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Constituent mass predictions for axial vector (i.e., JP ¼ 1þ) cc and bb color-antitriplet diquarks are
generated using QCD Laplace sum rules. We calculate the diquark correlator within the operator product
expansion to next-to-leading order, including terms proportional to the four- and six-dimensional gluon and
six-dimensional quark condensates. The sum-rule analyses stabilize, and we find that the constituent mass
of the cc diquark is ð3.51� 0.35Þ GeV and the constituent mass of the bb diquark is ð8.67� 0.69Þ GeV.
Using these diquark constituent masses as inputs, we calculate several tetraquark masses within the type-II
diquark-antidiquark tetraquark model.
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I. INTRODUCTION

Outside-the-quark-model hadrons consisting of four (or
more) valence quarks have been theorized for decades. For
example, the concept of tetraquarks, hadrons composed of
four quarks ðqqq̄ q̄Þ, was introduced in [1,2] in 1977. Jump
forward to 2003 and the discovery of the X(3872) by the
Belle Collaboration [3] and its subsequent confirmation by
several other experimental collaborations [4–7] places us in
a new era of hadron spectroscopy. Since then more and
more of these hadrons have been discovered in the
heavy quarkonium spectra. These hadrons, now collec-
tively referred to as the XYZ resonances, are difficult to
explain within the quark model [8]. These XYZ resonances
have served as a strong motivator for research into beyond-
the-quark-model hadrons. See [9,10] for a review of
experimental findings and [11,12] for a review of several
multiquark systems.
Looking at four-quark states in particular, there are

several interpretations of what their internal quark structure
might resemble. One possibility is that there are no
particularly strong correlations between any of the quarks.
However, another possible interpretation is that these states
could be meson-meson molecule states in which two color-
singlet mesons form a weakly bound conglomerate state.
See [13–20] for discussions about the X(3872) in this

configuration. Yet another possible interpretation is that
four-quark states are diquark-antidiquark states. Diquarks
are strongly correlated, color antitriplet pairs of quarks
within a hadron. (As such, their color configurations are
identical to those of antiquarks.) See [21] for applications
of diquarks and [22] for a discussion of possible diquark
configurations. In a diquark-antidiquark configuration, the
diquark constituents are strongly bound together in a four-
quark configuration. See [23–27] for discussions about the
X(3872) in the diquark-antidiquark configuration. Also,
see [28] for additional discussions on the differences
between the molecular and tetraquark models in the context
of a QCD sum-rule analysis.
QCD sum-rule analyses of diquarks in several channels

have been presented in [29–34]. Lattice QCD analyses of
light diquarks have also been performed [35–37]. In this
paper, we use QCD Laplace sum rules (LSRs) to calculate
the constituent masses of axial vector (i.e., JP ¼ 1þ) cc and
bb diquarks. The axial vector is the only quantum number
that can be realized for color antitriplet diquarks of identical
flavors in an S-wave configuration. We use the operator
product expansion (OPE) [38] to compute the correlation
function between a pair of diquark currents (1) and (2). In
this calculation, in addition to leading-order (LO) pertu-
bative contributions, we also include next-to-leading-order
(NLO) perturbative contributions and nonperturbative cor-
rections proportional to the four-dimensional (4D) and 6D
gluon condensates as well as the 6D quark condensate. The
results of these calculations are summarized in Table I. In
particular, we find that the constituent mass of the cc
diquark is ð3.51� 0.35Þ GeV and the constituent mass of
the bb diquark is ð8.67� 0.69Þ GeV. Substituting these
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diquark constituent masses into the type-II diquark-
antidiquark tetraquark model of Ref. [39], we calculate
masses of several ½cc�½c̄c̄�, ½cc�½b̄b̄�, and ½bb�½b̄b̄�
tetraquarks.

II. THE CORRELATOR

The axial vector, color antitriplet diquark current is given
by [30,31]

jμ;α ¼ ϵαβγQT
βCγμQγ ð1Þ

with adjoint

j†μ;α ¼ −ϵαβγQ̄βγμCQ̄T
γ ; ð2Þ

where C denotes the charge conjugation operator, ϵαβγ is a
Levi-Civita symbol in quark color space, and Q is a heavy
(charm or bottom) quark field.
Using Eq. (2), we consider the diquark correlator

Πðq2Þ ¼ i
D − 1

�
qμqν
q2

− gμν

�Z
dDxeiq·xhΩj

× τ½jμ;αðxÞSαωðx; 0Þj†ν;ωð0Þ�jΩi; ð3Þ

whereD is the spacetime dimension. In Eq. (3), Sαωðx; 0Þ is
a path-ordered exponential, or Schwinger string, given by

