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By comparing the two- and three-flavor Nambu–Jona-Lasinio (NJL) models, we demonstrate that the
naively expected vacuum superconductivity (VSC) in constant magnetic field B ¼ Bẑ is disfavored due to
the splitting magnetic catalysis effect (MCE) to chiral condensates with different quark flavors. Based on
the simple two-flavor NJL model, we illuminate, in the lowest Landau-level approximation, the similar
origins of π0 and ρ̄þ1 (ρþ meson with spin Sz ¼ 1) mass reductions with smaller B and their different
features at largerB. With the full Landau levels, the two-flavor NJL model is found to be invalid to study the
magnetic field effect on the ρ̄þ1 meson with physical vacuummass 775 MeV. Then, restricted to the ρmeson
mass below the two-quark threshold in vacuum, that is, mv

ρ < 2mv
q, it is found that π0 mass decreases and

then increases with B slowly, and the ρ̄þ1 mass vanishing point is delayed to larger B compared to the point
particle result. In the more realistic three-flavor NJL model, all the quark masses split in strong magnetic
field as a combinatorial result of their different current masses and electric charges. By choosing a vacuum
mass closer to the physical one, the ρ̄þ1 meson mass is found to be consistent with the lattice QCD results
semiquantitatively in the smaller B region but increase in the larger B region. These features are mainly
outcomes of the interplay between the Sz − B coupling effect and splitting MCE to the composite u and d
quarks, which definitely disfavors VSC when the latter dominates. Furthermore, mesonic flavor mixing is
modified by B among the neutral pseudoscalars, π0, η0 and η8, which is very important to suppress the mass
enhancement of the effective mass eigenstates at large B.

DOI: 10.1103/PhysRevD.100.074024

I. INTRODUCTION

The properties of the QCD system in external electro-
magnetic (EM) field are very interesting and significant in
both theoretical and experimental aspects. Theoretically,
many novel notions and possibly new physics emerge
from such a system, such as macroscopic chiral anomaly
effects [1–5], the inverse magnetic catalysis effect [6–14],
and vacuum superconductivity [15–20]. Experimentally,
the strongest EM field in our recent Universe can be
produced in relativistic peripheral heavy ion collisions
[21–25], and the chiral magnetic effect [26–28] is now
under restrict and massive investigations in BES II of the
STAR experiments [29–31]. Focusing on the theoretical
part, the external EM field actually contributes an extra
dimension, besides the usual temperature and chemical
potential effect, to explore the properties of QCD, espe-
cially the phase diagrams. First of all, it is important to
emphasize that the first-principle lattice QCD (LQCD)
simulations [6,7] greatly support the magnetic catalysis
effect (MCE) in vacuum; that is, the chiral condensations
(or likely quark masses) increase with magnetic field [32].
Then, in the phase respect, inhomogeneous chiral sym-
metry breaking (χSB) phases might be favored for a finite
density system in the presence of magnetic field [33,34],

vacuum superconductivity is assumed to happen at
large enough magnetic field [15–18], and neutral pseudo-
scalar superfluidity can be found in a parallel EM
field [35–37].
Based on the ordinary χSB phase, the meson masses

were further studied in magnetic field, either neutral or
charged. Most frequently worked out in the two-flavor
Nambu–Jona-Lasinio (NJL) model, the neutral pion mass
was found to decrease and then increase, and the charged
pion mass was found to increase monotonously with
magnetic field [38–42], which then both disfavor pion
superfluidity consistent with the restriction from the
Gell-Mann–Oakes–Renner relation [43,44], while the
lightest charged vector rho meson mass decreases monoto-
nously with B to zero, which favors vacuum superconduc-
tivity [15–18]. There have been both quenched [20] and
unquenched LQCD simulations [45] on the pion masses
in the market recently; while the charged pion mass
trivially increases with B, the neutral pion mass decreases
to an almost convergent value, around half of the vacuum
mass. It seems a puzzle why neutral pion mass will
converge to such a specific value. The initial philosophy
of vacuum superconductivity (VSC) simply follows the
expectation from a point vector particle, the effective mass
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mB
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv

V
2 − jeBj

p
of which vanishes at jeBj ¼ mv

V
2.

The most prominent example of the latter is the electroweak
gauge boson W� condensation in the early Universe
[46,47], which was later shown to exhibit superconductiv-
ity [15,48]. However, the proposal of VSC encounters
strong objections from the community due to the violation
of the Vafa-Witten (VW) theorem and was denied by
LQCD simulations [19,20]. It is the main motivation of this
work to find out which ingredient or underlying physics is
missing in the two-flavor NJL model in order to account for
the contradiction with LQCD results. To avoid confusion,
we just focus on the possible continuum phase transition to
homogeneous VSC, for which the Ginzburg-Landau
expansion and thus the criteria with zero-mass point as
the transition point are valid [49].
The paper is organized as follows. In Sec. II, we develop

the whole formalism for the explorations of π0 and ρ
meson masses under strong magnetic field within the
extended two-flavor NJL model. For the purpose of an
intuitive understanding, we show the similarity in their
origins between the mass reductions of π0 and ρ̄þ1 at
smaller B by adopting lowest Landau-level (LLL)
approximation in Sec. II A. Then, the full Landau-level
(FLL) expressions are given explicitly in Sec. II B,
together with the associated numerical calculations.
Based on this two-flavor model, the important discus-
sions on the equality between the proper-time and
Landau-level presentations and the invalidity of the
NJL model study of the ρ meson with physical mass
in magnetic field are reserved for Appendixes A and B,
respectively. In Sec. III, we revisit the meson modes in
the more realistic three-flavor NJL model and present the
FLL numerical results.

II. MESON SPECTRA WITHIN TWO-FLAVOR
NAMBU–JONA-LASINIO MODEL

To study the properties of vector mesons, the original
Lagrangian density of the two-flavor NJL model [50] can
be extended by including vector channels and keeping
approximate chiral symmetry to [16,18]

L ¼ ψ̄ði=D −m0Þψ þ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�
−GV ½ðψ̄γμτaψÞ2 þ ðψ̄iγμγ5τaψÞ2�: ð1Þ

Here, ψ ¼ ðu; dÞT is the two-flavor quark field; m0 is the
current quark mass; τa ¼ ð1; τÞ with τ Pauli matrices in
flavor space; and GS and GV are positive coupling con-
stants for the scalar-pseudoscalar and vector-pseudovector
channels, respectively. The covariant derivativeDμ ¼ ∂μ þ
iqAμ is defined in flavor space with electric charge qu ¼
2e=3ðqd ¼ −e=3Þ for the uðdÞ quark and the vector
potential Aμ ¼ ð0; 0;−Bx1; 0Þ representing a constant mag-
netic field along the z axis through B ¼ ∇ ×A ¼ Bẑ. For
the convenience of exploring the properties of the collective

excitation modes or mesons, we introduce the following
auxiliary boson fields:

σ ¼ −2GSψ̄ψ ; π ¼ −2GSψ̄iγ5τψ ; ð2Þ

Vμa ¼ −2GV ψ̄γ
μτaψ ; Aμa ¼ −2GV ψ̄iγμγ5τaψ : ð3Þ

Then, the Lagrangian density becomes [16,18]

L ¼ ψ̄ ½i=̃D −m0 − σ − iγ5ðτ3π0 þ τ�π�Þ�ψ

−
σ2 þ ðπ0Þ2 þ π∓π�

4GS

þ ðωμÞ2 þ ðρμ0Þ2 þ ρ∓μ ρ�μ þ ðAaμÞ2
4GV

;

