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Axial vector cc and bb diquark masses from QCD Laplace sum rules
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Constituent mass predictions for axial vector (i.e., J* = 17) cc and bb color-antitriplet diquarks are
generated using QCD Laplace sum rules. We calculate the diquark correlator within the operator product
expansion to next-to-leading order, including terms proportional to the four- and six-dimensional gluon and
six-dimensional quark condensates. The sum-rule analyses stabilize, and we find that the constituent mass
of the cc diquark is (3.51 £ 0.35) GeV and the constituent mass of the bb diquark is (8.67 + 0.69) GeV.
Using these diquark constituent masses as inputs, we calculate several tetraquark masses within the type-II

diquark-antidiquark tetraquark model.
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I. INTRODUCTION

Outside-the-quark-model hadrons consisting of four (or
more) valence quarks have been theorized for decades. For
example, the concept of tetraquarks, hadrons composed of
four quarks (¢qg g), was introduced in [1,2] in 1977. Jump
forward to 2003 and the discovery of the X(3872) by the
Belle Collaboration [3] and its subsequent confirmation by
several other experimental collaborations [4—7] places us in
a new era of hadron spectroscopy. Since then more and
more of these hadrons have been discovered in the
heavy quarkonium spectra. These hadrons, now collec-
tively referred to as the XYZ resonances, are difficult to
explain within the quark model [8]. These X YZ resonances
have served as a strong motivator for research into beyond-
the-quark-model hadrons. See [9,10] for a review of
experimental findings and [11,12] for a review of several
multiquark systems.

Looking at four-quark states in particular, there are
several interpretations of what their internal quark structure
might resemble. One possibility is that there are no
particularly strong correlations between any of the quarks.
However, another possible interpretation is that these states
could be meson-meson molecule states in which two color-
singlet mesons form a weakly bound conglomerate state.
See [13-20] for discussions about the X(3872) in this

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019/100(7)/074025(10)

074025-1

configuration. Yet another possible interpretation is that
four-quark states are diquark-antidiquark states. Diquarks
are strongly correlated, color antitriplet pairs of quarks
within a hadron. (As such, their color configurations are
identical to those of antiquarks.) See [21] for applications
of diquarks and [22] for a discussion of possible diquark
configurations. In a diquark-antidiquark configuration, the
diquark constituents are strongly bound together in a four-
quark configuration. See [23-27] for discussions about the
X(3872) in the diquark-antidiquark configuration. Also,
see [28] for additional discussions on the differences
between the molecular and tetraquark models in the context
of a QCD sum-rule analysis.

QCD sum-rule analyses of diquarks in several channels
have been presented in [29-34]. Lattice QCD analyses of
light diquarks have also been performed [35-37]. In this
paper, we use QCD Laplace sum rules (LSRs) to calculate
the constituent masses of axial vector (i.e., J* = 1%) cc and
bb diquarks. The axial vector is the only quantum number
that can be realized for color antitriplet diquarks of identical
flavors in an S-wave configuration. We use the operator
product expansion (OPE) [38] to compute the correlation
function between a pair of diquark currents (1) and (2). In
this calculation, in addition to leading-order (LO) pertu-
bative contributions, we also include next-to-leading-order
(NLO) perturbative contributions and nonperturbative cor-
rections proportional to the four-dimensional (4D) and 6D
gluon condensates as well as the 6D quark condensate. The
results of these calculations are summarized in Table I. In
particular, we find that the constituent mass of the cc
diquark is (3.51 £ 0.35) GeV and the constituent mass of
the bb diquark is (8.67 & 0.69) GeV. Substituting these
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TABLE 1. Constituent mass predictions and sum-rule param-
eters for axial vector cc and bb diquarks. The theoretical
uncertainties are obtained by varying the QCD input parameters
in Egs. (29)-(35).

