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We propose a kinematic method based on a factorization formula for precisely measuring the top quark
mass mt in pp collisions using boosted top jets with light soft drop grooming. By using light grooming,
which is an order of magnitude less aggressive than typical grooming, we retain a universal description of
the top-mass scheme and decay effects, while still effectively removing soft contamination from the top jet.
We give field theory results for the hadronization corrections for jets induced by a heavy top quark,
showing they are described by a universal hadronic parameter that also appears for groomed light quark
jets. An important phenomenological application of our results is that one can obtain mt in a short distance
scheme by fitting the hadron level jet mass distributions, predicted by our factorization formula, to data or
by Monte Carlo calibration. The peaked distributions for pp and eþe− collisions are similar, up to
sensitivity to an underlying event which is significantly reduced by the soft drop. Since the soft drop
implies that the t and t̄ jet masses each can be independently measured, the analysis enables the use of
leptonþ jet samples.
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I. INTRODUCTION

The top quark mass mt is one of the most important
Standard Model (SM) parameters. It significantly affects
studies of the SM vacuum stability [1] and the electroweak
precision observables [2]. The most precise top-mass
measurements are based on kinematic reconstruction,
yielding results such as [3–5]

mMC
t ¼ 172.44ð49Þ GeV ðCMSÞ;

mMC
t ¼ 172.84ð70Þ GeV ðATLASÞ;

mMC
t ¼ 174.34ð64Þ GeV ðTevatronÞ: ð1Þ

These measurements are based on Monte Carlo (MC)
simulations and determine the mass parameter mMC

t of
the MC generator, which depends on the parton shower
dynamics and its interface with hadronization. Identifying
these values with a Lagrangian top-mass scheme mt
induces an additional ambiguity at the 0.5–1.0 GeV

level [6,7]. We propose a factorization approach to remove
this uncertainty in pp → tt̄ by constructing an observable
that has high kinematic sensitivity tomt and at the same time
allows for hadron level predictions from QCD, employing a
short distance top mass. It can be used to extract mt from
experimental data or to calibrate the parameter mMC

t as was
done for 2-jettiness in eþe− collisions [8].
We consider boosted tops of which the decay products

are collimated in a single jet region, enabling a simulta-
neous and factorized theoretical description of both the top
production and decay [9]. This requires the following
kinematical hierarchy,

Q ≫ mt ≫ Γt; ð2Þ

where Γt ≃ 1.4 GeV is the top width and Q is the large top
jet momentum p−

J ≡ EJ þ jn̂t · p⃗Jj along the boost direc-
tion n̂t. For pp collisions,

Q ¼ p−
J ¼ 2pT coshðηJÞ ð3Þ

with pT and ηJ being the jet’s transverse momentum and
pseudorapidity, respectively, and where we have used the
approximation in Eq. (2). Recently, an experimental analy-
sis along these lines was carried out by CMS [10].
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For eþe− → tt̄, a hadron level factorization theorem
for a distribution with high kinematic sensitivity to a short
distance mt was derived in Refs. [9,11]. So far, an
analogous approach has been missing for pp → tt̄, due
to theory complications in controlling external radiation,
parameters like the jet radius R, and soft contamination
from initial state radiation and the underlying event (UE),
which is often modeled in MC simulations by multiple
particle interactions (MPI).
Our method relies on deriving a new factorization

theorem that enables the determination of the top mass
mt from the measurement of the mass MJ of a top initiated
fat jet of radius R ∼ 1 with light soft drop grooming, while
at the same time accounting for hadronization and under-
lying event effects. The soft drop algorithm [12,13]
removes peripheral soft radiation by comparing subsequent
jet constituents i, j in an angular-ordered cluster tree, using
the Cambridge-Aachen (CA) algorithm. The grooming
stops when a soft drop condition specified by fixed
parameters zcut and β is satisfied. For pp collisions, the
condition is

min½pTi; pTj�
ðpTi þ pTjÞ

> zcut

�
Rij

R0

�
β

; ð4Þ

where Rij is the angular distance in the rapidity-azimuth
η − ϕ plane, R2

ij ¼ 2ðcoshðηi − ηjÞ − cosðϕi − ϕjÞÞ, and in
general R0 is a parameter that is part of the definition of the
soft drop algorithm. For eþe− collisions, the condition is

min½Ei; Ej�
ðEi þ EjÞ

> zcut

� ffiffiffi
2

p sinðθij=2Þ
sinðRee

0 =2Þ
�

β

: ð5Þ

When Eq. (4) or Eq. (5) is satisfied, all subsequent
constituents in the cluster tree are kept, thus setting a
new jet radius Rg ≤ R for the groomed jet.
In the limit Rij ≪ 1 with jet constituents close to the jet

axis, we can also rewrite Eq. (4) in terms of energies
Ei ¼ pTi cosh ηi and polar angle separations θij ≪ 1 as

min½Ei; Ej�
ðEi þ EjÞ

> zcut

�
cosh ηJ
R0

�
β

θβij ≡ z̃cutθ
β
ij; ð6Þ

where we have used the expansion cosh ηi ¼ cosh ηjþ
OðθijÞ ≃ cosh ηJ. For the factorization mode analysis in pp
collisions with θij ≪ 1, we find it easier to use the form in
Eq. (6) in terms of z̃cut defined by

z̃cut ¼ zcut
coshβðηJÞ

Rβ
0

: ð7Þ

For eþe− collisions, the same formula is valid, but with the
replacement z̃eecut ¼ zcutð

ffiffiffi
2

p
sinðRee

0 =2ÞÞ−β. In the original
soft drop algorithm [13], one chooses the parameter

R0 ¼ R, the original jet radius. For our application, which
has a sufficiently large R, we fix the parameter R0 ¼ 1. This
implies that the particles kept within radius Rg do not
depend on the original value of R, making the cross section
independent of the original jet radius.
With soft drop grooming, the jet mass is defined by

starting with the constituents of the jet of radius R and
summing only over those constituents that remain in the
groomed jet, J sd:

M2
J ¼

�X
i∈J sd

pμ
i

�
2

: ð8Þ

The measurement of MJ is performed on a hadronically
decaying top quark and hence can be applied to both all the
jets and leptonþ jets tt̄ samples. This grooming retains
strong kinematic sensitivity tomt as in direct reconstruction
methods, removes contamination from other parts of the
collision, and allows for a factorization based description as
demonstrated for massless jets [14]. Monte Carlo studies of
top quarks with the soft drop have also shown to have
reduced tuning dependence [15].
We use the Soft-Collinear Effective Theory (SCET) [16]

to derive a factorization formula for the groomed top jet
mass distribution in the peak region, ðM2

J −m2
t Þ=mt∼

Γt ≪ mt, for boosted top quark pair production, where
the hierarchy in Eq. (2) applies. The grooming parameters
are chosen in the light grooming region, such that signifi-
cant contamination is removed from the top jet while
retaining the top-decay products and leaving the ultracol-
linear (UC) radiation associated with the top quark unaf-
fected. This allows for a simple treatment of top-decay
products and a clear interpretation of the short distance top-
mass scheme. For a fat top quark initiated jet, the light
grooming region is identified by the conditions

zcut ≲ Γt

h2þβmt

�
pT

mt

�
β

; ð9aÞ

z
1

2þβ
cut ≫

1

2

�
Γt

mt

m2
t

p2
T

� 1
2þβ

: ð9bÞ

The dimensionless function h, defined below in Eq. (45),
is related to the angles of the top-decay products with
respect to the jet axis. For the Q values of interest, it has an
average value around hhi ∼ 2.
The first constraint in Eq. (10) enables a simple treatment

of the top-decay products. It also implies that zcut ≪
Γt=mtðpT=mtÞβ, the necessary condition to ensure that
the ultracollinear radiation associated with the top quark, is
unaffected by the grooming. This condition is significantly
stronger than the condition, zcut ≪ ðpT=mtÞβ, needed to
retain the high energetic contributions of the top-decay
products, and guarantees that there will be a clear peak
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directly depending on the top-mass value. In the factori-
zation theorem discussed below, the constraint of Eq. (10)
on the grooming parameters allows for a clear interpretation
of the top-mass scheme, determined by the heavy quark jet
function [9] which describes the inclusive dynamics of the
ultracollinear radiation and the evolution and decay of the
top quark in the peak region.
The second constraint in Eq. (9b) ensures that wide angle

soft radiation is groomed away, isolating the jet and
removing the majority of soft contamination. The con-
ditions in Eq. (9) follow directly from a SCET analysis of
the relevant modes in the presence of the soft drop and jet
mass constraints, as we discuss in Secs. III A and III C.
The allowed zcut region satisfying Eq. (9) is shown as a

function of pT in Fig. 1 for a jet with ηJ ¼ 0 and β ¼ 2.
The upper blue line is obtained by replacing “≳” by an
equality in Eq. (9a), and the lower red line is obtained by
replacing the “a ≫ b” by “a ¼ 3b” in Eq. (9b). Using
pT ¼ 750 GeV and setting h ¼ 2, the constraints in Eq. (9)
become zcut ≲ 0.01 and z1=4cut ≫ .066, which are satisfied by
zcut ≃ 0.01. This light grooming is an order of magnitude
smaller than typically used for many analyses at the LHC
but, as we will see, is still very effective for mt measure-
ments. We take β ¼ 2 as our default choice. Analyses for
β < 2 are also viable, but the allowed region is more
constrained, indicating that for experimentally accessible
pT values the expansions used to derive the factorization
formula are less convergent. It is known that the soft drop
reduces pileup corrections, and although we will not
include these effects in the study done here, it would be
worth doing so in the future. We comment further on what
such a pileup study should address in our conclusions.
In this paper, we present the key aspects of the factorized

jet mass cross section with a focus on results with a next-
to-leading-logarithmic (NLL) resummation of large
logarithms in the partonic cross section, including hadro-
nization corrections of which the perturbative coefficients

are calculated at leading-logarithmic (LL) accuracy. In
Refs. [8,9,11], it was shown that nonperturbative hadroni-
zation corrections play an important role for measurements
of the top mass from boosted top jets in eþe− → tt̄ for
achieving a precision below 1 GeV. This remains true for
pp → tt̄. We will review results from Ref. [17] that provide
a description of hadronization corrections derived from
field theory for soft drop groomed jets that are initiated
by either massless quarks or gluons. Here, we develop
formalism for treating jets initiated by heavy and unstable
top quarks. We show that, although the leading hadroniza-
tion effects are influenced by the presence of the soft drop,
they are independent of the jet pT , jet rapidity ηJ, and the
soft drop parameter zcut. This universality is important for
fits to αs for massless groomed jets [18]. Interestingly, for
groomed top jets, we will show that the hadronization
corrections are also independent of β and depend on the
same nonperturbative parameter Ω��

1q that appears for
massless quark initiated groomed jets. This is in contrast
to massless quark and gluon initiated groomed jets where
two additional β-independent nonperturbative parameters
are required to describe hadronization effects. We also
discuss in detail the most important phenomenological
results for the measurement of the top mass.
The outline of the paper is as follows. In Sec. II, we

discuss the hadron level factorization for groomed massless
jets [17] in order to summarize the influence of non-
perturbative hadronization on the groomed jet mass. In
Sec. III, we then turn to discuss the factorization theorem
for jets initiated by the massive boosted top quark, which
requires a careful treatment of the top-decay products in the
presence of soft drop grooming. Here, we also describe our
treatment of leading hadronization corrections and show
that with certain systematic approximations the top jet mass
cross section has a leading hadronization parameter that is
the same as the one that appears in the massless case
examined in Ref. [17]. In Sec. IV, we present results for the
factorization theorem and a first calibration study for the
top mass in pp collisions made by comparison to PYTHIA8.
We give a more detailed analysis of both the factorization
and Monte Carlo results in Ref. [19].

