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We study the probability for no jets with transverse momenta above a given cut to be found in the
rapidity region between two high PT jets with a large rapidity separation. Our investigation uses the parton
shower event generator DEDUCTOR with color beyond the leading-color-plus approximation included
perturbatively.
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I. INTRODUCTION

In the collision of two high energy protons, it can happen
that two partons scatter with a fairly small angle but still
with substantial transverse momenta. This produces two
high PT jets with a large difference in rapidity. At this Born
level, there are no jets in the rapidity interval between the
two high PT jets. We say that there is a rapidity gap. Further
QCD radiation can produce jets in the gap region, so that
the rapidity gap does not survive.
In this paper, we investigate the role of color in the gap

survival probability using the parton shower event gen-
erator DEDUCTOR [1–10], which incorporates a systemati-
cally improvable approximation with respect to QCD
color [11].
To state the physical problem precisely, consider events

in proton collisions at
ffiffiffi
s

p ¼ 13 TeV. Using the anti-kT jet
algorithm [12] with a radius parameter R, find jets with
transverse momenta PT and rapidities y with −Ycut <
y < Ycut. We will use Ycut ¼ 4.4. Label the two highest
PT jets 1 and 2, with y1 < y2. Define

p̄T ¼ 1

2
ðPT;1 þ PT;2Þ;

y12 ¼ y2 − y1: ð1Þ

Now define a cut parameter pcut
T . We will take pcut

T ¼
20 GeV. Look at those jets with PT > pcut

T in the rapidity

region y1 < y < y2 between the two leading jets. We will
say that the event has a rapidity gap if there are no such jets
in this rapidity region.
For given values of p̄T and y12, let fðp̄T; y12Þ be the

fraction of events that have a gap. That is, f is the ratio of
the cross sections

fðp̄T; y12Þ ¼
dσðgapÞ=½dp̄Tdy12�
dσðtotalÞ=½dp̄Tdy12�

: ð2Þ

We can interpret f as the probability that the gap survives
after accounting for radiation beyond the Born level 2 → 2
scattering process. An alternative formulation is

fðp̄T; y12Þ ¼ 1 −
dσðno gapÞ=½dp̄Tdy12�
dσðtotalÞ=½dp̄Tdy12�

: ð3Þ

Here dσðno gapÞ=½dp̄Tdy12� is the cross section to have
the two gap-defining jets plus at least one more jet with
PT > pcut

T in the gap region. This formulation is useful for
perturbative calculations because both the numerator and
the denominator in the second term are infrared safe cross
sections that can be calculated at next-to-leading order
(NLO).
There is a practical reason to explore the calculation of

the gap fraction f. In experimental investigations, it is often
useful to look at some number of jets with transverse
momenta PT ∼Q, where Q is large, say hundreds of GeV.
These high PT jets can be a signal of physics beyond the
Standard Model and are the objects of primary interest. In
order to reduce backgrounds, it may be useful to impose a
requirement that there be no jets beyond this that have PT
greater than some value pcut

T , where pcut
T ≪ Q. If one does

this, one needs to be able to estimate the fraction of signal
events with no extra jets and the fraction of background
events with no extra jets. The calculation of these fractions
involves potential large logarithms, logðQ=pcut

T Þ. The large
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logarithms can spoil the usefulness of a calculation at a
fixed order of perturbation theory. One can try to sum the
large logarithms with an analytic calculation, but, as we
suggest below, this is not entirely straightforward. An
alternative is to use a parton shower event generator.
This is the subject of this paper. The gap cross section
defined above is the simplest example of a cross section
that involves vetoing against extra jets.
There is also a motivation within QCD theory for

examining the behavior of the gap fraction fðp̄T; y12Þ. In
the case that y12 is large, the behavior of f as a function of
p̄T and y12 is a matter of substantial theoretical interest
because it brings together several issues concerning the
structure of QCD.
The perturbative expansion of the gap fraction f con-

tains two sorts of large logarithms. First, the logarithm
logðp̄T=pcut

T Þ can be large. Second, the rapidity separation
y12, which plays the role of a logarithm, can be large.
At order αNs , a perturbative calculation can give us a factor
of ½y12 × logðp̄T=pcut

T Þ�N , so a summation of large loga-
rithms is called for.
The summation of the large logarithms in f is reviewed

in Ref. [13]. In the simplest approximation for an analytic
summation of leading logarithms [14,15], one uses the
exponential of a Sudakov exponent constructed from the
one loop graphs for the virtual exchange of a low transverse
momentum gluon. However, the analytic treatment is not
straightforward [16], so that a complete analytic summation
is not available. The logarithms to be summed are “non-
global” in that emissions into the gap region count differ-
ently from emissions outside of the gap region [17–20].
There are imaginary contributions, in which a factor y12 is
replaced by a factor iπ. Furthermore, in some contributions,
a factor of y12 or iπ becomes a factor of logðp̄T=pcut

T Þ
[13,21–23].
An alternative to an analytical summation of the large

logarithms associated with f is the use of a parton shower
event generator like DEDUCTOR, which we use in this paper.
We expect this to be useful because the splitting functions
used in such a generator reflect the soft and collinear
singularities that lead to the large logarithms. Furthermore,
a parton shower treatment conserves momentum exactly at
each step, whereas analytic treatments sometimes neglect
the momentum of soft gluons.
One can worry that factors of y12 that arise from

integrating emissions over a range y1 < y < y2 may not
be properly generated in a hardness ordered shower like
DEDUCTOR if emitted gluons have roughly the same trans-
verse momentum PT. Perhaps it would be better to use a
shower based on evolution in rapidity like HEJ [24,25].
However, with the ordering variable Λ2 that is the default in
DEDUCTOR and is used in this paper, it is possible to have
successive gluon emissions with similar PT values if the
rapidities y of the emitted gluons are very different. This
kinematic feature is discussed in some detail in Ref. [6].

