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We study the behavior of the bulk viscosity ζ in QCD near a possible critical end point. We verify the
expectation that ðζ=sÞ ∼ aðξ=ξ0Þxζ , where s is the entropy density, ξ is the correlation length, ξ0 is the
noncritical correlation length, a is a constant, and xζ ≃ 3. Using a recently developed equation of state
that includes a critical point in the universality class of the Ising model we estimate the constant of
proportionality a. We find that a is typically quite small, a ∼Oð10−4Þ. We observe, however, that this result
is sensitive to the commonly made assumption that the Ising temperature axis is approximately aligned with
the QCD chemical potential axis. If this is not the case, then the critical ζ=s can approach the noncritical
value of η=s, where η is the shear viscosity, even if the enhancement of the correlation length is modest,
ξ=ξ0 ∼ 2.
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I. INTRODUCTION

There are several programs dedicated to exploring the
phase diagram of quantum chromodynamics (QCD) at
heavy ion accelerator laboratories around the world [1].
A central feature of the phase diagram is a possible critical
end point of a first order phase transition between the
hadronic phase and the quark gluon plasma phase.
Experimentally, a critical point is expected to manifest
itself in terms of a nontrivial beasundm energy, rapidity, or
system size dependence of fluctuation observables [2].
In a static system fluctuation observables are controlled

by the critical equation of state [3–5]. The equation of state
near the QCD critical point is expected to be in the liquid-
gas (Ising) universality class. The equation of state of the
Ising model is known from lattice simulations [6], and
accurate parametrizations are available in the literature [7].
More recently, there have been efforts to map the Ising
equation of state onto the QCD phase diagram, taking into
account information from lattice QCD about the equation
of state and the susceptibilities at zero baryon chemical
potential [8,9].
The dynamic behavior of fluctuations is expected to be

governed by model H in the classification of dynamical
critical phenomena by Hohenberg and Halperin [10–12].
Model H is a hydrodynamic theory that describes coupling
of the order parameter field to a conserved momentum

density. It predicts the dynamic critical exponent for the
relaxation of the order parameter, and the critical behavior
of the transport coefficients, the shear viscosity η, the bulk
viscosity ζ, and the thermal conductivity κ. In model H
fluctuations of the order parameter with wave number
q ∼ ξ−1, where ξ is the correlation length, relax on a
timescale τ ∼ ξz, where z ≃ 3. This behavior is intermediate
between ordinary diffusion (z ≃ 2) and critical relaxation
of a conserved charge not coupled to fluctuations of the
fluid velocity (z ≃ 4). There is a very mild divergence in
the shear viscosity, as well as more pronounced critical
behavior in the thermal conductivity and bulk viscosity
[10,13–17],

η ∼ ξ0.05; κ ∼ ξ0.9; ζ ∼ ξ2.8: ð1Þ
Physical effects related to critical transport phenomena
have been observed in ordinary fluids. For example, the
critical behavior of the bulk viscosity manifests itself in
sound attenuation near the critical end point [17].
Recently, a number of authors have investigated the

dynamic evolution of fluctuations in an expanding QCD
medium. This includes studies of noncritical correlation
functions [18–20], simulations of critical stochastic diffu-
sion in an expanding medium [21], and deterministic
frameworks for the evolution of two-point [22–24] or
higher n-point functions [25] near a critical point.
There is a general expectation that the large critical

exponent in Eq. (1), combined with the strong deviation of
the QCD equation of state from scale invariance, will lead
to a substantial enhancement of the bulk viscosity and to
large effects on the evolution of a heavy ion collision near
a critical end point [26,27]. Our goal in the present work is
to study this problem more quantitatively, based on the
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equation of state constructed by Parotto et al. [9]. We will
verify the expected scaling behavior and estimate the
overall coefficient. We will also study the relaxation of
the bulk pressure near a QCD critical point. These results
complement earlier studies of noncritical contributions to
the bulk viscosity in QCD [28–31].