II. HADRON LEVEL FACTORIZATION
FOR LIGHT QUARK AND GLUON JETS

A. Effective theory modes

In this section, we review the partonic massless soft drop
factorization theorem derived in Refs. [14,20] and its
extension to hadron level given in Ref. [17]. The latter
was achieved by incorporating nonperturbative hadroniza-
tion parameters based on a field theory operator expansion,
which account for the dominant final state hadronization
effects.
Consider the groomed jet mass measurement on jets

initiated by light quarks or gluons. Note that in this section

FIG. 1. Allowed values of zcut which are strong enough to
isolate the jet from contaminating radiation (above red band) but
not so strong as to invalidate the factorization formulas we derive
(below blue band).
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we do not require light soft drop grooming and work in the
same limit as in Refs. [13,14],

m2
J

Q2
≪ z̃cut ≪ 1: ð10Þ

Here, small mJ denotes the jet mass for jets initiated by
light quarks and gluons in order to distinguish it from the
top jet massMJ, despite the fact that the definition of mJ is
the same as in Eq. (8). The use of Eq. (10) yields a fully
factorized description of the groomed jet mass cross section
in the SCET framework. The physics of the perturbative
radiation in this jet mass region also plays a role for boosted
tops in the peak region, as discussed in Sec. III. The parton
level factorization formula for the groomed jet mass
measurement on jets initiated by light quarks or gluons
[14,20] reads1

d2σ̂
dm2

JdΦJ
¼

X
κ¼q;g

NκðΦJ; R; zcut; β; μÞ

×
Z

dlþJκðm2
J −Qlþ; μÞQ

1
1þβ
cutSκc½lþQ

1
1þβ
cut ; β; μ�:

ð11Þ

Here, the index κ denotes the partonic channel (κ ¼ q, g).
The normalization factor, NκðΦJ; R; zcut; β; μÞ, encodes the
underlying hard process and the parton distribution func-
tions (PDFs). It also accounts for the soft radiation that is
groomed away by soft drop, and hence depends on the soft
drop parameters zcut and β, in addition to the jet kinematic
variables denoted by ΦJ ¼ fpT; ηJg and the jet radius R. It
also determines the fractional contribution from each par-
tonic channel. The factorization formula also involves the
inclusive jet function Jκ, which describes the dynamics of
the collinear radiation, and the collinear-soft function Sc,
which describes the dynamics of soft radiation affected
by the soft drop, which has an impact on the jet mass
measurement.
Each of the functions in Eq. (11) involves matrix

elements of a single type of quark and gluon fields,
corresponding to distinct modes in the effective theory.
The modes are distinguished by their momentum scaling,
which we briefly review. The collinear radiation contained
in Jκ has the scaling

pμ
C ∼

�
m2

J

Q
;Q;mJ

�
; ð12Þ

where we use light-cone components

pμ ∼ ðpþ; p−; p⊥Þ≡ ðnJ · p; n̄J · p; p⊥Þ; ð13Þ

relative to the jet axis n̂J, with nμJ ¼ ð1; n̂JÞ and n̄μJ ¼
ð1;−n̂JÞ. Since these collinear modes lie at the smallest
angles θ ∼ 2mJ=Q and have the highest energies E ∼Q=2,
they automatically pass the soft drop so that Jκ is
independent of the grooming parameters.
The softer modes at wider angles may or may not pass

the soft drop. Global soft modes which do not affect the jet
mass spectrum have scaling pμ

S ∼Qzcut. The soft modes
that effect the jet mass spectrum are boosted along the jet’s
direction and are called the collinear-soft modes. They are
dominated by the radiation that lies at the widest angle and
has the smallest energy needed to both pass the soft drop
test and contribute to mJ [14]. They follow the momentum
scaling

pμ
cs ∼

m2
J

Qζ0

�
ζ0;

1

ζ0
; 1

�
; ζ0 ≡

�
m2

J

QQcut

� 1
2þβ

; ð14Þ

which depends on a single combination of zcut and Q via
the soft drop modified hard scale Qcut defined as

Qcut ≡ 2βQz̃cut ¼
�
2 cosh ηJ

R0

�
β

Qzcut: ð15Þ

The collinear-soft modes lie at an angle θ that is given by

θ ∼ 2

ffiffiffiffiffiffiffi
pþ
cs

p−
cs

s
∼ 2ζ0: ð16Þ

The modes maintain a collinear scaling between their
momentum components since ζ0 ≪ 1 precisely because
m2

J=Q
2 ≪ zcut.

The collinear-soft function has the following operator
definition:

Sκc

�
lþQ

1
1þβ
cut ; β

�

≡Q
−1
1þβ
cut

nκ
trh0jT̄X†

nκVnκδðlþ − Θ̄sdp̂þ
csÞTV†

κnXnκj0i: ð17Þ

Note that in this notation Sc has mass dimensions
ð−2 − βÞ=ð1þ βÞ and depends on the single combination

lþQ
1

1þβ
cut . Here, nq ¼ Nc and ng ¼ N2

c − 1 normalize the
color trace, andNc ¼ 3 is the number of colors. Θ̄sd is a soft
drop measurement function that selects the collinear-soft
particles that pass the soft drop. The Wilson lines Vnκ ¼
Vnκ½n̄ · Acs� and Xnκ ¼ Xnκ½n · Acs� consist of collinear-soft
fields in the fundamental representation (κ ¼ q) or the
adjoint representation (κ ¼ g).
In Fig. 2, we show the perturbative modes that enter the

factorization formula in Eq. (11) in the lnðz−1Þ– lnðθ−1Þ
plane. The locations of the perturbative collinear (C),
collinear-soft (CS), and global soft modes (S) in Fig. 2

1The notation used here follows Ref. [17] and differs slightly
Refs. [14].
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are determined by the jet mass measurement mJ and the
soft drop criteria z≳ zcutθβ. Any emission from the jet-
initiating parton that yields an observed groomed jet mass
m2

J ¼ Qpþ
J must lie on the blue line and outside the shaded

region that is groomed away by the soft drop. This groomed
region is delineated by the slanted orange line for z ≃ zcutθβ

labeled by “slope ¼ β” and the angle of the widest emission
that first passes the soft drop and stops further grooming.
We define θcs as the angle relative to the jet axis of the CS
radiation that stops the soft drop. This angle then deter-
mines the groomed jet radius Rg as shown in Fig. 2. The
effects of recoil of the collinear subjet only appear at
subleading order in the power expansion. Finally, the global
soft modes ensure renormalization consistency and enter
into the calculation of Nκ. In the region of large jet mass,
corresponding to moving the blue line downward, the
collinear-soft and the global soft modes merge, leading
to a transition into the ungroomed region where the soft
drop is not active anymore. This happens for jet masses
satisfying m2

J=p
2
T ≳ zcut, which is the ungroomed resum-

mation region, and requires further merging of soft com-
ponents of the partonic factorization formula in Eq. (11).

B. Nonperturbative modes

Next, we consider the extension of Eq. (11) to account
for hadronization, reviewing results from Ref. [17]. The
brown line p2 ∼ Λ2

QCD in Fig. 2 indicates the modes that are
responsible for hadronization and span all angles. In the
region of the jet mass spectrum, where the CS mode that
stops the soft drop is perturbative, the dominant non-
perturbative mode Λ is determined by the intersection of
lines corresponding to θ ¼ θcs and p2 ∼ Λ2

QCD. The Λ
mode has the same parametric boost as the CS mode, with
the momentum scaling given by

pμ
Λ ∼ ΛQCD

�
ζ0;

1

ζ0
; 1

�
: ð18Þ

The Λ mode has the largest allowed pþ component among
all the nonperturbative (NP) modes and hence yields the
leading nonperturbative contribution to the jet mass meas-
urement m2

J ¼ Qpþ. Note that this implies that in the
region where the CS modes are perturbative they also
determine the boost for the Λ mode in Eq. (18). This is
satisfied when pþ

cs ≫ pþ
Λ , such that the two modes are

hierarchically separated in their z values, referring to their
vertical separation in Fig. 2. This corresponds to the jet
mass region satisfying

QΛQCD

m2
J

�
m2

J

QQcut

� 1
2þβ

≪ 1; ð19Þ

which puts a lower bound on mJ. We refer to this region of
the jet mass spectrum as the soft drop operator expansion
(SDOE) region.
On the other hand, in the region of smaller jet masses, the

CS and Λ modes merge together when pþ
cs ∼ pþ

Λ . This
happens in the jet mass region

m2
J ∼QΛQCDðΛQCD=QcutÞ

1
1þβ: ð20Þ

In other words, the CS mode for these jet masses is
nonperturbative, and the contribution from the Λ modes
is no longer power suppressed. This region is referred to as
the soft drop nonperturbative region.

