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In any calculation in perturbative quantum chromodynamics (QCD) a choice needs to be made for
the unphysical renormalization scale, μR. The Brodsky-Lepage-Mackenzie/principle of maximum
conformality (BLM/PMC) scale-setting procedure is one proposed method for selecting this scale.
In this work we identify three ambiguities in the BLM/PMC procedure itself. Their numerical impact is
studied using the example of the total cross section for tt̄ production through next-to-next-to-leading
order in QCD. One ambiguity is the arbitrary choice of the value of the highest-order PMC scale. The
numerical impact of this choice on the BLM/PMC prediction for the cross section is found to be
comparable to the impact of the choice of μR in the conventional scale-setting approach. Another
ambiguity relates to the definitions of the other PMC scales and is similarly found to have a large
impact on the cross section.
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I. INTRODUCTION

When performing calculations in quantum chromody-
namics (QCD), any partonic observable ρ is usually
calculated as a perturbative series in the strong coupling
constant αS:

ρ ¼
X
n

cnðμRÞ
�
αSðμRÞ
4π

�
n
: ð1Þ

The renormalization scale μR is an arbitrary parameter
which enters this equation following renormalization.
Formally, when working to all orders in αS, the μR
dependence of the coefficients cn exactly compensates
that of αS so that ρ is independent of μR. In practice,
however, the perturbative series is truncated beyond some
finite order, N, and this causes ρ to become μR dependent.
Conventionally, in processes with a single hard scale Q,

one chooses μR ¼ Q on dimensional grounds. Although
not essential for the goals of the present work, we would
like to mention that more refined arguments for choosing
this scale have been given in the literature [1–17]. Such
arguments tend to modify the choice μR ¼ Q by a factor of
Oð1Þ and are especially relevant for observables with
several kinematic scales.

The value of μR is then varied in a range ðQ=2; 2QÞ and
the resulting variation in the value of ρ is taken to be
representative of the error which arises from omitting the
OðαNþ1

S Þ terms from Eq. (1). While the choice of this
variation range is a matter of convention, its adequacy is
justified a posteriori by higher-order calculations.
The Brodsky-Lepage-Mackenzie/principle of maximum

conformality (BLM/PMC) method [18–20] has been pro-
posed as a way of removing the renormalization-scale
ambiguity. The method is based on an appealing physical
motivation and, as explained in Sec. II, it algorithmically
prescribes a “correct” value for the scale μR. The method
has been applied to a number of processes including Higgs
production [21], meson production [22–25], pion form
factors [26,27], b physics [28,29], and tt̄ production
[30–35]. Some possible generalizations of the BLM/
PMC method have been discussed in Refs. [36–40].
In this paper we address the following question: are

there any ambiguities associated with the BLM/PMC
method and what is their numerical impact?
Since scale variations are usually interpreted as repre-

senting theory uncertainties, the BLM/PMC method might
appear to eliminate uncertainties in theoretical predictions.
In Secs. II and IV, we will discuss the extent to which this
is true.
In order to keep our discussion less abstract we will

consider the process of top-pair production at hadron
colliders, which is well suited for this study given that it
is fully known through next-to-next-to-leading order
(NNLO), has generic kinematics and color structure,
and is very precisely measured. The application of the
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BLM/PMC method to this process has been extensively
studied [30–35]. We expect that many of our findings
transcend this particular process.

II. BACKGROUND: THE BLM/PMC
PROCEDURE AT NNLO

One applies the BLM/PMC method to a partonic
observable ρ like the one in Eq. (1). If this is a hadron
collider observable, as we would consider in this paper,
then two qualifications are required.
First, in order to construct the proper hadron-level

observable, Eq. (1) needs to be convolved with parton
distribution functions (PDFs) and summed over all possible
initial partonic states. Such partonic observables are not
uniquely defined since they depend on the scheme used to
subtract collinear singularities; we will not be concerned
with this here and will assume a given factorization scheme
(the MS scheme is standard).
Second, the perturbative coefficients cn also depend on