II. FLUCTUATIONS OF THE ENERGY DENSITY
AND PRESSURE

Fluctuations of the order parameter are governed by an
entropy functional S ¼ R

d3xs. The entropy functional of
the Ising model is a function of the densities

xA ¼ ðϵ;ψÞ; ð2Þ
where ϵ and ψ are the Ising energy density and order
parameter. The corresponding intensive variables are the
reduced temperature r and the magnetic field h,

XA ¼ −
∂s
∂xA ¼ ðr; hÞ: ð3Þ

We are following the notation of Landau and Lifshitz [32]
as well as Akamatsu et al. [23]. The analogous canonical
pair in QCD is

xa ¼ ðe; nÞ; Xa ¼ ð−β; βμÞ; ð4Þ
where ðe; nÞ are the energy and baryon density, β ¼ 1=T is
the inverse temperature, and μ is the baryon chemical
potential. We will assume that there is a map between the
intensive variables in QCD and the corresponding Ising
variables; see Fig. 1 and Sec. III. Fluctuations of the QCD
pressure are given by

δP ¼ ∂P
∂β

����
βμ

δβ þ ∂P
∂βμ

����
β

δðβμÞ ¼ −
eþ P
β

δβ þ n
β
δðβμÞ:

ð5Þ
Using the fact that ðβ; βμÞ is conjugate to ðe; nÞ we obtain

δP ¼ eþ P
β

∂s
∂ðδeÞ −

n
β

∂s
∂ðδnÞ : ð6Þ

The map between ðr; hÞ and ðβ; βμÞ induces a map between
the QCD densities ðe; nÞ on the Ising densities ðϵ;ψÞ. We
assume that the singular part of the QCD entropy density
is proportional to the Ising entropy density, ssingðe; nÞ ¼
AsIsðϵðe; nÞ;ψðe; nÞÞ. A common assumption is that the
images of the r and h axes in the QCD phase diagram are
approximately orthogonal, and that the Ising temperature
axis is almost aligned with the QCD chemical potential
axis,1 ∂ϵ=∂e ≃ 0 [8,9,33]. This implies that

δP ¼ eþ P
β

∂ψ
∂ðδeÞ

∂sIs
∂ψ −

n
β

∂ϵ
∂ðδnÞ

∂sIs
∂ϵ : ð7Þ

Onuki observed that the Ising entropy functional contains
a trilinear coupling between ϵ and ψ2, and as a result
fluctuations of the pressure couple to ψ2 [16,17]. This
means that correlation functions of δP are controlled by the
order parameter relaxation rate, and the slow relaxation
of ψ leads to a large enhancement in the bulk viscosity.
The presence of a trilinear coupling between ϵ and ψ2

in the Ising entropy S½ψ ; ϵ� can be understood from the
relation between entropy and Gibbs free energy2 [34]

expð−βG½ψ ; r�Þ ¼
Z

Dϵ expðS½ψ ; ϵ� − E=TÞ;

E ¼
Z

d3xðϵþ ϵ0Þ; ð8Þ

where E is the total energy, ϵ0 is the background energy
density, and T is the temperature. For small ϵ and ψ we can
expand the entropy functional as

S½ψ ;ϵ� ¼−
Z

d3x

�
kð∇ψÞ2þv

2
ψ2þu

4
ψ4þ γϵψ2þ 1

2C0

ϵ2
�

þS0þ
E
T0

; ð9Þ

Ising QCD

map

FIG. 1. Map from the Ising model to QCD for intensive
variables and conserved densities. Thermodynamic variables
are defined in the text. The maps R̄b

A and RA
b are defined in

Eqs. (25) and (26).

1We will reconsider this assumption in Sec. V.