C. Nonperturbative power corrections

In what follows, we limit our discussion to reviewing
results for the SDOE region from Ref. [17], in which a
factorized description of the dominant nonperturbative
corrections of the hadron level cross section is possible
in terms of a small number of hadronic parameters. We will
see later that it is this region that is also relevant for
groomed top jets.
From Eq. (18) and Fig. 2, we note that the power

corrections to the groomed jet mass are intricately tied to
the perturbative branching history which determines the
soft drop stopping angle θstop ≃ 2ζ0. This is quite unlike the
case of ungroomed event shapes where the power correc-
tion is described by a single parameter that is not modified
by the resummation of logarithms between perturbative
scales and does not depend on the intrinsic geometric
details of the event. Here, the structure of the power
corrections depends on the opening angle of the stopping
pair which sets the catchment area for the NP particles. In
general, due to the CA clustering, the region of phase space
where NP particles get clustered with the groomed jet can
be quite complex and intricately tied to the perturbative
branching history. However, at LL accuracy, we can assume
strong angular ordering of the perturbative emissions. As a
result, the catchment area in momentum space for the Λ
modes is given by a pair of overlapping cones, as shown by
the brown shaded region in Fig. 3. The LL approximation

FIG. 2. Picture of modes appearing in the factorization formula
for jets initiated from massless quarks or gluons. Here, z ¼ 2E=Q
is the energy fraction for energy E, and θ is the polar angle
relative to the jet axis.
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for determining this region ensures that the subsequent
perturbative emissions that are kept by the soft drop lie at
much smaller angles and hence do not influence the
clustering of NP modes with the collinear and collinear-
soft subjets. Each cone is centered on one of the two subjets
that stop the soft drop, and the conic sections correspond to
the nonperturbative radiation collected by each of these
subjets. Since the polar angle of the CS subjet relative to the
collinear top jet axis is θcs ≪ 1, for the axis scaled in the
manner shown, the two circles simply have radius θcs. This
catchment area determines the amount of nonperturbative
radiation that contributes to the jet mass measurement for
the “shift” power correction. The essential point is that the
catchment area of the captured nonperturbative radiation is
tied to the soft drop stopping angle, θcs, which is pre-
dominantly determined by the perturbative dynamics [17].
A second effect of the nonperturbative modes is their

influence on the soft drop comparison condition, which we
refer to as the “boundary” power correction. As an example
scenario, consider the ith collinear-soft subjet tested for the
soft drop with total momentum pμ

i þ qμi , where p
μ
i and qμi

denote the momentum contributions of the perturbative and
nonperturbative modes in the subjet, respectively. The soft
drop condition then reads

Θ̄piþqi
sd ¼ Θ

�
p−
i þ q−i
Q

− z̃cut

�
2jp⃗i;⊥ þ q⃗i;⊥j

p−
i þ q−i

�
β
�

¼ Θ̄pi
sd þ δðzpi

− z̃cutθ
β
i Þ

×
q−i
Q

�
ð1þ βÞ − β

θqi
θi

cosðΔϕÞ
�
; ð21Þ

with Θ̄pi
sd denoting the soft drop condition applied to the

perturbative momentum pi alone andΔϕ ¼ ϕqi − ϕpi
is the

relative azimuthal angle between p⃗i and q⃗i. The opposite
scenario, where the subjet loses NP momentum,

corresponds to replacing q−i with −q−i in Eq. (21). Thus,
the soft subjets that marginally fail or pass the soft drop test
will be affected by the clustered NP modes. The contri-
bution to this power correction from soft drop failing
subjets enters beyond LL accuracy, and hence we only need
to consider this effect on the final soft drop stopping
collinear-soft subjet [17]. The relevant region of phase
space at LL corresponds to all the NP particles that get
clustered with (or are lost from) the stopping collinear-soft
subjet and is displayed as the brown shaded region in
Fig. 4. Here, the two circles in the boosted limit again have
the radius θcs.
In the region of jet mass spectrum illustrated in Fig. 2,

where the perturbative modes are well separated from the
NP modes, the key ingredient that determines the size of
both of these power corrections is the angle θcs of the
perturbative collinear-soft subjet relative to jet axis. The
projection operator Θ̄��

NP that selects NP radiation respon-
sible for the shift correction, shown in Fig. 3, is

Θ̄��
NPðpμ

Λ; θcs;ϕcsÞ

¼ Θ
�
jΔϕj − π

3

�
Θ
�
1 −

θΛ
θcs

�

þ Θ
�
π

3
− jΔϕj

�
Θ
�
2 cosðΔϕÞ − θΛ

θcs

�
: ð22Þ

Similarly, the projection operator Θ̄⊚
NP that selects NP

radiation responsible for the boundary correction, shown
in Fig. 4, is

Θ̄⊚
NPðpμ

Λ; θcs;ϕcsÞ ¼ Θ
�
π

3
− jΔϕj

�
Θ
�
θΛ
θcs

−
1

2 cosðΔϕÞ
�

× Θ
�
2 cosðΔϕÞ − θΛ

θcs

�
; ð23Þ

FIG. 3. The catchment area of the nonperturbative modes kept
by the soft drop factorization formula at LL, pictured from above
looking down the jet axis. These modes are clustered with either
the collinear subjet located on the jet axis (blue dot) or the
collinear-soft subjet (pink cross), as indicated by the shaded
brown regions. The overlapping circles both have radius θcs.

FIG. 4. The region in momentum space that is relevant for the
nonperturbative modes that influence the soft drop comparison
test for the collinear-soft subjet. The plot is pictured from above
looking down the jet axis. These modes are clustered with the
collinear-soft subjet (pink cross), but not with the collinear subjet
(blue dot).
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where Δϕ ¼ ϕΛ − ϕcs. The projection operators, Θ̄��
NP and

Θ̄⊚
NP, are equal to 1 if the NP momentum pΛ lies in the

respective shaded regions shown in Fig. 3 or Fig. 4, and
zero otherwise. Noting that only the ratio θΛ=θcs appears in
Eqs. (22) and (23), we can further simplify the expressions
by expressing the NP momenta in a boosted and rotated
frame determined by the CS subjet [17]:

pþ
Λ ¼ θcs

2
kþ; p⊥

Λ ¼ k⊥;

p−
Λ ¼ 2

θcs
k−; ϕΛ ¼ ϕk þ ϕcs: ð24Þ

As a result, we find that the rescaled momenta scale
homogeneously, kþ ∼ k− ∼ k⊥ ∼ ΛQCD, where in terms
of the new variables we have θΛ=θcs ¼ k⊥

k− and Δϕ ¼ ϕk.
The projection Θ̄��

NP now solely depends on kμ variables,

Θ̄��
NP

�
k⊥
k−

; 1;ϕk

�
≡ Θ

�
jϕkj −

π

3

�
Θ
�
1 −

k⊥
k−

�

þ Θ
�
π

3
− jϕkj

�
Θ
�
2 cosðϕkÞ −

k⊥
k−

�
;

ð25Þ

where the second the argument being 1 emphasizes that in
the rescaled coordinates the cones in Fig. 3 now have
radius 1. Thus, the contribution of a NP particle with
momentum qμ to the jet mass is given by

Qqþ ¼ ðθcs=2ÞQkþ ð26Þ

when Θ̄��
NPðk⊥=k−; 1;ϕkÞ ¼ 1. The same argument can be

repeated for the operator Θ̄⊚
NP in Eq. (23). In this case,

Eq. (21) leads to [17]

ΔΘ̄cs
sd ¼ Θ⊚

k
2

θcs
δðzcs − z̃cutθ

β
csÞ

×
1

Q
ðk−ð1þ βÞ − βk⊥ cosðϕkÞÞ; ð27Þ

where Θ⊚
k ¼ 1 when a NP particle is clustered with the

subjet with Θ̄⊚
NPðk−i =k⊥; 1;ϕkÞ ¼ 1 and Θ⊚

k ¼ −1 when
the NP particle is lost from the subjet, such that
Θ̄⊚

NPðk−=k⊥; 1;ϕkÞ ¼ 0.
Note that the shift correction results from an expansion

in the þ components, qþ=pþ
cs ≪ 1, whereas the boundary

correction results from expansion in the − and ⊥ compo-
nents, q−i =p

−
i ≪ 1 and q⊥i =p⊥

i ≪ 1. In terms of the
rescaled momenta kμ, the perturbative information is
factored out in each case as factors of θcs=2 and 2=θcs
in Eqs. (26) and (27), respectively.

We have shown in Ref. [17] that as a result of these two
effects the leading power corrections to the factorized
partonic cross section in the SDOE region can be cast
into the following form,

dσhadκ

dm2
J
¼

X
κ¼q;g

NκðΦJ; R; zcut; β; μÞ

×
Z

∞

0

dlþ
Z

∞

0

dk Jκðm2
J −Qlþ; μÞ

×Q
−1
1þβ
cutS

κ
c½ðlþ − Cκ

1ðm2
JÞkÞQ

1
1þβ
cut ; β; μ�

×

�
1 −Qk

dCκ
1ðm2

JÞ
dm2

J
þQΥκ

1ðβÞ
m2

J
C2ðm2

JÞ
�
Fκ��ðkÞ;

ð28Þ

where the shape function Fκ��ðkÞ satisfiesZ
∞

0

dk kFκ��ðkÞ ¼ Ω��
1κ;

Z
∞

0

dkFκ��ðkÞ ¼ 1: ð29Þ

Here, Ω��
1κ and Υκ

1ðβÞ are the hadronic parameters related to
the shift and boundary power corrections, respectively, and
depend on the partonic channel κ. The superscript “��” for
the shift correction is meant to distinguish it from the power
correction known from ungroomed event shapes and is a
reminder that it results from the specific geometry of the
catchment area shown in Fig. 3. The coefficients C1ðm2

JÞ
and C2ðm2

JÞ also depend on additional variables and have
the interpretation of resummed average of the functions
of the angles of collinear-soft radiation for a given jet
mass m2

J:

Cκ
1ðm2

JÞ ¼ Cκ
1ðm2

J; Q; z̃cut; β; RÞ ¼
hθcsðm2

JÞ=2i
h1iðm2

JÞ
;

Cκ
2ðm2

JÞ ¼ Cκ
2ðm2

J; Q; z̃cut; β; RÞ

¼
�

2

θcsðm2
JÞ
m2

J

Q2
δðzcs − z̃cutθ

β
csÞ

�
1

h1iðm2
JÞ
: ð30Þ

The structure of the factorization formula in Eq. (28) relies
on a LL approximation for deriving the hadronization
corrections, which at this order only involve the perturba-
tive coefficients Cκ

1 and Cκ
2. The partonic resummation,

involving evolution of the scales in the functions Nκ, Jκ,
and Sκc, is not restricted in this manner.
We see that a key feature of nonperturbative corrections

in Eq. (28) is the universality property of the hadronic
parameters. First, the hadronic parameters Ω��

1κ and ϒκ
1ðβÞ

are independent of the energy Q and the jet mass mJ. The
dependence of the power correction on Q and mJ is
accounted for by the Wilson coefficients. Further, the
parameterΩ��

1κ is both z̃cut and β independent. The boundary
power correction parameter ϒκ

1ðβÞ has, however, linear β
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dependence as seen from Eq. (27). Note that from the point
of view of the field theory derivation the function Fκ�� does
not formally contain corrections from underlying event or
multiple-parton interactions, but it can serve as a useful
model for describing these effects [21], which we adopt
here as well.
In the following sections, we show that the same

hadronization parameter Ω��
1q appears in the leading non-

perturbative corrections for a jet generated by a massive top
quark, even when accounting for the top-decay products,
and that the effect of the boundary corrections is suppressed
for top jets in the region of MJ most relevant for top-mass
measurements.