The partons in the developing event radiate because they
carry QCD color. In the very simplest approximation, the
probability for gluon radiation from a quark is proportional
to CF ¼ ðN2

c − 1Þ=ð2NcÞ and the probability for gluon
radiation from a gluon is proportional to CA ¼ Nc, where
Nc ¼ 3 is the number of colors. In a somewhat more
sophisticated calculation, one can calculate emission prob-
abilities in the leading color (LC) approximation, keeping
contributions of leading order in an expansion in powers of
1=N2

c . However, it is not self-evident that the leading color
approximation is adequate for such a calculation. For
instance, the perturbative expansion of the gap fraction
can contain terms of the form ð1=N2

cÞ½αsy12 logðp̄T=pcut
T Þ�N .

If we do not work beyond leading color, we lose such
contributions.
In order to study the effect on the gap fraction of color

beyond the leading color approximation, we use DEDUCTOR.
The base color approximation in DEDUCTOR is the
LCþ approximation [4], which includes some contributions
that are suppressed by factors of 1=N2

c . The effects of using
the LCþ approximation are described in Ref. [8]. With the
current version1 of DEDUCTOR, we can go beyond the
LCþ approximation. As explained in Ref. [11], the operator
that generates parton splittingswith exactly the color content
dictated by QCD Feynman diagrams is an operator denoted
HIðtÞ. In the LCþ approximation,HIðtÞ is approximated by
an operatorHLCþðtÞ that has a simpler color structure. To get
from the LCþ approximation to full color for splittings, we
need another operator, ΔHðtÞ, defined by

HIðtÞ ¼ HLCþðtÞ þ ΔHðtÞ: ð4Þ

Similarly, the operator that generates approximate virtual
graphs in a shower with exactly the color content dictated by
QCD Feynman diagrams is an operator denoted VðtÞ. This
operator is used to construct the Sudakov factor for each
shower step. In the LCþ approximation, VðtÞ is approxi-
mated by an operator VLCþðtÞ. To get to full color for
the virtual diagrams, we need another operator, ΔVðtÞ,
defined by

VðtÞ ¼ VLCþðtÞ þ ΔVðtÞ: ð5Þ

The added contribution ΔVðtÞ includes an operator that
contains a factor iπ:

ΔVðtÞ ¼ ΔVReðtÞ þ V iπðtÞ: ð6Þ

Now, DEDUCTOR allows one to include as many powers
of ΔHðtÞ and ΔVðtÞ as one wants, within practical limits.

1Version 3.0.3 of the code, used in this paper, is available at
http://www.desy.de/znagy/deductor/ and http://pages.uoregon
.edu/soper/deductor/.
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In the calculations in this paper, we first investigate how
many powers we need and then use just that number.
The commonly used parton shower algorithms PYTHIA

[26], HERWIG [27], and SHERPA [28] work in the leading
color approximation. There has been work other than ours
on extending the accuracy of parton shower algorithms
beyond the leading color approximation. Reference [29]
works with color amplitudes, as in [11], but does not
account for collinear singularities and so far lacks a parton
shower implementation. References [30–32] treat ΔHðtÞ,
but not ΔVðtÞ.
This paper is structured as follows. There are three

sections with preparatory information: Sec. II about putting
the events in bins in p̄T, Sec. III about DEDUCTOR, and
Sec. IV about how many powers of ΔHðtÞ and ΔVðtÞ we
need. Then Sec. V contains the results on the gap fraction f
as a function of p̄T and y12. This includes results about the
dependence of f on the jet size parameter R, a comparison
of the parton shower calculation to a purely perturbative
calculation, and a comparison to results from PYTHIA.
Finally, Sec. VI presents some conclusions.

II. PUTTING THE CALCULATION IN BINS

The gap fraction is a function fðp̄T; y12Þ of the average
transverse momentum of the jets that define the gap region
and of their rapidity difference. It is defined by

fðp̄T; y12Þ ¼
dσðgapÞ=½dp̄Tdy12�
dσðtotalÞ=½dp̄Tdy12�

: ð7Þ

We organize the calculation of f in bins of p̄T and y12:
Pi < p̄T < Piþ1, Yn < y12 < Ynþ1. For each bin, the ratio
that we calculate is

f ¼
�Z

Ynþ1

Yn

dy12

Z
Piþ1

Pi

dp̄T
dσðgapÞ
dp̄Tdy12

1

hðn; p̄TÞ
��

�Z
Ynþ1

Yn

dy12

Z
Piþ1

Pi

dp̄T
dσðtotalÞ
dp̄Tdy12

1

hðn; p̄TÞ
�
: ð8Þ

Here the function hðn; p̄TÞ is chosen so that
ð1=hðn; p̄TÞÞdσðtotalÞ=½dp̄Tdy12� is approximately con-
stant inside the bin. This gives us

f ¼
Z

Ynþ1

Yn

dy12

Z
Piþ1

Pi

dp̄Tfðp̄T; y12Þwðp̄T; y12Þ; ð9Þ

where the weight factor w is

wðp̄T; y12Þ ¼
1

N
dσðtotalÞ
dp̄Tdy12

1

hðn; p̄TÞ
; ð10Þ

with

N ¼
Z

Ynþ1

Yn

dy12

Z
Piþ1

Pi

dp̄T
dσðtotalÞ
dp̄Tdy12

1

hðn; p̄TÞ
; ð11Þ

so that the integral of w over the bin equals 1.