Sαωðx; 0Þ ¼ P̂ exp

�
igs

λaαω
2

Z
x

0

dzμAa
μðzÞ

�
; ð4Þ

where P̂ is the path-ordering operator. The Schwinger
string allows gauge-invariant information to be extracted
from the gauge-dependent current (1) [30,31]. The explicit
cancellation of the gauge parameter has been shown for
perturbative contributions up to NLO [40], and in Landau
gauge the NLO contributions from the Schwinger string are
zero [30,31]; hence, Sαωðx; 0Þ → δαω. For nonperturbative
contributions of QCD condensates, gauge invariance of the
correlator (3) implies that fixed-point gauge methods used
to obtain OPE coefficients are equivalent to other methods
[41]. As observed in Refs. [30,31], the Schwinger string
will not contribute to the QCD condensate contributions in
the fixed-point gauge, and hence Sαωðx; 0Þ → δαω. Thus,
using Landau gauge for pertubative contributions and

fixed-point gauge methods for QCD condensate contribu-
tions, we can simplify (3) by setting Sαωðx; 0Þ → δαω (as in
[28]). Lattice QCD analyses of constituent light diquark
masses are also based on correlation functions of (colored)
diquark operators [35–37]. Instead of the Schwinger string,
gauge dependence of the correlation function is addressed
in lattice analyses either through gauge fixing or coupling
to a heavy color source.
We evaluate the correlator (3) within the OPE to NLO in

perturbation theory and include nonperturbative corrections
proportional to the 4D and 6D gluon condensates and the
6D quark condensate. Each nonperturbative correction is
the product of a LO perturbatively computed Wilson
coefficient and a QCD condensate. The 4D and 6D gluon
and 6D quark condensates are defined, respectively, by

hαG2i ¼ αsh∶Ga
ωϕG

a
ωϕ∶i; ð5Þ

hg3G3i ¼ g3sfabch∶Ga
ωζG

b
ζρG

c
ρω∶i; ð6Þ

hJ2i ¼ D
6
κg4shq̄qi2; ð7Þ

where κ in Eq. (7) quantifies deviation from vacuum
saturation. As in [42,43], we set κ ¼ 2 for the remainder
of this calculation, e.g., see [44] and references contained
therein.
The diagrams computed in the simplification of Eq. (3)

are given in Fig. 1. Each diagram has a (base) multiplicity
of 2 associated with interchanging the quark fields con-
tracted on the top and bottom quark lines. Diagrams II, IV,
VI, VIII, X, and XI receive an additional factor of 2 to
account for vertical reflections. As noted earlier, Wilson
coefficients are calculated in the Landau gauge. Divergent
integrals are handled using dimensional regularization in
D ¼ 4þ 2ϵ dimensions at modified minimal subtraction
(MS) renormalization scale μ. We use a dimensionally
regularized γ5 satisfying ðγ5Þ2 ¼ 1 and fγμ; γ5g ¼ 0 [45].
The recurrence relations of Refs. [46,47] are implemented
via the Mathematica package TARCER [48] resulting in
expressions phrased in terms of master integrals with
known solutions including those of [49,50].
The OPE computation of Π, denoted ΠOPE, can be

written as

ΠOPEðq2Þ ¼
XXI
i¼I

ΠðiÞðq2Þ; ð8Þ

where the superscript corresponds to the labels of the
diagrams in Fig. 1. Evaluating the first term in this sum,
ΠðIÞ, expanding the result in ϵ, and dropping a polynomial
in q2 (which does not contribute to the sum rules—see
Sec. III), we find

TABLE I. Constituent mass predictions and sum-rule param-
eters for axial vector cc and bb diquarks. The theoretical
uncertainties are obtained by varying the QCD input parameters
in Eqs. (29)–(35).