D̃μ ¼ ∂μ þ iðqAμ − ωμ − τ3ρ0μ − τ�ρ�μ − iγ5τaAa
μÞ; ð4Þ

where the physical fields are related to the auxiliary
fields through π0 ¼ π3, π� ¼ 1ffiffi

2
p ðπ1 ∓ iπ2Þ, ρ0μ ¼ ρ3μ,

and ρ�μ ¼ 1ffiffi
2

p ðρ1μ ∓ iρ2μÞ and τ� ¼ 1ffiffi
2

p ðτ1 � iτ2Þ are the

raising and lowering operators in flavor space. If only
the expectation value hσi is nonzero as is the case in the
vacuum without B, the thermodynamic potential is simply
in the form

Ω ¼ ðm −m0Þ2
4GS

þ i
V4

X
f¼u;d

Tr lnG−1
f ; ð5Þ

where the dynamical mass m ¼ m0 þ hσi, G−1
f ¼ i=Df −m

is the inverse quark propagator at the mean field level and
the trace “Tr” should be taken over the space-time
coordinate, Dirac spinor, flavor, and color spaces.
Then, the gap equation is formally given by the mini-

mum condition ∂Ω=∂m ¼ 0 as

m −m0

2GS
−

i
V4

X
f¼u;d

TrGf ¼ 0; ð6Þ

and the inverse meson propagators can be conveniently
evaluated in random phase approximation through [50,51]

D−1
SSðy; xÞ ¼ −

e−iqS
R

y

x
A·dx

2GS
þ i
V4

Tr GΓS�GΓS; ð7Þ

D−1
V̄μV̄ν

ðy; xÞ ¼ e−iqV
R

y

x
A·dxgμν

2GV
þ i
V4

Tr GΓV̄μ
�GΓV̄ν

; ð8Þ

where G ¼ diagðGu; GdÞ is the fermion propagator in flavor
space and ΓS=S� and ΓV̄μ=V̄�

μ
are the coupling vertices in the

scalar-pseudoscalar and vector-pseudovector channels,
respectively. The explicit forms of the interested coupling
vertices can be read from Eq. (4) as
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Γσ=σ� ¼−1; Γπ0=π0� ¼−iγ5τ3; Γπ� ¼−iγ5τ�;

Γω̄μ=ω̄�
μ
¼ γ̄�μ ; Γρ̄0μ=ρ̄�0μ

¼ γ̄�μ τ3; Γρ̄�μ
¼ γ̄�μ τ�; ð9Þ

where γ̄�μ ¼ ðγ0; γ1�iγ2ffiffi
2

p ; γ1∓iγ2ffiffi
2

p ; γ3Þ and the spin eigenstate

V̄μ=V̄�
μ ¼ ðV0;

V1∓iV2ffiffi
2

p ; V1�iV2ffiffi
2

p ; V3Þ with the spatial compo-

nents V̄1; V̄2, and V̄3 corresponding to spin components
Sz ¼ 1;−1 and 0 along B. V̄μ=V̄�

μ are more convenient for
the exploration of pole masses in magnetic field because
D−1

V̄μV̄ν
vanishes at zero effective momentum if μ ≠ ν. One

thing should be pointed out: for nonlocal meson propa-
gators, the Schwinger phases should be compensated for
the charged mesons in order to keep gauge invariance of the
theory in external EM field [49]; see the Wilson lines in
the first terms of Eqs. (7) and (8) with the integral along
a straight line. Then, their masses should be evaluated
in energy-momentum space by taking out the gauge-
dependent Schwinger phases, that is, from

D−1
SSðpÞ≡ 1

2GS
þ ΠSSðpÞ

¼
Z

d4xe−ip·ðy−xÞeiqS
R

y

x
A·dxD−1

SSðy; xÞ; ð10Þ

D−1
V̄μV̄μ

ðpÞ≡ 1

2GV
þ ΠV̄μV̄μ

ðpÞ

¼
Z

d4xe−ip·ðy−xÞeiqV
R

y

x
A·dxD−1

V̄μV̄μ
ðy; xÞ; ð11Þ

by requiring D−1ðp0;p ¼ 0Þ ¼ 0. Thus obtained effective
inverse meson propagators are equivalent to those directly
evaluated with the effective quark propagators SfðkÞ, which
will be defined immediately.
The basic quark propagators Gfðx; yÞ can be evaluated

with the Schwinger approach [52], and we have

Gfðx; yÞ ¼ e
−iqf

R
x

y
Aμ
f dxμSfðx − yÞ;

SfðxÞ ¼ −i
Z

∞

0

ds
16ðπsÞ2 e

−i½sm2þ 1
4sðx20−x23−ðx21þx2

2
ÞBs

f cotB
s
f Þ�Bs

f ½cotBs
f þ γ1γ2�

×

�
mþ 1

2s
ð=x0 − =x3 − Bs

f ðð=x1 þ =x2Þ cotBs
f − =x21 þ =x12ÞÞ

�
ð12Þ

with Bs
f ¼ qfBs, =xμ ¼ γμxμ, =xμν ¼ γμxν and the integration in the exponential from y to x along a straight line. For later use,

we shift to imaginary proper time s → −is and transform the effective propagator SfðxÞ to Euclidean energy-momentum
space [49],

SfðkÞ ¼ −i
Z

∞

0

dse
−sðm2þk2

4
þk2

3
þk2⊥

tanhBs
f

Bs
f

Þ½−=kþmþ ið=k12 − =k21Þ tanhBs
f �ð1þ iγ1γ2 tanhBs

f Þ; ð13Þ

with k⊥ ¼ ðk1; k2Þ. Inserting the explicit quark propagators into Eq. (6) and taking the vacuum regularization scheme with
3-momentum cutoff, we finally have the finite gap equation [49]

0 ¼ m −m0

2G
−
Ncm2

π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r
−m ln

�
Λ
m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2

r ��
−
Ncm
4π2

X
f¼u;d

Z
∞

0

ds
s2

e−sm
2

�
Bs
f

tanhBs
f
− 1

�
: ð14Þ

A. Intuition in lowest Landau-level approximation

It was found in the previous explorations that both π0 and ρ̄þ1 meson masses decrease with magnetic field in the weak field
region [16,18,38–41], which may indicate neutral pion superfluidity (NPSF) and VSC, respectively, at a sufficient strong
magnetic field. To get an intuitive understanding of the situations encountered by π0 and ρ̄þ1 mesons, we adopt the LLL
approximation with the effective quark propagators simply given by [32]

SLLLf ðkÞ ¼ −ie−
k2⊥
jqfBj

m − k4γ4 − k3γ3

k24 þ k23 þm2
½1þ sgnðqfBÞiγ1γ2�: ð15Þ

Then, after substituting them into Eqs. (10) and (11), the explicit form of the effective inverse propagators of π0 and ρ̄þ1 are,
respectively,
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D−1
π0π0

ðpÞ ¼ −
1

2GS
þ Nc

X
f¼u;d

Z
d4k
ð2πÞ4 trS

LLL
f ðkþ pÞiγ5SLLLf ðkÞiγ5

¼ −
1

2GS
þ 8Nc

X
f¼u;d

Z
d4k
ð2πÞ4

e−
k2⊥þðk⊥þp⊥Þ2

jqfBj ½m2 þ k4ðk4 þ p4Þ þ k3ðk3 þ p3Þ�
ðk24 þ k23 þm2Þ½ðk4 þ p4Þ2 þ ðk3 þ p3Þ2 þm2� ; ð16Þ

