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We discuss the interacting hadron resonance gas model to describe the thermodynamics of hadronic
matter. While the attractive interaction between hadrons is taken care of by including all the resonances
with zero width, the repulsive interactions between them are described by a density-dependent mean field
potential. The bulk thermodynamic quantities are confronted with the lattice quantum chromodynamics
simulation results at zero as well as at finite baryon chemical potential. We further estimate the shear and
bulk viscosity coefficients of hot and dense hadronic matter within the ambit of this interacting hadron
resonance gas model.
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I. INTRODUCTION

Understanding the phase diagram of strongly interacting
matter is one of the important and challenging topics of
current research in strong interaction physics—both theo-
retically and experimentally. The theoretical framework
describing nuclear matter at a fundamental level is quantum
chromodynamics (QCD). At low temperature (T) and low
baryon chemical potential (μ) the fundamental degrees of
freedom of QCD are colorless hadrons, while at high
temperature and high baryon density the fundamental
degrees of freedom are colored quarks and gluons. Lattice
quantum chromodynamics (LQCD) simulations at zero
chemical potential and finite temperature suggest a crossover
transition for QCD matter from a hadronic phase to a quark-
gluon-plasma (QGP) phase [1–6]. At zero chemical poten-
tial, the chiral crossover temperature is estimated to be
Tc ∼ 156 MeV [7]. While LQCD simulations at vanishing
chemical potential have been quite successful, LQCD
simulations at finite μ have been rather challenging, par-
ticularly at high μ, leading to large uncertainties in estimating
the transition line in the T − μ plane of the QCD phase
diagram [8]. At small μ, however, precise computation of the
transition line has been carried out recently [9–11].
The low energy effective models of QCD, viz., the

Nambu-Jona-Lasinio model [12,13], the quark-meson-
coupling model [14], etc., provide a reasonable theoretical

framework to explore strongly interacting matter below the
QCD transition temperature, Tc. These models are based
on certain QCD symmetries, and they are tremendously
successful in describing many features of the QCD phase
diagram at zero as well at finite baryon density. Apart from
these symmetry-based models, another model that has also
been tremendously successful in describing the low temper-
ature hadronic phase of QCD is the hadron resonance gas
model (HRG). The hadron resonance gas model is the
statistical model of QCD describing the low temperature
hadronic phase of quantum chromodynamics. This model
is based on the so-called Dashen-Ma-Bernstein theorem,
which allows us to compute the partition function of the
interacting system of hadrons in terms of the scattering
matrix [15]. Using this S-matrix formulation of statistical
mechanics, it can be shown that if the dynamics of
thermodynamic system of hadrons is dominated by nar-
row-resonance formation, then the resulting system essen-
tially behaves like a noninteracting system of hadrons and
resonances [16–18]. This ideal HRG model, despite its
success in describing hadron multiplicities in heavy-ion
collisions [19–27], fails to account for the short-range
repulsive interactions between hadrons. It has been shown
that the repulsive interactions modeled via excluded vol-
ume can have a significant effect on thermodynamic
observables, especially higher order fluctuations [28–31],
as well as in the context of statistical hadronization [32].
One possible way to include these repulsive interactions is
through the van der Waals excluded volume procedure
[33,34]. Another approach is to treat the repulsive inter-
actions in a mean field way [35,36]. Recently, the relativ-
istic mean field approach has been used to calculate the
fluctuations of conserved charges [37]. This work dis-
cussed the repulsive mean field interactions which are
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present only at finite baryon density. They showed that the
deviations of higher order fluctuations estimated using the
ideal HRG can be accounted for by means of repulsive
interactions treated in a mean field way. The failure of the
ideal HRG model to explain the thermodynamical observ-
able can be attributed to the fact that at high temperature
and density, the relativistic virial expansion up to the
second-order virial coefficient cannot be a reasonable
approximation, and the validity of the HRG model needs
to be checked against its agreement with LQCD results.
In the past few decades relativistic and ultrarelativistic

heavy-ion collision experiments have provided a unique
opportunity to study the phase diagram of QCD. The
relativistic hydrodynamics has been tremendously success-
ful in simulating the evolution of matter created in HIC
experiments [38–46]. In the relativistic hydrodynamic
simulations the coefficients of shear and bulk viscosities
influence various observables, viz., the flow coefficients
and the transverse momentum distribution of produced
particles. In fact, it has been found that a finite but very
small shear viscosity-to-entropy ratio should be included in
the hydrodynamic description to explain elliptic flow data
[47,48]. Further, η=s obtained using AdS=CFT correspon-
dence [49] has put the lower bound on its value equal to 1