QQ MP (GeV) s0 (GeV2) τmin (GeV−2) τmax (GeV−2)

cc 3.51� 0.35 17.5� 3.4 0.10� 0.02 0.71� 0.07
bb 8.67� 0.69 80.0� 9.2 0.02� 0.01 0.21� 0.02
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ΠðIÞðzÞ ¼ 4m2

3π2
zð2zþ 1ÞH1ðzÞ; ð9Þ

where m is a heavy quark mass and

z ¼ q2

4m2
: ð10Þ

Also,

H1ðzÞ ¼ 2F1

�
1; 1;

5

2
; z

�
; ð11Þ

where functions of the form pFqð� � � ; � � � ; zÞ are general-
ized hypergeometric functions, e.g., [52]. Note that hyper-
geometric functions of the form pFp−1ð� � � ; � � � ; zÞ have a
branch point at z ¼ 1 and a branch cut extending along the
positive real semiaxis. In evaluating ΠðIIÞðzÞ, we find a
nonlocal divergence which is eliminated through the
inclusion of the counterterm diagram, Diagram C1, of
Fig. 1. From this point forward, we refer to the renormal-
ized contribution arising from the sum of Diagrams II and
C1 as ΠðIIÞðzÞ. Note that, in Landau gauge, Diagram III
does not have a nonlocal divergence corresponding to the

FIG. 1. Feynman diagrams that contribute to the correlator (3) to NLO and up to dimension 6 in the QCD condensates. Diagram C1 is
the counterterm diagram used to eliminate the nonlocal divergence in Diagram II. Feynman diagrams were created using JaxoDraw [51].
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fact that the (multiplicative) vector diquark renormalization
constant is trivial [40]. The Mathematica package HypExp

[53] is used to generate the ϵ-expansions of ΠðIIÞðzÞ and

ΠðIIIÞðzÞ. These expansions are lengthy, and so we omit
them for the sake of brevity; instead, we present the exact
(ϵ-dependent) results,

ΠðIIÞðz; ϵÞ ¼
−αsm2Γð−ϵÞðm2

μ2
Þϵ

4π3ð4πÞ2ϵðz − 1Þzϵð2ϵþ 1Þ ½−12zð4πÞ
ϵð2ϵþ 1Þ

þm2ϵð4z2ϵðϵþ 1Þ þ zð8ϵ3 þ 18ϵ2 þ 13ϵþ 2Þ þ 1ÞΓð−ϵ − 1Þ
þ 4zð3ð4πÞϵð2ϵþ 1Þð2zϵþ 1Þ −m2ϵð2zðϵþ 1Þð2zþ 2ϵ − 1Þ þ 2ϵþ 1ÞΓð1 − ϵÞÞH2ðz; ϵÞ
−m2ϵð−4z2ðϵþ 1Þð3ϵþ 2Þ þ zϵð6ϵþ 5Þ þ 2ðϵþ 1ÞÞΓð−ϵ − 1ÞH3ðz; ϵÞ
þm2ϵð8z3ϵðϵþ 1Þ − 8z2ðϵþ 1Þð3ϵþ 1Þ þ 2zðϵ − 1Þð2ϵþ 1Þ þ 2ϵþ 1ÞΓð−ϵ − 1ÞH4ðz; ϵÞ� ð12Þ

ΠðIIIÞðz; ϵÞ ¼
αsðϵþ 1Þm2ϵþ2Γð−ϵ − 1Þ2ðm2

μ2
Þϵ

ð2πÞ3ð4πÞ2ϵðz − 1Þzϵð4ϵðϵþ 2Þ þ 3Þ2 ½ð4ϵðϵþ 2Þ þ 3Þð−zð−8zðϵþ 1Þ þ ϵð4ϵðϵþ 2Þ þ 7Þ þ 2Þ − 2ϵ − 3Þ

− 8zðϵþ 1Þð2ϵþ 1Þð2ϵþ 3Þð4z2ðϵþ 1Þ þ zϵð2ϵþ 3Þ þ 2ϵ2 þ ϵ − 1ÞH2ðz; ϵÞ
− 4zðϵþ 1Þð2ϵþ 1Þð4ϵðϵþ 2Þ þ 3Þð1 − 2zðϵþ 1Þð2ðz − 1Þϵ2 þ zϵþ 2zþ ϵÞÞH2ðz; ϵÞ2
þ ð2ϵþ 3Þð4ϵðϵþ 2Þ þ 3Þð−8z2ðϵþ 1Þ2 þ zϵð2ϵþ 1Þ þ 2ðϵþ 1ÞÞH3ðz; ϵÞ
− ð4ϵðϵþ 2Þ þ 3Þð−16z3ðϵþ 1Þ − 8z2ðϵþ 1Þðϵð2ϵþ 7Þ þ 2Þ
− 2zðϵð4ϵðϵþ 2Þ þ 5Þ − 1Þ þ 4ϵðϵþ 2Þ þ 3ÞH4ðz; ϵÞ�; ð13Þ

where

H2ðz; ϵÞ ¼ 2F1

�
1;−ϵ;