the unphysical factorization scale μF, which separates the
long-distance physics absorbed into the PDFs from the
short-distance physics in the perturbative coefficients cn.
The BLM/PMC method does not prescribe a value for μF.
In this work we will focus exclusively on the scale μR and
will fix the factorization scale at some standard value, as
was also done in the previous BLM/PMC work on the
subject [30–35]. For the total top-pair cross section this is
μF ¼ mt (although a smaller value μF ¼ mt=2may be more
appropriate [15]). In the following we will suppress the
explicit dependence of the coefficients cn and the observ-
able ρ on the partonic channel and factorization scale.
The idea behind the BLM/PMC method is to first

identify the terms proportional to the QCD β-function
coefficients βi inside the partonic coefficients cn and absorb
them into the running coupling by making a suitable choice
for the renormalization scale μR.
At next-to-leading order (NLO) in QCD, one can use the

BLM method [18] and, for any given process, uniquely fix
the value of μR by requiring the leading-order (LO) and
NLO perturbative coefficients cn to be independent of βi.
As it turns out, however, beyond NLO one cannot absorb
all βi coefficients into the running coupling with a single
choice of scale. The PMC method [46] extends the BLM
idea to higher-order QCD calculations by using a different
value for the renormalization scale at each order in αS. After
such a choice the partonic observable ρ in Eq. (1) takes the
form

ρ ¼
X
n

c̃n

�
αSðqnÞ
4π

�
n
; ð2Þ

for some new coefficients c̃n and scales qn. These new
scales and coefficients are chosen by requiring that

(i) the coefficients c̃n are independent of βi, and
(ii) Eqs. (1) and (2) agree through order αNS .

It is convenient to express the coefficients cn in Eq. (1)
through a new set of βi-independent coefficients sn;kðμRÞ.
As mentioned above, in the rest of this paper we will
specialize our discussion to the inclusive cross section for
top-quark pair production. This means that the sum in
Eqs. (1) and (2) goes from n ¼ 2 (the LO term) through
n ¼ N ¼ 4 (the NNLO term). In this context the coef-
ficients sn;kðμRÞ are defined by means of the following
implicit equations:

c2 ¼ s2;0;

c3 ¼ s3;0 þ 2s3;1β0;

c4 ¼ s4;0 þ 2s3;1β1 þ 3s4;1β0 þ 3s4;2β20: ð3Þ

The μR dependence of the coefficients sn;k follows from
the requirement that observables are independent of μR.
In particular, one finds that sn;0 have no dependence on μR.
We remark on a practical aspect of the procedure

outlined above. The βi dependence is inferred from the
known nf dependence of the cross section by inverting the
dependence of βi on nf:

β0 ¼ 11 −
2

3
nf; β1 ¼ 102 −

38

3
nf: ð4Þ

The above procedure requires the exclusion of nf contri-
butions from light-by-light-type diagrams that are not
associated with coupling renormalization. In the process
at hand, no light-by-light contribution is present in the qq̄-
initiated contribution. The gg-initiated one does contain
such diagrams at NNLO but these contributions have not
been separated in the existing literature. We thus neglect to
separate them in this work. To the best of our knowledge
they have likewise not been separately accounted for in the
previous applications of the BLM/PMC method to top-
quark pair production.
The PMC coefficients c̃n and scales qn are defined by

c̃n ¼ sn;0; ð5Þ

log

�
q22
μ20

�
¼ −

s3;1
s2;0

þ 3

2

��
s3;1
s2;0

�
2

−
s4;2
s2;0

�
β0

αS
4π

; ð6Þ

log

�
q23
μ20

�
¼ −

s4;1
s3;0

; ð7Þ

where sn;k ¼ sn;kðμ0Þ and αS ¼ αSðμ�Þ in Eq. (6).
Two new scales, μ0 and μ�, appear in Eqs. (6)–(7). The μ0