III. THE DEDUCTOR SHOWER

Our analysis is based on the parton shower event
generator, DEDUCTOR [1–11]. In this section, we review
some of the features of DEDUCTOR that are particularly
relevant to the gap survival problem.
The shower begins after a leading order 2 → 2 hard

scattering. It would be desirable to use a next-to-leading
order hard scattering with matching to the shower, but this
option is not yet available in DEDUCTOR. For the hard
scattering, we choose renormalization and factorization
scales μR ¼ μF ¼ PBorn

T =
ffiffiffi
2

p
, where PBorn

T is the transverse
momentum in the Born scattering that initiates the shower.
We use the default shower ordering variable in

DEDUCTOR, Λ, which is based on virtuality. For massless
partons, the definition is

Λ2 ¼ ðp̂l þ p̂mþ1Þ2
2pl ·Q0

Q2
0 final state;

Λ2 ¼ jðp̂a − p̂mþ1Þ2j
2pa ·Q0

Q2
0 initial state: ð12Þ

Here the mother parton in a final state splitting has
momentum pl and the daughters have momenta p̂l and
p̂mþ1. For an initial state splitting in hadron A, the mother
parton has momentum pa, the new (in backward evolution)
initial state parton has momentum p̂a and the final state
parton created in the splitting has momentum p̂mþ1. We
denote byQ0 a fixed vector equal to the total momentum of
all of the final state partons just after the hard scattering that
initiates the shower. The motivation for this choice is
described in Ref. [6].
Successive splittings have Λnþ1 < Λn. For the first

splitting, we demand that Λ be smaller than a chosen
shower start scale, μs. We choose

μs ¼
3

2
PBorn
T : ð13Þ

This choice is motivated in Ref. [10]. Results do not change
much if we choose a larger value for μs because the
DEDUCTOR splitting kernel restricts the splitting transverse
momentum to be no greater than PBorn

T in order to ensure
that the scattering that initiates the shower is the highest PT
scattering in the event.
The treatment of color in DEDUCTOR is described in

detail in Ref. [11].
The base color treatment in DEDUCTOR is the

LCþ approximation [4]. The LCþ approximation produces
terms whose contributions are suppressed by powers 1=Nn

c ,
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where Nc ¼ 3 is the number of colors. There is no need to
carry terms suppressed by large powers of 1=Nc, so we
impose a maximum value on the color suppression index I
associated with a partonic color state [4]. Contributions to
cross sections with a given value I of the color suppression
index come with a factor 1=Nn

c with n ≥ I. Thus we can
neglect contributions with large values of I. We choose a
value for a parameter Imax. In this paper, we choose
Imax ¼ 4. The shower operator switches its behavior if it
reaches a value of I with I − Ihard ≥ Imax, were Ihard is the
color suppression index of the hard scattering state at the
start of the shower. First, the shower switches to an
approximate shower based on the color group UðNcÞ
instead of SUðNcÞ. Second, splittings that would increase
I are not allowed. Thus contributions proportional to
1=NImax

c are calculated only approximately.
The LCþ approximation is a substantial improvement

over the leading color (LC) approximation, but it still leaves
a lot out. What it leaves out are color operators ΔH, ΔVRe
and V iπ from Eqs. (4), (5) and (6) [11]. A calculation
that included all powers of these operators would be exact
in color. DEDUCTOR cannot do that, but it can include a
user-specified maximum number of powers of ΔH, ΔVRe
and V iπ . Here ΔH is the part of parton splitting graphs that
is omitted in the LCþ approximation; ΔVRe is the real
part of approximated virtual graphs omitted in the
LCþ approximation; and V iπ is the imaginary part of
virtual graphs, which contain a factor iπ.
The user controls the level of approximation by speci-

fying integers Nthr
Δ , NRe, and Niπ .

First, just after the hard scattering, DEDUCTOR inserts an
operator UV that produces a summation of threshold
logarithms [10]. The operator UV gives results as an
expansion in powers of ΔVRe. DEDUCTOR retains only
those terms with no more than Nthr

Δ factors of ΔVRe.
Second, the operators ΔH, ΔVRe and V iπ appear in the

shower evolution operator Uðt2; t1Þ. The operator Uðt2; t1Þ
produces terms proportional to ½ΔH�A½ΔVRe�B½V iπ�C.
DEDUCTOR retains only terms with AþB≤NRe, C ≤ Niπ ,
and Aþ Bþ C ≤ maxfNRe; Niπg.
Finally, if the shower evolution reaches a state in which

the color suppression index I has I − Ihard ≥ Imax, then the
evolution omits any further contributions from ΔH, ΔVRe
and V iπ and switches to a UðNcÞ instead of an SUðNcÞ
shower, while not allowing I to increase further.