D−1
ρ̄þ
1
ρ̄þ
1

ðpÞ ¼ −
1

2GV
þ 2Nc

Z
d4k
ð2πÞ4 trS

LLL
d ðkþ pÞΓρ̄−

1
SLLLu ðkÞΓρ̄þ

1

¼ −
1

2GV
þ 32Nc

Z
d4k
ð2πÞ4

e−
k2⊥
jquBj−

ðk⊥þp⊥Þ2
jqdBj ½m2 þ k4ðk4 þ p4Þ þ k3ðk3 þ p3Þ�

ðk24 þ k23 þm2Þ½ðk4 þ p4Þ2 þ ðk3 þ p3Þ2 þm2� ; ð17Þ

with the trace “tr” only over Dirac spinor space. If we
assume qu ¼ −qd, we can immediately recognize the
equality of the second terms in Eqs. (16) and (17) up to
a factor 2, which implies the similarity between the
magnetic effects to π0 and ρ̄þ1 . In vanishing energy-
momentum limit p → 0, by integrating out the trans-
verse momenta k⊥ and inserting the realistic values of
qu and qd, the effective inverse propagators can be
simply reduced to

−D−1
π0π0

ð0Þ ¼ 1

2GS
−
Nc

π

Z
d2k
ð2πÞ2

jeBj
k2 þm2

; ð18Þ

−D−1
ρ̄þ
1
ρ̄þ
1

ð0Þ ¼ 1

2GV
−
16Nc

9π

Z
d2k
ð2πÞ2

jeBj
k2 þm2

: ð19Þ

Actually, these are just the quadratic Ginzburg-Landau
(GL) expansion coefficients (QGLECs) around small
order parameters hπ0i and hρ̄þ1 i; refer to that around
hπ�i in Ref. [49]. Note that only the qualitative
respondences to the magnetic field effect should be
taken seriously here because B-independent loop con-
tributions are not included in all the formulas; that is,
the second terms vanish in the limit B → 0. In this
respect, even without introducing any explicit regulari-
zation scheme that does not change the signs of the
divergent terms, some significant qualitative conclusions
can already be drawn:
(1) In the relatively weak magnetic field region where

dynamical quark mass is almost B independent,
the QGLECs both decrease with magnetic field
and thus seem to favor the decreasing of meson
masses in order to maintain D−1ðp0;p ¼ 0Þ ¼ 0;
see Ref. [16,18,38–41,43].

(2) The ρ̄þ1 meson responds more strongly than the π0

meson to magnetic field as the coefficient in front of
B in Eq. (19) is larger than that in Eq. (18); see the
steeper ρ̄þ1 mass reduction in Refs. [18,20,40].

(3) In the LLL approximation, the gap equation
becomes

m −m0

2GS
−m

Nc

π

Z
d2k
ð2πÞ2

jeBj
k2 þm2

¼ 0; ð20Þ

from which the MCE can be told directly; see
Ref. [36] for more detailed discussions on the large
B limit. Then, −D−1

π0π0
ð0Þ ¼ m0

2mGS
is positive definite

and thus disfavors NPSF as verified in Ref. [40];
−D−1

ρ̄þ
1
ρ̄þ
1

ð0Þ¼ 1
2GV

− 16
18GS

þ 16m0

18mGS
≈ 1

2GV
− 16

18GS
is nega-

tive definite for the chosen model parameters and
thus favors VSC. However, if we recover the B-
independent loop contribution, −D−1

ρ̄þ
1
ρ̄þ
1

ð0Þ will be

positive in the small B region, as it should be to
maintain finite mass there; see Refs. [16,18,20] and
Fig. 2 in Sec. II B.

(4) Because of their different charges of u and d quarks,
the magnetic field will definitely induce splitting
MCE in principle [37], which should be taken care
of in a more realistic three-flavor NJL model
[50,53]. For the π0 meson, u and d quarks contribute
separately through pure flavor polarization loops,
while for the ρ̄þ1 meson, they contribute through a
flavor-mixed polarization loop. Thus, the splitting
MCE is expected to have a larger consequence on
the ρ̄þ1 mass than on the π0 mass, which must be
carefully checked before any conclusion is drawn on
whether VSC can happen or not.

B. Full Landau-level formalism and
numerical results

By substituting the full Landau-level forms of quark
propagators [Eq. (13) into Eqs. (10) and (11)], the effective
inverse propagators of π0 and ρ̄þ1 are, respectively,
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−D−1
π0π0

ðpÞ ¼ 1

2GS
− 4Nc

X
f¼u;d

Z
d4k
ð2πÞ4

Z
dsds0e

−s
h
m2þðk4þp4Þ2þðk3þp3Þ2þðkþpÞ2⊥

tanhBs
f

Bs
f

i
e
−s0
h
m2þk2

4
þk2

3
þk2⊥

tanhBs
0
f

Bs
0
f

i

× ½ðm2 þ ðkk þ pkÞ · kkÞð1þ tanhBs
f tanhB

s0
f Þ þ ðk⊥ þ p⊥Þ · k⊥ð1 − tanh2Bs

f Þð1 − tanh2Bs0
f Þ�; ð21Þ

−D−1
ρ̄þ
1
ρ̄þ
1

ðpÞ ¼ 1

2GV
− 8Nc

Z
d4k
ð2πÞ4

Z
dsds0e

−s
h
m2þðk4þp4Þ2þðk3þp3Þ2þðkþpÞ2⊥

tanhBsu
Bsu

i
e
−s0
h
m2þk2

4
þk2

3
þk2⊥

tanhBs
0
d

Bs
0
d

i

× ðm2 þ ðkk þ pkÞ · kkÞð1þ tanhBs
uÞð1 − tanhBs0

d Þ: ð22Þ

with kk ¼ ðk4; k3Þ. The LLL results Eqs. (16) and (17) can be obtained from these expressions in the large B limit, which
indicates tanhBs

u → 1 and tanhBs0
d → −1 due to their different signs of qu and qd. For vanishing 3-momentum p ¼ 0, they

are reduced to the forms

−D−1
π0π0

ðp4Þ ¼
1

2GS
− Nc

X
f¼u;d

qfB
4π2

Z
dsds0

sþ s0
e−ðsþs0Þm2− ss0

sþs0p
2
4

��
m2 þ 1

sþ s0
−

ss0

ðsþ s0Þ2 p
2
4

�
cothBsþs0

f þ qfB

sinh2Bsþs0
f

�

¼ 1

2GS
−

Nc

8π2
X
f¼u;d

Z
ds

Z
1

−1
due−sðm2þ1−u2

4
p2
4
Þ
��

m2 þ 1

s
−
1 − u2

4
p2
4

�
qfB

tanhBs
f
þ ðqfBÞ2
sinh2Bs

f

�
; ð23Þ

−D−1
ρ̄þ
1
ρ̄þ
1

ðp4Þ ¼
1

2GV
−

Nc

2π2

Z
dsds0

sþ s0
e−ðsþs0Þm2− ss0

sþs0p
2
4

�
m2 þ 1

sþ s0
−

ss0

ðsþ s0Þ2 p
2
4

� ð1þ tanhBs
uÞð1 − tanhBs0

d Þ
s tanhBs

u
Bs
u

þ s0 tanhB
s0
d

Bs0
d

¼ 1

2GV
−

Nc

4π2

Z
ds
s

Z
1

−1
due−sðm2þuþu−p2

4
Þ
�
m2 þ 1

s
− uþu−p2

4

� ½1þ tanhBs
u
þ�½1 − tanhBs

d
−�

tanhBs
u
þ=Bs

u þ tanhBs
d
−=Bs

d
ð24Þ

by integrating out the internal energy momentum, where
u� ¼ 1�u

2
; Bs

u
þ ¼ Bs

uuþ and Bs
d
− ¼ Bs

du
− for brevity.