2Note that there is some disagreement in the literature on
whether G½ψ ; r� should be called free energy or Gibbs free
energy. Zinn-Justin refers to this functional as a free energy, and
Eq. (3) of Asakawa et al. [8] as well as Parotto et al. [9] follow
that notation; but Akamatsu et al. [23] uses the term Gibbs free
energy and reserves the term free energy for F½h; r�.
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where k, v, u, and γ are constants. C0 is the heat capacity,
and S0 and T0 are the background entropy and temperature.
The free energy functional is

βG½ψ ; r� ¼
Z

d3x

�
kð∇ψÞ2 þ ṽ

2
ψ2 þ ũ

4
ψ4

�
ð10Þ

and ṽ ¼ vþ 2γC0ðT − T0Þ=T2
0, so the Legendre transform

generates the T dependence of the correlation length.
Note that in this Gaussian approximation γ is a constant,
independent of T. We will see in the following section that,
in general, γ scales with T − T0 according to a nontrivial
critical exponent.
Finally, combining Eqs. (7) and (9) we obtain the slow

mode contribution to fluctuations of the pressure

δP ¼ nTAanϵγψ2; ð11Þ

where we have defined anϵ ¼ ð∂ϵÞ=ð∂ðδnÞÞ.

III. CRITICAL ENTROPY FUNCTIONAL

We determine the critical entropy density using the Ising
equation of state constructed by Zinn-Justin [7]. We write
the Gibbs free energy as [7,35]

G½ψ ; r� ¼ h0M0R2−αgðθÞ; ð12Þ

where r ¼ ðT − TcÞ=Tc. The constants h0 and M0 will be
specified below, α ¼ 0.11 is the specific heat exponent, and
gðθÞ is a function that is given in Appendix. We use the
ðR; θÞ coordinates

ψ ¼ M0Rβθ; ð13Þ

r ¼ Rð1 − θ2Þ; ð14Þ

where β ¼ 0.33 is the order parameter exponent. Here,
R ∈ ½0;∞Þ and θ ∈ ½−θ0; θ0�, where θ0 is determined by
the condition h̃ðθ0Þ ¼ 0. Furthermore, h̃ðθÞ is a function
that appears in the magnetic equation of state

h ¼ h0Rβδh̃ðθÞ; ð15Þ

δ ¼ 4.78 is the external field exponent, and h̃ðθÞ is also
specified in Appendix. For this parametrization we find
θ0 ¼ 1.154. The value of θ0 determines the boundaries of
the first order region for r < 0, ψ� ¼ �M0Rβθ0.
We can expand the Gibbs free energy for small r and ψ .

We find

G½ψ ; r� ≃ h0M0

�
g�r2−α þ

1

2
m2

�r
2−α−2βðψ − ψ0Þ2 þ � � �

�
;

ð16Þ

where

g� ¼
�−0.84 r > 0

−1.58 r < 0
; m2

� ¼
�
1.00 r > 0

4.77 r < 0
;

ψ0 ¼
�

0 r > 0

ψ� r < 0
: ð17Þ

Note that in the mean field approximation we have α ¼ 0

and β ¼ 1=2, so that G ∼ 1
2
rψ2, as expected. Also note that

2 − α − 2β ¼ γ̃ is the susceptibility exponent. The Ising
energy density is

ϵ¼ ∂G
∂r ≃h0M0

�
g�ð2−αÞr1−αþ1

2
m2

�ð2−α−2βÞr1−α−2β

× ðψ −ψ0Þ2þ���
�
: ð18Þ

We can now determine an entropy functional that describes
fluctuations of the energy density at constant ψ by per-
forming a Legendre transformation, s½ψ ; ϵ� ¼ G½ψ ; r� − rϵ.
Expanding s for small values of the arguments gives

s½ψ ; ϵ� ≃ ð−g�Þð1 − αÞE2−α
1−α þ 1

2
m2

�E
2−α−2β
1−α ðψ − ψ0Þ2 þ � � � ;

ð19Þ

E ¼ ϵ

ð−g�Þð2 − αÞh0M0

: ð20Þ

We can now read off the trilinear coupling defined in the
previous section. We get