00 My (GeV) 59 (GeV) 1y (GeV™D) Ty (GeV™)
cc 3514035 17534 0.10£0.02 0.71 &£ 0.07
bb 8.67+0.69 80.0+9.2 0.02+0.01 0.21 £ 0.02

diquark constituent masses into the type-II diquark-
antidiquark tetraquark model of Ref. [39], we calculate
masses of several [cc][cE], [cc][bb], and [bb][bb]
tetraquarks.

II. THE CORRELATOR

The axial vector, color antitriplet diquark current is given
by [30,31]

jﬂ,(l = €Eapy Q;Cy;l Qy ( 1 )

with adjoint

j;ﬂ = _eaﬁrQﬁyﬂCQ;’ (2)

where C denotes the charge conjugation operator, €,4, is a
Levi-Civita symbol in quark color space, and Q is a heavy
(charm or bottom) quark field.

Using Eq. (2), we consider the diquark correlator

X T (%) Suar(x, 0)1.0 (0)]]9), 3)

where D is the spacetime dimension. In Eq. (3), S, (x,0) is
a path-ordered exponential, or Schwinger string, given by

a

o A x
Suw(.0) = Pewpig, & ["azaga)]. @
0

where P is the path-ordering operator. The Schwinger
string allows gauge-invariant information to be extracted
from the gauge-dependent current (1) [30,31]. The explicit
cancellation of the gauge parameter has been shown for
perturbative contributions up to NLO [40], and in Landau
gauge the NLO contributions from the Schwinger string are
zero [30,31]; hence, S,,(x,0) — 5*°. For nonperturbative
contributions of QCD condensates, gauge invariance of the
correlator (3) implies that fixed-point gauge methods used
to obtain OPE coefficients are equivalent to other methods
[41]. As observed in Refs. [30,31], the Schwinger string
will not contribute to the QCD condensate contributions in
the fixed-point gauge, and hence S, (x,0) — §*“. Thus,
using Landau gauge for pertubative contributions and

fixed-point gauge methods for QCD condensate contribu-
tions, we can simplify (3) by setting S,,,(x,0) — §*” (as in
[28]). Lattice QCD analyses of constituent light diquark
masses are also based on correlation functions of (colored)
diquark operators [35-37]. Instead of the Schwinger string,
gauge dependence of the correlation function is addressed
in lattice analyses either through gauge fixing or coupling
to a heavy color source.

We evaluate the correlator (3) within the OPE to NLO in
perturbation theory and include nonperturbative corrections
proportional to the 4D and 6D gluon condensates and the
6D quark condensate. Each nonperturbative correction is
the product of a LO perturbatively computed Wilson
coefficient and a QCD condensate. The 4D and 6D gluon
and 6D quark condensates are defined, respectively, by

(aG?) = a,(: Gy Gl ). ©
(°G) = g f™"(: GGG ). (6)
() = Dxt{aa). )

where « in Eq. (7) quantifies deviation from vacuum
saturation. As in [42,43], we set k = 2 for the remainder
of this calculation, e.g., see [44] and references contained
therein.

The diagrams computed in the simplification of Eq. (3)
are given in Fig. 1. Each diagram has a (base) multiplicity
of 2 associated with interchanging the quark fields con-
tracted on the top and bottom quark lines. Diagrams II, IV,
VI, VIII, X, and XI receive an additional factor of 2 to
account for vertical reflections. As noted earlier, Wilson
coefficients are calculated in the Landau gauge. Divergent
integrals are handled using dimensional regularization in
D = 4 4 2¢ dimensions at modified minimal subtraction
(MS) renormalization scale u. We use a dimensionally
regularized y° satisfying (y°)? = 1 and {y*, 7>} = 0 [45].
The recurrence relations of Refs. [46,47] are implemented
via the Mathematica package TARCER [48] resulting in
expressions phrased in terms of master integrals with
known solutions including those of [49,50].