Then, the effective inverse propagator of π0 can be
regularized by adopting the vacuum regularization scheme
as [12]

−D−1
π0π0

¼ 1

2GS
þ ΔΠπ0π0 − 8Nc

Z
reg d4k

ð2πÞ4

×
k4ðk4 þ p4Þ þ E2

k

ðk24 þ E2
kÞ½ðk4 þ p4Þ2 þ E2

k�
ð25Þ

with ΔΠπ0π0ðp4Þ ¼ Ππ0π0ðp4Þ − ðB → 0Þ and the quark
dispersion Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. The story with the vector

ρ̄þ1 meson is not so simple because the divergence asso-
ciated with the Sz − B coupling, the terms odd on B in
Eq. (24), cannot be canceled out by any term in the
vanishing B limit. Expanding the polarization loop in
Eq. (24) to a linear term on B, we have

ΠoðB2Þ
ρ̄þ
1
ρ̄þ
1

ðp4Þ ¼ −
Nc

4π2

Z
ds
s

Z
1

−1
due−sðm2þ1−u2

4
p2
4
Þ

×

�
m2 þ 1

s
−
1 − u2

4
p2
4

��
1þ eBs

2

�
: ð26Þ

The unregularized coefficients for zeroth and first orders of
B can be put in alternative energy-momentum integration
forms by recognizing the corresponding terms in Eq. (22)
and integrating out proper time first. Finally, we are ready
to perform a modified vacuum regularization to the
effective inverse propagator of the ρ̄þ1 meson and get

−D−1
ρ̄þ
1
ρ̄þ
1

¼ 1

2GV
þ ΔΠρ̄þ

1
ρ̄þ
1
− 8Nc

Z
reg d4k
ð2πÞ4

�
1þ eB

k24 þ E2
k

�

×
m2 þ k4ðk4 þ p4Þ þ k23

ðk24 þ E2
kÞ½ðk4 þ p4Þ2 þ E2

k�
ð27Þ

with ΔΠρ̄þ
1
ρ̄þ
1
ðp4Þ ¼ Πρ̄þ

1
ρ̄þ
1
ðp4Þ − ΠoðB2Þ

ρ̄þ
1
ρ̄þ
1

ðp4Þ.
The great advantage of vacuum regularization is that

there are no artifacts for the B-dependent parts even when
jeBj1=2 is much larger than the effective cutoff Λ induced
by the regularization. This is obvious for the π0 meson
because there is no cutoff in the B-dependent term
ΔΠπ0π0ðp4Þ; for the ρ̄þ1 meson, Λ is involved in the B-
linear coefficient, but this is just total spin regularization
and has nothing to do with B. Before analytically contin-
uing the results [Eqs. (25) and (27)] to Minkowski space
through p4 → ip0 in order to explore meson spectra, one
should remember that the proper-time integration should
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always be carried out first to give algebraic functions of p4

in principle. Otherwise, ultraviolet divergences will be
encountered in the integrations for p0 ≥ 2m, even though
it is still fine for p0 < 2m. The proper-time integration
can be gotten rid of directly by adopting the Landau-
level presentations of quark propagators. Then, the
inverse meson propagators would depend on two series
of Landau-level summations, and no severe divergences
happen for p0 ≥ 2m anymore. Nevertheless, the com-
pacter proper-time presentation can still be adjusted to suit
such explorations through the variable transformation
sðm2 þ 1−u2

4
p2
4Þ → s. In Appendix A, we show the equality

between proper-time and Landau-level presentations quan-
titatively up to p0 ¼ 2m.
Even though we can handle the potential artificial

divergence through mathematic approaches, the case p0 ≥
2m still induces nonphysical consequences. In Appendix B,
we compare several regularization schemes at vanishing
magnetic field and show the invalidity of the NJL model to
study the magnetic field effect on the ρ̄þ1 meson with
physical mass. The main reason is the lack of confinement
effect in the NJL model. And even the extensive Polyakov–
Nambu–Jona-Lasinio (PNJL) model cannot help the sit-
uation, because the thermodynamic potential for the quark
part is the same as that in the NJL model at zero temper-
ature [53]. For the purpose of qualitative study, we assume
the ρ meson mass to be a bit smaller than twice the quark
mass 2m in the vacuum and use the 3-momentum cutoff
scheme to regularize the vacuum terms. Then, the effective
inverse meson propagators are explicitly

−D−1
π0π0

¼ 1

2GS
þ ΔΠπ0π0 − Nc

Z
Λ

0

k2dk
π2

8Ek

4E2
k þ p2

4

; ð28Þ

−D−1
ρ̄þ
1
ρ̄þ
1

¼ 1

2GV
þ ΔΠρ̄þ

1
ρ̄þ
1
− Nc

Z
Λ

0

k2dk
π2Ek

�
8ðm2 þ 2

3
k2Þ

4E2
k þ p2

4

þ 8E2
kð2m2 þ k2Þ − 2

3
k2p2

4

E2
kð4E2

k þ p2
4Þ2

eB

�
ð29Þ

by carrying out the integration over energy k0 and are
consistent with the corresponding ones given in
Refs. [37,50,54] for the vanishing B case.
Armed with the regularized gap equation (14) and

effective inverse meson propagators (28) and (29), we
are ready to perform further numerical calculations. In the
two-flavor NJL model, the model parameters are fixed as
GV ¼ 3.37 GeV−2, GS ¼ 4.93 GeV−2, Λ ¼ 0.653 GeV,
and m0 ¼ 5 MeV by fitting to the ρ meson mass mv

ρ ¼
0.6 GeV (smaller than 2mv ¼ 0.626 GeV), pion mass
mv

π ¼ 0.134 GeV, pion decay constant fπ ¼ 93 MeV,
and quark condensate hσi ¼ −2 × ð0.25 GeVÞ3 in vacuum
[55]. The self-consistent meson mass spectra and QGLECs
are illuminated in Figs. 1 and 2, respectively. For com-
parison, the results with a fixed quark mass for the π0

meson and point particle mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv

ρ
2 − jeBj

q
for the ρ̄þ1

meson are also demonstrated as functions of magnetic field
in Fig. 1.
As we can see in Fig. 1, if the MCE is suppressed, the π0

mass will quickly decrease to zero, thus favoring NPSF.
The reality is that π0 mass only mildly decreases with B
in the weak field region and slowly increases in the
strong field region (the scale is not shown here), which
is consistent with the previous NJL model result [40,41]. So
it is the consistent gap equation that forbids the mass
of the pseudo-Goldstone boson π0 to decrease to zero.

FIG. 1. The self-consistent masses of π0 (black solid line) and
ρ̄þ1 (blue dotted line) mesons as functions of magnetic field B in
the two-flavor NJL model. For comparison, the π0 mass with a
fixed quark mass (red dashed line) and point particle mass for ρ̄þ1
(green dot-dashed line) are also included. All meson masses mM
are normalized to their vacuum masses mv

M.