γ� ¼ m2
�

2ð−g�Þ
2 − α − 2β

ð2 − αÞð1 − αÞ jrj
1−2β: ð21Þ

There are two differences compared to the mean field
result in the previous section. The first is that the trilinear
coupling vanishes near the transition point, with a critical
scaling controlled by the exponent3 ð1 − 2βÞ ≃ 0.34. We
will see that this is more than compensated by the
divergence in the order parameter relaxation rate. The
second is that there is an amplitude ratio, which means
the coupling is different on the first order (r < 0) and
crossover (r > 0) of the transition. We find

γ� ¼
�

0.43r1−2β r > 0

1.10jrj1−2β r < 0
: ð22Þ

3Note that this exponent agrees with the exponent determined
using renormalization group arguments [16,34]. Halperin et al.
provide a diagrammatic argument that explains why the critical
scaling of γ is related to the specific heat and susceptibility
exponents.
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Note that the scaling with r can be converted to a scaling
relation involving the correlation length using jrj ∼ ξ−1=ν,
with ν ≃ 0.63. Indeed, Zinn-Justin provides a scaling form
of the correlation length

ξ ¼ ξ0R−νg1=2ξ ðθÞ; ð23Þ

where ξ0 is an overall scale and gξðθÞ ≃ ð1 − 5θ2=18Þ [7].
Parotto et al. construct a map XAðXbÞ from intensive

QCD variables Xa ¼ ð−β; βμÞ to Ising variables XA ¼
ðr; hÞ. The specific map considered in [9] is a simple
linear relation

T − Tc

Tc
¼ w̄ðrρ̄ sinðα1Þ þ h sinðα2ÞÞ;

μ − μc
Tc

¼ w̄ð−rρ̄ cosðα1Þ − h cosðα2ÞÞ; ð24Þ

where w̄; ρ̄, and α1;2 are parameters. Most of the work in
the existing literature [8,9,33] assumes that α1 ≃ 0 and
α2 ≃ π=2. We will discuss this assumption in more detail
below, but for now we will assume that α1 ¼ 0 and
α2 ¼ π=2. Parotto et al. choose w̄ ¼ 1; ρ̄ ¼ 2, and
A ¼ T3

c. They also use M0 ¼ 0.605 and h0 ¼ 0.394.
To determine the map between the conserved densities

we use the fact that the transformation between the
intensive variables can be specified in terms of the matrix
(see Fig. 1)

R̄b
A ¼ ∂XA

∂Xb
: ð25Þ

This map induces a relationship between the densities
xAðxbÞ, described by

RA
b ¼ ∂xA

∂xb : ð26Þ

Since the densities are conjugate to the intensive variables,
we must have

RA
bR̄

b
C ¼ δAC; ð27Þ

which implies that the matrix R is the inverse of R̄. In the
simple case that α1 ¼ 0 and α2 ¼ π=2 we obtain

anϵ ¼
∂ϵ

∂ðδnÞ ¼
ρ̄w̄
A

; ð28Þ

where we have used that the normalization of the Ising and
QCD entropy functional differ by a factor of A.

IV. CRITICAL BULK VISCOSITY

The bulk viscosity is determined by the Kubo relation

ζðωÞ ¼ −
1

9ω
ImGii;jj

R ðω; 0Þ; ð29Þ

where Gij;kl
R ðω; kÞ is the retarded correlation function of

the (spatial components) of the stress tensor

Gij;kl
R ðω; kÞ

¼ −i
Z

dtd3xe−iðωt−kxÞh½Πijð0; 0Þ;Πklðx; tÞ�iθðtÞ:

ð30Þ

The critical behavior arises from the contribution of the
nonequilibrium pressures to the trace of the stress tensor,
1
3
Πii ¼ δP, with δP given in Eq. (11). To compute the right-

hand side of the Kubo relation Eq. (29) we consider the
symmetric correlation function

GSðω; kÞ ¼ c
Z

dtd3xe−iðωt−kxÞhψ2ð0Þψ2ðt; xÞi; ð31Þ

where we have defined c ¼ ðnTAanϵγÞ2. In statistical field
theory we can factorize the correlation function and
determine the retarded correlator using the fluctuation-
dissipation relation. We get