The OPE computation of II, denoted IT°PE, can be
written as

MOP(g%) = > n0(g). (8)

where the superscript corresponds to the labels of the
diagrams in Fig. 1. Evaluating the first term in this sum,
11", expanding the result in e, and dropping a polynomial
in ¢> (which does not contribute to the sum rules—see
Sec. III), we find
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>

Diagram I Diagram II Diagram ITI
Diagram IV Diagram V Diagram VI
Diagram VII Diagram VIII Diagram IX

Diagram X Diagram XI Diagram C1

FIG. 1. Feynman diagrams that contribute to the correlator (3) to NLO and up to dimension 6 in the QCD condensates. Diagram C1 is
the counterterm diagram used to eliminate the nonlocal divergence in Diagram II. Feynman diagrams were created using JaxoDraw [51].

4

m? where functions of the form F,(---;---;z) are general-
() = 5222 + DH) (2). 9) Pl ) are &

ized hypergeometric functions, e.g., [52]. Note that hyper-

N < . q geometric functions of the form pr_l («++;--+;z) have a
WRETe m 15 a heavy quark mass an branch point at z = 1 and a branch cut extending along the

2 positive real semiaxis. In evaluating TI'™(z), we find a
1=—. (10)  nonlocal divergence which is eliminated through the

inclusion of the counterterm diagram, Diagram Cl1, of

Also, Fig. 1. From this point forward, we refer to the renormal-
ized contribution arising from the sum of Diagrams II and
C1 as T (z). Note that, in Landau gauge, Diagram III
does not have a nonlocal divergence corresponding to the
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fact that the (multiplicative) vector diquark renormalization H(HU(Z), These expansions are lengthy, and so we omit
constant is trivial [40]. The Mathematica package HypExp  them for the sake of brevity; instead, we present the exact
[53] is used to generate the e-expansions of I (z) and  (e-dependent) results,

—amT () (%)

M0(ze) = 13 () (z - l)zelz2e Ty 12 e 1)
+m*(4z%(e + 1) + z(8¢* + 18€? + 13¢ +2) + 1)[(—e — 1)
+4z(3(4m)¢(2e + 1)(2ze + 1) = m*(2z(e + 1)(2z +2e — 1) + 2e + 1)['(1 — €))H(z; €)
—m*(—4z%(e + 1)(3e 4+ 2) + ze(6e + 5) + 2(e + 1))I'(—e — 1)Hz(z;€)
+m*(8z%(e + 1) — 8% (e + 1)(Be + 1) + 2z(e — 1)(2e + 1) + 2¢ + 1)[(—e — 1)Hy(z; €)] (12)
ag(e + 1)m> 20 (—e — 1)2 ()¢
N (z;e) = (2n) @) (e = ee(Aele & 2;’+ 3 [(4e(e +2) +3)(—z(—8z(e+ 1) + e(4e(e +2) +7) +2) —2¢ - 3)
—8z(e+1)(2e + 1)(2e + 3)(4z%(e + 1) + ze(2e + 3) + 262 + € — 1)H,(z5€)
—dz(e +1)(2e + 1)(de(e +2) +3)(1 = 2z(e + 1)(2(z = 1)€? + ze + 2z + €))Hy(z; €)?
+ (2¢ + 3)(de(e +2) + 3)(—8z%(e + 1)> + ze(2e + 1) + 2(e + 1))H3(z; €)
— (4e(e +2) +3)(=162°(e + 1) — 8z%(e + 1)(e(2¢ +7) + 2)
—2z(e(4e(e +2) +5) — 1) + de(e +2) + 3)Hy(z5 €)], (13)
where
Hy(z;€) =, F) (L-a%;z), (14)
H3(Z;€)—3F2<1,—2€—1,—6;%—€,€+2;Z>, (15)
Hy(z;¢€) :3F2(1,—2e,—e;%—e,e—|—2;z). (16)

The e-expanded results for the remaining terms in Eq. (8) can be written more concisely and are given by