dependence of Eqs. (6)–(7) is purely formal: it can be
shown that the scales q2 and q3 are completely independent
of μ0. In other words, the μ0 dependence of the functions
sn;k is such that all μ0 dependence in Eqs. (6)–(7) cancels
between the two sides of those equations.
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Equation (6) also depends on the scale μ�, whose value is
arbitrary. This is so since a change in μ� only affects the
relation cn ↔ c̃n with terms beyond NNLO.
The term in the square brackets in Eq. (6) vanishes for

observables that respect the so-called large-β0 approxima-
tion. As follows from Refs. [41–44] this is not the case for
top-quark pair production. In the qq̄ partonic reaction
(introduced in Sec. III below) the square bracket term is
a pure number (see the related discussion in Ref. [45])
while the corresponding result for the gg reaction is only
known as a precise numeric fit [44].
Following Ref. [31], one also needs to subtract the so-

called “Coulomb” terms from all functions sn;k that enter
Eqs. (6)–(7) for all partonic reactions that contain such
terms. The subtraction procedure of the Coulomb terms
in top-quark pair production is explained in detail in
Sec. III below.
Clearly the choice of the scale μ� does have an impact on

the values of the scales qn and this represents one ambiguity
in the PMC procedure. We find its numerical impact to be
small and we suspect it is responsible for the very small
“initial renormalization-scale dependence” reported in
Ref. [32]. When presenting numerical results in Sec. IV,
we will therefore focus on two other ambiguities, which we
will now describe and whose numerical impact is larger.
We note that the PMC scales qn defined above are not the

only way to absorb the βi dependence of the coefficients cn
into the running coupling. For example, one could modify
Eqs. (6)–(7) by defining an alternative set of scales q0n,

log

�
q022
μ2R

�
¼ −

s3;1
s2;0

; ð8Þ

log

�
q023
μ2R

�
¼ −

s4;1
s3;0

þ s2;0
s3;0

��
s3;1
s2;0

�
2

−
s4;2
s2;0

�
β0; ð9Þ

which have the advantage of not containing the arbitrary
scale μ�. Clearly, the choice of whether to work with the
scales qn or q0n represents a second ambiguity in the
application of the PMC procedure.1 In what follows, we
carry out our calculations using the original scales qn as
well as the alternative scales q0n and explore the numerical
difference between the two.
The last PMC scale, q4, which appears at NNLO remains

arbitrary at this order. Its fixing requires the knowledge of
the βi-dependent terms in the next-to-NNLO (N3LO)
coefficient functions for tt̄ production. These are not
available at present. The arbitrariness of the scale q4
represents the third, and most significant, ambiguity which
we have identified in the PMC procedure. In Ref. [46], the
choice was made to set it equal to the previous known scale,
q3. While this is a plausible choice, we are not aware of a
motivation in its favor. In what follows, in order to illustrate

the significance of this ambiguity, we explore two choices:
q4 ¼ q3 and q4 ¼ mt, where mt is the (pole) mass of the
top quark.
Wewish to make one remark on the subject of theoretical

uncertainties. The BLM/PMC framework asserts that there
is a unique “correct” way of choosing the renormalization
scale, and that one should not try to estimate theoretical
uncertainties by varying this scale in the manner described
in Sec. I. Nevertheless, we emphasize that the “renormal-
ization-scale uncertainty” conventionally quoted in pertur-
bative QCD predictions is only a proxy for the error arising
from the truncation of the sum in Eq. (1). Prescribing a
procedure to choose μR may remove the way to estimate
this error but it cannot remove the error itself, even in the
absence of any ambiguities in the scale-setting procedure.

III. DETAILS ABOUT THE IMPLEMENTATION

All partonic contributions to the total inclusive NNLO
cross section for tt̄ production have been calculated in
Refs. [41–44], keeping their nf dependence explicit. As
explained above Eq. (4), we convert this nf dependence
into a dependence on the coefficients βi. The factorization
scale is set to mt in all partonic reactions. The value of the
renormalization scale for each partonic reaction is different,
according to what is prescribed for it by the PMC approach.
In fact we apply the PMC procedure only to the two
dominant partonic channels gg → tt̄þ X and qq̄ → tt̄þ X.
All other contributing partonic reactions are included, as
appropriate, only in the predictions for the complete
hadron-level cross section. For these subdominant chan-
nels, the standard choice μR ¼ μF ¼ mt is made.
In addition to depending on μR and μF, the partonic

cross-section coefficients cn also depend on mt and the
partonic center of mass energy ŝ through the following
variable:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =ŝ
q

