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The operator product expansion (OPE), truncated in dimension, is employed in many contexts. An
example is the extraction of the strong coupling, αs, from hadronic τ-decay data, using a variety of analysis
methods based on finite-energy sum rules. Here, we reconsider a long-used method, which parametrizes
nonperturbative contributions to the I ¼ 1 vector and axial vacuum polarizations with the OPE, setting
several higher-dimension coefficients to zero in order to implement the method in practice. The assumption
that doing this has a negligible effect on the value of αs is tantamount to the assumption that the low-
dimension part of the OPE converges rapidly with increasing dimension near the τ mass. Were this
assumption valid, it would certainly have to be valid at energies above the τ mass as well. It follows that the
method can be tested using data obtained from eþe− → hadrons, as they are not limited by the kinematic
constraints of τ decays. We carry out such an investigation using a recent high-precision compilation for the
R ratio, arguing that it provides insights into the validity of the strategy, even if it probes a different, though
related, channel. We find that eþe−-based tests call into question the implied assumption of rapid
convergence of the low-dimension part of the OPE around the τ mass and thus underscore the need to
restrict finite-energy sum-rule analyses to observables which receive only contributions from lower-order
terms in the OPE.
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I. INTRODUCTION

As is well known, the spectral function, ρEMðsÞ, of ΠEM,
the scalar polarization of the electromagnetic (EM) current-
current two-point function, is directly obtainable from the
experimentally measured R ratio,

RðsÞ≡ 3s
4πα2

σeþe−→hadronsðγÞðsÞ¼
σeþe−→hadronsðγÞðsÞ
σeþe−→μþμ−ðsÞ

; ð1:1Þ

via

ρEMðsÞ ¼
1

π
ImΠEMðsÞ ¼

1

12π2
RðsÞ; ð1:2Þ

where, in Eq. (1.1), α is the fine-structure constant, the
second of the equations holds for values of s for which the
muon mass can be neglected, and the γ in parentheses
indicates that the hadronic states in question are inclusive of
final-state radiation.
Similarly, information on the spectral functions,

ρðJÞV=A;ijðsÞ, of the spin J ¼ 0, 1 scalar polarizations, ΠðJÞ
ij;V=A,

of the flavor ij ¼ ud and us vector (V) and axial vector (A)
current-current two-point functions can be obtained from the
experimental hadronic τ-decay distributions, dRV=A;ij=ds.
Explicitly [1],

dRV=A;ijðs; s0Þ
ds

¼ 12π2jVijj2SEW
s0

½wτðyτÞρð0þ1Þ
V=A;ijðsÞ

− wLðyτÞρð0ÞV=A;ijðsÞ�; ð1:3Þ

where yτ ¼ s=m2
τ ,
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wτðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ;
wLðyÞ ¼ 2yð1 − yÞ2; ð1:4Þ

SEW is a known short-distance electroweak correction
[2], Vij is the flavor ij Cabibbo-Kobayashi-Maskawa
(CKM) matrix element,1 and dRV=A;ijðs; s0Þ=ds is related
to the total inclusive hadronic τ-decay width by

RV=A;ijðs0Þ ¼
Z

s0

0

ds
dRV=A;ijðs; s0Þ

ds
;

RV=A;ijðm2
τÞ ¼

Γ½τ− → ντhadronsV=A;ijðγÞ�
Γ½τ− → ντe−ν̄eðγÞ�

: ð1:5Þ

The analyticity properties of current-current polariza-
tions (denoted generically by Π) ensure the validity of
finite-energy sum rules (FESRs), which allow one to relate
weighted integrals over the associated experimental spec-
tral data to theoretical representations of the polarizations
[3]. Explicitly, for any ΠðsÞ free of kinematic singularities,
any s0 > 0, and any wðsÞ analytic inside and on the contour
jsj ¼ s0, one has the sum rule

Iexpw ðs0Þ ¼ Ithw ðs0Þ; ð1:6Þ

where the weighted integrals over the experimental spectral
function and over the vacuum polarization are defined as