4π,
called the Kovtun-Son-Starinets (KSS) bound. This inter-
esting finding has motivated many theoretical investiga-
tions to understand and rigorously derive this ratio from a
microscopic theory [50–64]. The bulk viscosity coefficient
(ζ) is also important to include in the dissipative hydro-
dynamics. During the expansion of the fireball, when the
temperature approaches the critical temperature, ζ can be
large and can give rise to different interesting phenomena
like cavitation when the pressure vanishes and the hydro-
dynamic description breaks down [65,66]. The effect of bulk
viscosity on the particle spectra and flow coefficients has
been investigated in [67–69], while the interplay of shear and
bulk viscosity coefficients has been studied in Refs. [70–72].
The coefficient of bulk viscosity has been estimated for both
the hadronic and the partonic systems [73–107].
Hydrodynamic simulation of matter created in HIC

collision requires information regarding the equation of
state (EOS) as well as the transport coefficients. In this
work we analyze the QCD equation of state of hadronic
matter at finite baryon chemical potential. We employ the
hadron resonance gas model to estimate all the thermody-
namic quantities. While the attractive interactions between
hadrons are accounted for by including all the resonance
states up to 2.25 GeV, the short-range repulsive interactions
among hadrons are treated in the mean field approach. We
call this model the relativistic mean field hadron resonance
gas model (RMFHRG). The RMFHRG differs from the
Walecka-type mean field models in the sense that in the
former, the repulsive mean field interactions are present
even at zero baryon density unlike in the latter case. We
also estimate the shear and bulk viscosity coefficients of
hadronic matter within the ambit of the RMFHRG.

We organize the paper as follows. In Sec. II we compute
the pressure and other bulk thermodynamic quantities for
the interacting hadron resonance gas with a repulsive mean
field interaction. In Sec. III, we discuss the results for the
thermodynamics and confront them with the lattice simu-
lation results both at zero and finite chemical potential.
We then estimate the viscosity coefficients for hot and
dense hadronic matter within the ambit of the HRG model
with mean field interactions. Finally, in Sec. IV, we
summarize the findings of the present investigation and
give a possible outlook.

II. HADRON RESONANCE GAS MODEL WITH
A REPULSIVE MEAN FIELD POTENTIAL

Thermodynamic properties of the hadron resonance gas
model can be deduced from the grand canonical partition
function defined as

ZðV; T; μÞ ¼
Z

dm½ρbðmÞ lnZbðm;V; T; μÞ

þ ρfðmÞ lnZfðm;V; T; μÞ� ð1Þ

where ρb and ρf are the mass spectrum of the bosons and
fermions, respectively. We assume that the hadron mass
spectrum is given by

ρðmÞ ¼
XΛ
a

gaδðm −maÞθðΛ −mÞ ð2Þ

where ga is the degeneracy and ma is the mass of the ath
hadronic species. This discrete mass spectrum consists of
all the experimentally known hadrons with cutoff Λ. One
can set different cutoff values for baryons and mesons.
To include the effect of a repulsive interaction among

hadrons, we use a repulsive mean field approach as was
used in Refs. [35,36] and more recently in the case of
baryons in Ref. [37]. In this approach, it is assumed that the
repulsive interactions lead to a shift in the single particle
energy and is given by

εa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

q
þUðnÞ ¼ Ea þUðnÞ ð3Þ

where Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

p
and n is the total hadron number

density. The potential energy U represents a repulsive
interaction between hadrons, and it is taken to be a function
of total hadron density n. For any arbitrary interhadron
potential VðrÞ, the potential energy is UðnÞ ¼ Kn. Here,
the phenomenological parameter K is given by the integral
of the potential VðrÞ over the spatial volume [35,36].
In this work, we assign different repulsive interaction

parameters for baryons and mesons. We denote the mean
field parameter for baryons (B) and antibaryons (B̄) by KB,
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while for mesons we denote it by KM. Thus, for baryons
(antibaryons)