GRðω;k¼ 0Þ¼ 2c
Z

dω0

2π

Z
d3k
ð2πÞ3fΔRðω−ω0;kÞΔSðω0;kÞ

þðS↔RÞg; ð32Þ

where ΔS;R are the symmetric and retarded correlation
functions of the order parameter ψ. The slow dynamics of ψ
is governed by a diffusion equation [10]

∂ψ
∂t ¼ λ0∇2

δG
δψ

þ θ: ð33Þ

Here, λ0 is a transport coefficient and θ is a stochastic force.
The noise correlator is

hθðx; tÞθðx0; t0Þi ¼ −2λ0T∇2δ3ðx − x0Þδðt − t0Þ: ð34Þ

The diffusion constant is D ¼ λ0=χ0 where the suscep-
tibility is given by

χk ¼
ξ2

1þ ðkξÞ2 : ð35Þ

The retarded and symmetric order parameter correlation
functions are
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ΔRðω; kÞ ¼ χk
Γk

−iωþ Γk
; ð36Þ

ΔSðω; kÞ ¼ 2χkT
Γk

ω2 þ Γ2
k

; ð37Þ

where Γk ¼ λ0k2=χk. The bulk viscosity is

ζðωÞ ¼ c
Z

d3k
ð2πÞ3

2Tχ2k
−iωþ 2Γk

: ð38Þ

We note that the order parameter field ψ is dimensionless.
We can absorb all dimensionful parameters in Eq. (33) into
a length scale, the noncritical correlation length ξ0, and a
noncritical relaxation time t0. These are two free para-
meters in the model H description of the QCD critical point,
in addition to the parameters that appear in the equation of
state. As a rough estimate of ξ0 we will use the entropy
density of the system and assume that sξ30 ¼ 1. We will
comment on this choice in Sec. VII. The relaxation time is
determined by the diffusion constant, D0 ¼ t0=ξ20.
The integral in Eq. (38) is easily performed in the ω → 0

limit. We find

ζ

s
¼ ðγR�anϵÞ2ðt0TÞ2

�
n
s

�
2 3

32π

�
ξ

ξ0

�
3.92

; ð39Þ

where we have taken into account the scaling of γ� ≡
γR�r

1−2β; see Eq. (21). The critical exponent xζ ¼ 3.92 is
larger than the one found by Onuki; see Eq. (1). We will
show in Sec. V that this is due to the fact that in Eq. (33) we
have neglected the coupling of the order parameter to the
momentum density of the fluid. The coupling γR�anϵ was
determined in Eqs. (21) and (28). For typical values of the
diffusion constant t0T is of order one; we have used t0 ≃
1.8 fm from [23]. The coefficient 3=ð32πÞ ∼ 3 × 10−2 is a
loop factor. The main uncertainty in Eq. (39) is the factor
n=s. For typical equations of state that put the critical end
point within reach of the RHIC beam energy scan program
this coefficient is quite small. For example, the equation of
state shown in Fig. 6 of Parotto et al. [9] has n=s ≃ 1=25.
We then get

ζ

s
¼

�
ξ

ξ0

�
3.92

�
6.6 × 10−5 r > 0

4.2 × 10−4 r < 0
: ð40Þ

We conclude that the critical enhancement in the bulk
viscosity is not large, unless the correlation length becomes
quite large. We will study the growth in the effective
correlation length in Sec. VI, and we will consider a
possible scenario that overcomes the suppression by n=s
in the following section.

V. REFINEMENTS

In this section, we will discuss two refinements to the
calculation described in the previous sections. The first
involves the treatment of the order parameter relaxation
rate. In model H it has been shown that the relaxation rate
Γk is governed by the coupling of ψ to the momentum
density of the fluid [10]. Consider, for example, the choice
ψ ¼ s=n. Then the conservation laws generate a coupling

of the form ð∂ψÞ=ð∂tÞ ¼ π⃗ · ∇⃗ψ þ � � �, where π⃗ is the
momentum density of the fluid. The momentum relaxation
rate has a very weak divergence, so that it makes sense to
approximate that rate by the noncritical shear viscosity η0
of the fluid. This is known as the Kawasaki approximation.
Within this approximation [10,17,36]

