πðyÞ∂μπðxÞ�τq

þ∂μπðyÞ½Iðx;yÞ;πðxÞτq�þ∂μπðxÞ½Iðx;yÞ;τqπðyÞ�g:
ð11Þ

For example, the current for the d̄ quark in πþ is written as

J μ
d̄=πþ ¼ i½π−ðyÞ∂μπþðxÞ − ∂μπ−ðyÞπþðxÞ�

×

�
1 − i

ffiffiffi
2

p
g
Z

y

x
dzνρ0νðzÞ

�
: ð12Þ
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From the above equation, one can see the quark current that
couples to the external vector field is expressed in hadronic
d.o.f. With this matching, we can calculate the quark
distribution function in a proton using the convolution
form. The splitting function or the pion distribution in the
convolution form is obtained from the pion operatorOπþ

tot . It
can be separated into two terms as

Oπþ
tot ¼ Oπþ þOπþ

Sivers; ð13Þ

where

Oπþ
Sivers¼½π−ðy−;y⃗⊥Þ∂þπþð0Þ−∂þπ−ðy−;y⃗⊥Þπþð0Þ�

×
ffiffiffi
2

p
g

�Z
∞

0

dz−ρ0þðz−;0Þþ
Z

y−

∞
dz−ρ0þðz−;y⃗⊥Þ

�
:

ð14Þ

The first term in the above equation Oπþ is the ordinary
bilocal pion operator defined in Eq. (4). For the T-even
distributions, this term is dominant and vector meson
contribution from the second term can be ignored.
However, for the Sivers distribution function, Oπþ gives
no contribution and Oπþ

Sivers is crucial to get the nonzero
value. With the above operator on the hadronic d.o.f., we
can get the Sivers distribution function of a pion in proton
fπ=p1T ðz; k⃗⊥πÞ as

ϵjiki⊥πS
j
⊥

mp
fπ=p1T ðz; k⃗⊥πÞ

¼ 1

2

Z
dy−d2y⃗⊥
ð2πÞ3 e−iðzPþy−−y⃗⊥·k⃗⊥πÞhP; S⃗⊥jOπ

SiversjP; S⃗⊥i:

ð15Þ

It can be calculated with the chiral Lagrangian, and the
leading loop diagrams are plotted in Fig. 1, where the solid,
dashed, double dashed, and double solid lines are for octet
baryons, pseudoscalar mesons, vector mesons, and dec-
uplet baryons, respectively. The thick solid line is the
eikonal propagator, and the dotted line means the on-shell
cut. The effective πN N and πNΔ interaction can be written
as ðgA=

ffiffiffi
2

p
fπÞN̄∂γ5π⃗ · τ⃗N and ð6gA=5fπÞN̄½gμνþzγμγν�∂νπ⃗ ·

I⃗Δμ [42]. gA¼1.26 is the axial charge. z is the off-shell
parameter, and our results are independent of z because the
intermediate decuplet is on-shell. There are several ways
of incorporating vector mesons into chiral Lagrangians
[43–45]. In this paper, the Lagrangians for the ρN N, ρΔΔ,
and ρNΔ interactions are obtained from Refs. [46–48] by
substituting eQAμ with gVμ. They are expressed as

LρNN ¼ −gN̄
�
γμ − κN

σμν∂ν

2mN

�
ρ⃗μ · τ⃗N;

LρΔΔ ¼ −gΔ̄α

�
γαβμ þ gαβκΔ

σμν∂ν

2mΔ

�
ρ⃗μ · Σ⃗Δβ;

LρNΔ ¼ −i
gGM

NΔ
2mN

N̄γμγ5ð∂μρ⃗ν − ∂νρ⃗μÞ · I⃗Δν þ H:c:; ð16Þ

where 1þ κΔ ¼ 3
5
ð1þ κNÞ, GM

NΔ ¼ 6
ffiffi
2

p
5
ð1þ κNÞ accord-

ing to the quark model [49], and the value of κN is 6.1� 0.2
[50]. Σ⃗ and I⃗ are the isospin 3=2 and isospin transition
matrices [51]. For the intermediate octet baryons, the
contribution to fπ=p1T ðz; k⃗⊥πÞ is written as

ϵjiki⊥πS
j
⊥

mp
fπ=p1T ðz; k⃗⊥πÞ

¼ ig2g2A
4f2π

Z
d4k
ð2πÞ4

Z
d4l
ð2πÞ4 ŪðP; S⃗⊥Þ

× =kγ5SonðP − kÞVμðlÞSðP − k − lÞγ5ð=kþ =lÞUðP; S⃗⊥Þ

×
ð2kþ þ lþÞ
ðlþ þ iϵÞ SπðkÞSμþρ ðlÞSπðkþ lÞ

× δðkþ − zPþÞδ2ðk⃗⊥ − k⃗⊥πÞ þ H:c:; ð17Þ

where VμðlÞ is the vertex of the interaction between
the nucleon and the ρ meson expressed as VμðlÞ ¼
γμ þ iκN