UðnBfB̄gÞ ¼ KBnBfB̄g ð4Þ

and for mesons

UðnMÞ ¼ KMnM ð5Þ

The total hadron number density is

nðT; μÞ ¼
X
a

na ¼ nB þ nB̄ þ nM ð6Þ

where na is the number density of the ath hadronic species.
Note that nB, nB̄, and nM are total baryon, antibaryon,
and meson number densities, respectively. Explicitly, for
baryons,

nB ¼
X
a∈B

Z
dΓa

1

eð
Ea−μaeff

T Þ þ 1

ð7Þ

where the sum is over all the baryons. Note that

dΓa ≡ gad3p
ð2πÞ3 , and μaeff ¼ qaμ −UðnBÞ is a baryon effective

chemical potential, with qa being the baryonic charge of the
ath baryon and μ the baryon chemical potential. Similarly,
for antibaryons

nB̄ ¼
X
a∈B̄

Z
dΓa

1

eð
Ea−μ̄aeff

T Þ þ 1

ð8Þ

where μ̄aeff ¼ ðq̄aμ − UðnB̄ÞÞ is an antibaryon effective
chemical potential with q̄a ¼ −qa, which is the corre-
sponding baryonic charge. For mesons,

nM ¼
X
a∈M

Z
dΓa

1

e
ðEa−KMnM Þ

T − 1
ð9Þ

where the sum is over all the mesons. Note that μ ¼ 0 for
mesons since the baryon charge is zero for them. In the
Boltzmann approximation, momentum integration can be
readily performed, and one can obtain much simpler
expressions for the number density. For baryons we get

nB ¼
X
a∈B

ga
2π2

m2
aTK2

�
ma

T

�
e
μa
eff
T ; ð10Þ

nB̄ ¼
X
a∈B̄

ga
2π2

m2
aTK2

�
ma

T

�
e
μ̄a
eff
T ; ð11Þ

where KnðzÞ is the modified Bessel function of order n.
For mesons we get

nM ¼
X
a∈M

ga
2π2

m2
aTK2

�
ma

T

�
e−

KMnM
T : ð12Þ

Equations (10)–(12) are self-consistent equations for
number density which can be solved numerically.
The total baryon (antibaryon) energy density is

ϵBfB̄g ¼
X

a∈BfB̄g

Z
dΓa

εa

e
½Ea−μaeff fμ̄eff g�

T þ 1

þ ϕBfB̄gðnBfB̄gÞ;

ð13Þ

and for mesons

ϵM ¼
X
a∈M

Z
dΓa

εa
e
εa
T − 1

þ ϕMðnMÞ ð14Þ

where ϕðnÞ represents the correction to the energy density
in order to avoid double counting the potential. It can be
determined using the condition that εa ¼ ∂ϵ

∂na. Taking the
derivative of the baryon energy density and using Eq. (4),
we get

∂ϕBfB̄g
∂nBfB̄g ¼ −KBnBfB̄g ð15Þ

and hence

ϕBðnBfB̄gÞ ¼ −
1

2
KBn2BfB̄g: ð16Þ

Similarly, for mesons one can obtain

ϕMðnMÞ ¼ −
1

2
KMn2M: ð17Þ

Pressure of the gas can now be readily obtained. For
baryons

PBfB̄gðT; μÞ ¼ T
X

a∈BfB̄g

Z
dΓa ln

�
1þ e−ð

Ea−μaeff
fμ̄a

eff
g

T Þ
�

− ϕBfB̄gðnBfB̄gÞ ð18Þ

and for mesons

PMðTÞ ¼ T
X
a∈M

Z
dΓa ln½1þ e−ð

εa
T Þ� − ϕMðnMÞ: ð19Þ

Finally, entropy density can be obtained from the
fundamental thermodynamic relation s¼ðϵþP−μnÞ=T.
It is worth noting that the effective interaction model we are
considering is different from the relativistic Lagrangian
model. In the latter case the repulsive mean fields are
present only at nonzero baryon density, while in the former
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case the repulsive interactions are present even at zero
baryon density.

III. RESULTS AND DISCUSSION

In the hadron resonance gas model it is customary
to include all the hadrons and resonances up to a certain
cutoff Λ. We include all the mesons and baryons up to
Λ ¼ 2.25 GeV listed in the Ref. [108]. The phenomeno-
logical parameter K is the spatially integrated value of the
interhadron repulsive potential. In Ref. [35] the potential
was taken to be the same for all hadrons, i.e., for all the
baryons and the mesons. In the present work we have taken
this parameter different for mesons and baryons. For
baryons we have taken it to be the same for all the baryons,
and the value is taken as in Ref. [37], namely, KB ¼
450 MeV fm3 for all baryons. Although different lattices
as well as chiral effective theories indicate that the strength
can be different for nucleon-nucleon, hyperon-hyperon, or
nucleon-hyperon interactions, there is not enough informa-
tion about hadrons to have a more realistic and sophisti-
cated mean field model. For the mesons we have taken a
much smaller value for the repulsion parameter KM ¼
50 MeV fm3 in the present study. The motivation in
choosing these two phenomenological parameters has been
that the lattice results are reasonably reproduced regarding
thermodynamics, and then use these parameters to estimate
the viscosity parameters, both at zero and at finite density.
Figure 1 shows the scaled pressure and the interaction