III. HADRON LEVEL FACTORIZATION
FOR TOP JETS

In this section, we derive a hadron level factorization
formula that predicts the top jet mass MJ spectrum for a
boosted top quark initiated jet with Q ≫ mt and light soft
drop grooming, as illustrated in Fig. 1. We focus on the
peak region of the jet mass spectrum since it is particularly
sensitive for measurements of the top mass. The peak
region is defined by

M2
J −m2

t ∼mtΓ; ð31Þ

with Γ determined by the top width Γt as well as additional
smearing effects from nonperturbative radiation, i.e.,
Γ≳ Γt. We consider the jet mass range 170 GeV ≤ MJ ≤
190 GeV for our analysis. Due to the presence of the top
mass, the peak of the jet mass spectrum is close tomt, and it
is convenient to define the rescaled jet mass variable

ŝt ≡ ðM2
J −m2

t Þ
mt

: ð32Þ

A. Partonic modes for light groomed top jets

In the peak region, the dynamics of the top jet includes
the top decay t → bW → bqq̄0, where we call the bqq̄0 final
state particles the primary top quark decay products. For the
dynamics at scales much below the top mass, the top quark
and its associated gluon radiation are described in a
strongly boosted version of heavy quark effective theory
(HQET) with 4-velocity v ¼ ðmt=Q;Q=mt; 0Þ, referred to
as boosted-HQET (bHQET) [9]. The bHQET modes
include in particular the UC modes, which are related to
the radiation that is soft in the top rest frame. In this context,
the dynamics of the top decay can be incorporated either
differentially by perturbative calculations or inclusively
with the top width Γt. The UC modes have the momentum
scaling:

pμ
uc ∼ ŝt

�
mt

Q
;
Q
mt

; 1

�
: ð33Þ

Figure 5 shows the kinematic location of the UC modes as
well as the other modes relevant for using the soft drop on a
top initiated jet. The CS mode is again located at the
intersection of the (blue) measurement line and the (orange)
soft drop constraint lines. However, its scaling is modi-
fied compared to Eq. (14) due to the presence of mt by
taking m2

J → mtŝt, yielding for the pμ ¼ ðpþ; p−; p⊥Þ
components

pμ
cs ∼ ŝt

mt

Qζ

�
ζ;
1

ζ
; 1

�
; ð34Þ

where the angular parameter is now

ζ ≡
�

mtŝt
QQcut

� 1
2þβ

: ð35Þ

The soft modes appear in a manner similar to the massless
jet case, as can be seen by comparing Figs. 2 and 5.
These perturbative modes describe the top jet mass in the

peak region with light grooming through the following
parton level factorization theorem:

(a)

(b)

FIG. 5. Relevant SCET modes for soft drop jet mass for a top
jet. The dashed vertical line corresponds to the angle of the top-
decay product farthest from the jet axis, which determines h,
shown with two different values in (a) and (b). This leads to a
dependence on h in the factorization formula. The other param-
eters ðpt; ηJ; zcut; βÞ are held fixed.
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dσ̂
dMJdΦJ

¼ NðΦJ; R;mt; zcut; β; μÞ

×
Z

dlþJB

�
ŝt −

Qlþ

mt
; δm;Γt; μ

�

× Sqc ½lþQ
1

1þβ
cut ; β; μ�: ð36Þ

It resembles Eq. (11) in the sense that the collinear-soft
function is the same as for the massless quark initiated jets.
The factor N appearing here differs from Eq. (11) since it
describes tt̄ production but as before encodes other aspects
of the event, including the hard process and the PDFs. We
also take N to include the branching fraction for the
hadronic top decay Γt→bqq̄0=Γt, which accounts for the fact
that the jet mass measurement is made on the hadronic
decay. It also depends on the top mass mt scale, but the
dominant sensitivity of the cross section to mt results from
the dynamics in the collinear sector. The dynamics of
the UC modes and the inclusive top decay is described by
the bHQET jet function JBðŝt;Γt; δm; μÞ. At tree level,
JBðŝt;Γt; δm; μÞ is just a Breit-Wigner function peaked at
the top quark mass mt and thus carries the main mass
sensitivity. It also appears in the analysis of ungroomed top
jet mass [9,11], is known at two-loop order [11,22], and
provides control over the renormalization scheme for the
top mass. This is indicated by the dependence on

δm ¼ mpole
t −mt; ð37Þ

which is understood to be expanded in the perturbation
series of αs for JB. At leading order in mt=Q, the direction
of the top quark is equivalent to that of its decay products.
Hence, after integrating out mt, the UC light quark and
gluon modes are not affected by the top decay at leading
power. This allows us to define the bHQET jet function
JBðŝt;Γt; δm; μÞ for an unstable top in terms of the stable
quark jet function JBðŝt; δm; μÞ convolved with the top
quark Breit-Wigner [11]:

JBðŝt;Γt; δm; μÞ

¼
Z

ŝt

−∞
dŝ0JBðŝt − ŝ0; δm; μÞ Γt

πðŝ02 þ Γ2
t Þ
: ð38Þ

In Eqs. (33) and (34), when we consider the threshold limit
ŝt → 0, the power counting scaling for the UC modes
should be considered to saturate at ŝt → Γt since the top
quark width provides an effective infrared cutoff as long as
we treat the decay inclusively.
We now discuss the constraints on the soft drop

parameters that are related to the expansions used in
Eq. (36). We first note that the dependence on the soft
drop parameters zcut and β in Eq. (36) only enters through
the collinear-soft function and the normalization N,
whereas the UC radiation in the bHQET jet function is

unaffected by the soft drop. This is ensured by demanding
that grooming is sufficiently light so as to not affect the UC
modes. Hence,

z̃cutθ
β
uc ≪ zuc ⇒ z̃cut

�
2mt

Q

�
β

≪
ŝt
mt

⇒ zcut ≪
ŝt
mt

�
pT

mt

�
β

; ð39Þ

where the subscript “uc” refers to the angles and energy
fractions for the UC modes. We will see below in Sec. III C
that consideration of the kinematics of the top-decay
products leads to the light grooming constraint stated above
in Eq. (10), which actually is stronger than in Eq. (39). An
important consequence of the validity of Eq. (39) is that it
allows us to use the well-established description of the UC
sector in terms of the bHQET jet function so that we have
full control over the top-mass scheme specified by the
series δm in Eq. (36).
Next, we demand that the CS modes are sufficiently

boosted in the peak region such that they factorize from the
global soft modes. This is ensured by taking

ζ ≪
1

cosh ηJ
⇒ z

1
2þβ
cut ≫

1

2

�
ŝt
mt

m2
t

p2
T

� 1
2þβ

; ð40Þ

which with ŝt ≳ Γt yields the condition in Eq. (9b) for the
peak region. Equation (40) automatically ensures that the
ultrasoft modes with momentum scaling ŝtmt=Qð1; 1; 1Þ,
that contribute significantly to the ungroomed jet mass, are
groomed away. To see this, we note that zus ¼ ŝtmt=Q2 and
θus ∼ 1, so Eq. (40) implies z̃cut > zus, which is the
condition needed to groom away the wide angle ultra-
soft modes.

B. Nonperturbative modes for light groomed top jets

An important aspect when the soft drop is applied to a jet
containing a highly unstable particle like the top quark is
how the soft drop algorithm stops. At leading power, with
resummation included, there are two possibilities:

(i) The soft drop stops from a comparison of a collinear-
soft subjet and a subjet that contains all the top-
decay products.

(ii) The soft drop stops from a comparison between two
subjets, both of which contain top-decay products.

For massless quark or gluon induced jets, the possibility ii
does not arise. The hadronization corrections arising from
the nonperturbativeΛmodes must be considered separately
for these two cases. It is worth noting that if the progression
of the soft drop algorithm through the CA clustering tree
reaches a comparison between subjets which each have a
decay product then the soft drop will always stop due to the
large energy fraction carried by the decay products at
leading power in the light grooming regime. In Fig. 5(a),
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we show a case where i is realized, which we will refer to
below as the “high-pT” contribution to the factorization. In
Fig. 5(b), we show a case where ii is realized, which wewill
refer to as the “decay” contribution to the factorization. The
key new ingredient necessary to decide whether case i or
case ii arises is the decay angle θd, which we now define.
In the CA clustering tree formed as part of the soft drop

algorithm, the subjets (or particles) are ordered and grouped
by their pairwise angular distances Rij. Because we are in
the small angle limit Rij ≪ 1, we have Rij ≃ θij coshðηJÞ,
so it is fine to make all comparisons with the relative angles
θij where coshðηJÞ scales out as an overall factor. The
decay angle θd is determined at a stage in the CA tree where
two of the three top-decay products from t → bqq̄0 are
grouped into a single subjet and compared with a second
subjet that contains the third decay product. θd is then
defined as the polar angle relative to the top jet axis of the
subjet from this pair that points farthest away from the top
jet axis. To be concrete, it is given by

θd ≡maxðθ̃ðxyÞt; θ̃ztÞ: ð41Þ

Here, we use “xy” to refer to the pair qq̄0, qb, or q̄0b that is
closest in angle, which are grouped together in a subjet,
such that

θ̃xy ¼ minðθ̃qq̄0 ; θ̃qb; θ̃q̄0bÞ; ð42Þ

with θ̃qq̄0 , θ̃qb, θ̃q̄0b being the pairwise angles between the
three decay products. Then, the angle θ̃ðxyÞt in Eq. (41) is
measured between the top-decay axis and the parent xy
subjet obtained by adding the momenta pμ

x þ pμ
y following

the standard jet recombination scheme. The third particle
we call z lies in the other subjet, and θ̃zt in Eq. (41) is its
angle relative to the top-decay axis. For case ii, the soft drop
stops due to the comparison of these two subjets. We can
also consider the impact of the polar angle of the closer
subjet containing decay products given by

θ0d ≡minðθ̃ðxyÞt; θ̃ztÞ: ð43Þ

However, as we show below in Sec. III D, its effects can be
neglected in comparison to θd for the kinematic region of
interest.
Since the two decay subjets just discussed are dominated

by the kinematics of the energetic decay products, θd can be
calculated by considering the t → bqq̄0 tree level decay and
its phase space variables Φd:

θd ¼ θdðΦd; mt=QÞ: ð44Þ

Here, we define Φd as the five independent dimensionless
kinematic variables of the top-decay t → bqq̄0 in its
rest frame (four angles and one energy fraction).