σμνlν

2mN
. S, Sπ , and Sμþρ are the propagators of the

nucleon, π and ρ, respectively. Son is the on-shell nucleon
propagator expressed as SonðkÞ ¼ 2πð=kþmNÞδðk2 −m2

NÞ.
The imaginary part of the eikonal propagator 1=ðlþ þ iϵÞ

k + l
l

k

P
(a) (b)

(d)(c)

FIG. 1. The Sivers distribution functions of pseudoscalar
mesons in the nucleon. The solid, dashed, double dashed, and
double solid lines are for the octet baryons, pseudoscalar mesons,
vector mesons, and decuplet baryons, respectively. The thick
solid line is the eikonal propagator and the dotted line means the
on-shell cut.
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gives the real Sivers distribution function of a pion
in the nucleon. The expressions for the other diagrams
with decuplet intermediate states are similar but more
complicated.
The nonzero Sivers distribution function can also be

explained from the final-state interaction (FSI). Our
approach can be applied in a nonperturbative QCD regime,
where the final-state interaction is described by the pion-
baryon interaction. The left diagram in Fig. 2 denotes the
FSI in Sullivan process, where the momenta k and l are
collinear with the proton momentum P in collinear
approximation. The “þ” component of the momentum is
much larger than the other components. As a result, the
vector meson projects into the “þ” direction at leading

order. In other words, the leading part of the momentum of
the pseudoscalar meson after the photon scattering is the
“−” component. This is also consistent with the analysis of
parton distributions in Ref. [20]. Therefore, the ρππ vertex
and pseudoscalar propagator turn into the eikonal propa-
gator approximately as

ð2kþ2qþ lÞ−
ðkþqþ lÞ2−M2

≈
ð2kþ2qþ lÞ−

ð2kþ2qþ lÞlþ iϵ
≈

1

lþþ iϵ
: ð18Þ

Accordingly, the diagram Fig. 2(a) can be changed into
Fig. 2(b), which means the final-state interaction effect has
been absorbed into the distribution functions of a pion in
the nucleon. As a result the Sivers distribution function of a
pion in the nucleon can be extracted, and it is consistent
with the gauge link approach in Fig. 1. In the calculation
with spectator model based on the quark-gluon interaction,
a similar diagram as Fig. 2(b) is plotted to show that the
effect of the final-state interaction can be absorbed into the
distribution functions of the target nucleon [10].
With the above splitting function, the Sivers distribution

function of sea quark q̄ in proton can be obtained by the
convolution form, where the sea quark distributions can be
expressed in terms of the splitting function and quark
distribution in a pion [25,26]. For the TMD distributions,
the convolution form is similar. For example, the antidown
quark Sivers function in proton can be expressed as

ϵjiki⊥S
j
⊥

mp
fd̄=p1T ðx; k⃗⊥Þ ¼

ig2g2A
4f2π

Z
1

0

dz
z
θðz − xÞ

Z
d4ld4kπ
ð2πÞ8 δðzPþ − kþπ ÞŪðP; S⃗⊥Þ=kπγ5SonðP − kπÞVμðlÞ

× SðP − kπ − lÞγ5ð=kπ þ =lÞUðP; S⃗⊥Þ
2kþπ

ðlþ þ iϵÞ SπðkπÞS
μþ
ρ ðlÞSπðkπ þ lÞ

×
−1
2

Z
d4l1
ð2πÞ3 Tr½γ

þð−=l1 þmqÞΓðkπ; l1Þð=kπ − =l1 þmqÞΓðkπ; l1Þð−=l1 þmqÞ�

× δððkπ − l1Þ2 −m2
qÞδ

�
lþ1 −

x
z
kþπ

�
δ2
�
l⃗1⊥ − k⃗1⊥ −

x
z
k⃗⊥π

�
; ð19Þ

whereΓðkπ; l1Þ is the quark-meson coupling vertex. The first two rows on the right hand side of the above equation correspond
to the π Sivers function written in Eq. (17), while the last two rows are for the antidown quark distribution in π defined as

fd̄=π1v ðy; k⃗1⊥Þ ¼ −
1

2

Z
dξ−d2ξ⃗⊥
ð2πÞ3 eiyk

þ
π ξ

−−iðk⃗1⊥þyk⃗π⊥Þ·ξ⃗⊥hπþjOdjπþi; ð20Þ

where Od ¼ d̄ðξ−; ξ⃗⊥Þγþdð0Þ. Therefore, Eq. (19) can be expressed by the convolution form as