Iexpw ðs0Þ ¼
1

s0

Z
s0

0

dsw

�
s
s0

�
ρðsÞ; ð1:7aÞ

Ithw ðs0Þ ¼ −
1

2πis0

I
jsj¼s0

dsw

�
s
s0

�
ΠðsÞ: ð1:7bÞ

For sufficiently large s0, Ithw ðs0Þ can be approximated
using the operator product expansion (OPE) for Π. This
allows quantities entering the OPE (such as the strong
coupling αs, quark masses, and effective higher-dimension
vacuum condensates) to be related to experimental data, in
principle. FESRs based on ud − us flavor-breaking dif-
ferences of hadronic τ-decay distributions can also be used
to provide an independent determination of jVusj [4–6].
Generalizing Eq. (1.6) to weights wðsÞ=sN , still with
wðsÞ analytic, yields analogous inverse-moment FESR
(IMFESR) relations involving quantities such as Πð0Þ,
and its derivatives with respect to s at s ¼ 0, which can be
exploited to determine some of the low-energy constants of
chiral peturbation theory, provided those terms in the
associated OPE required for the wðsÞ chosen are known

from external sources [7]. The OPE thus plays an important
role in FESR and IMFESR analyses.
Information on the flavor ud, us V and A spectral

functions from hadronic τ-decay data is, of course, only
available up to the kinematic limit, s ¼ m2

τ , restricting
FESRs and IMFESRs based on hadronic τ-decay data to
s0 ≤ m2

τ . No such kinematic limit exists for FESRs
and IMFESRs based on hadronic electroproduction cross
section data.
The OPE is expected to provide an accurate representa-

tion of ΠðsÞ valid for Euclidean Q2 ≡ −s ≫ Λ2
QCD, up to

small exponentially suppressed corrections. In Eq. (1.7b),
the OPE representation, however, must be used over the
whole of the contour jsj ¼ s0, which includes the region
near the Minkowski axis, where, as anticipated in Ref. [8],
the OPE breaks down at intermediate (timelike) s. This is
clear from the presence of resonance peaks in experimental
spectral functions at s of order a few GeV2. Such “duality
violating” (DV) effects are expected to be localized to the
vicinity of the Minkowski axis, an expectation confirmed
by studies of FESRs employing both “unpinched” weights
(those which do not vanish at s ¼ s0 and hence do not
suppress contributions from the region near the Minkowski
axis) and “pinched” weights [those with wðs0Þ ¼ 0, which
do suppress contributions from that region] [9]. Precision
determinations of αs, quark masses, and other OPE
parameters may, however, require small residual DV
contributions to be taken into account, even for FESRs
involving pinched weights [10,11].
A second, related issue for the use of the OPE in FESRs

and IMFESRs is the fact that the OPE (an expansion in
z ¼ 1=Q2) is not convergent [12]. Convergence would
require the existence of a region in the complex plane
around z ¼ 0 free of singularities and hence, in the case of a
current-current two-point function, the vanishing of the
corresponding spectral function above some maximum
value of s. This is not the case. The OPE is thus, at best,
an asymptotic expansion, and one cannot safely assume
that effective condensates CD, of dimensionD, defined by2

ΠOPEð−Q2Þ ¼
X∞
k¼0

C2kðQ2Þ
ð−Q2Þk ; ð1:8Þ

naively scale as ΛD
QCD.

This is relevant for FESRs and IMFESRs employing
weights wðsÞ which generate OPE contributions propor-
tional to higher dimension CD not known from external
sources. Assumptions based on naive scaling of the CD
have often been used to argue that such unknown
contributions are “safely” negligible at scales of a few

1Equation (1.3) has been written in terms of spectral function
combinations, ρð0þ1Þ

V=A;ijðsÞ and sρð0ÞV=A;ij, for which the correspond-

ing polarizations,Πð0þ1Þ
V=A;ijðsÞ and sΠð0Þ

V=A;ijðsÞ, are free of kinematic
singularities.

2The condensates are logarithmically dependent on Q2. This
dependence, which is suppressed by at least one power of αs, is
usually neglected forD ≥ 4, as it makes no difference in the value
of αs obtained from FESR analyses [11].
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GeV2, including s0 ∼m2
τ . In general, a polynomial weight

wðyÞ ¼ P
N
k¼0 bky

k, y ¼ s=s0, produces, up to logarithmic
corrections suppressed by additional powers of αs, a
contribution,

X
k

ð−1ÞkbkC2kþ2=s
kþ1
0 ; ð1:9Þ

to the right-hand side of Eq. (1.6).
We refer to the prescription of neglecting contributions

proportional to bkC2kþ2 for higher k and s0 of order a few
GeV2 as the “truncated OPE” (tOPE) approach [13]. The
nonconvergence of the OPE implies that this assumption
is a dangerous one to make, in general. It does, however,
remain a logical possibility that, for a given value of s0,
the truncated OPE might represent a reasonable approxi-
mation for a specific set of weights. If so, the tOPE
approach can be used for a sum-rule analysis employing
this set of weights at this value of s0. In this paper, we will
investigate whether or not this is the case for the EM
current-current two-point function for values of s0
between m2