FIG. 2. The quadratic GL expansion coefficients as functions of
B for π0 (black solid line) and ρ̄þ1 (blue dotted line) mesons,
respectively, in the two-flavor NJL model. The ones for ρ̄þ1 in the
three-flavor NJL model with 4-momentum cutoff (Λ4) para-
metrization [51] (red dashed line) and 3-momentum cutoff (Λ3)
parametrization [56] (green dot-dashed line) are also shown for
comparison. They are all normalized to their vacuum values
−Dv−1

MMð> 0Þ.
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The self-consistent ρ̄þ1 mass decreases to zero at some
point, thus favoring VSC, which is consistent with the
previous two-flavor NJL model exploration [18]. However,
contrary to the advance of VSC compared to the point
particle pattern in Ref. [18], while with weak B approxi-
mation, the delay of VSC due to the MCE to the composite
quark mass in the present calculations justifies our more
careful explorations in the three-flavor NJL model in
Sec. III. Finally, the quadratic coefficients in Fig. 2 indicate
a much stronger respondence of ρ̄þ1 to magnetic field than
π0, which agrees with the mass spectra in Fig. 1 and the
qualitative discussions in Sec. II A.

III. MESON SPECTRA WITHIN THREE-FLAVOR
NAMBU–JONA-LASINIO MODEL

As pointed out at the end of Sec. II A, the magnetic field
inevitably induces splitting MCE to u and d quark masses,
which requires the isovector scalar interaction channels in
the model for mean field exploration. In this respect, the
three-flavor NJL model is much more suitable for realistic
study, the Lagrangian density of which can be extended
from the previous one to [50,51]

LNJL ¼ ψ̄ði=D −m0Þψ þ GS

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�

þ L6 − GV ½ðψ̄γμτaψÞ2 þ ðψ̄iγμγ5τaψÞ2�
L6 ¼ −K

X
s¼�

Detψ̄Γsψ ð30Þ

by further adopting the four-fermion vector interaction
channels with coupling constant GV . Compared to the two-
flavor case, ψ ¼ ðu; d; sÞT represents the three-flavor quark
field, m0 ¼ diagðm0u; m0d; m0sÞ is the current quark mass
matrix, and the covariant derivative is defined as Dμ ¼
∂μ − iQAμ with the charge matrix Q ¼ diagðqu; qd; qsÞ.
For the four-fermion interaction terms, λ0 ¼

ffiffi
2
3

q
I and Gell-

Mann matrices λiði ¼ 1;…; 8Þ are defined in three-flavor
space, so the extra diagonal terms ðψ̄λ3ψÞ2 and ðψ̄λ8ψÞ2
allow mass splitting among all the flavors compared to the
two-flavor case. The UAð1Þ symmetry–violating six-fer-
mion interactions [57] only involve scalar-pseudoscalar
channels with the determinant defined in flavor space,
Γ� ¼ 1� γ5 and K the coupling constant. Now, following
the same ansatz as the two-flavor case, we only consider
nonzero chiral condensations σi ≡ hψ̄ iψ ii with i flavor
index,1 and the UAð1Þ symmetry–violating term L6 can be
reduced to an effective four-fermion interaction form in the
Hartree approximation [50],

L4
6 ¼ −

K
2

X
s¼�

ϵijkϵimnhψ̄ iΓsψ iiðψ̄ jΓsψmÞðψ̄kΓsψnÞ

¼ −
K
6

�
2
X

f¼u;d;s

σfðψ̄λ0ψÞ2 − 3σs
X3
i¼1

ðψ̄λiψÞ2

− 3σd
X5
i¼4

ðψ̄λiψÞ2 − 3σu
X7
i¼6

ðψ̄λiψÞ2

þ ðσs − 2σu − 2σdÞðψ̄λ8ψÞ2
þ

ffiffiffi
2

p
ð2σs − σu − σdÞðψ̄λ0ψÞðψ̄λ8ψÞ

−
ffiffiffi
6

p
ðσu − σdÞðψ̄λ3ψÞðψ̄λ0ψ −

ffiffiffi
2

p
ψ̄λ8ψÞ

�

− ðλa → iλaγ5Þ ð31Þ

with ϵijk the Levi-Civita symbol. So, the reduced three-
flavor Lagrangian density with only four-fermion effective
interactions is

L4
NJL ¼ ψ̄ði=D −m0Þψ þ

X8
a;b¼0

½G−
abðψ̄λaψÞðψ̄λbψÞ

þ Gþ
abðψ̄ iγ5λaψÞðψ̄iγ5λbψÞ�

−GV ½ðψ̄γμτaψÞ2 þ ðψ̄iγμγ5τaψÞ2�; ð32Þ
where the nonvanishing elements of the symmetric cou-
pling matrices G� are given by [50]

G∓
00¼GS ∓K

3

X
f¼u;d;s

σf ; G∓
11¼G∓

22¼G∓
33¼GS�

K
2
σs;

G∓
44¼G∓

55¼GS�
K
2
σd; G∓

66¼G∓
77¼GS�

K
2
σu;

G∓
88¼GS ∓K

6
ðσs−2σu−2σdÞ;

G∓
08¼∓

ffiffiffi
2

p
K

12
ð2σs−σu−σdÞ;

G∓
38¼−

ffiffiffi
2

p
G∓

03¼∓
ffiffiffi
3

p
K

6
ðσu−σdÞ: ð33Þ

By contracting a pair of field and conjugate field operators
further in L4

6 in the Hartree approximation, we find

L2
6 ¼ −

Xið≠j≠kÞ
s¼�

Khψ̄ jΓsψ jihψ̄kΓsψki½ψ̄ iΓsψ i�

¼ −K
X
ijk

ϵ2ijkψ̄
iσjσkψ

i; ð34Þ

which then, together with the contributions from the initial
four-quark interactions, gives the effective quark masses as

m�
i ¼ m0i − 4GSσi þ K

X
jk

ϵ2ijkσjσk: ð35Þ
1Here and in the following, the correspondence between the

number index i ¼ 1, 2, 3 and the more explicit latin index f ¼
u; d; s should be understood. We prefer the explicit latin presen-
tation whenever convenient.
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To evaluate quark masses numerically, we should be
equipped with the gap equations directly following the
definitions of chiral condensations,

σi ≡ hψ̄ iψ ii ¼ −
i
V4

TrGi; ð36Þ

where the effective quark propagators in a constantmagnetic
field,Gi, can be modified from Eq. (12) by just alteringm to
mi for different flavors. Then, by following similar deriva-
tions and discussions as in the two-flavor case, the regular-
ized gap equations are

−σf ¼ Nc
m�

f
3

2π2
½Λ̃fð1þ Λ̃2

f Þ12 − lnðΛ̃f þ ð1þ Λ̃2
f Þ12Þ�

þ Nc
m�

f

4π2

Z
∞

0

ds
s2

e−m
�
f
2s

�
qfBs

tanhðqfBsÞ
− 1

�
; ð37Þ

with the reduced cutoff Λ̃f ¼ Λ=m�
f . In advance, the

thermodynamic potential can be obtained consistently by
combining the definitions of effectivemasses in Eq. (35) and
the integrations over σf of Eq. (37),

Ω ¼ 2GS

X
f¼u;d;s

σ2f − 4K
Y

f¼u;d;s

σf

− Nc

X
f¼u;d;s

�
m�

f
4

8π2
½Λ̃fð1þ 2Λ̃2

f Þð1þ Λ̃2
f Þ12

− lnðΛ̃f þ ð1þ Λ̃2
f Þ12Þ�

−
1

8π2

Z
∞

0

ds
s3

e−m
�
f
2s

�
qfBs

tanhðqfBsÞ
− 1

��
; ð38Þ

which is consistent with that in Ref. [53].
Finally, let us focus on the collective excitation modes,

especially the neutral pseudoscalar and vector modes. It is
helpful to define the one-flavor polarization loop according
to Eq. (10),

Πf ¼ −Nc

Z
d4k
ð2πÞ4 trSfðkþ pÞiγ5SfðkÞiγ5; ð39Þ

which can be regularized in the same way as the two-
flavor case. Then, by setting the three-dimensional diagonal
matrix Πþ