ki⊥f
q̄=p
1T ðx; k⃗⊥Þ ¼

Z
d2k⃗⊥πki⊥π

Z
1

x

dz
z
fq̄=π1v

�
x
z
; k⃗⊥ −

x
z
k⃗⊥π

�
fπ=p1T ðz; k⃗⊥πÞ; ð21Þ

wherefq̄=π1v ðxz ; k⃗⊥ − x
z k⃗⊥πÞ is the quarkTMDdistribution in a pionwith the intrinsic transversemomentum k⃗⊥ − x

z k⃗⊥π. The first
moment of the Sivers distribution function is defined as [30]

ΔNfð1Þq̄ ðxÞ ¼
Z

d2k⃗⊥
−k2⊥
2m2

p
fq̄=p1T ðx; k⃗⊥Þ ¼

1

2m2
p

Z
x

1

d

�
x
z

�
fq̄=π1v

�
x
z

�Z
d2k⃗⊥π k⃗

2
⊥πf

π=p
1T ðz; k⃗⊥πÞ; ð22Þ

where fq̄=π1v ðxÞ is the quark distribution in π and it can be obtained from the recent fit at Q ¼ 0.63 GeV [52].

(a)

q

P

k + l l k

P

k + l l k

(b)

q

FIG. 2. Final-state interaction in the Sullivan process with
collinear approximation. The dashed, double dashed, and waved
lines are for the pseudoscalar mesons, vector mesons, and photons
respectively. Thegray bubble represents octet and decuplet baryons.
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III. NUMERICAL RESULTS

In the numerical calculation, the dipole regulator F̃jðkÞ
(j ¼ π, ρ) is applied to deal with the ultraviolet divergence
[24,53]:

F̃jðkÞ ¼
�
M2

j − Λ2
j

k2 − Λ2
j

�2

: ð23Þ

For the pion case, in Ref. [54], the monopole regulator is
chosen and the corresponding Λπ is 0.52 GeV. Here
because we include the decuplet intermediate state, the
monopole regulator is not sufficient to get rid of the UV
divergence in Fig. 1(b). From the previous calculation of
electromagnetic form factors, strange form factors, and
asymmetry of sea quark distributions of protons, reasonable
Λπ in the dipole regulator is around 1 GeV [55,56]. For the
ρ meson, the parameter Λρ was chosen to be 1.85 GeV in
Ref. [53]. Therefore, we present the results for the range
0.8 GeV ≤ Λπ ≤ 1.2 GeV and 1.6 GeV ≤ Λρ ≤ 2.0 GeV.
We should mention that with the regulator, there is no
power counting included in our method.
The first moment of the Sivers distribution functions

of d̄ and ū is plotted in Fig. 3. The green and yellow bands

are for xΔNfð1Þ
d̄
ðxÞ and xΔNfð1Þū ðxÞ, respectively. For d̄ in

proton, the first moment is positive. The maximum value of

xΔNfð1Þ
d̄
ðxÞ is 0.0008–0.0035 at x around 0.2. It then

decreases with increasing x, and when x is larger than

0.6, xΔNfð1Þ
d̄
ðxÞ will tend to be zero. For ū in proton,

xΔNfð1Þū ðxÞ is always negative. The maximum absolute
value is about 0.0007–0.0037 at x around 0.15. Similar as

for xΔNfð1Þ
d̄
ðxÞ, when x is larger than 0.6, xΔNfð1Þū ðxÞ will

also approach zero. As many phenomenological extrac-
tions, the value of the sea quark Sivers function is very
small [29,31].

Our result is consistent with the prediction in the large
NC limit where the absolute values of the Sivers distribu-
tion functions of d̄ and ū are the same while their signs are
opposite [57]. In Ref. [29], where the data are extracted at

Q ¼ 1 GeV, the central value of xΔNfð1Þ
d̄
ðxÞ is negative,

while xΔNfð1Þū ðxÞ is positive. Considering the sign differ-
ence in the definition of the first moment between our
Eq. (22) and Eq. (4) in Ref. [29], the two results are
consistent with each other. Compared with the results in

Ref. [30], where the central values of extracted xΔNfð1Þū ðxÞ
and xΔNfð1Þ

d̄
ðxÞ are both negative and the absolute value of

xΔNfð1Þ
d̄
ðxÞ is much larger than xΔNfð1Þū ðxÞ, our

xΔNfð1Þ
d̄
ðxÞ has similar magnitudes but with the opposite

sign. For xΔNfð1Þū ðxÞ, the sign is the same as their best fit
but our magnitude is larger. Hopefully, these differences
can be checked by further theoretical and experimental
analysis.
For xΔNfð1Þū ðxÞ, only one diagram in Fig. 1(b) gives

contribution. However, for xΔNfð1Þ
d̄
ðxÞ, all the four

diagrams in Fig. 1 give contribution. To see the separate
contribution clearly, we plot the contribution to

xΔNfð1Þ
d̄
ðxÞ from different intermediate states in Fig. 4.