: ð10Þ

As mentioned in the previous section, in order to derive
the PMC scales q2, q3 (or q02; q

0
3), in each of the qq̄ and gg

partonic reactions we first subtract the “Coulomb” terms
from the functions s3;0 and s4;1 (their explicit expressions
can be found in Ref. [47]). The Coulomb terms in the
function s4;0 are not subtracted since they do not enter the
scales q2, q3 (or q02; q

0
3) through NNLO. The Coulomb

terms are identified as the terms proportional to 1=v or
logðvÞ=v in the series expansion of the functions s3;0=v and
s4;1=v around v ¼ 0. The subtracted Coulomb contribu-
tions include terms ∼ logðμRÞ, as appropriate.
We only apply PMC scale setting to the remaining part of

the partonic cross section. The Coulomb terms are then
added back. Since they constitute only a small part of the
partonic cross section, we do not apply the PMC procedure
to the Coulomb terms themselves.1Arguments in favor of using qn have been given in Ref. [46].
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The reason for the separate treatment of the Coulomb
terms is that at sufficiently high orders, the integrability of
the cross section requires their factorization into a topo-
nium-like wave function. A detailed analysis can be found
in Ref. [48].
We find that the subtraction of the Coulomb terms has a

large impact on the PMC scales q2 and q3; in fact, failure to
subtract the Coulomb terms leads to q3 ≪ ΛQCD and hence
a divergent cross section.
Finally, in our numerical predictions for the hadronic tt̄

cross section we use the PDF set NNPDF3.1 [49] and we
set mt ¼ 173.3 GeV. We have verified that the PDF set
CT14 [50] produces similar results to those shown here.
We base our numerical calculations on a modified version
of the program TOP++ [51].

IV. RESULTS AND DISCUSSION

A. PMC scales for gg and qq̄ channels

Applying the formulas from Sec. II, we now derive the
PMC scales for the gg and qq̄ channels. We remind the
reader that these scales depend on the parton-level kin-
ematics (through the variable v for the case of the inclusive
tt̄ cross section) but are independent of PDFs and, by
extension, of the type of collider (pp versus pp̄) or collider
energy. The results are shown in Figs. 1 and 2 for,
correspondingly, the gg and qq̄ channels.
For the qq̄ channel (Fig. 2), it is interesting to observe

that in the kinematic region v ∈ ½0.7; 0.8�, the scale q3
reaches values as low as 4.6 GeV. In fact, without the
Coulomb subtraction procedure outlined in Sec. III, q3

takes values below 10−10 GeV in this kinematic region.
Similar singularities have previously been found in vector-
meson production [25].

B. Cross sections for tt̄ production at
LHC13 and Tevatron

Having derived the PMC scales for the gg and qq̄
channels, we will now calculate hadron-level cross sections
at the 13 TeV LHC and also at the Tevatron. For each
collider, we will compare the results from PMC scale
setting to those from the conventional approach (μR ¼ mt).
For the latter, uncertainties are computed by varying μR
in the range ðmt=2; 2mtÞ.2 We remind the reader that
throughout this work we have fixed μF ¼ mt.
In this section, we use the “standard” choice of PMC

scales, i.e., the scales q2 and q3 as defined in Eqs. (6) and
(7), and setting q4 ¼ q3. The effect of alternative choices
will be explored in Sec. IV C.
At the 13 TeV LHC, using the BLM/PMC method, we

obtain the following prediction for the total hadron-level
cross section for pp → tt̄þ X:

σBLM=PMC ¼ 813 pb: ð11Þ

For comparison, the predicted cross section using conven-
tional scale setting is

σConventional ¼ 794þ28
−39 pb; ð12Þ

FIG. 1. The PMC scales q2, q02, q3, q
0
3 for the gg channel as

functions of the relative velocity of the final-state top quarks.
FIG. 2. As in Fig. 1 but for the qq̄ channel.