measure estimated within the ambit of the RMFHRG (blue
solid curve) at vanishing baryon chemical potential. The
dashed curve corresponds to ideal HRG results, while the
circles with error bars correspond to lattice QCD simulation
results [8]. We note that the effect of including the repulsive

mean field interaction is to suppress the thermodynamical
quantities compared to their ideal HRG estimation counter-
part (dashed magenta curve). While the HRG pressure
[Fig. 2(a)] starts to deviate from the lattice results at
T ∼ 160 MeV, the RMFHRG estimation agrees with the
lattice results all the way up to 190 MeV. It is not
reasonable to push the HRG model results above the
QCD transition temperature (Tc), which LQCD estimates
to lie in the range 155–160 MeV [7]. The reason for this is
twofold. First, the HRG approximation of the hadronic
matter might break down at high density near and above Tc.
Second, the hadrons do not exist above Tc. But a recent
study [29] shows that the hadrons do not melt quickly as
one would expect on the basis of the ideal HRG model. In
this study the authors analyzed the possible improvement
of the ideal hadron resonance gas model by including the
repulsive interactions between baryons. If one includes
the attractive and repulsive interactions between the
baryons through van der Waals parameters, while keeping
the meson gas ideal, the pressure of the hadron gas agrees
with the LQCD data all the way above Tc. We may
similarly conclude that the inclusion of repulsive mean
fields might push the validity of the HRG model well
above Tc. Nonetheless, we do not have any other strong
reason to believe this except for the apparent agreement
with the LQCD results.
Unlike pressure the interaction measure is somewhat

below LQCD results above T ¼ 150 MeV. It is an estab-
lished fact that the so-called heavy Hagedorn states, which
are missing in our model, contribute significantly to the
energy density. The rapid rise of energy density can be
explained by extending the ideal HRG model by including
continuum Hagedorn states along with the discrete states
above the cut off Λ in the density of states [78].
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FIG. 1. Scaled pressure (left panel) and the interaction measure (right panel) in the RMFHRG and ideal HRG for μ ¼ 0. The lattice
data are taken from Ref. [8].
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Figure 2 shows the scaled pressure and interaction
measure at finite baryon chemical potentials estimated
within the ambit of the RMFHRG. We note that the
RMFHRG is in reasonable agreement with LQCD results
even at finite baryon density. Further, the interaction measure
is in better agreement with the LQCD results at finite density
than in the μ ¼ 0 case. However, while making this
observation, we have to keep in mind that the lattice data
of Ref. [8] are estimated at order μ2. Figure 3 shows the
adiabatic speed of sound at finite baryon density. The
RMFHRG estimations of C2

s are within the error bars of

the LQCD results. Further, the C2
s has a minimum at T ¼

155 MeV for μ¼0 and at T ¼ 140 MeV for μ ¼ 300 MeV,
which is in very close agreement with the LQCD results.
The coefficients of shear and bulk viscosities can be

extracted from the relativistic Boltzmann equation. These
have been derived in Refs. [50,51] in the absence of any
mean fields. While various authors have used different
types of mean fields to include medium effects as well as
interactions and have derived the transport coefficients, a
rigorous, thermodynamically consistent derivation for the
expressions for different transport coefficients was derived
in Ref. [109], both in the presence of a scalar and a vector
mean field. The scalar mean field affects the mass, while
the repulsive vector mean field affects the chemical
potential. The potential considered here does not affect
the masses of the hadrons, and it is like a repulsive vector
field; its effect is manifested in the effective chemical
potential. In the relaxation time approximation of the
Boltzmann equation, the shear (η) and bulk viscosity (ζ)
coefficients are given by [50,51,109]