3(822 =17z +6) + (22> — 11z + 6)H, (2)

nv(z) = = A8z 1) (aG?), (17)
12z — 15 = (2z = 3)H,(2)

v (z) = G2). 18

(@) el P s (18)

v (z) = (r'G’) (41625 — 18882* + 307823 — 183622 + 90z + 35
921607°m*(z — 1)’z
+5(82° — 362 4 422% — 2022 + 20z — T)H, (z)), (19)

2 3 _ 2 1 —(12 4 _ 3 2 _ H
H(VH) (Z) _ 3 Z 89Z + 9Z + 8 ( Z 66Z + 731 37Z + 8) I(Z) <93G3>, (20)

552967%m*(z — 1)*z
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272 \2
nvm gy = — 497 (557605 _ og0set 4 445823 — 331622 + 7652 + 20
) = S86omi (172 P75 TR @020
—5(82° = 362* + 6623 — 747> + 3z + 12)H,(2)), (21)
16073 — 478722 + 3867 + 7 — (56z* — 19673 + 22672 — 68z + 7)H,(z)
N (z) = 2(gq9)%, 22
2 T @ (aq) (22)
—823 + 1922 + 77 -3 + (4z* — 2273 + 23722 - 137 + 3)H
M (z) = 2 +1922 + 72 -3+ ( 22 ! 4 +4 z z+3) 1(Z)<g3G3>’ (23)
552967°m*(z — 1)*z
—3(16z* =567 + 5772 —z—1) — (4z* — 147> = 522 -3z +3)H
M0 () — (162 2+ 5777 -z )2 4( Z 41 z z+3) 1<Z)<g3G3>. (24)
276487*m*(z — 1)*z
Finally, substituting Egs. (9), (12), (13), and (17)—(24) into Eq. (8) gives us IT°FF.
|
Renormalization-group improvement requires that the (aG?*) = (0.075 £+ 0.02) GeV* (33)
strong coupling and quark mass be replaced by their
corresponding running quantities evaluated at renormaliza- (g 3G3> ((8.241.0) GeVz) <aG2> (34)
tion scale y [54]. At one loop in the MS renormalization
scheme, for cc diquarks, we have (gq) = —(0.23 +0.03)3 GeV>. (35)

M
ag = ax(/") = 253?(( )T) > (25)
1 + 127 log( )
_ o (ag(w) 1B
m — mc(ﬂ) =m. (as(’hc)) ’ (26)
and for bb diquarks,
M
4, a,(u) = —eM2) 7)
1+ 1‘2;: IOg(MZ)
()
= , 28
= ) = 200 (28)
where [55]
a,(M,) = 0.330 £ 0.014, (29)
as(Myz) = 0.1185 £+ 0.0006, (30)
= (1.275 £ 0.025) GeV, (31)
my, = (4.18 £ 0.03) GeV. (32)

For cc diquarks, y — m,. and for bb diquarks, u — m,,.
Finally, the following values are used for the gluon and
quark condensates [56-58]:

III. QCD LAPLACE SUM RULES,
ANALYSIS, AND RESULTS

We now proceed with the QCD LSR analysis of axial vector
cc and bb diquarks. Laplace sum-rule analysis techniques
were originally introduced in [59,60]. Subsequently, the LSR
methodology was reviewed in [61,62].

The function I1(¢?) of Eq. (3) satisfies a dispersion
relation

o LImII(7)
(g% = 4/ £ dr
(q ) q ) t2(t _ qZ)

for g*> < 0.In Eq. (36), t, is an effective threshold and *- - -~
represents a polynomial in g”>. On the left-hand side of
Eq. (36), IT is identified with ITT°°F computed in Sec. II. On
the right-hand side of Eq. (36), we express ImlII(¢), i.e., the
spectral function, using a single narrow resonance plus
continuum model,

+oe o (36)

1 1
—ImlI(r) = 212 5(t — M?) + —ImITIOPE(1)0(t — s9).  (37)
T T

where M is the diquark constituent mass and £, is the
diquark coupling defined by