3

2
; z

�
; ð14Þ

H3ðz; ϵÞ ¼ 3F2

�
1;−2ϵ − 1;−ϵ;

1

2
− ϵ; ϵþ 2; z

�
; ð15Þ

H4ðz; ϵÞ ¼ 3F2

�
1;−2ϵ;−ϵ;

1

2
− ϵ; ϵþ 2; z

�
: ð16Þ

The ϵ-expanded results for the remaining terms in Eq. (8) can be written more concisely and are given by

ΠðIVÞðzÞ ¼ −3ð8z2 − 17zþ 6Þ þ ð2z2 − 11zþ 6ÞH1ðzÞ
288πm2ðz − 1Þ3 hαG2i; ð17Þ

ΠðVÞðzÞ ¼ 12z − 15 − ð2z − 3ÞH1ðzÞ
576πm2ðz − 1Þ2 hαG2i; ð18Þ

ΠðVIÞðzÞ ¼ hg3G3i
92160π2m4ðz − 1Þ5z ð416z

5 − 1888z4 þ 3078z3 − 1836z2 þ 90zþ 35

þ 5ð8z5 − 36z4 þ 42z3 − 20z2 þ 20z − 7ÞH1ðzÞÞ; ð19Þ

ΠðVIIÞðzÞ ¼ 32z3 − 89z2 þ 19zþ 8 − ð12z4 − 66z3 þ 73z2 − 37zþ 8ÞH1ðzÞ
55296π2m4ðz − 1Þ4z hg3G3i; ð20Þ
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ΠðVIIIÞðzÞ ¼ α2shq̄qi2
4860m4ðz − 1Þ5z ð3ð576z

5 − 2608z4 þ 4458z3 − 3316z2 þ 765zþ 20Þ

− 5ð8z5 − 36z4 þ 66z3 − 74z2 þ 3zþ 12ÞH1ðzÞÞ; ð21Þ

ΠðIXÞðzÞ ¼ 160z3 − 478z2 þ 386zþ 7 − ð56z4 − 196z3 þ 226z2 − 68zþ 7ÞH1ðzÞ
1944m4ðz − 1Þ4z α2shq̄qi2; ð22Þ

ΠðXÞðzÞ ¼ −8z3 þ 19z2 þ 7z − 3þ ð4z4 − 22z3 þ 23z2 − 13zþ 3ÞH1ðzÞ
55296π2m4ðz − 1Þ4z hg3G3i; ð23Þ

ΠðXIÞðzÞ ¼ −3ð16z4 − 56z3 þ 57z2 − z − 1Þ − ð4z4 − 14z3 − 5z2 − 3zþ 3ÞH1ðzÞ
27648π2m4ðz − 1Þ4z hg3G3i: ð24Þ

Finally, substituting Eqs. (9), (12), (13), and (17)–(24) into Eq. (8) gives us ΠOPE.

Renormalization-group improvement requires that the
strong coupling and quark mass be replaced by their
corresponding running quantities evaluated at renormaliza-
tion scale μ [54]. At one loop in the MS renormalization
scheme, for cc diquarks, we have

αs → αsðμÞ ¼
αsðMτÞ

1þ 25αsðMτÞ
12π logð μ2M2

τ
Þ
; ð25Þ

m → mcðμÞ ¼ m̄c

�
αsðμÞ
αsðm̄cÞ

�
12=25

; ð26Þ

and for bb diquarks,

αs → αsðμÞ ¼
αsðMZÞ

1þ 23αsðMZÞ
12π logð μ2M2

Z
Þ
; ð27Þ

m → mbðμÞ ¼ m̄b

�
αsðμÞ
αsðm̄bÞ

�
12=23

; ð28Þ

where [55]

αsðMτÞ ¼ 0.330� 0.014; ð29Þ

αsðMZÞ ¼ 0.1185� 0.0006; ð30Þ

m̄c ¼ ð1.275� 0.025Þ GeV; ð31Þ

m̄b ¼ ð4.18� 0.03Þ GeV: ð32Þ

For cc diquarks, μ → m̄c and for bb diquarks, μ → m̄b.
Finally, the following values are used for the gluon and
quark condensates [56–58]:

hαG2i ¼ ð0.075� 0.02Þ GeV4 ð33Þ

hg3G3i ¼ ðð8.2� 1.0Þ GeV2ÞhαG2i ð34Þ

hq̄qi ¼ −ð0.23� 0.03Þ3 GeV3: ð35Þ

III. QCD LAPLACE SUM RULES,
ANALYSIS, AND RESULTS

Wenowproceedwith theQCDLSRanalysis of axial vector
cc and bb diquarks. Laplace sum-rule analysis techniques
were originally introduced in [59,60]. Subsequently, the LSR
methodology was reviewed in [61,62].
The function Πðq2Þ of Eq. (3) satisfies a dispersion

relation

Πðq2Þ ¼ q4
Z

∞

t0

1
π ImΠðtÞ
t2ðt − q2Þ dtþ � � � ð36Þ

for q2 < 0. In Eq. (36), t0 is an effective threshold and “� � �”
represents a polynomial in q2. On the left-hand side of
Eq. (36), Π is identified with ΠOPE computed in Sec. II. On
the right-hand side of Eq. (36), we express ImΠðtÞ, i.e., the
spectral function, using a single narrow resonance plus
continuum model,

1

π
ImΠðtÞ ¼ 2h2þδðt −M2Þ þ 1

π
ImΠOPEðtÞθðt − s0Þ; ð37Þ

where M is the diquark constituent mass and hþ is the
diquark coupling defined by

hΩjjμ;αjðccÞβ; 1þi ¼
ffiffiffi
2

3

r
δαβϵμhþ; ð38Þ

which aligns with the notation of Ref. [31]. Also, θðtÞ is a
Heaviside step function and s0 is the continuum threshold
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parameter. Constituent diquark masses are key input
parameters of type I and II diquark-antidiquark models
of tetraquarks [23,39] (see Sec. IV). However, as the
couplings are not parameters of type I and II tetraquark
models, we eliminate them by working with ratios of LSRs
[e.g., see (45)]. Though not relevant for our purposes here,
we note that knowledge of the coupling hþ for light
diquarks allows estimation of baryon matrix elements of
the effective weak Hamiltonian [30,31].
As discussed in Ref. [30], the duality relation (37) for

diquarks is more subtle than for hadrons because diquarks
are constituent degrees of freedom rather than hadron
states. Reference [30] argues that, similar to constituent
quarks, the diquark mass and coupling should be regarded
as effective quantities which describe the correlator at
intermediate scales. Above the threshold s0, the diquark
loses its meaning as a constituent degree of freedom, and
the correlator is dominated by the parton-level quark
description (see Diagram I in Fig. 1). In the context of
lattice QCD, the coupling hþ is proportional to the signal
strength, and Ref. [35] finds a remarkably clean exponen-
tial decay indicative of a single narrow resonance below the
lattice cutoff 1=a2. In Eq. (37), s0 is analogous to the lattice
cutoff 1=a2. Thus, in the light quark sector studied in [35],
there exists direct lattice QCD evidence supporting the
spectral decomposition (37).
Laplace sum rules are obtained by Borel transforming

Eq. (36) weighted by powers of Q2 (see [59,60] as well as,
e.g., [44,63]). For a function such as ΠOPE computed in
Sec. II, details on how to evaluate the Borel transform can
be found in [42,43] for instance. We find

RkðτÞ≡ 1

2πi

Z
Γ
ðq2Þke−q2τΠOPEðq2Þdq2

þ
Z

∞

s0

tke−tτ
1

π
ImΠOPEðtÞdt ð39Þ

⇒ RkðτÞ ¼ 2h2þM2ke−M
2τ

þ
Z

∞

s0

tke−tτ
1

π
ImΠOPEðtÞdt; ð40Þ

where RkðτÞ are unsubtracted LSRs of (usually non-
negative) integer order k evaluated at Borel scale τ and
where Γ is the integration contour depicted in Fig. 2.
Subtracting the continuum contribution,

Z
∞

s0

tke−tτ
1

π
ImΠOPEðtÞdt; ð41Þ

from the right-hand sides of Eqs. (39) and (40), we find

Rkðτ; s0Þ≡ 1

2πi

Z
Γ
ðq2Þke−q2τΠOPEðq2Þdq2 ð42Þ

⇒ Rkðτ; s0Þ ¼ 2h2þM2ke−M
2τ; ð43Þ

where Rkðτ; s0Þ are (continuum-)subtracted LSRs. In
Eq. (42), explicitly parametrizing each Γi of Γ, we have