Γk ¼
Tξ−3

6πη0
KðkξÞ; ð41Þ

where

KðxÞ ¼ 3

4
½1þ x2 þ ðx3 þ x−1Þ arctanðxÞ�: ð42Þ

We will also use a refined parametrization of the order
parameter susceptibility

χk ¼
χ0

1þ ðkξÞ2−η ; ð43Þ

where η ≃ 0.036 is the correlation function exponent and
χ0 ¼ ξ20ðξ=ξ0Þ2−η. In this context we will continue to define
ξ0 by ðsξ30Þ ¼ 1, but we will take t0 ¼ cξ0, where c is the
speed of light, and the relaxation timescale is set by the
noncritical value of η0=s. We can now recompute the critical
contribution to the bulk viscosity in Eq. (38). We find

ζ

s
¼ ðγR�anϵÞ2ðt0TÞ

�
n
s

�
2 3

4π2

�
4π

η0
s

�
IK

�
ξ

ξ0

�
z−α=ν

; ð44Þ

where

IK ¼
Z

dy
y2

KðyÞð1þ y2−ηÞ2 ≃ 0.649 ð45Þ

is the result of a numerical integral, and we have used the
hyperscaling relation νd ¼ 2 − α ¼ 2β þ γ, where d ¼ 3 is
the number of spatial dimensions. For the Kawasaki
function we have z ¼ 3, which is close to the result in
the ϵ expansion, z ¼ 3.05. Using the values of α and ν
quoted above we find z − α=ν ≃ 2.8, which agrees with
Onuki’s result [16]. For η0=s ≃ 1=ð4πÞ the estimate in
Eq. (44) is numerically close to the result given above.
We find
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ζ

s
¼

�
4π

η0
s

��
ξ

ξ0

�
2.8
�
8.0 × 10−5 r > 0

5.2 × 10−4 r < 0
: ð46Þ

Wenote that the smallness of the pre-exponent in Eq. (46) is
mainly due to the small factor of (n=s). The appearance of
this factor is due to the assumption about the orientation of
the Ising axes in the QCD phase diagram made above
Eq. (7). It was recently observed that close to the chiral
limit this assumption is not correct, and that in models of
QCD this observation also applies to realistic values of the
quark masses [37]. To illustrate this fact we show in Fig. 2
the critical end point and the orientation of the Ising axes
in the randommatrix model introduced in [38]. The overall
scale was fixed by the requirement that Tχ , the phase
transition temperature in the chiral limit, and Tpc, the
pseudocritical temperature for the physical value of the
pion and kaon mass, is the same as in lattice QCD,
Tχ=Tpc ≃ ð132þ3

−6 MeVÞ=ð156.5� 1.5 MeVÞ [39]. In the
random matrix model this corresponds to a quark mass
mq ≃ 10 MeV. We find α1 ≃ 105° and α2 ≃ 165°. In this
case the dominant contribution to δP arises from

δP ¼ sT2Aaeϵγψ2 ð47Þ

with aeϵ ¼ ð∂ϵÞ=ð∂ðδeÞÞ. Using the mapping relation in
Eqs. (23) and (24) together with Eq. (27) we find Aaeϵ ¼
βρ̄ w̄ sinðα1Þ and

ζ

s
¼ sinðα1Þ2

�
4π

η0
s

��
ξ

ξ0

�
2.8
�
5.1 × 10−2 r > 0

3.2 × 10−1 r < 0
: ð48Þ

With sin2ðα1Þ ≃ 1=4 from Fig. 2 we observe that, at least
on the first order side of the transition, the critical bulk
viscosity can reach ζ=s ∼ 1=ð4πÞ, comparable to the
noncritical shear viscosity.4 Note that Eqs. (46) and (48)
are limiting cases, corresponding to sinðα1Þ2 ∼ 0 and
sinðα1Þ2 ≳ ðn=sÞ2, of a more general relation that involves
both anϵ and aeϵ. The more general result follows from the
coupling δP ¼ ρ̄w̄½s sinðα1Þ þ nðcosðα1Þ − βμ sinðα1ÞÞ�
TAγψ2.