. 2
<Q|]y,a|<cc)ﬂ’ 1+> = \/;50ﬂ€ﬂh+’

which aligns with the notation of Ref. [31]. Also, 0(¢) is a
Heaviside step function and s, is the continuum threshold

(38)
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parameter. Constituent diquark masses are key input
parameters of type I and II diquark-antidiquark models
of tetraquarks [23,39] (see Sec. IV). However, as the
couplings are not parameters of type I and II tetraquark
models, we eliminate them by working with ratios of LSRs
[e.g., see (45)]. Though not relevant for our purposes here,
we note that knowledge of the coupling A, for light
diquarks allows estimation of baryon matrix elements of
the effective weak Hamiltonian [30,31].

As discussed in Ref. [30], the duality relation (37) for
diquarks is more subtle than for hadrons because diquarks
are constituent degrees of freedom rather than hadron
states. Reference [30] argues that, similar to constituent
quarks, the diquark mass and coupling should be regarded
as effective quantities which describe the correlator at
intermediate scales. Above the threshold s, the diquark
loses its meaning as a constituent degree of freedom, and
the correlator is dominated by the parton-level quark
description (see Diagram I in Fig. 1). In the context of
lattice QCD, the coupling /. is proportional to the signal
strength, and Ref. [35] finds a remarkably clean exponen-
tial decay indicative of a single narrow resonance below the
lattice cutoff 1/a>. In Eq. (37), s, is analogous to the lattice
cutoff 1/a®. Thus, in the light quark sector studied in [35],
there exists direct lattice QCD evidence supporting the
spectral decomposition (37).

Laplace sum rules are obtained by Borel transforming
Eq. (36) weighted by powers of Q7 (see [59,60] as well as,
e.g., [44,63]). For a function such as IT°°F computed in
Sec. II, details on how to evaluate the Borel transform can
be found in [42,43] for instance. We find

1
Ri(r) =5 /r (¢*)ke0"TIOPE (g2)dg?

0 1
+ / the=" —ImITOPE (¢)d¢ (39)
So T

‘Im(q‘)

= Ri(z) = 22 Mk~

o 1
+ / the™ —ImII°PE(r)ds,  (40)
So T

where R;(7) are unsubtracted LSRs of (usually non-
negative) integer order k evaluated at Borel scale 7 and
where I is the integration contour depicted in Fig. 2.
Subtracting the continuum contribution,

o0 1
/ the~'" —ImITOPE (1) dt, (41)
T

S0

from the right-hand sides of Eqgs. (39) and (40), we find

1
Re(eso) = 5 [ @O (42)
= Rk(’[, So) = 2hiM2ke_MZT, (43)

where R;(7,s9) are (continuum-)subtracted LSRs. In
Eq. (42), explicitly parametrizing each I'; of I', we have

am>—/R=5 ,
/ (t—6i)ke==0DTTIOPE (t —5i)dt

1
Rk('L'?SO)EZ_m[
S0

+/sin‘](ts/R) <4m2+Reei)ke—(4m2+Re”")T
27—sin~!(§/R)
x Rie? TIOPE (4m? +Re% ) dO
s .
+/0 (1+6i)ke~UHONTIOPE (14 5i)dt |,
4m?—VR?=5?
(44)

which is then calculated numerically. In Eq. (44), R is set to
2m?. Also, it is intended that 5§ — 0. In practice, this can

Y=
S
~

n

=,

A

'
So

FIG. 2. The contour of integration used in the evaluation of the LSRs (44). We use 6 = 10~'> GeV? and R = 2m? generally in the
calculation of Eq. (44); however, other values and contour shapes were tested to verify that the code was producing contour invariant

results as it must.
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be achieved by setting § = 107> GeV?. Finally, using
Eq. (43), we find

N /¢ (45)