The dependence on mt=Q arises from boosting to the
frame where the top quark has high pT and where
the angles entering the soft drop conditions are computed.
The function h which appeared in Eq. (9), and which enters
the decay component of the factorization theorem, is
directly related to θd through the definition

tan

�
θd
2

�
¼ mt

Q
h

�
Φd;

mt

Q

�
: ð45Þ

The mt=Q prefactor on the rhs pulls out the dominant
dependence that θd has on the boost of the top quark,
indicating that θd → 0 as Q=mt → ∞. For the decay
component illustrated in Fig. 5(b), the collinear-soft modes
still have the scaling in Eq. (34), but here

ζ ∼ ζd ≡mt

Q
h

�
Φd;

mt

Q

�
: ð46Þ

The use of the tangent in Eq. (45) makes the pþ component
of modes at this angle scale in a manner proportional to h
without further approximations, since pþ ∝ tanðθd=2Þ.
Hence, the scaling of the leading nonperturbative modes

in the two scenarios is given by

iÞ high-pT∶ pμ
Λ ∼ ΛQCD

�
ζ;
1

ζ
; 1

�
;

iiÞ decay∶ pμ
Λ ∼ ΛQCD

�
ζd;

1

ζd
; 1

�
: ð47Þ

Examples for the geometry of the modes are shown in
Fig. 5(a) for case i and in Fig. 5(b) for case ii, by
considering two different values for h, implying two
different values of θd. Figure 5 implies that the factorization
theorems for a jet initiated by the unstable top quark has a
significantly different structure compared to the massless
quark jet case. From Eq. (47), we see that hadronization
corrections from the Λ modes depend on tests of kinematic
information of the perturbative cross section components.
Whether we are in case i or ii will depend on the relative
sizes of θcs and the decay angle θd. In particular, for the
case θcs ∼ θd, the top decay may affect the definition of the

collinear-soft function, denoted as SðdÞc , in a nontrivial way,
causing it to differ from Eq. (11). However, we will show
below in Sec. III C that this difference can be neglected in
the light grooming region at NLL order.
In general, resolving the comparison between the angles

θcs and θd requires kinematic information about the CS
modes as well as kinematic information about the decay
products considering the phase space Φd and the boost
Q=mt. In the next section, we show how appropriate
expansions for the factorization formula can be obtained
by generalizing both the collinear-soft function SC and the
bHQET jet function JB for ultracollinear radiation to
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account for the dependence on the decay product phase
space, while still remaining inclusive over the primary
decay products in the jet mass measurement.

C. Incorporating top-decay product kinematics

To obtain results accounting for both cases i and ii when
the soft drop acts on a boosted top quark jet, we consider

the collinear-soft function SðdÞc that in addition to the soft
drop condition also accounts for the angular information of
the decay products. To be concrete, for the calculation of

SðdÞc , one now has to account for the vertical dashed line in
Fig. 5(b) at θ ¼ θd, which represents an additional phase
space boundary of the soft drop region and hence affects the
location of the CS mode. At one-loop order, working in
the region ζ ∼ ζd as indicated by Fig. 5(b), one finds that

the resulting collinear-soft function SðdÞc has the form

SðdÞc ðlþ;Qcut;β;θd;μÞ

¼ Sqc

�
lþQ

1
1þβ
cut ;β;μ

�

−
αsðμÞCF

ð2þ βÞπ
23þβ

Qcutθ
2þβ
d

L1

�
lþ

Qcut

22þβ

θ2þβ
d

�
Θ
�
Qcutθ

2þβ
d

22þβ − lþ
�

þOðα2sÞ; ð48Þ

where L1ðxÞ ¼ ½ðln xÞ=x�þ is the standard logarithmic plus
function; see, for example, Ref. [23]. Since at one loop in
fixed-order perturbation theory we have a single emission
with momentum k, the relevance of the high-pT or decay
scenario boils down to a simple comparison between the
emission angles θk and θd. The phase space integral can be
rewritten to have two terms, one with the same form as for
massless jets yielding Sqc and one θd-dependent term
yielding the term in the second line of Eq. (48). The latter
term is μ independent and involves the combination
L1ðxÞΘð1 − xÞ where its Θ function makes�
θcs
2

�
2þβ

≃
lþ

Qcut
<

�
θd
2

�
2þβ

≃
�
mt

Q
h

�
Φd;

mt

Q

��
2þβ

: ð49Þ

This ensures that it only contributes in the decay case ii of
Eq. (47). This term involves a logarithm, which is not large
when x ∼ 1.
The term on the second line of Eq. (48) involves a

logarithm that is, however, not large when θd ∼ θcs, which
is the region where an explicit comparison between the
cases i and ii is necessary. Demanding that the argument of
L1ðxÞ satisfies x≳ 1 ensures that this term either vanishes
or is not a large logarithm and leads to the constraint in
Eq. (10) when we set lþ to ŝtmt=Q following the scaling
determined by Eq. (36). We saw above in Eq. (39) that this
is also necessary to ensure that the UC modes are not
affected by the soft drop. Thus, when case ii applies, the

term in the second line of Eq. (48) only enters beyond NLL
order for the light grooming region. Hence, at NLL, the
perturbative CS function is the same as the one that
appeared for massless quark initiated jets in Eq. (11),

SðdÞc ðlþ; Qcut; β; θd; μÞjNLL ¼ SqcðlþQ
1

1þβ
cut ; β; μÞjNLL: ð50Þ

The decay angle θd is thus only relevant for determining
nonperturbative corrections, as we discuss further below.
Next, we discuss how to account for the Φd phase space

dependence of the decay angle θd. Since this dependence is
determined at the scalemt, where the top decay takes place,
it can be thought of as differential hard matching informa-
tion from the perspective of the low energy CS, UC, and S
modes. Hence, in the light grooming region, the description
of the dynamics of the UC modes, which cannot resolve
details concerning the top decay, is still based on the
inclusive stable heavy quark jet function JBðŝ; δm; μÞ in
Eq. (38).
We refer to the function that encodes the distribution of

the top-decay products as Dtðŝ0;Φd; mt=QÞ, where ŝ0 ¼
ðp2

t −m2
t Þ=mt is the off-shell-ness of the top quark defined

in analogy to Eq. (32). The function Dtðŝ0;Φd;mt=QÞ and
the stable jet function JBðŝ; δm; μÞ together account for all
leading-order effects concerning the top decay and the UC
modes. The calculation of Dt involves a geometric sum of
top self-energy bubbles, where one hadronically decaying
bubble is cut, as shown in Fig. 6. In the noncut bubbles, we
just keep the total imaginary top width Γt. We can then
write the result in terms of the purely resonant contribution

Dt

�
ŝ0;Φd;

mt

Q

�
¼ Γt

πðŝ02 þ Γ2
t Þ
dt

�
Φd;

mt

Q

��
1þO

�
ŝ0

mt

��
:

ð51Þ

The full three-body phase space dependence of the
hadronic top-decay t → bW → bqq̄0 is contained in the
dimensionless decay function

dt

�
Φd;

mt

Q

�
¼ 1

ΓJ
t→bqq̄0

dΓt→bqq̄0

dΦd
; ð52Þ

where dt also includes the full kinematics of the possibly
resonant W propagator and is normalized such that

FIG. 6. Bubble chain for an unstable top quark leading to a
Breit-Wigner together with a differential distribution for the top-
decay products. From the closed two-loop bubble calculation
involving bqq̄0, only the imaginary top width term is kept.
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Z
J
dΦd dt

�
Φd;

mt

Q

�
¼ 1: ð53Þ

The hadronic width ΓJ
t→bqq̄0 in Eq. (52) and the normali-

zation condition in Eq. (53) are both defined with a phase
space cut indicated by the superscript or subscript J . The
precise definition of this phase space restriction is described
below. Recall that there is a factor of the branching ratio
Γt→bqq̄0=Γt in the cross section normalization factor N in
Eq. (36). The residual dependence on the boost factormt=Q
in dt is still important and hence indicated explicitly in
Eq. (52), while we leave implicit its dependence onmW=mt.
The expansion in Eq. (51) indicates that for the description
of the angular dependence of the decay products we can
work with an on-shell quark decay function with ŝ0 ¼ 0.
The formula for Dt in Eq. (51) indicates that the

dependence on the top quark’s off-shell-ness ŝ0 appears
in a Breit-Wigner, which factorizes from the Φd-dependent
decay function dt that is generated at the scale mt ≫ ŝ0. As
a result, on convolving the stable jet function with Dt, one
recovers the unstable jet function in Eq. (38) upon
integrating over Φd.
The key information contained in the decay function dt

needed for the hadron level factorization formula of
Eq. (56) is encoded in the distribution of the values of
the function hðΦd; mt=QÞ, which is the basis of implement-
ing the information on the decay angle θd defined in
Eq. (41) in Eq. (45). This distribution has the form

P

�
h̃;
mt

Q

�
¼ 1

ΓJ
t→bqq̄0

dΓt→bqq̄0

dh̃

¼
Z
J
dΦddt

�
Φd;

mt

Q

�
δ

�
h̃ − h

�
Φd;

mt

Q

��
ð54Þ

and is shown in Fig. 7 for different Q values. It peaks at h
values near 2. As anticipated, it drops to zero near h ¼ 1.
For larger h, the distribution falls off and then drops sharply
to zero. The drop off occurs because we demand that the
decay products are always contained within the original
(ungroomed) jet of radius R, which gives an upper limit on
θd. This is indicated by the subscript J in Eq. (54). While
this restriction for boosted tops is technically related to a
power correction to the constraint of Eq. (53), we find it
useful to include it explicitly in Eq. (54) since it ensures that
only decay products that are actually inside the original
ungroomed jet can stop the soft drop. Since this R
dependence is quite mild, we have suppressed it in the
arguments of Pðh̃; mt=QÞ. We account for this phase space
restriction in all Φd integrals, including the normalization
imposed by Eq. (53), which ensures thatZ

dh̃ Pðh̃; mt=QÞ ¼ 1: ð55Þ

D. Universality with light quark jets

Having determined the distribution Pðh̃; mt=QÞ, and
thus through Eq. (44) the distribution of the decay angle
θd, we can now address how the relevant scenarios of
Eq. (47) are implemented in the hadron level factorization
formula. Using the angle θ0d defined in Eq. (43), we define a
corresponding function h0 via

tan

�
θ0d
2

�
¼ mt

Q
h0
�
Φd;

mt

Q

�
: ð56Þ

In general, we have h > 1 and h0 < 1, and most often
h0 ≪ h. Since mt=Q ≪ 1, at the stage of the clustering
where the comparisons in Eq. (41) are made, the xy and z
subjets containing top-decay products carry almost all of
the jet momentum. Hence, at leading order in the power
counting, they are in the same plane as the total jet
3-momentum vector, and the angle between the xy and z
subjets is θd þ θ0d. This angle sum has to be compared with
the angles θcs of the CS subjets encountered in traversing
the clustering tree backward that could have large enough
pT and Rij to stop the soft drop grooming via Eq. (4). In
analogy to Eq. (54), we can define the probability dis-
tribution of the function h0, Pðh0Þ. Using Pðh0Þ, we then
find from an explicit computation that hh0i=hhi ≃ 0.22 for
Q=mt ¼ 5. This ratio decreases to hh0i=hhi≲ 0.12 when
Q=mt ≥ 11, which is the range of interest for our analysis.
Therefore, for our treatment of the Λ modes, we can safely
assume θ0d ≪ θd or equivalently h0 ≪ h. This implies that
the determination of which of the cases in Eq. (47) applies
can be found by a simple comparison of which subjets are
at a wider angle relative to the top jet axis:

case iÞ if θcs > θd;

case iiÞ if θcs < θd: ð57Þ

FIG. 7. Probability distribution of h for different values of Q
with mt ¼ 173.1 GeV.
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Here, we limit ourselves to LL resummation for the
determination of θcs.
Following the discussion Sec. II C, with θ0d ≪ θd, the

geometry of the catchment area of the nonperturbative
modes for the shift term when the top-decay products stop
the soft drop is illustrated in Fig. 8. Thus, we see that the
catchment areas in the high-pT and the decay factorization
cases have the same geometry. In contrast to Fig. 3, the blue
dots here signify that both the subjets containing top-
decay products are much more energetic than the typical
collinear-soft subjets formed by pure QCD radiation. An
important consequence is that the boundary correction
originating from modifications of the soft drop test of
the energetic xy and z subjets due to nonperturbative modes
is strongly suppressed by ΛQCD=mt. We will come back to
discussion of the boundary corrections for the high-pT case
at the end of Sec. III E.
The projection operator for the shift term given in