DEDUCTOR allows the user to specify Nthr
Δ at the start of

the parton shower. Then the user can specify approximation
parameters NRe, Niπ and Imax for an evolution interval
μs > Λ > Λð1Þ and then smaller parameters for successive
following evolution intervals ΛðiÞ > Λ > Λðiþ 1Þ. In this
paper, we use parameters NRe, Niπ and Imax ¼ 4 for the
interval μs > Λ > Λð1Þ ¼ 30 GeV. Then we either stop
the shower at 30 GeV or continue it to Λð2Þ ¼ 1 GeV
with the LCþ approximation, NRe ¼ Niπ ¼ 0, with, still,
Imax ¼ 4.

The DEDUCTOR splitting kernel also limits the transverse
momenta kT in splittings to be larger than kmin

T ≈ 1 GeV.
The precise value is kmin

T ¼ 1.0 GeV for final state split-
tings and kmin

T ¼ 1.295 GeV, set by the starting scale of the
parton distributions that we use, for initial state splittings.

IV. EFFECT OF ORDER OF APPROXIMATION

As outlined above, we apply limits on the accuracy of the
parton shower calculation by specifying parameters Nthr

Δ ,
NRe, Niπ and Imax, along with the range of the hardness
variable Λ over which the parameters apply. In this section,
we try to estimate the systematic error in the calculation that
results from these limits.
For the color suppression index, we set Imax ¼ 4. This

means that contributions to f that carry a factor 1=N4
c ≈

10−2 and beyond are calculated only approximately. Thus
we estimate a systematic error on f of �0.01 from not
taking a larger value of Imax.
For our studies of the gap fraction, in the evolution range

μs > Λ > 30 GeV, we will choose NRe ¼ 2, Niπ ¼ 2, and
Nthr

Δ ¼ 1. How much systematic error should one ascribe to
not choosing larger values to these parameters? We inves-
tigate that question in this section by changing these
parameters one at a time, while leaving the remaining
parameters set to zero. In this investigation, we examine f
in the range 300 GeV < p̄T < 400 GeV and 4 < y12 < 5.
We set NRe and Niπ in the evolution range μs > Λ >
30 GeV and stop evolution at Λ ¼ 30 GeV.
We first investigate how f depends on NRe, with

Nthr
Δ ¼ Niπ ¼ 0. The results are shown in Fig. 1. The value

of f for NRe ¼ 0 is the result of a calculation in the
LCþ approximation. We see that adding one factor of ΔH
or ΔVRe changes f by −0.041� 0.004, approximately a
20% change. Choosing NRe ¼ 2 leads to a further change
of þ0.028� 0.010. We expect that increasing NRe beyond
2 will change f by less than 0.02. Indeed, we find that
choosing NRe ¼ 3 leads to a further change of 0.01� 0.02.
Based on this study, we estimate that the error on f from
limiting NRe to 2 is �0.02.
We next investigate how f depends on Niπ with NRe ¼

Nthr
Δ ¼ 0. The results are shown in Fig. 2. Only even powers

of V iπ contribute to the cross section since V iπ has a factor i.
Thus we show results only for Niπ ¼ 0, 2, and 4. We
see that increasing Niπ from 0 to 2 in U raises the gap
fraction by 0.016� 0.002. Adding two more powers of V iπ
leaves the gap fraction unchanged, within the statistical
error. The change is 0.000� 0.003. We conclude that
Niπ ¼ 2 is a reasonable choice and that �0.01 is a rea-
sonable error estimate for the effect of added factors of V iπ
beyond 2.
We next investigate how f depends on Nthr

Δ with
NRe ¼ Niπ ¼ 0. The results are shown in Fig. 3. We see
that increasing Nthr

Δ from 0 to 1 lowers the gap fraction by
0.011� 0.002. Increasing Nthr

Δ above 1 has hardly any
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effect. We conclude that Nthr
Δ ¼ 1 is a reasonable choice

and that �0.01 is a reasonable error estimate for the effect
of added color in the threshold operator in this calculation.
In the calculations of the gap fraction in the following

section, we use NRe ¼ 2, Niπ ¼ 2, Nthr
Δ ¼ 1 in the range

μs > Λ > Λmin, where we choose Λmin ¼ 30 GeV. Then

we revert to the LCþ approximation for Λmin > Λ >
1 GeV. The range μs > Λ > 30 GeV covers a range of
about a factor of 10 or more in Λ for p̄T > 200 GeV
(with μs ¼ 3p̄T=2). We hope that this range is adequate to

FIG. 2. Gap fraction f as in Fig. 1 calculated with different
values of Niπ with NRe ¼ Nthr

Δ ¼ 0.

FIG. 3. Gap fraction f as in Fig. 1 calculated with different
values of Nthr

Δ with NRe ¼ Niπ ¼ 0.

FIG. 1. Gap fraction f in the range 300 GeV < p̄T < 400 GeV
and 4 < y12 < 5 calculated with different values of NRe with
Niπ ¼ Nthr

Δ ¼ 0.

FIG. 4. Gap fraction f in the range 300 GeV < p̄T < 400 GeV
and 4 < y12 < 5 as a function of Λmin. The calculation uses
Nthr

Δ ¼ 1 at the start of the shower, then NRe ¼ 2, Niπ ¼ 2 for the
shower in the range μs > Λ > Λmin, then NRe ¼ Niπ ¼ 0 in the
range Λmin > Λ > 1 GeV. The maximum color suppression
index is Imax ¼ 4. The curve is a linear fit to the numerical results.