To use Eq. (45) to predict diquark constituent masses, we
must first select an acceptable range of 7 values, i.e., a Borel
window (Zpin, Tmax)- 10 determine the Borel window, we
follow the methodology outlined in [28]. To generate 7.y,
we require OPE convergence of the k=0 LSRs as
sy — oo. By OPE convergence, we mean that the total
perturbative contribution to the LSRs (pert), the total 4D
contribution to the LSRs (4D), and the total 6D contribu-
tion to the LSRs (6D) must obey the inequality

Ipert| > 3 x |4D| > 9 x [6D. (46)

The lowest value of z for which Eq. (46) is violated as
so — oo becomes 7,,,,. Additionally, z,,,, is constrained by
the requirement

R (7,50)/ R (7, 50)
Ri(7,50)/Ro(7, 50)

> 1, (47)

where this inequality results from requiring that individu-
ally both R (r,sy) and Rg(r,sy) satisfy the Holder
inequalities [64,65] as per [28]. For the specific LSRs
being studied here, it turns out that the condition (46) is
more restrictive than the condition (47). For both diquark
channels under consideration, the values of 7z, obtained
are given in the last column of Table I. To select 7,;,, in
addition to the Holder inequality constraint (47), we require
that

R (7,50)/Ro(7, 50)
R (2, 0) [Rolr,00) = )

i.e., that the resonance contribution to R, /R, must be at
least 50%. The highest value of = which does not violate
Egs. (47) and (48) becomes 7,,;,. For both diquark channels
under consideration, the values of 7,,;,, obtained are given in
the second-to-last column of Table I.

The procedure described above for choosing a Borel
window is sy dependent. However, s is a parameter that is
predicted using the optimization procedure described
below. As such, choosing a Borel window and predicting
so are actually handled iteratively. Typically, the Borel
window widens as s, increases. As such, we begin by
selecting the minimum value of s, for which a Borel
window exists. The corresponding Borel window is then
used to predict a new, updated s,. This new s is then used
to update the Borel window which, in turn, is used to
update s, and so on until both the Borel window and s,

settle. This iterative process has been taken into account in
reporting diquark constituent masses, continuum thresh-
olds, and Borel windows in Table 1.

To predict sy and M, we optimize the agreement between
the left- and right-hand sides of Eq. (45) by minimizing

20 TS ?

where we have partitioned the Borel window into 20 equal
length subintervals with {z;}7,. For both diquark channels
under consideration, the optimized values of s, obtained
are given in the third column of Table I. As a consistency
check on our methodology, we require that the optimized
mass M from Eq. (49) actually yields a good fit to Eq. (45)
and that the left-hand side of Eq. (45) exhibits 7 stability
[28], that is,

d Rl (T, So)
— )/ =—==0 50
dr Ro(T, So) ( )

within the Borel window. And so, in Figs. 3 and 4, we plot
the left-hand side of Eq. (45) at the appropriate optimized
s versus 7 over the appropriate Borel window for both
diquark channels under consideration. For the bb diquark,
the optimized M from Eq. (49) does indeed yield a good
fit to Eq. (45)—specifically, M = 8.67 GeV in agreement
with Fig. 4. Regarding condition (50), over the Borel

window,
A Ri(7.50)
Ry (7. 50)
implying that the plot in Fig. 4 can be considered flat to an
excellent approximation. For the cc diquarks, it is clear

1

~ (0.001 1
i 0.001, (51)

4.8

461

44}

421

40}

R (1,50 @) /R (1, 50 > o) (GeV)

0.1 0.2 0.3 04 05 06 0.7
1(GeV2)

FIG. 3. The left-hand side of Eq. (45) at the optimized
continuum threshold parameter s, (see Table I) versus the Borel
scale 7 for the cc diquark.
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9.0

881

8.6

R1 (1,50 > 2)/Rg (1, 50 > w) (GeV)

8.0

0.05 0.10 0.15 0.20 0.25
T (GeV"Z)