0 ≡ diagðΠu;Πd;ΠsÞ, the polarization func-
tions in the neutral pseudoscalar sector, Πþ

ij≡−TrSðkþ
pÞiγ5λiSðkÞiγ5λj with i, j ¼ 0, 3, 8,2 can be evaluated
directly through Πþ

ij ¼ trfλiΠþ
0 λ

j. As Πþ
0 and λi are all

diagonal matrices, Πþ
ij is symmetric with respect to the

interchange of the subscripts i and j, and only six independent
functions are involved. Thus, the effective inverse propagator
matrix of the neutral pseudoscalar sector is

−D−1
ij ðpÞ ¼

1

2
ðGþÞ−1ij þ Πþ

ij; ð40Þ

where the explicit forms of the polarization functions are

Πþ
00 ¼

2

3

X
f¼u;d;s

Πf ; Πþ
03 ¼

ffiffiffi
2

3

r
ðΠu − ΠdÞ;

Πþ
08 ¼

ffiffiffi
2

p

3
ðΠu þ Πd − 2ΠsÞ;

Πþ
33 ¼ Πu þ Πd; Πþ

38 ¼
ffiffiffi
1

3

r
ðΠu − ΠdÞ;

Πþ
88 ¼

1

3
ðΠu þ Πd þ 4ΠsÞ: ð41Þ

Besides the mesonic flavor mixing between η0 and η8
channels due to theUAð1Þ anomaly invacuum [57], magnetic
field develops furthermixing amongall the channels, as all the
nondiagonal elements of Πþ

ij are nonvanishing now. For
simplicity, the mixing between pseudoscalar and pseudovec-
tor sectors is neglected—this is valid as we find the pseudo-
scalar masses do not change much compared to those in
Ref. [51]. Then, the pole masses of the neutral pseudoscalar
mesons can be solved numerically by following the condition
det D−1

ij ðp0;p ¼ 0Þ ¼ 0 [51], and three independent solu-
tions can be obtained in principle.
For the most interested vector mode ρ̄þ1 , the change

comes from the possibly different masses between u and d
quarks, which alters Eq. (22) to

−D−1
ρ̄þ
1
ρ̄þ
1

ðpÞ≡ 1

2GV
þΠ�

ρ̄þ
1
ρ̄þ
1

ðp4Þ ¼
1

2GV
− 8Nc

Z
d4k
ð2πÞ4

Z
dsds0e

−s
h
m�

u
2þðk4þp4Þ2þðk3þp3Þ2þðkþpÞ2⊥

tanhBsu
Bsu

i
e
−s0
h
m�

d
2þk2

4
þk2

3
þk2⊥

tanhBs
0
d

Bs
0
d

i

× ðm�
um�

dþðk4þp4Þk4þðk3þp3Þk3Þð1þ tanhBs
uÞð1− tanhBs0

d Þ

¼p¼0 1

2GV
−
Nc

4π2

Z
ds
s

Z
1

−1
due−s½m�

u
2uþþm�

d
2u−þuþu−p2

4
�
�
m�

um�
dþ

1

s
−uþu−p2

4

� ½1þ tanhBs
u
þ�½1− tanhBs

d
−�

tanhBs
u
þ

Bs
u

þ tanhBs
d
−

Bs
d

: ð42Þ

It can be regularized by following a similar procedure as in Sec. II B, and we get

2Note that the subscripts 0, 3, and 8 correspond to neutral pseudoscalar η0, π0, and η8 channels, respectively.
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−D−1
ρ̄þ
1
ρ̄þ
1

¼ 1

2GV
þ ΔΠ�

ρ̄þ
1
ρ̄þ
1

− Nc

Z
Λ

0

k2dk
π2

½ðEu þ EdÞ2 − ðm�
u −m�

dÞ2 − 4
3
k2�ðEu þ EdÞ

EuEd½ðEu þ EdÞ2 þ p2
4�

− 4Nc

Z
Λ

0

k2dk
π2

�
quB

Z
∞

−∞

dk4
2π

m�
um�

d þ ðk4 þ p4Þk4 þ k23
½ðk4 þ p4Þ2 þ k23 þm�

u
2�2ðk24 þ k23 þm�

d
2Þ − ðu ↔ dÞ

�

¼ 1

2GV
þ ΔΠ�

ρ̄þ
1
ρ̄þ
1

− Nc

Z
Λ

0

2k2dk
π2

ðEuEd þm�
um�

d þ 1
3
k2ÞðEu þ EdÞ

EuEd½ðEu þ EdÞ2 þ p2
4�

− Nc

Z
Λ

0

k2dk
π2

�
quB

ðEu þ EdÞ2 þ p2
4

×

��
EuEd þm�

um�
d þ 1

3
k2

E3
u

þ 1

Eu
þ 1

Ed

�
−
½p2

4 þ ðm�
u −m�

dÞ2 þ 4
3
k2�ðEu þ EdÞ2

E2
uEd½ðEu þ EdÞ2 þ p2

4�
�
− ðu ↔ dÞ

�
; ð43Þ

whereΔΠ�
ρ̄þ
1
ρ̄þ
1

ðp4Þ ¼ Π�
ρ̄þ
1
ρ̄þ
1

ðp4Þ − ΠoðB2Þ�
ρ̄þ
1
ρ̄þ
1

ðp4Þ and the dis-
persions are Ef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

f
2 þ k2

p
and which reduces exactly to

Eq. (29) ifm�
u ¼ m�

d ¼ m. The simpler 3-momentum cutoff
scheme is adopted for the regularization of the divergent
terms all through this section. Actually, our numerical
calculations with ρ meson vacuum mass mv

ρ ¼ 0.7 GeV
show that the patterns of QGLECs and thus the ground
states do not depend on the choices of regularization
schemes; see Fig. 2.
Now, we are ready to study the properties of collective

modes in magnetic field through Eqs. (40) and (43) after
solving the gap equations (37) self-consistently. To perform
numerical calculations, we choose the following parame-
ters for the scalar-pseudoscalar sector: mu¼md¼5.5MeV,
ms ¼ 140.7 MeV, Λ ¼ 602.3 MeV, GSΛ2 ¼ 1.835, and
KΛ5 ¼ 12.36 [56]. As the dynamical u=d quark vacuum
mass in this case (0.368 GeV) is larger than that in the two-
flavor case (0.313 GeV), the vector coupling constant is
fixed to GVΛ2 ¼ 2.527 by fitting to the larger ρ meson
vacuummassmv

ρ ¼ 0.7 GeV. First of all, the B dependence
of the dynamical quark masses mf is illuminated in the
upper panel of Fig. 3. Three main observations follow:
(1) Mass splitting between u and d quarks is developed

at larger B, thus confirming splitting MCE.
(2) mu increases most quickly due to its larger electric

charge; see also Ref. [37].
(3) md and ms increase parallelly to each other at larger

B due to the same electric charge.
Next, the masses of the interested eigenstates are

illuminated in the lower panel of Fig. 3, where π̃0 and η̃
are the effective neutral pseudoscalar mesons correspond-
ing to the π0 and η meson at vanishing B. All the meson
masses obtained consistently in the three-flavor NJL model
show a similar feature with B: first decreasing and then
increasing, though the variations of the effective neutral
meson masses are much milder than the charged vector
meson ρ̄þ1 . The latter is consistent with the different
constructions of the corresponding polarization loops as
discussed in Sec. II A, and the enhancement at larger B is
due to the domination of splitting MCE among the quarks.
To aid in understanding the underlying physics, the ρ̄þ1

mass with both composite quark masses chosen to be
equallymu ormd is also demonstrated in the lower panel of
Fig. 3. As the ρ̄þ1 mass decreases to zero when md is
adopted also for the u quark, we can easily conclude that
the great enhancement of mu balances the ρ̄þ1 mass