The dashed, dotted, and dot-dashed lines are for the
contributions from the intermediate octet, decuplet, and
octet-decuplet transition, respectively. The solid line is
the total result. From the figure, we can see that for

xΔNfð1Þ
d̄
ðxÞ, the contributions from the intermediate octet

and octet-decuplet transition are dominant. The contri-
bution of the octet-decuplet transition gives a large

positive value to xΔNfð1Þ
d̄
ðxÞ. For the contribution from

the octet intermediate state, the sign is x dependent. It is
negative at small x and when x > 0.1, the sign changes to

FIG. 3. The first momentum of sea quark Sivers distribution
functions versus x atQ ¼ 0.63 GeV. The green and yellow bands

are the results of xΔNfð1Þ
d̄
ðxÞ and xΔNfð1Þū ðxÞ with 0.8 GeV ≤

Λπ ≤ 1.2 GeV and 1.6 GeV ≤ Λρ ≤ 2.0 GeV.

FIG. 4. Contributions to xΔNfð1Þ
d̄
ðxÞ from different intermedi-

ate states with Λπ ¼ 1 GeV, Λρ ¼ 1.85 GeV, and κN ¼ 6.1. The
dashed, dotted, and dot-dashed lines are for the contributions
from the intermediate octet, decuplet, and octet-decuplet tran-
sition, respectively. The solid line is for the total result.
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be positive. The contribution to xΔNfð1Þ
d̄
ðxÞ from the

decuplet intermediate state is very small. The decuplet
intermediate state gives negative contribution to both

xΔNfð1Þ
d̄
ðxÞ and xΔNfð1Þū ðxÞ. However, the contribution to

xΔNfð1Þ
d̄
ðxÞ is 9 times smaller than that to xΔNfð1Þū ðxÞ due

to the smaller value of the coupling constants for the πþ
case than for the π− case.
Our calculation with the chiral Lagrangian is valid

at the low energy scale. The result is supposed to hold up
to the scale of ρ meson mass or 1 GeV (4πfπ). This is
why the input scale of the pion PDF is chosen to be at
0.63 GeV. The scale evolution of the Sivers function as

well as the first momentum ΔNfð1Þq̄ ðxÞ is discussed in
[58–60]. With the scale increasing, the maximum of

xΔNfð1Þ
d̄
ðxÞ and xΔNfð1Þū ðxÞ will become smaller due to

the effect of diagonal terms in the twist-3 evolution
kernel [32].

IV. SUMMARY

In summary, we proposed a mechanism for the study of
the Sivers distribution function with the chiral
Lagrangian. The vector meson is introduced for the
SUð2ÞV hidden symmetry. The bilocal π operator is
redefined with the gauge link of the vector meson which
is locally SUð2Þ invariant. The eikonal propagator gen-
erated from the flavor gauge link is crucial to obtaining a
nonzero Sivers distribution function. The gauge link
approach is also proven to be consistent with the final-
state interaction in the collinear approximation. With the

convolution form, which combines the splitting function
calculated from the bilocal π operator and the valence
quark distribution in pion, the Sivers distribution func-
tions of ū and d̄ are obtained. Numerical results show that

the absolute values of xΔNfð1Þū ðxÞ and xΔNfð1Þ
d̄
ðxÞ are

close to each other, while their signs are opposite. For

xΔNfð1Þ
d̄
ðxÞ, the contributions from the intermediate octet

state and octet-decuplet transition are dominant. The
decuplet intermediate state gives negligible contribution.

For xΔNfð1Þū ðxÞ the only contribution comes from the
decuplet intermediated state and it is 9 times larger than

the corresponding contribution for xΔNfð1Þ
d̄
ðxÞ. Without

any fine tuning of the parameters, our results are
consistent with the prediction obtained in the large NC
limit, and are also comparable with the recent phenom-
enological extractions from fitting the experimental

data. This is the first theoretical estimation on xΔNfð1Þū ðxÞ
and xΔNfð1Þ

d̄
ðxÞ within the framework of the chiral

Lagrangian. Our predictions can be checked by the future
theoretical and experimental analysis.
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