FIG. 4. The left-hand side of Eq. (45) at the optimized
continuum threshold parameter s, (see Table I) versus the Borel
scale 7 for the bb diquark.

from Fig. 3 that the fitted value of M will be biased by the
rapid increase at large 7 values. We thus use the critical
point % v/R1/Ry = 0 for our cc diquark mass prediction,
ie., M =3.51 GeV. For both diquark channels under
consideration, predicted diquark constituent masses M
are given in the second column of Table I. The theoretical
uncertainties associated with the mass predictions take into
account the uncertainties arising from the strong coupling
and mass parameters (29)—(32) as well as those associated
with the QCD condensate values, Egs. (33)—(35). The
dominant theoretical uncertainty is associated with the
quark masses.

In the sy — oo limit, the left-hand side of Eq. (45)
corresponds to an upper bound on M for a wide variety of
resonance shapes [66], allowing the sensitivity to the
threshold s, and resonance model to be explored. As
shown in Figs. 5 and 6, within the Borel window
T<Tpax» We find M < 3.6 GeV for the cc case and M <
8.8 GeV for the bb case, remarkably close to the Table I
predictions.

4.8

46}

44}

421

4.0}

JR1 (1,50 - w0)/Rg (1, 59 = o0) (GeV)

0.1 0.2 03 04 05 06 07
(GeVv~2)

FIG. 5. The left-hand side of Eq. (45) as the continuum
threshold parameter s, — oo versus the Borel scale 7 for the
cc diquark.

S 13t
Q
Q
T 12f
0
o
7]
- 11
o
x
< 10}
b
j=)
7 of
x
~— 8}
0.05 0.10 0.15 0.20 0.25
(GeV~2)

FIG. 6. The left-hand side of Eq. (45) as the continuum
threshold parameter s, — oo versus the Borel scale 7 for the
bb diquark.

IV. DISCUSSION

Compared with potential model approaches [67—69]
(and others cited therein) our cc central value diquark
constituent mass prediction is slightly larger and bb is
slightly smaller. For Bethe-Salpeter approaches [70], there
is closer alignment in the cc constituent mass prediction,
but the bb constituent mass prediction is still slightly
smaller. However, taking into account theoretical uncer-
tainties, we find good agreement between our QCD LSR
mass predictions and those of Refs. [67-70], providing
QCD evidence to support the study of diquark-antidiquark
tetraquarks and doubly heavy baryons with diquark cluster
models.

Constituent diquark masses are key inputs into chromo-
magnetic interaction (CMI) models of diquark-antidiquark
tetraquarks. For example, consider the type-II model of
Ref. [39] in which color-spin interactions are ignored
except between the quarks (antiquarks) within the diquark
(antidiquark). This simplification assumes that the diquark
and antidiquark within the tetraquark are pointlike and well
separated. Focusing on S-wave combinations of doubly
heavy, equal mass diquarks and antidiquarks, the type-II
CMI Hamiltonian reduces to [39]

H= mg,0,] + mp,0,] + 2KQ1Q1 (SQI ’ SQI)
+ 2KQ2Q2<SQ2 ) SQz)’ (52)

where mg o) and mp,p, are constituent diquark and
antidiquark masses, respectively, and where ky o, and
Kp,p, are color-spin interaction coefficients. (Note that
kpp and kpg are equal as are mgg) and mpp).) As the
(anti)diquarks have J = 1, they musthave S = 1 for L =0
(where J, L, S are the usual angular momentum quantum
numbers). Hence, the Hamiltonian (52) simplifies to
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1
H =mig 0 +mip,0, +75 (kg,0, + Kp,0,)-  (53)

Our predictions for m/..) and m,; are in Table I; however,
the coefficients «.. and x;,, are not known. In [39], the
X(3870), Z(3900), and Z(4020) resonances were inter-
preted as type-II diquark-antidiquark tetraquarks and were
used to predict k., = 67 MeV where ¢ is a light quark. As
the x coefficients are expected to decrease with increasing
quark masses [23], we assume here that