FIG. 3. Upper panel: the evolutions of quark masses with
magnetic field B in the three-flavor NJL model. Lower panel: the
self-consistent masses of π̃0 (black solid line), η̃ (red dashed line),
and ρ̄þ1 (blue dotted line) mesons as functions of magnetic field B.
For comparison, ρ̄þ1 masses from the point particle formula
(green dot-dashed line) and LQCD simulations (purple points)
are also included and are both adjusted to the vacuum mass
mv

ρ ¼ 0.7 GeV. To aid in understanding, the ρ̄þ1 mass with both
composite quark masses equally mu (thin yellow solid line)
or md (thin pink dashed line) is also shown. All meson masses
mM are normalized to their vacuum masses: mv

π0
¼ 0.134 GeV,

mv
η ¼ 0.515 GeV, and mv

ρ ¼ 0.7 GeV.
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reduction at larger B. The normalized ρ̄þ1 mass with the
point particle formula and in LQCD simulations [20] is also
shown for comparison. Our results are semiquantitatively
consistent with that from the LQCD in the relatively weak
magnetic field region. There, the curvatures are both
positive with respect to B, contrary to negative ones from
the point particle formula and two-flavor NJL model study
(except for the weakest B region).
Finally, it is intriguing to explore themixing features of the

neutral pseudoscalar mesons with respect to B as we have
argued before. The normalized mixing factors RM of the
effective neutral pseudoscalarmesons on theirmass shells are
shown together in Fig. 4 in terms ofπ0, η0, and η8. Though the
fractions of η0 and η8 are small in the whole region, they are
very important to keep the effective meson π̃0 light; other-
wise, the π0 mass will increase to 2.5mv

π0
at eB ¼ 2 GeV2.

Other interesting observations are that the ratio of the pure
flavor component ūiγ5u enhances a little in π̃0 and η̃ → η8
withB increasing, contrary to the naive expectation thatu and
d quarks will separate from each other quickly in strong
magnetic field [20]. The reason for the discrepancy is that the
effective coupling constants Gþ

00, G
þ
33, and Gþ

88 are quite
different from each other and the mixing couplings Gþ

ij are
nonzero for i ≠ j. In this case, the flavor separation effect,
discovered in the UAð1Þ symmetric two-flavor NJL model

due to the presence of parallel EM field [37], can never be
realized in the three-flavor NJL model at all.

IV. CONCLUSIONS

In this work, we explored mainly the masses of π0 and ρ̄þ1
mesons in external magnetic field, and thus the possibility of
neutral pion superfluidity and vacuum superconductivity,
within the chiral effective two- and three-flavorNJLmodels.
We found similar origins for the reductions of π0 and ρ̄þ1
masses in the weak B region by adopting lowest Landau-
level approximation; that is, the linear response coefficients
with respect toB are both negative. Because of the magnetic
catalysis effect on chiral symmetry breaking or the quark
mass, NPSF can never happen in either two- or three-flavor
NJL model even with a very strong B, which is consistent
with the previous findings [20,39–41,45]. While the emer-
gence of vacuum superconductivity is delayed compared to
the point particle result in the two-flavor case, it is com-
pletely avoided thanks to the splittingMCE among quarks in
the three-flavor case. It has to be mentioned that choosing a
ρ̄þ1 vacuummass close to the physical value 775MeVis also
very important to reproduce the LQCD results semiquanti-
tatively because the Vafa-Witten theorem has noway to play
a role in chiral effective models if constraints from real QCD
are notwell respected. For example, if we setmv

ρ ¼ 0.6 GeV
in the three-flavor NJL model, VSC will be favored in the
medium B region and then disfavored with B increasing
further. The discrepancy between our consistent evaluations
and LQCD simulations has not been well understood yet in
the larger B region. Even the introduction of asymptotic
freedom, which indicates that GV decreases with B, cannot
help because the ρ̄þ1 mass would enhance further for a
smaller coupling constant. This is considered to be another
puzzle of QCD in strong magnetic field background.
Moreover, mesonic flavor mixing in the neutral pseudosca-
lar sector is explored in advance, regarding the competition
between the UAð1Þ anomaly and magnetic field effects; the
ratio of pure flavor component ūiγ5u enhances a little in π̃0

and η̃ → η8 with increasing B. We want to point out that
mesonic flavor mixing is very important to keep the masses
of the effective eigenstates light, thus the effective neutral
pion is still the most relevant degrees of freedom to
thermodynamics at very strong B.
Besides the puzzles we proposed in this work, the fates of

NPSF and VSC in the presence of parallel rotation and
magnetic field are also very interesting topics. With the
charged pion superfluidity found and checked in such a
system [58,59], it is even more convincing that charged ρ
meson superconductivity can be developed for a sufficiently
large rotation due to the meson’s more stable p-wave spin
structure. As a matter of fact, this case does not violate the
VW theorem because the rotation itself breaks the positivity
of the fermion determinant, which is a necessary condition
for the proof of the theorem; see also the discussions in

FIG. 4. The evolutions of the normalized mixing factors RM of
the effective neutral pseudoscalar π̃0 (upper panel) and η̃ (lower
panel) with magnetic field B in terms of π0 (black solid line),
η0 (red dashed line), and η8 (blue dotted line).
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Ref. [35]. Our study suggests the three-flavorNJLmodel is a
proper chiral model to explore the magnetic field effect
on ρmeson properties and thus also a nice candidate for the
case with parallel rotation and magnetic field. We suspect
that there might be competition between charged pion
superfluidity and charged ρ superconductivity.

ACKNOWLEDGMENTS

G. C. appreciates Yoshimasa Hidaka’s discussions and
comments on this work and is supported by the NSFC
Grant No. 11805290.

APPENDIX A: THE EQUALITY BETWEEN
PROPER-TIME AND LANDAU-LEVEL

PRESENTATIONS

By solving the Dirac equation in external magnetic field,
fermion eigenfunctions can be obtained for different
Landau levels, from which the effective quark propagators

can be constructed as a sum of all Landau-level Green’s
functions [32]. In energy-momentum space, we have

SfðkÞ¼−ie−
k2⊥
jqfBj

X∞
n¼0

ð−1Þn DnðqfB;kÞ
k24þk23þm2þ2njqfBj

; ðA1Þ

DnðqfB;kÞ

¼ ðm−=k4−=k3Þ
�
PfþLn

�
2k2⊥
jqfBj

�
−Pf

−Ln−1

�
2k2

f

jqfBj
��

þ 4ð=k1þ=k2ÞL1
n−1

�
2k2⊥
jqfBj

�
; ðA2Þ

where Pf
� ¼ 1� sgnðqfBÞiγ1γ2 is the spin-up/-down pro-

jector and Lα
nðxÞ are the generalized Laguerre polynomials

with LnðxÞ≡ L0
nðxÞ and Lα

−1ðxÞ ¼ 0. Then, the polariza-
tion loop for the ρ̄þ1 meson with vanishing 3-momentum
can be evaluated as