2No numerical estimate is made for the theoretical uncertainty
in the BLM/PMC predictions, as explained at the end of Sec. II.
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and the most recent precise experimentally measured
values from ATLAS [52] and CMS [53] are

σATLAS ¼ 818� 8� 27� 19� 12 pb; ð13Þ
σCMS ¼ 803� 2� 25� 20 pb: ð14Þ

At the Tevatron, we find the following BLM/PMC
prediction for the total pp̄ → tt̄þ X cross section:

σBLM=PMC ¼ 6.48 pb: ð15Þ

For comparison, the cross section using conventional scale
setting is

σConventional ¼ 7.06þ0.21
−0.25 pb; ð16Þ

and the experimentally measured value [54] is

σExperimental ¼ 7.60� 0.41 pb: ð17Þ

To examine the origin of these values, the contributions
of the two dominant partonic channels (gg and qq̄) to these
cross sections are shown in Tables I (for the LHC) and II
(for the Tevatron). In each case, a breakdown is provided,
showing the contributions from each power of αS.
In both tables it can be seen that the BLM/PMC

procedure leads to a slower convergence than in conven-
tional scale setting. Similar behavior has previously been
discussed in Refs. [36,55,56].

C. Effect of ambiguities

We next explore the effects of the ambiguities in the
BLM/PMC procedure which were outlined in Sec. II.

In order to do so, we recompute the above cross sections
using a variety of choices for the PMC scales (q2, q3, q4):
(1) (q2, q3, q3) First, we restate the results using the

“standard” choice of PMC scales which were used in
the previous section.

(2) (q2, q3, mt) Second, we study the numerical impact
of the arbitrary choice of the scale q4 by setting
q4 ¼ mt rather than q4 ¼ q3.

(3) (q02; q
0
3; q

0
3) Third, we explore the other main ambi-

guity discussed in Sec. II, by using the scales q0n
rather than qn.

(4) (mt) For the purposes of comparison, we also present
the results using the conventional choice μR ¼ mt.

The contribution of the gg channel to the 13 TeV LHC
cross section, as predicted by each of these choices of
scales, is shown in Table III. Similarly, the contribution of
the qq̄ channel is shown in Table IV. The total cross section,
incorporating the contributions from all partonic channels,
is shown in Table V, where alongside the LHC results, we
also provide results for the Tevatron.
The ambiguity over whether to choose the scales qn or

the scales q0n has effects that vary in size between partonic

TABLE I. Contribution of the qq̄ and gg channels to σpp→tt̄þX
at the 13 TeV LHC at each order in αs.

qq̄ channel gg channel

PMC Conv. PMC Conv.

α2s [pb] 62.4 68.5 405.7 406.9
α3s [pb] 41.7 8.5 256.4 220.8
α4s [pb] −32.3 4.7 76.4 81.5
NNLO [pb] 71.8 81.8þ1.9

−2.2 738.4 709.2þ28.1
−37.2

TABLE II. As in Table I but for σpp̄→tt̄þX at the Tevatron.

qq̄ channel gg channel

PMC Conv. PMC Conv.

α2s [pb] 4.55 4.89 0.39 0.39
α3s [pb] 3.31 0.96 0.41 0.33
α4s [pb] −2.24 0.42 0.19 0.18
NNLO [pb] 5.62 6.27þ0.16

−0.20 0.98 0.91þ0.07
−0.07

TABLE IV. As in Table III but for the qq̄ channel.

PMC Conv.

(q2, q3, q3) (q2, q3, mt) (q02, q
0
3, q

0
3) mt

α2s [pb] 62.4 62.4 65.1 68.5
α3s [pb] 41.7 41.7 28.4 8.5
α4s [pb] −32.3 −5.2 −14.8 4.7
NNLO [pb] 71.8 98.9 78.7 81.8þ1.9

−2.2

TABLE V. Total hadronic cross section (including all partonic
channels) through NNLO.