0 < Kees Kpes Kpp < 67 MeV. (54)

The absolute uncertainties in our diquark constituent mass
predictions in Table I are significantly larger than 67 MeV,
and so, as a first approximation, we simply ignore the «
contributions to Eq. (53). Therefore, within the type-II
diquark-antidiquark model, we predict J© € {0, 1%,2"}
tetraquark masses of 7.0 GeV for [cc|[cc], 12.2 GeV
for [cc][bb], and 17.3 GeV for [bb][bb]. The relative
uncertainty in these mass predictions is roughly 10%.
Furthermore, note that the [cc][¢c] and [bb][bb] tetraquarks
are charge conjugation eigenstates where C = + for J = 0,
2 and C = — for J = 1 [71,72]. The [cc][bb] tetraquarks
are not charge conjugation eigenstates.

Regarding [cc][cc] tetraquarks, taking into account 10%
theoretical uncertainty, our type-II model mass predictions
are in reasonable agreement with those of [71-73], although
our central values are higher. However, our results are much
higher than those of [74]. Furthermore, our tetraquark mass
predictions are above both the #.(1S) —#.(1S) and J/y —
J/w thresholds indicating that the corresponding decay
modes should be accessible as fall-apart decays.

Regarding [cc][bb] tetraquarks, again factoring in 10%
uncertainty, our type-II model mass predictions are in
reasonable agreement with those of [71,72], although
our central values are lower. With an electric charge of
+2, two charm quarks, and two bottom antiquarks, such a
state would be easy to identify through its decay products,
and could not be misinterpreted as a conventional meson.
Unfortunately, within theoretical uncertainty, we are unable
to say whether our tetraquark mass predictions lie above or
below the B} — B/ threshold.

Regarding [bb][bb] tetraquarks, taking into account
theoretical uncertainty, our type-II model mass predictions
are in reasonable agreement with those of [73] although our
central values are lower. Our results are about 10% lower
than those of [74,75], and are much lower than those of
[71,72]. Tetraquarks with bbbb quark composition (so-
called beauty-full tetraquarks) have attracted considerable
attention recently due to the possibility that some might
have masses below the Y(1S5)— Y(1S) threshold and
perhaps even the 7,(1S) —#,(1S) threshold. For bbbb
tetraquarks with masses below the 7, (1S) — 7, (1S) thresh-
old, fall-apart modes would be inaccessible and decays
would instead proceed through Okubo-Zweig-lizuka—sup-
pressed processes. Central values of our type-II diquark-
antidiquark mass estimates put the 07+, 1=, and 27 states
about 9% below the YT(1S) — T(1S) threshold and about
7% below the 1;,(1S) — 1, (1S) threshold.

In summary, we used QCD LSRs to predict the axial
vector doubly heavy cc and bb diquark constituent masses.
Our results are summarized in Table I. These results were
obtained from a calculation of the diquark correlation
function at NLO in perturbation theory and to LO in the
4D and 6D gluon condensates as well as the 6D quark
condensate. That the LSRs analyses stabilized in both the
double charm and double bottom diquark channels pro-
vides QCD-based evidence for the existence of these
structures. Within the type-II diquark-antidiquark tetra-
quark model of Ref. [39], we predicted, with an uncertainty
of roughly 10%, 07", 177, and 2" [cc][c¢] tetraquarks of
mass 7.0 GeV; 07, 17, and 2% [cc|[bb] tetraquarks of mass
12.2 GeV; and 0**, 1%~ and 2+* [bb][bb] tetraquarks of
mass 17.3 GeV. Central values of our [bb][bb] tetraquark
mass predictions are well below the Y(1S) — T(1S) and
np(18) —n,(18) thresholds, providing support for the
possibility that fall-apart decay modes are inaccessible to
some bbbb tetraquarks.
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