VI. BULK VISCOSITY IN AN EXPANDING
SYSTEM

In a heavy ion collision the growth of the correlation
length is limited by the failure of the evolution to go
precisely through the critical point and by the finite time
available for the correlation length to reach its equilibrium
value [23,40]. The recent study [23] concludes that the
second effect dominates and that ξ=ξ0 is limited by ξKZ=ξ0
where ξKZ is the Kibble-Zurek scale. Akamatsu et al. [23]
estimate that ξKZ=ξ0 ∼ 1.33, so that the critical bulk
viscosity in Eq. (40) does not become large.
There is a second effect that appears even if the

correlation length does become large. Critical slowing
down also implies that the bulk pressure only relaxes
slowly to the equilibrium value ΔP ≃ ζð∇⃗ · u⃗Þ, where u⃗
is the fluid velocity [22]. The response ΔPðtÞ to a time-

dependent bulk stress ð∇⃗ · u⃗Þðt0Þ is given by

ΔPðtÞ ¼
Z

t
dt0Gðt − t0Þð∇⃗ · u⃗Þðt0Þ; ð49Þ

where GðtÞ is the Fourier transform of Eq. (38),

GðtÞ ¼ c
Z

d3k
ð2πÞ3 2Tχ

2
k exp ð−2ΓktÞ: ð50Þ

In the following, we will use the simple form Γk ¼ λ0k2χ−1k .
The result is easily generalized to the Kawasaki approxi-
mation in Eq. (41). The time integral ofGðtÞ is given by the
bulk viscosity ζ, and the asymptotic behavior of GðtÞ for
large t is governed by hydrodynamic tails GðtÞ ∼ 1=t3=2

[18,20,41–46]. The tail of the critical contribution is

GðtÞ
sT

¼ðγR�anϵÞ2ðt0TÞ
�
n
s

�
2 1

16π3=2

�
ξ

ξ0

�
5.92

�
t0
t

�
3=2

; ð51Þ

which has an even stronger dependence on the correlation
length than the static value of the bulk viscosity. We note,
however, that the asymptotic behavior only sets in at a
parametrically late time, ðt=t0Þ ≫ ðξ=ξ0Þ4.

0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

1.2

µ / Tc

T
/ T

c
r

h

FIG. 2. Ising model axes r and h in a random matrix model of
the QCD phase diagram. The axes of the plot are the quark
chemical potential μ and the temperature T in units of the critical
temperature in the chiral limit. The parameters of the model were
chosen as explained in the text. The contour lines show the chiral
susceptibility.

4Note that Parotto et al. [9] use α1 ¼ 3.85°, based on the
curvature of the freeze-out curve. This corresponds to
sinðα1Þ2 ≃ 4 × 10−3.
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We may also consider a bulk stress that is turned on at
t ¼ 0 and then study the evolution of ΔPðtÞ toward its

asymptotic value ΔPð∞Þ ¼ ζð∇⃗ · u⃗Þ. The relaxation is not
exponential. Instead, we find very slow relaxation

ΔPðtÞ ≃ ΔPð∞Þ
�
1 −

4

3

ffiffiffi
2

π

r �
ξ

ξ0

�
2
�
t0
t

�
1=2

�
; ð52Þ

where, again, the asymptotic behavior requires t ≫ ξ4.
For small t we find that ΔP grows linearly in t,

ΔPðtÞ ¼ 8

3

�
ξ0
ξ

�
4
�
t
t0

�
ΔPð∞Þ; ð53Þ

but the linear growth involves a much smaller power of
the correlation length. This behavior is shown in Fig. 3. We
observe that even for a modest enhancement of the
correlation length, ξ=ξ0 ¼ 1.5, the critical bulk pressure
relaxes on a timescale much slower than the natural
equilibration time t0.