Πρ̄þ
1
ρ̄þ
1
ðB; p4Þ ¼ −32Nc

X∞
n¼0

X∞
n0¼0

Z
d4k
ð2πÞ4 e

−
k2⊥
jquBj−

k2⊥
jqdBj

ðm2 þ k23 þ ðk4 þ p4Þk4ÞLnð 2k
2⊥

jquBjÞLn0 ð 2k
2⊥

jqdBjÞ
ððk4 þ p4Þ2 þ EB

u
2Þðk24 þ EB

d
2Þ

¼ −4Nc

X∞
n¼0

X∞
n0¼0

eB
π

Z
dk3

ð2πÞ
�ðm2 þ EB

uEB
d þ k23ÞGnn0

p2
4 þ ðEB

u þ EB
d Þ2

�
1

EB
u
þ 1

EB
d

��
; ðA3Þ

where the quark dispersions in magnetic field are EB
u ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þm2 þ 2njquBj
p

and EB
d ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k23 þm2 þ 2n0jqdBj
p

and the
dimensionless G function is defined as

Gnn0 ≡
Z

∞

0

dxe−ð
1

jq̃u jþ
1

jq̃d jÞxLn

�
2x
jq̃uj

�
Ln0

�
2x
jq̃dj

�

¼ 1

4

Xn
k¼0

Xn0
k0¼0

�
n

n − k

��
n0

n0 − k0

��
kþ k0

k

�
ð−2jq̃djÞkþ1ð−2jq̃ujÞk0þ1 ðA4Þ

with the reduced charges q̃f ¼ qf=e. As Gnn0 is magnetic-
field and energy-momentum independent, the matrix can be
evaluated to very large n and n0 numerically by utilizing
Mathematica and then reserved as a special function for
further manipulations.
The bare polarization function (A3) is ultraviolet diver-

gent and needs further regularization. We are not going to
introduce any artificial cutoff at this stage for the purpose of
demonstrating the equality between proper-time and
Landau-level presentations; rather, the following formally
convergent term is evaluated:

ΔΠ≡ ½Πρ̄þ
1
ρ̄þ
1
ðB2; ip0Þ−Πρ̄þ

1
ρ̄þ
1
ðB2;0Þ�− ðB2→B1Þ: ðA5Þ

The comparison between proper-time [see Eq. (24)] and
Landau-level presentations is illuminated in Fig. 5, in
which they are found to be precisely consistent with each
other up to the instable point p0 ¼ 2m. The equality should
continue in the instable region p0 > 2m, but ΔΠ is not

FIG. 5. The comparison of ΔΠ between proper-time (blue
dotted line) and Landau-level (red dashed line) presentations
for the chosen quark mass m ¼ 0.25 GeV and magnetic fields:
B1 ¼ 1 GeV and B2 ¼ 2 GeV. The result is very convergent by
increasing nmax ¼ n0max from 100 to 200 for the Landau-level
presentation.
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suitable for such exploration. The reason is that it diverges
in the proper-time presentation and the variable trans-
formation mentioned in Sec. II B cannot be performed
consistently to help as both p0 ¼ 0 and p0 ≠ 0 are
involved now.

APPENDIX B: INVALIDITY OF NJL MODEL IN
EXPLORING THE MAGNETIC FIELD EFFECT

ON PHYSICAL ρ MESON

To explore the ρ meson property in certain circum-
stances, adequate regularization schemes should be chosen
in the NJL model first of all. Here, we compare three
regularization schemes with the parameters listed in
Ref. [50]: 3-momentum cutoff (Λ3), 4-momentum cutoff
(Λ4), and Pauli-Villars (PV). To show the pion spectrum
more explicitly, a nonvanishing current quark mass,
m0 ¼ 5 MeV, is adopted alternatively. First, we study
the spatial component ρi of the vector ρ meson in the
absence of magnetic field and illuminate the results in the
upper panel of Fig. 6 for the inverse propagators. As can
be seen, there are two 0-points for all the regularization

schemes, of which the other one is lighter than the physical
mass in the Λ3 and PV schemes but slightly heavier in the
Λ4 scheme. Recalling the basic form of the vector boson
propagator in quantum field theory (QFT) [60],

Dμν
VVðpÞ ¼ −

gμν − p̂μp̂ν

p2 −m2
; ðB1Þ

we expect −D−1
ρ̄þ
1
ρ̄þ
1

> 0ð< 0Þ for p0 < 2mð> 2mÞ. So, the
signs of the ρ meson propagators are wrong around the
physical 0-point in theΛ3 and PV schemes, and only theΛ4

scheme is suitable to describe the ρ meson spectrum. For
comparison, we show the inverse propagators of the π
meson in the lower panel of Fig. 6, in which the curves are
very close to each other for the Λ4 and PV schemes. All
the inverse propagators share the same sign around their
0-point, which is consistent with the form of scalar boson
propagator in QFT [60]:

DSSðpÞ ¼
1

p2 −m2
: ðB2Þ

Second, we study the magnetic effect on the ρ̄þ1 meson
by choosing the most optimisticΛ4 scheme in Eq. (27). The
regularized terms can be given with the help of the
Feynman parameter as [51]

− 8Nc

Z
Λ4 d4k
ð2πÞ4

m2 þ k4ðk4 þ p4Þ þ k23
ðk24 þ E2

kÞ½ðk4 þ p4Þ2 þ E2
k�

¼ Nc

6π2

�
−2

�
Λ2 −m2 log

�
1þ Λ2

m2

��
þ ð−p2

4 þ 2m2Þ

×
Z

1

0

dxðΛ2Fðx;ΛÞ þ log ð1 − Λ2Fðx;ΛÞÞÞ
�
; ðB3Þ

FIG. 6. The effective inverse propagators of ρ (upper panel) and
π0 (lower panel) mesons in vacuum with respect to different
regularization schemes: 3-momentum cutoff (black solid line),
4-momentum cutoff (green dot-dashed line) and Pauli-Villars
(blue dotted line). The red bullets are the physical ρ and π0 meson
masses. In the upper panel, non-analytic features are developed at
twice the corresponding dynamical quark masses: 0.313 GeV for
Λ3 and ∼0.256 GeV for Λ4 and PV regularizations [50].

FIG. 7. The effective inverse propagator of the ρþ1 meson with
respect to different values of magnetic field: B ¼ 0 (black solid
line), 10−3 GeV2 (blue dotted line), 2 � 10−3 GeV2 (red dashed
line), and 4 � 10−3 GeV2 (green dot-dashed line). There are dips
around the two-quark instable point p0 ∼ 2m.

GAOQING CAO PHYS. REV. D 100, 074024 (2019)

074024-12



−8Nc

Z
Λ4 d4k
ð2πÞ4

½m2þk4ðk4þp4Þþk23�eB
ðk24þE2

kÞ2½ðk4þp4Þ2þE2
k�

¼−
NceB
4π2

�
log

�
1þΛ2

m2

�
þp2

4

2

Z
1

0

dxðFðx;ΛÞ−Fðx;0ÞÞ
�

ðB4Þ

with the auxiliary function Fðx;yÞ¼½y2−p2
4ðx2−xÞþm2�−1.

The numerical results are illuminated in Fig. 7. Contrary to
the point particle results or LQCD simulations, such strong
dips are developed aroundp0 ∼ 2m in the spectra that the ρ̄þ1

meson mass changes very quickly and discontinuously with
B. Thismust be an artifact due to the absence of confinement
in the NJL model because the ρ meson is not allowed to
decay into a quark-antiquark pair in thevacuum in realQCD.
Even the formal extension to effectively include confine-
ment through the Polyakov loop potential cannot help the
situation because it only plays an effective role at finite
temperature [53]. Thus, the conclusion is that the NJL (or
PNJL) model is not suitable to study the magnetic effect on
heavy mesonic resonances with masses greater than 2m,
such as vectors ρ and ω and pseudoscalar η0.
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