Eq. (22) for massless jets now simply generalizes to the
following expression,

Θ̄��
NPðpμ

Λ; θX;ϕXÞ ¼ Θ
�
jΔϕj − π

3

�
Θ
�
1 −

θΛ
θX

�

þ Θ
�
π

3
− jΔϕj

�
Θ
�
2 cosðΔϕÞ − θΛ

θX

�
;

ð58Þ

where θX ¼ maxfθd; θcsg. The nonperturbative factoriza-
tion for boosted tops thus involves the rescaling of the
nonperturbative momenta in analogy to Eq. (24) via the
angle θX, and we find that the shift correction is para-
metrized by Ω��

1q given in Eq. (29), which is the shift
correction parameter for massless quark jets.
Thus, the main conclusions of this analysis for the decay

case are (a) that for the shift correction the catchment area,
as shown in Fig. 8, has the same geometry as for the high-
pT case, described already for the massless quark initiated

jets in Fig. 3, and 3(b) that the boundary corrections can be
neglected.

E. Comparing high-pT and decay components

We can use the results derived above to dynamically
determine for θ0d ≪ θd the relative fraction of the events
where the soft drop stops either on a subjet containing
a top-decay product or on a gluon radiation initiated
collinear-soft subjet.
From Eq. (30), we note that the average (resummed)

opening angle θcs is simply twice the coefficient C1 with
m2

J replaced by mtŝt in the peak region:

hθ̂csiðŝtÞ≡ 2CqðppÞ
1 ðmtjŝtjÞ

≡ 2CqðppÞ
1 ðm2

J ¼ jmtŝtj; Q; z̃cut; β; RÞ: ð59Þ

We give the result for CqðppÞ
1 ðm2

J; Q; z̃cut; β; RÞ in

Appendix A [17]. An approximate formula for CqðppÞ
1 that

is accurate at the level of 5% and sufficient for our
numerical analysis below is

CqðppÞ
1 ðm2

JÞ≃
0.55

2coshηJ

�
zcut
0.1

�
0.12ð1−0.25βÞ� m2

J

p2
TzcutR

−β
0

� 1
2.2þ0.8β

:

ð60Þ

To determine whether the decay or high-pT scenario
applies, one can simply compare the angle for decay

2mth̃=Q to 2CqðppÞ
1 .

To get an idea about which scenario dominates, we can
consider the average opening angle of the stopping pair at a
given top jet mass, MJ, given by

hθstopiðŝtÞ ¼
Z

dh̃ P
�
h̃;
mt

Q

�
max

	
2mt

Q
h̃; hθ̂csiðŝtÞ



;

ð61Þ

and compare it to hθ̂csiðŝtÞ and the average decay angle

hθdi ¼
Z

dh̃ P

�
h̃;
mt

Q

�
2mt

Q
h̃: ð62Þ

Note that, unlike hθ̂csi in Eq. (59), hθdi is computed
entirely from perturbative dynamics at the top-mass scale
mt and can be obtained from a fixed-order calculation.
Figure 9 shows the averages hθdi (dashed blue line) and
hθ̂csi (dotted green) and the average winning angle hθstopi
(solid red line) as a function of the jet mass for zcut ¼ 0.01,
β ¼ 2, and pT ≥ 750 GeV. The dashed vertical line is at
MJ ¼ mt ¼ 173.1 GeV, which is the input top quark mass.
This kinematic point and this choice of grooming param-
eters satisfy the light grooming constraints in Eq. (9).

FIG. 8. The nonperturbative modes kept by the soft drop
factorization theorem at NLL when the groomer is stopped on
comparison between top-decay products (blue dots), pictured
from above looking down the jet axis.
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We see that in the peak region the soft drop is predomi-
nantly stopped by the top-decay products. Cases where the
groomer is stopped by a collinear-soft subjet, which
corresponds to the high-pT scenario, become significant
only at higher jet masses in the tail of the spectrum above
the peak region.
It is even more conclusive to carry out the same type of

analysis at the cross section level. Even though we present
the hadron level factorization theorem later in Eq. (64), we
briefly analyze here its decay and high-pT components,
shown in Fig. 10. We use a representative MSR top mass
[24,25] mMSR

t ðRm ¼ 1 GeVÞ ¼ 173.1 GeV as input, and
the hadronic parameters ðΩ��

1q; x2Þ ¼ ð1.5 GeV; 0.3Þ, where
x2 is related to the second moment of the nonperturbative
shape function [defined below in Eq. (65)]. We again see
that the decay component dominates but that there is a
significant contribution from the high-pT component in the
tail of the spectrum.

As we have pointed out already in Sec. III D, for the
decay scenario, only the shift contribution to the hadroni-
zation corrections has to be accounted for, while in the
high-pT scenario, both boundary and shift corrections are
present. However, for decaying top quarks, the boundary
terms are highly suppressed, as we now show. Following
Eq. (28), the boundary hadronization correction to the high-
pT component of the cross section is given by multiplying
the parton level cross section byC2ðMJÞϒq

1ðβÞQ=ðmtŝtÞ. In
Fig. 11, we show C2ðMJÞQ=ðmtŝtÞ as a function of the jet
mass MJ. For jϒq

1ðβÞj ∼ 1 GeV, the relative correction to
the high-pT is approximately 15% in the peak region.
However, taking into account the reduced overall contri-
bution of the high-pT component in the peak region, as
shown in Fig. 10, the overall correction amounts to less
than 2% for the entire jet mass spectrum. Therefore, we
conclude that the only relevant effect from hadronization to
the top jet mass is the shift correction and the boundary
correction can in general be ignored. Interestingly, this
implies that all the leading nonperturbative corrections to
the top jet mass are described by the same parameter Ω��

1q.
Note that the higher-order power corrections for the shift
contributions, Ω��

nq, are more important than boundary
corrections, since ½pTΛQCD=ðmtŝtÞ�n is larger than 2%.
They can be modeled by the first few higher-order moments
of Fq

��ðkÞ,

Ω��
nq ≡

Z
∞

0

dk kn Fq
��ðkÞ: ð63Þ

F. Top factorization formula with soft drop

Building on the results obtained in the previous sections,
we are now at the stage to extend the partonic factorization
formula in Eq. (36) to hadron level. The final expression for
the hadron level factorization theorem for boosted top
quark jet mass distribution with the soft drop is

FIG. 9. Average hθdi, hθ̂csi and the winning stopping pair
angle, hθstopi, as a function of top jet mass.

FIG. 10. The full NLL hadronic top jet mass cross section along
with the decay and high-pT components for representative values
of the top mass mMSR

t in the MSR scheme and the hadronic
parameters.

FIG. 11. The nonperturbative coefficient CqðppÞ
2 Q=ðmtŝtÞ that

appears for boundary correction. The actual correction to the jet
mass cross section is significantly smaller on account of reduced
contribution from high-pT case.
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dσNLLðΦJÞ
dMJ

¼ NðΦJ; zcut; β; μÞ
Z

dh̃P

�
h̃;
mt

Q

�

×
Z

dlþJB

�
ŝt −

Qlþ

mt
; δm;Γt; μ

�Z
dkþFq

��ðkþÞ

× Sqc

��
lþ −max

	
CqðppÞ
1 ðmtŝtÞ;

mth̃
Q



kþ

�
Q

1
1þβ
cut ; β; μ

�

×

	
1 − Θ

�
CqðppÞ
1 ðmtŝtÞ −

mth̃
Q

�
Qkþ

mt

dCqðppÞ
1 ðmtŝtÞ
dŝt



:

ð64Þ

This is the top quark analog of Eq. (28) that is valid for
massless quark and gluon initiated jets. The nonperturba-
tive corrections are incorporated by comparing θd=2 and
θcs=2 at each point in the top-decay phase space as shown
by the max function appearing in the argument of the
collinear-soft function Sqc . We note that the normalization

correction in the last line due to the derivative of CqðppÞ
1

appears only for the high-pT case, i.e., when θcs > θd. We
also remind the reader that the factorization formula in
Eq. (64) is valid when the light grooming constraints in
Eqs. (10) and (9) are satisfied and that the derivation of the

CqðppÞ
1 coefficient relied on a LL approximation for for-

mulating the leading power correction. For the partonic
cross section, there is in principal no restriction on the
perturbative order to which the factorization theorem can be
applied, but for our analysis, we will restrict ourselves to
NLL order.
Eq. (64) involves the same shape function Fq

��ðkþÞ that
also appeared for massless quark initiated jets in Eqs. (28)
and (29). This emphasizes the fact that the same non-
perturbative parameter Ω��

1q appears in both cases, through
the moment constraint in Eq. (29). So, in this sense, the
dominant hadronization effects are universal. Thus, at this
order, the leading nonperturbative power correction hadro-
nization parameter is independent of pT , ηJ, zcut, β, mt, as
well as other kinematic variables like those of the top decay.
The dependence on these parameters can be obtained solely
using perturbation theory. Furthermore, we note that when
considering the nonperturbative corrections for the decay
contribution in Eq. (64) the Q=mt boost factor in the
argument of JB cancels against themt=Q factor multiplying
kþ in Sqc . This implies that for the lightly groomed top
initiated jet there is a reduced Q dependence of the peak
position compared with the ungroomed case. This is also
supported by the Monte Carlo studies carried out below and
means that the observable peak of the groomed jet mass
distribution is substantially closer to mt than for the
ungroomed case.