EFFECT OF COLOR ON RAPIDITY GAP SURVIVAL PHYS. REV. D 100, 074012 (2019)

074012-5



explore the effect of extra color contributions. However, we
will find that including color beyond the LCþ approxi-
mation generally makes f smaller. Thus if we were able to
include the extra color contributions in the range
30 GeV > Λ > 1 GeV, presumably the calculated f would
be somewhat smaller. If we were to simply set Λmin ¼
1 GeV, DEDUCTOR would generate very complicated color
states in a large number of quite soft splittings, so that few
events would result and the statistical fluctuations in f
would be large. An alternative is to try to estimate the effect
of leaving Λmin ¼ 30 GeV by extrapolating in Λmin. We
calculate f in the range 300 GeV < p̄T < 400 GeV and
4 < Δy < 5 forΛmin ¼ 20 GeV, 30 GeVand 40 GeV. If we
assume a linear model, f ¼ a0 þ a1Λmin=ð30 GeVÞ, we
can fit a0 and a1. Then results for f in this p̄T and y12 range
calculated with Λmin ¼ 30 GeV should be corrected by
subtracting a1 from f. The results for f and the fit are
shown in Fig. 4. We find a1 ¼ 0.01� 0.04. That is, a1
equals 0 within its statistical error. However, with the
accuracy obtained for a1, we have an extrapolation error on
f in this p̄T and y12 range of about �0.04.

V. RESULTS FOR THE GAP FRACTION

We are now ready to look at the results for the gap
fraction f. The jets are defined with the anti-kT algorithm.
We start with radius parameter R ¼ 0.4. Then we will
examine how f depends on R. We choose five different bins
for y12 and examine f in each bin as a function of p̄T.
We use NRe ¼ 2, Niπ ¼ 2, Nthr

Δ ¼ 1 and Imax ¼ 4. There
are systematic errors in the results that arise from not using
larger values of NRe, Niπ , Nthr

Δ and Imax. In Sec. IV, we
estimated these systematic errors in f at about �0.02.
In each case, the results were obtained with the stated

values of NRe and Niπ in the shower between Λ ¼ μs and
Λ ¼ Λmin ¼ 30 GeV. For the rest of the shower, down to
Λ ¼ 1 GeV, we used the LCþ approximation. There is a
systematic error from not using a smaller value of Λmin,
based on how well we could extrapolate to Λmin ¼ 1 GeV.
In Sec. IV, we estimate this extrapolation error at �0.04.
There are also systematic errors from not having shower

splitting functions beyond order αs and from starting the
shower with just lowest order parton scattering. We do not
estimate these systematic errors and, rather, regard the
results as an investigation of color effects within a calcu-
lation at this order of approximation.
Finally, there are statistical errors from the fluctuations in

Monte Carlo event generation. The statistical errors are
rather substantial for the largest values of y12 and p̄T. We do
not exhibit error bands that represent the statistical errors
since the size of the fluctuations is evident in the differences
of f between neighboring values of p̄T. DEDUCTOR, of
course, provides an estimated error for each bin, but our
impression is that these estimated errors are somewhat
smaller than the bin to bin fluctuations.
We now turn to the results.

A. Gap fraction for R= 0.4

We begin with results for jets defined with the anti-kT
algorithm with a radius parameter R ¼ 0.4, shown in Fig. 5.
We choose five different bins for y12 and examine fðp̄TÞ as
a function of p̄T. In each y12 bin, we show three curves, all
obtained with Imax ¼ 4. The first, in blue, is obtained with
just the LCþ approximation. Then, in green, we show
results obtained with contributions from ΔH and ΔVRe

FIG. 5. Gap fraction f for R ¼ 0.4 versus y12 and p̄T.
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using NRe ¼ 2 and Nthr
Δ ¼ 1. Here contributions from V iπ

are omitted. Finally, in red, we show results obtained with
contributions from all ofΔH,ΔVRe and V iπ usingNRe ¼ 2,
Niπ ¼ 2, and Nthr

Δ ¼ 1.
Look first at fðp̄TÞ for 1 < y12 < 2. We see that all three

plots are almost straight lines. That is, f has the approxi-
mate form

fðp̄TÞ ≈ expð−A0 − A1 logðp̄T=pcut
T ÞÞ: ð14Þ

We find that A1 ≈ 0.33. It appears, then, that the depend-
ence of f on the large logarithm logðp̄T=pcut

T Þ exponen-
tiates. We also note that the three curves are almost
identical: the contributions from the operators ΔH, ΔVRe
and V iπ are quite small.
Look next at fðp̄TÞ for 2 < y12 < 3. We see that all three

plots are almost straight lines. The slope of the lines is
larger: for LC+, A1 ≈ 0.50. This is what we expect. There is
now a larger gap to radiate gluons into, so it is easier for the
gap not to survive.
We also see that the contributions from ΔH and ΔVRe

have begun to matter. Including the effects of these
operators multiplies f by a factor of about expð−0.13Þ
in the region p̄T > 300 GeV. Some effect like this was to
be expected. The operator ΔH gives soft gluon emission in
the angular region between two emitting partons, one in the
ket state and one in the bra state. Such a gluon can destroy
the gap. There is now a wider angular region for this to
happen, so it is not unexpected that an effect of ΔH and
ΔVRe would begin to be visible.
The contribution from V2

iπ is visible as the difference
between the red and green curves in Fig. 5. We see that for
2 < y12 < 3, the contribution from V2

iπ has begun to matter.
The operator V iπ does not create any final state gluons.
However, it changes the color state of the color density
matrix. With different color, the probability for the other
operators to emit gluons into the gap can change. Thus,
with a wider gap, it is not a surprise that V iπ now has a
visible effect.
What is surprising, at least to us, is that the effect from