η ¼ 1

15T

X
a

Z
d3p
ð2πÞ3

p4

E2
a
ðτaf0a þ τ̄af̄0aÞ; ð20Þ

ζ ¼ 1

T

X
a

Z
d3p
ð2πÞ3

�
τaf0a

�
EaC2

nB þ
� ∂P
∂nB

�
ϵ

−
p2

3Ea

�
2

þ τ̄af̄0a

�
EaC2

nB −
� ∂P
∂nB

�
ϵa

−
p2

3Ea

�
2
�

ð21Þ

where f0 is the equilibrium distribution function with an
effective chemical potential including the mean field and
C2
nB is the speed of sound at constant baryon number
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FIG. 2. Scaled pressure (left panel) and the interaction measure (right panel) in the RMFHRG model at finite baryon chemical
potential. The lattice data are taken from Ref. [8].
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FIG. 3. Speed of sound in the RMFHRG model at finite baryon
density. The lattice data are taken from Ref. [8].
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density. Further, in Eqs. (21) and (20), τa is the relaxation
time for the ath hadronic particle species, while the barred
quantities correspond to those of antiparticles. In this work
we use the thermally averaged relaxation time, which for a
given species a is given by

τ−1a ¼
X
b

nbhσabvabi: ð22Þ

In the above, the sum is over all particles (b) other than
the particle a with which the scattering takes place; σab
is the total scattering cross section for the process
aðpaÞ þ bðpbÞ → cðpcÞ þ dðpdÞ, and vab is the relative
velocity given by

vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa · pbÞ2 −m2

am2
b

q
EaEb

: ð23Þ

Further, nb is the number density for particle species b
given, with gb as the corresponding degeneracy factor, as

nb ¼
gb

ð2πÞ3
Z

dpfbðpÞ ≃
gbT3

2π2
ðβmÞ2K2ðβmÞ expðβμbeffÞ

ð24Þ

where the last step is written down in the Boltzmann
approximation; here μbeff ¼ μ − KBnB for baryons, μbeff ¼
μ̄ − KBnB̄ for antibaryons, and μbeff ¼ −KMnM for mesons.
Finally, the thermal average cross section hσabvabi is

given as

hσabvabi ¼
R
d3pad3pbσabvabfaðpaÞfbðpbÞR

d3pad3pbfaðpaÞfbðpbÞ
: ð25Þ

The only unknown quantity in Eq. (25) is the total cross
section. We estimate it as follows. In the Born approxi-
mation, the scattering amplitude fðθ;ϕÞ for a particle with
mass m that encounters a scattering potential VðrÞ is given
by [110]

fðθ;ϕÞ ¼ −
m
2π

Z
d3rVðrÞ ¼ −

mK
ð2πÞ ð26Þ

and thus the cross section is given by

σ ¼ 4π

�
mK
2π

�
2

: ð27Þ

Then the thermal averaged cross section can be written
as [111,112]

hσabvabi ¼
σ

8m2
am2

bK2ðβmaÞK2ðβmbÞ

×
Z

∞

ðmaþmbÞ2
dS

½S − ðma −mbÞ2�ffiffiffi
S

p

× ½S − ðma þmbÞ2�K1ðβ
ffiffiffi
S

p
Þ ð28Þ

where
ffiffiffi
S

p
is the center-of-mass energy. Clearly, we have

suppressed the baryon/meson index in the expression for
the cross section in the parameter K in Eq. (27). It may be
relevant here to mention that, while the cross section is
independent of temperature and chemical potential, the
thermal averaged cross section hσvi, in general, depends
upon temperature and chemical potential. However, in
the Boltzmann approximation hσvi is independent of μ.
After evaluating the thermal averaged relaxation time for
each species, we estimate the viscosity coefficients using
Eqs. (20) and (21).
Figure 4 shows the ratio of shear viscosity to entropy

density as a function of temperature. We have compared the
ratio η=s estimated within the ambit of the RMFHRG with
various other model calculations [49,58,76,95,96]. The red
dashed curve corresponds to the Chapman-Enscog method
with constant cross sections [58]. The dashed green curve
corresponds to the relativistic Boltzmann equation in the
relaxation time approximation. The thermodynamic quan-
tities in this model have been estimated using the scaled
hadron masses and coupling (SHMC) model [96]. The
brown dashed curve corresponds to estimations made using
the relativistic Boltzmann equation in RTA. The thermo-
dynamic quantities are estimated within the excluded
volume hadron resonance gas model (EHRG) [95]. The
dot-dashed orchid curve corresponds to the η=s of meson
gas estimated using chiral perturbation theory [76]. While
the ratio η=s in our model is relatively large at low
temperature as compared to other models, it rapidly falls
and approaches the Kovtun-Son-Starinets (KSS) bound
at T ∼ 170 MeV.
Figure 5 shows the ratio of bulk viscosity to entropy