LHC13 Tevatron

σPMC½q2; q3; q3� 813 6.48
σPMC½q2; q3; mt� 818 8.30
σPMC½q02; q03; q03� 820 6.97
σConventional½mt� 794þ28

−39 7.06þ0.21
−0.25

σExperimental 818� 36 [ATLAS] 7.60� 0.41
803� 32 [CMS]

TABLE III. The gg channel’s contribution to the LHC13 cross
section for various PMC scale choices.

PMC Conv.

(q2, q3, q3) (q2, q3, mt) (q02, q
0
3, q

0
3) mt

α2s [pb] 405.7 405.7 405.4 406.9
α3s [pb] 256.4 256.4 256.7 220.8
α4s [pb] 76.4 53.8 76.4 81.5
NNLO [pb] 738.4 715.9 738.5 709.2þ28.1

−37.2
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channels. In the gg channel, where q0n ≈ qn (cf. Fig. 1), the
scales q0n produce similar results to the scales qn, as can be
seen in Table III. In the qq̄ channel, however, the scales q0n
differ more substantially from qn (cf. Fig. 2) and the impact
on the cross section is therefore larger, as shown in
Table IV. The effect of this ambiguity on the overall cross
section, shown in Table V, is therefore more significant at
the Tevatron (where the qq̄ channel dominates) than at the
LHC (where the gg channel dominates).
The ambiguity over the choice of q4 has a large impact

on the value of the cross section in both of the dominant
partonic channels (see Tables III and IV). We note that the
numerical impact of the choice of q4 on the BLM/PMC
predictions is comparable to that of the choice of μR on the
conventional predictions. When the contributions from all
partonic channels are combined into a hadron-level cross
section (Table V), the effect of the q4 ambiguity somewhat
cancels between channels in the LHC cross section, but is
significantly larger in the Tevatron cross section. In
principle, the BLM/PMC method does prescribe a value
for q4, but it requires information from the currently
unknown N3LO cross section. Note, however, that a new
arbitrary scale, q5, would appear at N3LO: any calculation
using the BLM/PMC method will always involve one
arbitrary scale.

D. Comparison of strategies to handle the q4 ambiguity

It was found in the previous section that the ambiguity
over the highest-order scale, q4, has a significant impact on
the prediction for the cross section. In the literature
describing the BLM/PMC method, it is suggested
[20,46] that the ambiguity could have been resolved if
we had information from the next perturbative order in αS.
In this section, we will explore four ways of handling the
ambiguity over the highest-order scale, including the
suggested approach of “peeking” at the next perturbative
order. We choose to work with the NLO cross section,
allowing us the possibility to “peek” at the NNLO cross
section when setting the PMC scales.
Only two scales appear in the NLO cross section: q2 and

q3. At this order in perturbation theory, q3 is arbitrary since
it relies on information appearing in the NNLO cross
section [cf. Eqs. (7) and (9)]. We will calculate the NLO
cross section while exploring the following possible
choices for the PMC scales (q2, q3):
(1) (q02, q

0
2): Of the PMC scales defined in Sec. II, the

only one that does not require information from the
NNLO calculation is the scale q02 [cf. Eq. (8)]. (In
fact, q02 was the scale prescribed in the original BLM
paper [18].) Hence, one option is to set both PMC
scales to be q02.

(2) (q02, mt): To explore the impact of the arbitrary scale
q3 without relying on any NNLO information, we
can set q3 ¼ mt and compare against the results of
the previous scale choice.

(3) (q02, q
0
3): If we allow ourselves to peek at the NNLO

cross section, we can use the full NNLO PMC scales
q02 and q03 defined in Eqs. (8) and (9).

(4) (q2, q3): Alternatively, again peeking at the NNLO
cross section, we could choose to use the scales qn
[defined in Eqs. (6) and (7)] rather than q0n.