V iπ has about the same magnitude as the effect from ΔH
and ΔVRe, but has the opposite sign. Thus when we add the
effects together, we are almost back to the LCþ curve.
Now look at fðp̄TÞ for 3 < y12 < 4. For p̄T < 200 GeV,

the LCþ curve is quite precisely a straight line, but now
with a larger slope: A1 ≈ 0.61, continuing the previous
trend.
The effect of ΔH and ΔVRe in the region p̄T > 380 GeV

has now grown very slightly. The effect of V iπ still
approximately cancels the effect of ΔH and ΔVRe.
There is a new effect that is now visible. Beyond

p̄T ≈ 200 GeV, the LCþ curve is no longer a good fit to
a straight line. Rather, it curves up slightly. One could
imagine that there is a log2ðp̄T=pcut

T Þ term added to the
exponent in Eq. (14). However, a fit to the results for

p̄T < 200 GeV that includes a log2ðp̄T=pcut
T Þ contribution

still gives very nearly a straight line, which does not fit the
results for p̄T > 200 GeV. Thus we have a nonlogarithmic
large p̄T effect. Such an effect is to be expected because of
what we might call momentum starvation. If the two jets
that define the gap have equal transverse momenta, then
the c.m. energy of the colliding partons that could scatter
to make these jets is ½ŝ�1=2 ¼ p̄T expðy12=2Þ. For p̄T ¼
400 GeV and y12 ¼ 3.5, this is ½ŝ�1=2 ¼ 2.3 TeV. Since
parton distribution functions fall with momentum fraction
x, it is quite improbable to have a parton collision with this
much ½ŝ�1=2. It is then more improbable to have an even
larger ½ŝ�1=2 needed to radiate a gluon with enough trans-
verse momentum to destroy the gap. Thus the gap fraction
fðp̄TÞ should be larger than it would be if this effect were
ignored. Furthermore, this effect should become more
pronounced as y12 increases.
The fact that a momentum starvation effect is visible in

the DEDUCTOR results indicates that momentum conserva-
tion is important in the calculation.
Most of the trends that we have observed for y12 < 4

continue for 4 < y12 < 5 and 5 < y12 < 6.
For p̄T < 200 GeV, the LCþ curves are still quite

precisely straight lines. However, the slopes do not grow
with y12. For the regions 3 < y12 < 4, 4 < y12 < 5 and
5 < y12 < 6 we have, respectively, A1 ≈ 0.61, A1 ≈ 0.65
and A1 ≈ 0.56.
As we expect, the upward turn of the LCþ curve for

p̄T>200GeV becomes more pronounced as y12 increases.
The effect of including ΔH and ΔVRe grows as y12

increases. In the region p̄T > 300 GeV, This effect multi-
plies f by a factor of about expð−0.41Þ for 4 < y12 < 5 and
expð−0.81Þ for 5 < y12 < 6.
The previous trend of an increasing effect from V iπ

does not continue. The effect from including V iπ is to
multiply f in the region p̄T > 300 GeV by a factor of about
expðþ0.14Þ for 3 < y12 < 4, expðþ0.18Þ for 4 < y12 < 5,
and expðþ0.14Þ for 5 < y12 < 6. Thus the V iπ effect does
not cancel the growing effect of ΔH and ΔVRe.
In principle, there should be contributions to f propor-

tional to V2
iπ that contain an extra power of logðp̄T=pcut

T Þ,
dubbed a “superleading log” [13,21–23]. These contribu-
tions are surely present, but they are not large enough to be
visible in the difference between the red and green curves
in Fig. 5.
We are left with a net decrease in f for p̄T > 300 GeV

from color beyond the LCþ approximation by a factor of
about expð−0.23Þ for 4 < y12 < 5 and expð−0.61Þ for
5 < y12 < 6.

B. Gap fraction dependence on R

How does the choice of the cone size parameter R affect
the gap fraction? To find out, we carried out the previous
calculation also for R ¼ 0.2 and R ¼ 0.7. We then divided
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f½R ¼ 0.2� by f½R ¼ 0.7� for each y12 range and for each
p̄T. The extent to which f½R ¼ 0.2�=f½R ¼ 0.7� differs
from 1 indicates the influence of R on f. The results are
plotted in Fig. 6.
We see that when y12 is not too large the gap fraction is

smaller for R ¼ 0.2 than it is for R ¼ 0.7. This is easy to
understand. There is a high probability to emit a gluon near
the direction of one of the two leading jets that defines ends

of the gap region. For a large jet radius R, this gluon is
likely to form part of the jet. But for small R, this gluon
can fall outside of the jet but inside the gap region, thus
destroying the gap. That is, roughly collinear gluon
radiation will decrease the gap fraction when R is small.
This effect of decreasing f with decreasing R diminishes

as y12 grows. This trend is easy to understand because for
large y12 there is a wide range for emission of a gluon that
will destroy the gap, so that the range near the two jets that
define the gap region is not so important.
We note that for 5 < y12 < 6 and p̄T > 100 GeV, the

gap fraction increases with decreasing R. This is not a large
effect, but it is striking because it reverses the expected
trend that we see for smaller y12.
How do the extra color operators ΔH and ΔV affect the

R dependence of the gap fraction distribution? We see from
Fig. 6 that there is no effect within the statistical errors. At
the simplest level, this is easy to understand. The real
emission operator ΔH reflects singularities for emission of
soft gluons in directions that are not particularly close to the
directions of existing partons. It does not contain collinear
singularities. However, R dependence for single emissions
is connected with collinear singularities. Now, R depend-
ence could arise from a collinear emission followed by a
wide angle soft emission, so we could see some R
dependence coming from ΔH and ΔV. However, it is
not a surprise that this dependence is small.