Of course, by charge conjugation symmetry, Eq. (64)
also applies for antitop initiated jets. In practice, MJ
associated to either the hadronically decaying t or t̄ can
be measured, while the other can decay hadronically or
semileptonically. In fully hadronic decays, both jets can in
principle be sampled independently. We have explicitly
confirmed that our factorization formula in Eq. (64) sat-
isfies renormalization group consistency for the anomalous
dimensions of the various functions at NLL order. Since the
resummation analysis is standard, we do not discuss it in
detail here, but we note that the relevant renormalization
scales appearing in the functions in Eq. (64) after including
renormalization group (RG) evolution are the obvious
combinations of those used in the analyses in Refs. [11,14].
As mentioned in Sec. III A, the dominant top quark mass

dependence and the control over the renormalization
scheme of the top quark mass sensitivity in Eq. (64) are
contained in the bHQET jet function JB. At NLL order, JB
is incorporated at tree level so that we do not account for
any mass scheme corrections δm as defined in Eq. (37). At
this level, the top quark pole mass scheme is implemented
if one treats mt as a fixed and renormalization scale–
independent parameter. The scale-dependent MSR short
distance top-mass scheme mMSR

t ðRmÞ [24,25] is imple-
mented by setting mt ¼ mMSR

t ðRmÞ, and at NLL order, one
has to account for the leading logarithmic R evolution of
the MSR mass [25] from a reference scale for which we
adopt Rm;0 ¼ 1 GeV. Consistency requires that one sets Rm

equal to the renormalization scale used in the bHQET jet
function JB. So, when we quote an input MSR mass
entering the factorization theorem of Eq. (64), we quote the
reference value mMSR

t ðRm;0 ¼ 1 GeVÞ.

IV. RESULTS

In this section, we analyze the results for groomed top jet
mass spectra, both with PYTHIA simulations and with our
hadron level factorization formula in Eq. (64) valid at NLL
order. At this order, all fixed-order matrix elements are
evaluated at tree level, and the factorization formula deter-
mines the MJ spectrum as a Breit-Wigner distribution
dressed by perturbative corrections from resummed large
Sudakov double logarithms arising from the hierarchypT ≫
mt ≫ Γt > ΛQCD and smeared by nonperturbative correc-
tions. As a default for our analysis, we take pT ≥ 750 GeV,
jηJj < 2.5, zcut ¼ 0.01, and β ¼ 2, R0 ¼ 1, based on jets
with radius R ¼ 1 and pveto

T ¼ 200 GeV.
In Fig. 12, we show groomed jet mass distributions

obtained from PYTHIA 8.235 including hadronization and
MPI effects and the soft drop plug-in in FASTJET [13,26], in
order to test a number of key features predicted by the
factorization theorem. All curves are normalized to unity
over the displayed range.
In Fig. 12(a), the dependence on zcut is displayed. We

observe that for zcut ≳ 0.005 the light grooming is effective,
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as predicted by the constraint in Eq. (10). Increasing zcut
further does not groom soft radiation inside the radius
determined by the top-decay products, leaving the peak
position quite stable even beyond the limit in Eq. (10),
unlike the strong zcut dependence observed for massless
jets [13].
In Fig. 12(b), we demonstrate that the light groomed

spectrum becomes independent of the jet radius R for
R≳ 0.9, as expected, in contrast to the strong dependence
on R that is present for ungroomed jets [27,28]. The light
groomed spectrum is also independent of an anti-kT jet-
veto cut pveto

T (for jets beyond the two with largest pT) once
pveto
T ≳ 50 GeV, as shown in Fig. 12(c). The independence

of the normalized groomed jet mass spectrum with respect
to R and pveto

T are predicted by our factorization formula,
which is independent of these two parameters. The inde-
pendence to R occurs since we fixed R0 ¼ 1 and would not
be true if one picked R0 ¼ R.
Another important prediction of the factorization for-

mula for light groomed top initiated jets is an insensitivity
to the parts of the event outside the groomed top jet. Thus,
the same factorization theorems apply for top jets from
eþe− → tt̄ and pp → tt̄, with appropriate modifications
related to the definition of Q and the norm function N. To
obtain a reasonable comparison, we take the eþe− center-
of-mass energy Q ¼ 2400 GeV to approximate the spec-
trum weighted average Q for pp with jηJj < 2.5 and
pT ≥ 750 GeV. In the eþe− case, we apply the soft drop
to top jet hemisphere masses. The curves displayed in
Fig. 12(d) show that the spectra for pp and eþe− differ
substantially without the soft drop (dotted green and dot-
dashed blue curves, respectively) but agree quite well with
the soft drop (solid green and dashed blue curves, respec-
tively). Also shown is the impact of MPI on the pp spectra.
Without the soft drop, adding MPI shifts the peak of the
spectrum by 4.5 GeV (dotted red vs dotted green), whereas
with the light soft drop, the shift amounts to only 1.1 GeV
(solid red vs solid green). Formally, effects from UE are
outside our framework of factorization, but we can still
account for them by extending our treatment for hadroni-
zation, which we clarify below.
In Fig. 13, we show a direct comparison between

PYTHIA8 results and the factorization formula in Eq. (64)
at NLL order. For the factorization prediction, we use
αsðmZÞ ¼ 0.118 and the MSR short distance top mass
mMSR

t ðRm;0 ¼ 1 GeVÞ as the reference input. Furthermore,
we employ the nonperturbative hadronization parameters

Ω��
1q and x2 ≡

Ω��
2q

ðΩ��
1qÞ2

− 1; ð65Þ

see Eq. (63), as input to fix the form of the shape
function Fq

��ðkÞ.
In order to extend our hadron level factorization formula

to account for the UE, we make use of the results of

(a)

(b)

(c)

(d)

FIG. 12. Dependence in PYTHIA8 of the MJ spectrum on the
a) soft drop parameter zcut, b) jet radius R, and c) anti-kT jet veto
pveto
T . In d), we compare results for eþe− → tt̄ and pp → tt̄ with

andwithout the light soft drop andwithMPI interactions on and off.
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Ref. [21], in which it was shown that MPI in PYTHIA for the
ungroomed jet mass spectrum can be modeled well by
simply changing parameters in the nonperturbative shape
function. This occurs because the dominant impact of MPI
is to populate the jet with uncorrelated soft radiation of
somewhat higher energy than that associated to the soft
hadronization. We adopt this approach to account for
hadronization plus UE, replacing

Ω��
nq → Ω��MPI

nq : ð66Þ

Estimating that this treatment of UE is uncertain at the 30%
level or less, this induces a residual uncertainty of Δmt ≲
0.3 GeV for our soft drop top-mass extraction, compared to
Δmt ≲ 1.4 GeV without the soft drop. With additional
dedicated studies, this uncertainty may be further reduced.
Lastly, we note that from the work in Ref. [17] we only
know about the universality properties of the first moment
Ω��

1q of the shape function, whereas the higher moments
n ≥ 2 may depend on the grooming parameters and the
kinematic variables in a manner that is not determined

solely by CqðppÞ
1 , although its inclusion does capture the

proper power counting for these terms. Technically, the
higher moment Ω��

2q should involve an additional Wilson
coefficient, which we have not derived. Since Ω��

2q gives a
subdominant power correction, our approximation should
be reasonable.
For the PYTHIA8 results, we use the Monte Carlo mass

mMC
t ¼ 173.1 GeV as input and employ the default

Monash 2013 tune [29] of the Lund string fragmentation
model for its hadronization corrections. To achieve a
meaningful comparison of our factorization prediction with
the PYTHIA8 results, we carry out a simultaneous fit for
mMSR

t ðRm;0 ¼ 1 GeVÞ, Ω��
1q and x2 entering the formula in

Eq. (64) to the PYTHIA8 results simultaneously including
pT ≥ 750 GeV and pT ≥ 1000 GeV bins. For the fit range,
we take MJ ∈ ½173; 180� GeV and utilize 10 MJ bins in
this range, over which the central factorization curve and
the PYTHIA curve are also normalized. The fits are carried
out independently for PYTHIA8 with only hadronization
[with the results shown in Figs. 13(a) and 13(b)] and for
PYTHIA8 with both hadronization and MPI [with the results
shown in Figs. 13(c) and 13(d)]. The resulting best fit
values for mMSR

t ð1 GeVÞ, Ω��
1q (Ω��MPI

nq ), and x2 (xMPI
2 ) are

displayed in the panels of Fig. 13. For the fits to PYTHIA8
with both hadronization and MPI turned on, we expect
from our treatment of MPI effects modified fit results for
the nonperturbative parameters Ω��MPI

1q and xMPI
2 in com-

parison to Ω��
1q and x2 obtained without MPI, while the fit

result for mMSR
t ð1 GeVÞ should remain unchanged.

The jet mass spectra obtained from the factorization
theorem and PYTHIA8, shown in the panels of Fig. 13, are in
quite good agreement for both pT bins as well as for the
different treatments of MPI. As expected from the general

(a)

(b)

(c)

(d)

FIG. 13. Comparison of PYTHIA8 without and with MPI
to the factorization theorem at NLL with mt in the MSR mass
scheme.
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structure of the factorization theorem, the peak is essen-
tially at the same location for each pT bin. However, there
is a noticeable difference between the factorization theorem
results and PYTHIA8 for the tail on the left of the peak. This
is related to the grooming of radiation that is emitted off the
primary top-decay products that ends up outside of the
groomed jet and thus enhances the spectrum to the left of
the peak. While PYTHIA8 simulates this final state radiation,
it is absent from our current decay function at the level
at which it has been formulated here. The curves in
Figs. 13(a)–13(d) show that this final state radiation does
not significantly affect the distribution in the peak region,
indicated by our fit range.
In the panels of Figs. 13, we also show as the orange

bands the theoretical uncertainty of our NLL factorization
formula varying renormalization scales. The bands are the
envelope of the varying curves, each of which is normal-
ized to the fit range so that only the uncertainties on the
shape are displayed. In contrast, in Fig. 14, the orange
uncertainty band includes the uncertainties on the nor-
malization. Here, we normalize the central curve as before
in the range MJ ∈ ½173; 180� GeV and use this same
normalization for the cross sections obtained for the
varied renormalization scales. Not unexpectedly, the nor-
malization of the cross section is rather poorly determined
by results at NLL order. Thus, from comparing Figs. 13
and 14, we conclude that the normalized shape is more
robust against higher-order corrections and hence should
be used in comparing with data or MC results. However,
we remind the reader that here we do not carry out a
complete analysis of uncertainties for our fit at NLL and
hence have not assigned uncertainties to our fit parameter
results. For the fits done here, only the central theory
curves were used. From the size of the NLL uncertainty
bands, and accounting for MPI modeling uncertainty, we
estimate the precision of this analysis concerning the
sensitivity to the top quark mass to be at the level of
1 GeV. This is dominated by perturbative uncertainties that

are expected to significantly decrease when increasing our
analysis from NLL to next-to-next-to-leading logarithmic
order, at which point a complete analysis of theoretical
uncertainties becomes warranted.
With these caveats about perturbative uncertainties in

mind, the results shown in Fig. 13 still allow us to make a
number of instructive observations concerning the inter-
pretation of the PYTHIA8 top-mass parameter mMC

t . The fit
values for mMSR

t ð1 GeVÞ obtained in Figs. 13(a)–13(d) are
all within 0.3 GeV of the input mMC

t . This result is
compatible with the eþe− calibration result in Ref. [8]
for the ungroomed 2-jettiness distribution in the peak
region and supports universality of top-mass MC calibra-
tion fits for pp groomed and eþe− ungroomed jet masses
even with our model treatment of MPI effects.
We also observe that the fit values of mMSR

t ð1 GeVÞ
agree within 0.3 GeV for the analyses with and without
MPI effects. This fully confirms our anticipation that the
dominant effect of adding MPI is an increase of the scale of
the hadronization parameter Ω��

1 → Ω��MPI
1 and to modify

x2 → xMPI
2 , while the top quark mass remains unchanged.