VII. CONCLUSIONS AND OUTLOOK

In this work we have studied the critical bulk viscosity in
QCD. We find that the result is very sensitive to the
orientation of the Ising axes in the QCD phase diagram. It is
often assumed that the Ising temperature axis is aligned
with the QCD chemical potential axis and that the Ising
magnetic field axis is orthogonal to that. In that case, the
QCD bulk viscosity is suppressed by a factor of ðn=sÞ2.
If we include a possible misalignment of the Ising axes
our final result is given in Eq. (48). We observe that there is
significant dependence on what side of the phase transition
we are considering; the critical contribution to the bulk
viscosity is about an order of magnitude larger on the
first order side of the transition. In this regime the critical

enhancement of the bulk viscosity may become comparable
to the noncritical shear viscosity, even for a modest
enhancement of the correlation length, ξ=ξ0 ∼ 2.
We note that the overall scale for ζ=s is set by the two

parameters η0=s and sξ30. While η0=s is fairly well con-
strained by data, this is not the case for sξ30. We have
assumed that sξ30 ≃ 1, based on the idea that in a hadron gas
the correlation length cannot be shorter than the distance
between particles. However, the exact value of ξ0 will
depend on the composition of the gas and the precise
observable used to define the correlation length. For
example, the recent work of Akamatsu et al. [23] uses
ξ0 ≃ 1.2 fm. Combined with a freeze-out value sT3 ≃ 7

[47] this number corresponds to sξ30 ≃ 5.
We have also studied the response function for the bulk

pressure in the critical regime. As expected, relaxation is
very slow. The bulk pressure approaches its equilibrium
value as 1=

ffiffi
t

p
, and the initial rise of the bulk pressure

involves a much smaller power of the correlation length
than the scaling of ζ. Note that in the present work we have
only considered the Fourier transform of the equilibrium
response. A more complete treatment in an expanding
system would be based on computing the response from the
real time correlation functions of the order parameter in an
expanding medium [20,23].
Finally, we may compare our results to simple scaling

relations that have been discussed in the literature.
Weinberg proposed the relation ζ ∼ ðc2s − 1=3Þ2η, where
cs is the speed of sound [48]. This relation is satisfied in the
weak coupling limit of QCD [28], and it holds in simple
relaxation time models of kinetic theory [31]. Weinberg’s
relation predicts an enhancement of the bulk viscosity near
the critical point, but no critical divergence of the type
studied in this work. Based on an analysis of spectral sum
rules, Karsch et al. suggested a different scaling relation,
ζ=s ∼ ð1=c2s − 3Þ [26]. This formula predicts a mild diver-
gence of the bulk viscosity, ζ=s ∼ ξα=ν, much weaker than
our result ζ=s ∼ ξz−α=ν.
Implementations of second order nonconformal relativ-

istic fluid dynamics take into account a bulk viscous
relaxation time τζ. A typical assumption, motivated by
kinetic theory, is that τζ ∼ ζ=P [27,31]. This relation
captures in an approximate way the critical slowing down
of the response discussed in Sec. VI, but a simple relaxation
time approximation cannot capture the hydrodynamic tail
given in Eq. (51).
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APPENDIX: ISING EQUATION OF STATE

We use a parametrization of the Ising equation of state
constructed by Zinn-Justin [7]. We write

G½ψ ; r� ¼ h0M0R2−αgðθÞ ðA1Þ
with

gðθÞ ¼ gð1Þ þ c1ð1 − θ2Þ þ c2ð1 − θ2Þ2 þ c3ð1 − θ2Þ3;
ðA2Þ

and gð1Þ ¼ 0.0424455, as well as

c1 ¼ 0.321329; c2 ¼ −1.20375; c3 ¼ −0.00126:

ðA3Þ

The magnetic equation of state is h ¼ h0Rβδh̃ðθÞ with

h̃ðθÞ ¼ θ þ h1θ3 þ h2θ5 ðA4Þ

and

h1 ¼ 0.76201; h2 ¼ 0.00804: ðA5Þ
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