C. Gap fraction in perturbation theory

We can calculate the gap fraction in fixed order pertur-
bation theory instead of using a parton shower. Wewrite the
gap fraction in the form of Eq. (3). Here dσðtotalÞ=
½dp̄Tdy12� is the cross section to produce at least two R ¼
0.4 jets in the rapidity window −4.4 < y < 4.4 such that
the two jets in the rapidity window with the largest PT
satisfy p̄T ¼ ðPT;1 þ PT;2Þ=2 and y12 ¼ jy1 − y2j. This is
an infrared safe jet cross section for which the lowest order
contribution has two partons in the final state. The cross
section dσðno gapÞ=½dp̄Tdy12� is the cross section to
produce at least three R ¼ 0.4 jets in the rapidity window
−4.4 < y < 4.4 such that the two jets in the rapidity
window with the largest PT satisfy p̄T ¼ ðPT;1 þ PT;2Þ=2
and y12 ¼ jy1 − y2j and such that there is a third jet with
minðy1;y2Þ<y3<maxðy1;y2Þ and PT;3 > pcut

T ¼ 20 GeV.
This is an infrared safe jet cross section for which the
lowest order contribution has three partons in the final state.
We calculate both dσðtotalÞ=½dp̄Tdy12� and dσðno gapÞ=
½dp̄Tdy12� at NLO using NLOJET++ [33]. For these pertur-
bative calculations, our primary choice for the factorization
and renormalization scales is μF ¼ μR ¼ 2p̄T. We inves-
tigate the scale dependence by also using μF ¼ μR ¼ p̄T
and μF ¼ μR ¼ 4p̄T.
In Ref. [10], we calculated the gap fraction in this

manner for
ffiffiffi
s

p ¼ 7 TeV. We found that, although there
was substantial dependence on the scale choice for large

FIG. 6. Gap fraction ratio f½R ¼ 0.2�=f½R ¼ 0.7� versus y12
and p̄T.
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y12, the perturbative calculation with μF ¼ μR ¼ 2p̄T
worked quite well. This was surprising to us because there
are large logarithms that are not summed in the perturbative
calculation. In this paper, we have chosen

ffiffiffi
s

p ¼ 13 TeV.
Now there is a larger range available for gluon emissions.
Figure 7, we show the perturbative results forffiffiffi
s

p ¼ 13 TeV. For each range of y12, we show a central
curve with μF ¼ μR ¼ 2p̄T. We show how the result varies

for p̄T < μF ¼ μR < 4p̄T as a yellow error band. We also
show the DEDUCTOR results from Fig. 5. We see that the
perturbative results for f agree with the DEDUCTOR results
within about 20% for 1 < y12 < 2 and 2 < y12 < 3. For
3 < y12 < 4, the agreement between the two types of
calculation is still good, but the scale variation error band
on the perturbative calculation has grown substantially.
For 4 < y12 < 5 and 5 < y12 < 6, the scale variation error

FIG. 7. Gap fraction calculated perturbatively to NLO using
μR ¼ μF ¼ 2p̄T, with an error band for p̄T < μR, μF < 4p̄T. The
DEDUCTOR curves from Fig. 5 are also shown.

FIG. 8. Gap fraction f for R ¼ 0.4 versus y12 and p̄T for
PYTHIA and for DEDUCTOR with the LCþ approximation.
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band is so large that one can conclude that the NLO
perturbative calculation is not reliable. Thus one needs
either a parton shower calculation or an analytic summation
of the large logarithms.

D. Gap fraction in PYTHIA

We can also compare the gap fraction results from
DEDUCTOR with the analogous results from PYTHIA [26].
Since PYTHIA is limited to the leading color approximation,
we compare to DEDUCTOR with the LCþ approximation.
Our previous investigations [10] have indicated that non-
perturbative effects are quite small for the gap fraction, so
we have not included any nonperturbative effects in the
results from DEDUCTOR in this paper.2 Accordingly, we
have not included the underlying event and hadronization
in PYTHIA. We used PYTHIA 8.423 with default settings
except that we set αsðM2

ZÞ ¼ 0.118 in the shower and
include the “CMW” factor in the αs scale for shower
splittings. In this way, we match the αs settings used in the
DEDUCTOR shower. Of course, PYTHIA and DEDUCTOR use
very different algorithms to generate their parton showers.
Of particular note are the inclusion of a summation of
threshold logarithms in DEDUCTOR and the differences
between PYTHIA and DEDUCTOR in splitting functions,
shower ordering variable, and momentum mapping at each
splitting. Thus we can expect only rough agreement
between the programs. Nevertheless, it is of interest to
see how much disagreement there is.
We exhibit the comparison in Fig. 8. We see that the

differences between PYTHIA and DEDUCTOR with the
LCþ approximation are fairly modest except at the largest
values of y12, for which it appears that PYTHIA produces
more initial state radiation that can destroy the gap and thus
make the gap fraction smaller.