This is a crucial outcome and supports that a precision
determination of the top quark mass may be achieved from
boosted top jet measurements. It furthermore supports that
MC generator top-mass calibration analyses along the lines
of Ref. [8] can be carried out successfully in the LHC
environment using groomed boosted top quark initiated
jets. However, we also point out that when examining the
lower pT bin ½550; 750� GeV we find poorer agreement
with PYTHIA8, which likely indicates that higher-order
terms in the soft drop factorization expansions are becom-
ing important for smaller boosts.
In Appendix B, we present the corresponding fit

results for the pole mass scheme, obtaining values that
are about 0.6 GeV smaller than mMC

t , which implies that
our pp groomed pole mass analysis is also compatible with
the eþe− ungroomed pole mass calibration study in
Ref. [8].

V. CONCLUSION

In this paper, we have derived a factorization formula
for soft drop groomed jets involving a boosted top quark,
which can be used to directly access short distance top
masses in a hadronic collider, while avoiding significant
contamination from soft radiation. Since our approach is
systematically improvable, we anticipate that the pertur-
bative and hadronization uncertainties on extracting mt
from soft drop groomed top initiated jet mass distributions
will eventually be below a giga-electron-volt. Experi-
mentally requiring pT above 700 GeV limits the data
sample; however, this is somewhat mitigated by the light
soft drop method not requiring other cuts, like those on
pveto
T or the angle between decay products used in

Ref. [10]. We leave a more detailed analysis to future
FIG. 14. Perturbative NLL uncertainty in the cross section
without normalizing the scale variations.

HOANG, MANTRY, PATHAK, and STEWART PHYS. REV. D 100, 074021 (2019)

074021-18



work, including results at one higher order, more precise
estimates of all uncertainties, and exploring the smaller-pT
region. We anticipate that these results can be used for
direct fits to LHC data, to calibrate the MC top-mass
parameter, and even to make predictions independent of
fitting hadronic parameters by exploiting the fact that
universality allows Ω��MPI

1q to be determined by fits to light
or b quark soft dropped jet data. We also leave further
exploration of the residual dependence on x2 and higher
moments to future studies [19].
It would also be interesting to further test fits to the MJ

spectrum including pileup interactions and using a range of
the commonly used pileup mitigation techniques, including
the use of the light soft drop proposed here or other
methods that avoid disrupting the top-decay products. We
anticipate that after this mitigation any remaining radiation
from pileup will again behave similarly to the underlying
event, adding uncorrelated radiation to the soft drop jet
region, and hence will simply further modify the fit values
of our Ω��MPI

1q and xMPI
2 parameters. It will be interesting to

test this with a dedicated study in the future.
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APPENDIX A: WILSON COEFFICIENT FOR
SHIFT POWER CORRECTION

Here, we state results from Ref. [17] for the non-

perturbative Wilson coefficient CqðppÞ
1 ðm2

JÞ introduced in
Eq. (28). The calculation at LL is most intuitively carried
out in the coherent branching formalism where the resum-
mation is organized as a sum over independent real
emissions, allowing one to keep track of the branches that

pass and fail the soft drop. The result for CqðppÞ
1 ðm2

JÞ is then
given by

CqðppÞ
1 ðm2

J; Q; z̃cut; β; RÞ

¼ R
cosh ηJ

C̃qðppÞ
1 ðm2

J; RpT; z0cutRβ; βÞ; ðA1Þ

where

C̃qðppÞ
1 ðm2

J; RpT; z0cutRβ; βÞ

¼ e
−Rq

�
m2
J

R2p2
T

�
CqðppÞ
0 ðm2

JÞ

Z
1

0

dθ̃2

θ̃2
θ̃

2
αs

�
m2

J

θ̃RpT

�
CF

π

×
m2

J

θ̃2R2p2
T

pgq

�
m2

J

θ̃2R2p2
T

�

× Θ
�
θ̃ −

mJ

RpT

�
Θðθ̃⋆ðm2

JÞ − θ̃Þ; ðA2Þ

with

z0cut ¼ zcut=R
β
0: ðA3Þ

Here, θ̃⋆ ¼ θ⋆=R denotes the maximum angle of the soft
drop stopping subjet at a given jet mass m2

J and is given by

θ̃⋆ðm2
JÞ ¼ θ̃⋆ðm2

J; RpT; z0cutRβ; βÞ

≡ 2 cosh ηJ
R

�
m2

J

QQcut

� 1
2þβ

: ðA4Þ

The splitting function pgqðzÞ has the form

pgqðzÞ ¼
1þ ð1 − zÞ2

2z
: ðA5Þ

Finally, the prefactor e−Rq=CqðppÞ
0 in Eq. (A2) is given by

e
−Rq

�
m2
J

R2p2
T

�
CqðppÞ
0 ðm2

JÞ
¼ e

−Rq

�
m2
J

R2p2
T
;RpT;z0cutR

β ;β

�
CqðppÞ
0 ðm2

J;RpT;z0cutRβ;βÞ

¼
�Z

1

0

dθ̃2

θ̃2
αs

�
m2

J

θ̃RpT

�
CF

π

m2
J

θ̃2R2p2
T

pgq

×

�
m2

J

θ̃2R2p2
T

�
Θ
�
θ̃−

mJ

RpT

�
Θðθ̃⋆ppðm2

JÞ− θ̃Þ
�
−1
:

ðA6Þ

The result for C1ðm2
JÞ is valid in the soft drop operator

expansion region [17] given by combination of Eqs. (10)
and (19):

QΛQCD

m2
J

�
m2

J

QQcut

� 1
2þβ

≪ 1; m2
J ≪ zcut

Q2

4
: ðA7Þ

The first inequality in Eq. (A7) guarantees that the
collinear-soft radiation is perturbative, and the second
one ensures that the soft drop is active. Replacing the
“a ≫ b” by “a ¼ 3b” and m2

J by mtŝt in Eq. (A7), we find
that for top quark jets the constraints are satisfied forMJ ∈
½180; 187� GeV for pT ≥ 750 GeV, jηt;t̄j < 2.5 and our
standard choice of soft drop parameters, zcut ¼ 0.01 and
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β ¼ 2. From Fig. 10, we find that this also happens to be
precisely the region where the high-pT factorization
starts to become comparable to the decay factorization.
In the peak region for MJ ≲ 180 GeV, the decay pro-
ducts predominantly stop the soft drop, and C1 has little
role to play. For the far tail region MJ ≳ 190 GeV, one
needs to include fixed-order corrections to account for
transition to the no-soft-drop region, which we leave to
future studies.

APPENDIX B: RESULTS IN THE POLE-MASS
SCHEME

In this Appendix, we present results for fits of our
factorization formula in Eq. (64) to PYTHIA8 with hadro-
nization and with hadronizationþMPI employing the
pole-mass scheme mpole

t . In Figs. 15(a)–15(d), the pole-
mass scheme analogs of the results in Figs. 13(a)–13(d) for
the MSR mass scheme are shown. Apart from the mass
scheme change, we have carried out identical analyses, and
we again find that the spectra obtained from the factori-
zation theorem and PYTHIA8 are in quite good agreement.
We observe that the fittedmpole

t values are around 0.6GeV
smaller than the input mMC

t . This is again compatible with
the corresponding eþe− calibration result in Ref. [8] for the
ungroomed 2-jettiness distribution. The results supports the
conclusion of Ref. [8] that the pole mass cannot be directly
identified with the MC top-mass parametermMC

t . As for our
MSR mass analysis, the obtained fit values ofmpole

t are also
compatible within uncertainties for fits to PYTHIA8 with and
without MPI effects. As for the fits in the MSR scheme, the
dominant effect of adding MPI is to significantly increase
the scale of the hadronization parameterΩ��

1 → Ω��MPI
1 and to

modify x2 → xMPI
2 . Interestingly, the values obtained for the

Ω��
1 and x2 parameters with the top mass in the pole-mass

scheme are very similar to those of our MSR mass analysis,
while the values for Ω��MPI

1 and xMPI
2 slightly differ. At the

level of the precision of our analysis, the difference is,
however, not significant.
We note that the reason the fitted top-mass values in the

pole-mass scheme are 0.4–0.6 GeV smaller than the corre-
sponding mMSR

t ð1 GeVÞ fit results can be analytically
tracked down to the way both schemes have been imple-
mented at NLL order (see the last paragraph of Sec. III F). At
NLL order, the only difference in the factorization formulas
for the two mass schemes comes from the evolution of
mMSR

t ðRmÞ, where Rm is set to the scale of the bHQET jet
function JB. Since the typical scale of JBðŝt; δm;Γt; μÞ is
around 5 GeV in the peak region of the jet mass distribution,
which provides the highest top-mass sensitivity, it is
effectively mMSR

t ðRm ≃ 5 GeVÞ that is constrained by the
fitting procedure. Thus, at NLL order, the fitted value for
mMSR

t ðRm ≃ 5 GeVÞ in the MSR mass analysis is very
close to the fitted value of mpole

t in the pole-mass analysis.

(a)

(b)

(c)

(d)

FIG. 15. Comparison of PYTHIA8 without and with MPI to
the factorization theorems at NLL with mt in the pole-mass
scheme.
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The numerical difference between the obtained fit results for
mMSR

t ð1 GeVÞ and mpole
t therefore predominantly arises

from the R-evolution between approximately 5 GeV
and the reference scale Rm;0 ¼ 1 GeV, mMSR

t ð1 GeVÞ ¼
mMSR

t ð5 GeVÞ þ 0.53 GeV.
It is known that the pole mass has a renormalon

ambiguity of approximately ΛQCD; thus, the determi-

nation of mpole
t at higher order can in general expected

to be more uncertain than that of the short distance MSR
mass. This is compatible with interpreting, from the
point of view of anticipated higher-order analyses, the
difference between the results from directly fitting for

mpole
t and obtaining mpole

t via the MSR fit result via
mpole

t ¼mMSR
t ð1GeVÞþ0.17GeV, as an additional uncer-

tainity in the pole mass.
However, we note that when considering only results at

NLL order the numerical difference between the fitted pole
and MSR mass values can be attributed to the fact that the
pole mass scheme treats real radiation at all scales as
resolved, while the MSR mass mMSR

t ðRmÞ treats real
radiation for scales below the scale Rm as unresolved.
The conclusion that this leads to an ambiguity in the pole
mass definition only arises in the context of considering
higher-order perturbative corrections.
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