Rkðτ;s0Þ≡ 1

2πi

�Z
4m2−

ffiffiffiffiffiffiffiffiffi
R2−δ2

p

s0

ðt−δiÞke−ðt−δiÞτΠOPEðt−δiÞdt

þ
Z

sin−1ðδ=RÞ

2π−sin−1ðδ=RÞ
ð4m2þReθiÞke−ð4m2þReθiÞτ

×RieθiΠOPEð4m2þReθiÞdθ

þ
Z

s0

4m2−
ffiffiffiffiffiffiffiffiffi
R2−δ2

p ðtþδiÞke−ðtþδiÞτΠOPEðtþδiÞdt
�
;

ð44Þ

which is then calculated numerically. In Eq. (44), R is set to
2m2. Also, it is intended that δ → 0þ. In practice, this can

FIG. 2. The contour of integration used in the evaluation of the LSRs (44). We use δ ¼ 10−12 GeV2 and R ¼ 2m2 generally in the
calculation of Eq. (44); however, other values and contour shapes were tested to verify that the code was producing contour invariant
results as it must.
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be achieved by setting δ ¼ 10−12 GeV2. Finally, using
Eq. (43), we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðτ; s0Þ
R0ðτ; s0Þ

s
¼ M: ð45Þ

To use Eq. (45) to predict diquark constituent masses, we
must first select an acceptable range of τ values, i.e., a Borel
window ðτmin; τmaxÞ. To determine the Borel window, we
follow the methodology outlined in [28]. To generate τmax,
we require OPE convergence of the k ¼ 0 LSRs as
s0 → ∞. By OPE convergence, we mean that the total
perturbative contribution to the LSRs (pert), the total 4D
contribution to the LSRs (4D), and the total 6D contribu-
tion to the LSRs (6D) must obey the inequality

jpertj ≥ 3 × j4Dj ≥ 9 × j6Dj: ð46Þ

The lowest value of τ for which Eq. (46) is violated as
s0 → ∞ becomes τmax. Additionally, τmax is constrained by
the requirement

R2ðτ; s0Þ=R1ðτ; s0Þ
R1ðτ; s0Þ=R0ðτ; s0Þ

≥ 1; ð47Þ

where this inequality results from requiring that individu-
ally both R1ðτ; s0Þ and R0ðτ; s0Þ satisfy the Hölder
inequalities [64,65] as per [28]. For the specific LSRs
being studied here, it turns out that the condition (46) is
more restrictive than the condition (47). For both diquark
channels under consideration, the values of τmax obtained
are given in the last column of Table I. To select τmin, in
addition to the Hölder inequality constraint (47), we require
that

R1ðτ; s0Þ=R0ðτ; s0Þ
R1ðτ;∞Þ=R0ðτ;∞Þ ≥ 0.5; ð48Þ

i.e., that the resonance contribution to R1=R0 must be at
least 50%. The highest value of τ which does not violate
Eqs. (47) and (48) becomes τmin. For both diquark channels
under consideration, the values of τmin obtained are given in
the second-to-last column of Table I.
The procedure described above for choosing a Borel

window is s0 dependent. However, s0 is a parameter that is
predicted using the optimization procedure described
below. As such, choosing a Borel window and predicting
s0 are actually handled iteratively. Typically, the Borel
window widens as s0 increases. As such, we begin by
selecting the minimum value of s0 for which a Borel
window exists. The corresponding Borel window is then
used to predict a new, updated s0. This new s0 is then used
to update the Borel window which, in turn, is used to
update s0 and so on until both the Borel window and s0

settle. This iterative process has been taken into account in
reporting diquark constituent masses, continuum thresh-
olds, and Borel windows in Table I.
To predict s0 andM, we optimize the agreement between

the left- and right-hand sides of Eq. (45) by minimizing

χ2ðs0;MÞ ¼
X20
j¼0

 
1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðτj; s0Þ
R0ðτj; s0Þ

s
− 1

!
2

; ð49Þ

where we have partitioned the Borel window into 20 equal
length subintervals with fτjg20j¼0. For both diquark channels
under consideration, the optimized values of s0 obtained
are given in the third column of Table I. As a consistency
check on our methodology, we require that the optimized
massM from Eq. (49) actually yields a good fit to Eq. (45)
and that the left-hand side of Eq. (45) exhibits τ stability
[28], that is,

d
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðτ; s0Þ
R0ðτ; s0Þ

s
≈ 0 ð50Þ

within the Borel window. And so, in Figs. 3 and 4, we plot
the left-hand side of Eq. (45) at the appropriate optimized
s0 versus τ over the appropriate Borel window for both
diquark channels under consideration. For the bb diquark,
the optimized M from Eq. (49) does indeed yield a good
fit to Eq. (45)—specifically, M ¼ 8.67 GeV in agreement
with Fig. 4. Regarding condition (50), over the Borel
window,