density as a function of temperature. In Fig. 5(a) the blue
solid curve corresponds to the RMFHRG compared with
that of the EHRG model (dashed magenta curve) [95] and
the SHMC model [96]. Note that the ratio ζ=s is smaller
when the repulsive interactions are treated in a mean field
way. Figure 5(a) shows the ratio ζ=s at finite baryon
chemical potential. At low temperature the ratio is larger at
finite μ; it drops below that of the μ ¼ 0 case at high
temperature. This observation may be attributed to the fact
that the entropy density rises much faster than that of ζ
itself at finite baryon density as compared to that of zero
baryon density case.
In the context of heavy nucleon-nucleon (NN) collision

experiments, viscosity coefficients can be estimated along
the freeze-out curve by finding the beam energy (

ffiffiffiffiffiffiffiffi
SNN

p
)

dependence of the temperature and chemical potential.
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This is extracted from a statistical thermal model descrip-
tion of the particle yield at various

ffiffiffiffiffiffiffiffi
SNN

p
[113–115]. We

use the parametrization of the freeze-out curve TðμBÞ given
in Ref. [114] as

Tð
ffiffiffiffiffiffiffiffi
SNN

p
Þ ¼ cþðT10 þ T20

ffiffiffiffiffiffiffiffi
SNN

p
Þ þ c−

�
T lim
0 þ T30ffiffiffiffiffiffiffiffi

SNN
p

�
;

ð29Þ

μð
ffiffiffiffiffiffiffiffi
SNN

p
Þ ¼ a0

1þ b0
ffiffiffiffiffiffiffiffi
SNN

p ð30Þ

where T10 ¼ −34.4 MeV, T20 ¼ 30.9 MeV=GeV, T30 ¼
−176.8 GeV MeV, T lim

0 ¼ 161.5 MeV, a0 ¼ 1481.6 MeV
and b0 ¼ 0.365 GeV−1. The functions cþ and c−
smoothly connect the different behaviors of center-of-mass
energies.
Figure 6 shows viscosity coefficients η=s and ζ=s along

the freeze-out curve. It can be noted that the fluidity
measure rapidly falls at low

ffiffiffi
S

p
, and then it remains almost

constant at higher
ffiffiffi
S

p
values. This indicates that the

matter produced in heavy-ion collision experiments with
a wide range of collision energies can exhibit substantial
elliptic flow.
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FIG. 5. The left panel shows the bulk viscosity to entropy density ratio estimated within the RMFHRG and compared with other model
estimations. These results are for μ ¼ 0. The right panel shows ζ=s at two different baryon chemical potentials.
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IV. SUMMARY

In this paper we confronted the RMFHRG with LQCD
at zero as well as finite density. The repulsive interaction
between hadrons is treated using the mean field approach.
The thermodynamic quantities estimated within the
RMFHRG are found to be in reasonable agreement with
LQCD at zero as well as finite chemical potential. The
agreement of the interaction measure ϵ − 3P=T4 estimated
within the RMFHRG is rather poor above T ¼ 145 MeV.
In fact, the interaction measure rises very rapidly near
Tc ∼ 156 MeV. This rapid rise of energy density can be
explained by extending the ideal HRG model by including
continuumHagedorn states alongwith the discrete states.We
used this RMFHRG equation of state to estimate the shear
and bulk viscosity coefficients of hadronic matter. We found
reasonable agreement of both the viscosity coefficients with
previous results. The shear viscosity to entropy density ratio
η=s estimated within the RMFHRG is large at low temper-
ature as compared to other calculations. This behavior is due

to the smaller cross section of mesons in our model. But η=s
estimated in our calculation rapidly drops at high temperature
and approaches the KSS bound at T ∼ 170 MeV.We further
found that η=s at finite chemical potential is smaller in
magnitude as compared to that of zero chemical potential, but
the overall behavior as a function of temperature does not
change.We also found reasonable agreement of the ratio ζ=s
with previous results. Finally, we have estimated viscosity
coefficients along the freeze-out line.We found that both the
ratios η=s and ζ=s attain constant values at high

ffiffiffi
S

p
values.

This indicates that thematter produced in heavy-ion collision
experiments with a wide range of collision energies can
exhibit substantial elliptic flow.
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