The resulting contributions of the gg and qq̄ channels to
the LHC cross section are shown in Tables VI and VII
respectively. The total NLO cross section, incorporating the
contributions from all partonic channels, is shown in
Table VIII, where alongside the LHC results, we also
provide results for the Tevatron.
Comparing the choices ðq02; q02Þ, ðq02; mtÞ, and ðq02; q03Þ,

one sees that the numerical impact of the choice of q3 on
the PMC prediction can be similar to the impact of the
choice of μR on the conventional prediction. This is
analogous to the findings of the previous section in relation
to the q4 ambiguity at NNLO.
We note that the scale choices ðq02; q02Þ and ðq02; mtÞ—

obtained using only information available at NLO—lead to
very different cross sections compared to the scale choices
ðq02; q03Þ and ðq2; q3Þ, which were obtained by peeking at
the next perturbative order. In other words, when handling

TABLE VI. The gg channel’s contribution to the LHC13 cross
section at NLO using various scale choices.

PMC Conv.

(q02; q
0
2) (q02; mt) (q02; q

0
3) (q2, q3) mt

α2s [pb] 405.4 405.4 405.4 405.7 406.9
α3s [pb] 221.3 222.3 256.7 256.4 220.8
NLO [pb] 626.7 627.7 662.1 662.1 627.7þ67.6

−63.6

TABLE VII. As in Table VI but for the qq̄ channel.

PMC Conv.

(q02; q
0
2) (q02; mt) (q02; q

0
3) (q2, q3) mt

α2s [pb] 65.1 65.1 65.1 62.4 68.5
α3s [pb] 11.2 12.2 28.4 41.7 8.5
NLO [pb] 76.3 77.2 93.5 104.1 77.0þ1.3

−3.9

TABLE VIII. Total hadronic cross section (including all par-
tonic channels) through NLO. For NNLO, see Table V.

LHC13 Tevatron

σPMC½q02; q02� 709 6.52
σPMC½q02; mt� 711 6.51
σPMC½q02; q03� 762 7.86
σPMC½q2; q3� 773 8.59
σConventional½mt� 711þ71

−69 6.51þ0.30
−0.44

σExperimental 818� 36 [ATLAS] 7.60� 0.41
803� 32 [CMS]
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the ambiguous highest-order PMC scale, the two
approaches appearing in the literature (to either use an
existing PMC scale or instead peek at the next perturbative
order) yield very different results to one another, as well as
to other plausible choices for this scale. The arbitrary
choice of a value for the highest-order PMC scale thus
remains an open problem.

V. CONCLUSION

The BLM/PMC procedure is a proposed method for
eliminating the renormalization-scale ambiguity in pertur-
bative QCD. In this work, we have presented three
ambiguities in the BLM/PMC procedure itself. We have
studied these ambiguities using the example of tt̄ produc-
tion at NNLO in QCD and have found two of the
ambiguities to have a significant numerical impact on
the computed cross sections.
One of these ambiguities lies in the definition of the PMC

scales qn: we gave an example of an alternative set of scales,
q0n, which satisfy the PMC requirement that terms propor-
tional to the QCD β-function coefficients are to be absorbed
into the running coupling. The other ambiguity arises
because in any calculation employing the BLM/PMC
scale-setting procedure, the highest-order scale (in this case,
q4) remains arbitrary. We found the numerical impact of
each of these ambiguities to be comparable to the impact of
the choice of μR in the conventional scale-setting approach.

In the existing literature on the BLM/PMC method, it is
asserted that the q4 ambiguity could in principle be
resolved by using information from even higher perturba-
tive orders, and that it should otherwise by handled by
using an existing PMC scale. We found that the cross
sections arising within these two approaches can differ
markedly from one another, as well as from the cross
sections arising from other plausible choices for this scale.
In summary, while the BLM/PMC procedure is well

motivated, it contains important ambiguities with significant
numerical impact on the predicted values for physical
observables. We also emphasize that even an unambiguous
scale-setting prescription would not remove the theoretical
uncertainties in physical predictions, since these uncertainties
ultimately arise frommissinghigher orders inαS.Wehopeour
work will lead to an improved understanding of the problem
of scale settings which, in turn, should result in improved
theoretical predictions for hadron collider processes.
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