1

M

�����Δ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1ðτ; s0Þ
R0ðτ; s0Þ

s !����� ≈ 0.001; ð51Þ

implying that the plot in Fig. 4 can be considered flat to an
excellent approximation. For the cc diquarks, it is clear

FIG. 3. The left-hand side of Eq. (45) at the optimized
continuum threshold parameter s0 (see Table I) versus the Borel
scale τ for the cc diquark.
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from Fig. 3 that the fitted value of M will be biased by the
rapid increase at large τ values. We thus use the critical
point d

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1=R0

p ¼ 0 for our cc diquark mass prediction,
i.e., M ¼ 3.51 GeV. For both diquark channels under
consideration, predicted diquark constituent masses M
are given in the second column of Table I. The theoretical
uncertainties associated with the mass predictions take into
account the uncertainties arising from the strong coupling
and mass parameters (29)–(32) as well as those associated
with the QCD condensate values, Eqs. (33)–(35). The
dominant theoretical uncertainty is associated with the
quark masses.
In the s0 → ∞ limit, the left-hand side of Eq. (45)

corresponds to an upper bound on M for a wide variety of
resonance shapes [66], allowing the sensitivity to the
threshold s0 and resonance model to be explored. As
shown in Figs. 5 and 6, within the Borel window
τ<τmax, we find M ≲ 3.6 GeV for the cc case and M ≲
8.8 GeV for the bb case, remarkably close to the Table I
predictions.

IV. DISCUSSION

Compared with potential model approaches [67–69]
(and others cited therein) our cc central value diquark
constituent mass prediction is slightly larger and bb is
slightly smaller. For Bethe-Salpeter approaches [70], there
is closer alignment in the cc constituent mass prediction,
but the bb constituent mass prediction is still slightly
smaller. However, taking into account theoretical uncer-
tainties, we find good agreement between our QCD LSR
mass predictions and those of Refs. [67–70], providing
QCD evidence to support the study of diquark-antidiquark
tetraquarks and doubly heavy baryons with diquark cluster
models.
Constituent diquark masses are key inputs into chromo-

magnetic interaction (CMI) models of diquark-antidiquark
tetraquarks. For example, consider the type-II model of
Ref. [39] in which color-spin interactions are ignored
except between the quarks (antiquarks) within the diquark
(antidiquark). This simplification assumes that the diquark
and antidiquark within the tetraquark are pointlike and well
separated. Focusing on S-wave combinations of doubly
heavy, equal mass diquarks and antidiquarks, the type-II
CMI Hamiltonian reduces to [39]

H ¼ m½Q1Q1� þm½Q̄2Q̄2� þ 2κQ1Q1
ðS⃗Q1

· S⃗Q1
Þ

þ 2κQ̄2Q̄2
ðS⃗Q̄2

· S⃗Q̄2
Þ; ð52Þ

where m½Q1Q1� and m½Q̄2Q̄2� are constituent diquark and
antidiquark masses, respectively, and where κQ1Q1

and
κQ̄2Q̄2

are color-spin interaction coefficients. (Note that
κQ̄Q̄ and κQQ are equal as are m½QQ� and m½Q̄Q̄�.) As the
(anti)diquarks have J ¼ 1, they must have S ¼ 1 for L ¼ 0
(where J, L, S are the usual angular momentum quantum
numbers). Hence, the Hamiltonian (52) simplifies to

FIG. 4. The left-hand side of Eq. (45) at the optimized
continuum threshold parameter s0 (see Table I) versus the Borel
scale τ for the bb diquark.

FIG. 5. The left-hand side of Eq. (45) as the continuum
threshold parameter s0 → ∞ versus the Borel scale τ for the
cc diquark.