VI. CONCLUSIONS

DEDUCTOR is a parton shower event generator whose
primary purpose is to implement new theoretical develop-
ments in parton shower algorithms so as to improve the
precision and predictive power of parton shower event
generators. In a general framework [34], a parton shower is
a solution of a renormalization group equation in which the
generators of scale changes are, at order αs, operators called
HIðtÞ and VðtÞ in DEDUCTOR.
One of the important questions in this program is how to

deal with color in the shower evolution. Color in parton
showers has typically been treated in the leading color (LC)
approximation. Previous versions of DEDUCTOR used the
LCþ approximation, which is an improvement over the LC
approximation but is nowhere near exact: HIðtÞ and VðtÞ

contain contributions ΔHðtÞ and ΔVðtÞ that are simply
dropped in the LCþ approximation. The current version of
DEDUCTOR [11] allows one to include ΔHðtÞ and ΔVðtÞ
perturbatively. That is, a limited number of powers of
ΔHðtÞ and ΔVðtÞ can be included in a calculation.
In Ref. [11], we found that a calculation beyond the

LCþ approximation could give numerical results for a
physical cross section. We chose the one-jet-inclusive cross
section and found an approximately 3% effect from the
extra color. In the present paper, we have asked whether
DEDUCTOR with improved color can produce numerical
results for more complicated physical cross sections and
whether there are examples in which the effects of extra
color are numerically at a level of 1=N2

c ∼ 10% or higher.
We have chosen as our example the rapidity gap survival

probability. This observable is of some practical significance
because its study can help us to understand the effect in a
search for new physics signals of vetoing against extra jets
with transverse momenta greater than a cutoff pcut

T . It is also
of special interest because it contains nonglobal logarithms,
which are not simple to sum in an analytical approach.
We found in this study that the effects of extra color are

substantial for soft gluon emissions when the rapidity
difference, y12, between the two leading jets and the
average, p̄T, of their transverse momenta are large. We
also found that the contribution of iπ terms in ΔVðtÞ
saturates and does not grow significantly with the rapidity
separation. It is interesting that these effects work into the
opposite directions. The wide angle soft gluon emissions
decrease the survival rate while the iπ terms increase it.
Finally, we found that kinematic effects that result from
exactly conserving momentum in the parton shower are
numerically important.
Since we included the ΔHðtÞ and ΔVðtÞ only perturba-

tively, one can ask how many powers of these operators we
need to make stable predictions. We tested this and we
found that, for the gap fraction, the result is rather stable
after two insertions of the soft correction operators. This
finding is important because we cannot actually include
many powers of ΔHðtÞ and ΔVðtÞ. First, we cannot simply
work to all orders in these operators. The dimension of the
color space grows roughly as ðN!Þ2 with the number of
partons. In a typical shower calculation the averaged
number of partons is 20–30. It is clear that there is no
hope to deal with this problem exactly, so that one must use
a perturbative approach. In the perturbative calculation we
cannot include a very large power of the soft correction
operators because the computer resource demand of the
program gets out of control very quickly.
Parton showers have their own systematic logic as

operator renormalization group evolution [34] in which,
so far, we know only the order αs contributions to the
generators of scale changes. Using a parton shower to
calculate an observable like the gap fraction f has the effect
of summing large logarithms. With a loose interpretation of

2
DEDUCTOR itself includes only a parton shower based on

perturbative splitting functions. However, on can, if desired, add
an underlying event as contained in a nonperturbative model and
then send the resulting partons to PYTHIA for hadronization.[10].
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what constitutes a logarithm, there are three sorts of large
logarithms L in f: logðp̄T=pcut

T Þ, y12, and iπ. Then in
perturbation theory we have contributions αnsLk with
k ≤ 2n. One might hope that log f has an expansion with
terms αnsLk with k ≤ nþ 1 in both full QCD and in an all
orders parton shower and that a leading order parton shower
gets the αsL2 and αsL contributions to log f correctly.
However, a proof of this conjecture would not be easy and
lies beyond the scope of this paper.
The calculation presented here does not include match-

ing to NLO perturbation theory. In its current version,
DEDUCTOR starts with the color density matrix for 2 → 2

QCD scattering at order α2s. It then applies an operator UV
that sums threshold logarithms, as described in Ref. [10].
After that, it applies the operator U that generates parton
splittings and thus a parton shower. Imagine expanding the
combined operator UUV in powers of αs. The first term is
simply the unit operator, but then there are terms propor-
tional to α1s and higher powers of αs. The term proportional
to α1s , multiplying the α2s hard scattering color density
matrix, gives an approximation to the order α3s density
matrix. It is an approximation because the operators U and

UV are based on soft and collinear limits. As explained in
Ref. [34], it is possible to include the complete order α3s
color density matrix while correcting for the α3s contribu-
tions provided by U and UV . The procedure for this
matching is straightforward, although it is more complex
than the procedure needed to match cross sections because
the object that needs matching is the color density matrix
rather than just its trace over color. With NLO matching,
calculations like the gap fraction calculation presented here
would be more accurate and less sensitive to scale param-
eter choices such as the choice of the hardness scale at
which the shower starts. We hope to add NLO matching in
a future version of DEDUCTOR.
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