FIG. 6. The left-hand side of Eq. (45) as the continuum
threshold parameter s0 → ∞ versus the Borel scale τ for the
bb diquark.
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H ¼ m½Q1Q1� þm½Q̄2Q̄2� þ
1

2
ðκQ1Q1

þ κQ̄2Q̄2
Þ: ð53Þ

Our predictions for m½cc� and m½bb� are in Table I; however,
the coefficients κcc and κbb are not known. In [39], the
Xð3870Þ, Zð3900Þ, and Zð4020Þ resonances were inter-
preted as type-II diquark-antidiquark tetraquarks and were
used to predict κcq ¼ 67 MeV where q is a light quark. As
the κ coefficients are expected to decrease with increasing
quark masses [23], we assume here that

0 < κcc; κbc; κbb < 67 MeV: ð54Þ

The absolute uncertainties in our diquark constituent mass
predictions in Table I are significantly larger than 67 MeV,
and so, as a first approximation, we simply ignore the κ
contributions to Eq. (53). Therefore, within the type-II
diquark-antidiquark model, we predict JP ∈ f0þ; 1þ; 2þg
tetraquark masses of 7.0 GeV for ½cc�½c̄c̄�, 12.2 GeV
for ½cc�½b̄b̄�, and 17.3 GeV for ½bb�½b̄b̄�. The relative
uncertainty in these mass predictions is roughly 10%.
Furthermore, note that the ½cc�½c̄c̄� and ½bb�½b̄b̄� tetraquarks
are charge conjugation eigenstates where C ¼ þ for J ¼ 0,
2 and C ¼ − for J ¼ 1 [71,72]. The ½cc�½b̄b̄� tetraquarks
are not charge conjugation eigenstates.
Regarding ½cc�½c̄c̄� tetraquarks, taking into account 10%

theoretical uncertainty, our type-II model mass predictions
are in reasonable agreement with those of [71–73], although
our central values are higher. However, our results are much
higher than those of [74]. Furthermore, our tetraquark mass
predictions are above both the ηcð1SÞ − ηcð1SÞ and J=ψ −
J=ψ thresholds indicating that the corresponding decay
modes should be accessible as fall-apart decays.
Regarding ½cc�½b̄b̄� tetraquarks, again factoring in 10%

uncertainty, our type-II model mass predictions are in
reasonable agreement with those of [71,72], although
our central values are lower. With an electric charge of
þ2, two charm quarks, and two bottom antiquarks, such a
state would be easy to identify through its decay products,
and could not be misinterpreted as a conventional meson.
Unfortunately, within theoretical uncertainty, we are unable
to say whether our tetraquark mass predictions lie above or
below the Bþ

c − Bþ
c threshold.

Regarding ½bb�½b̄b̄� tetraquarks, taking into account
theoretical uncertainty, our type-II model mass predictions
are in reasonable agreement with those of [73] although our
central values are lower. Our results are about 10% lower
than those of [74,75], and are much lower than those of
[71,72]. Tetraquarks with bbb̄b̄ quark composition (so-
called beauty-full tetraquarks) have attracted considerable
attention recently due to the possibility that some might
have masses below the ϒð1SÞ −ϒð1SÞ threshold and
perhaps even the ηbð1SÞ − ηbð1SÞ threshold. For bbb̄b̄
tetraquarks with masses below the ηbð1SÞ − ηbð1SÞ thresh-
old, fall-apart modes would be inaccessible and decays
would instead proceed through Okubo-Zweig-Iizuka–sup-
pressed processes. Central values of our type-II diquark-
antidiquark mass estimates put the 0þþ, 1þ−, and 2þþ states
about 9% below the ϒð1SÞ −ϒð1SÞ threshold and about
7% below the ηbð1SÞ − ηbð1SÞ threshold.
In summary, we used QCD LSRs to predict the axial

vector doubly heavy cc and bb diquark constituent masses.
Our results are summarized in Table I. These results were
obtained from a calculation of the diquark correlation
function at NLO in perturbation theory and to LO in the
4D and 6D gluon condensates as well as the 6D quark
condensate. That the LSRs analyses stabilized in both the
double charm and double bottom diquark channels pro-
vides QCD-based evidence for the existence of these
structures. Within the type-II diquark-antidiquark tetra-
quark model of Ref. [39], we predicted, with an uncertainty
of roughly 10%, 0þþ, 1þ−, and 2þþ ½cc�½c̄c̄� tetraquarks of
mass 7.0 GeV; 0þ, 1þ, and 2þ ½cc�½b̄b̄� tetraquarks of mass
12.2 GeV; and 0þþ, 1þ−, and 2þþ ½bb�½b̄b̄� tetraquarks of
mass 17.3 GeV. Central values of our ½bb�½b̄b̄� tetraquark
mass predictions are well below the ϒð1SÞ −ϒð1SÞ and
ηbð1SÞ − ηbð1SÞ thresholds, providing support for the
possibility that fall-apart decay modes are inaccessible to
some bbb̄b̄ tetraquarks.
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