τ and 4 GeV2.
An example of a situation in which the tOPE approxi-

mation might be practically useful is provided by the
FESR determination of αs based on nonstrange hadronic τ
decay data. Since the kinematic weight wτðyÞ ¼ 1–3y2 þ
2y3 appearing in Eq. (1.3) has degree 3, the OPE
representation of the total nonstrange hadronic τ-decay
width contains contributions of dimension 0, 6, and 8.3

The total nonstrange width (corresponding to the kine-
matically weighted spectral integral with s0 ¼ m2

τ ) is thus
insufficient, by itself, to allow one to determine αs since
the relevant condensates, C6 and C8, are not known from
external sources. A tOPE strategy to deal with this
problem, proposed in Ref. [15], is to consider additional
FESRs in which C6 and C8 also occur. The conventional
version of this strategy employs the five “kl spectral
weights,”

wklðyÞ ¼ ð1þ 2yÞð1 − yÞ2þkyl; ð1:10Þ

with kl ¼ 00, 10, 11, 12, and 13 (note that w00 ¼ wτ), and
focuses on the s0 ¼ m2

τ versions of the corresponding
spectral integrals (1.7). Recent versions of this analysis
may be found in Refs. [16,17]. A number of alternate
weight sets, including the so-called optimal weights,

w2kðyÞ ¼ 1 − ðkþ 2Þykþ1 þ ðkþ 1Þykþ2; ð1:11Þ

k ¼ 1;…; 5, were also considered in Ref. [17] (note that
w21 ¼ wτ),

4 with s0 again restricted to m2
τ .
5

The tOPE assumption enters these analyses as follows.
Since both the kl spectral and optimal-weight sets involve
weights with degrees up to 7, OPE contributions up to
D ¼ 16 are in principle required, as per Eq. (1.9). So long
as one attempts to minimize residual DV contributions by
restricting s0 to its maximum kinematically allowed value,
m2

τ , a five-weight set provides only five (highly correlated)
spectral integrals for use in fitting, and one can hence fit at
most four OPE parameters. The five kl spectral weight
FESRs, however, in general, involve OPE contributions
depending on αs and the seven condensates C4;…; C16.
The five optimal-weight FESRs, similarly, neglecting
the strongly suppressed D ¼ 4 contributions, depend on
the OPE parameters αs and C6;…; C16. In both cases, the
number of OPE parameters exceeds the number of s0 ¼ m2

τ

spectral integrals, unless one makes the tOPE assumption,
which is to neglect contributions from the new CD
introduced by the higher degree weights. In the tOPE
implementation of the conventional kl spectral-weight
analysis, contributions proportional to C10, C12, C14, and
C16 are assumed negligible, leaving the four remaining
OPE parameters αs, C4, C6, and C8 to be fit. In the tOPE
implementation of the optimal-weight analysis, contribu-
tions proportional to C12, C14, and C16 are assumed
negligible, and the five spectral integrals are used to fit
the four remaining relevant OPE parameters, αs, C6, C8,
and C10. In both cases, the assumption underlying the tOPE
approach is that the OPE, though not actually convergent,
nonetheless behaves, for s0 ¼ m2

τ , as if it were a rapidly
converging series out to at least D ¼ 16.
Since both integrated DV contributions and integrated

higher-dimension OPE contributions decrease with increas-
ing s0, it follows that, if the tOPE assumption is reliable
at s0 ¼ m2

τ , it should be even more reliable for s0 > m2
τ.

Unfortunately, the kinematic restriction s0 ≤ m2
τ prevents

the self-consistency tests this suggests from being carried
out for τ-based FESRs. Analogous tests can, however, be
carried out for FESRs based on EM R-ratio data, where
there is no kinematic restriction on the hadronic invariant
mass-squared s.6

As already mentioned, the aim of this paper is to inves-
tigate the validity of the tOPE strategy using data for the
EM spectral function obtained from eþe− → hadronsðγÞ.
This is not an exercise of academic interest since, as was
shown in Ref. [13], the assumptions underpinning the tOPE

3D ¼ 4 contributions are strongly suppressed by the absence
of a term linear in y in wτðyÞ. For the case of nonstrange τ decays,
C2 is proportional to the square of the light-quark mass and is
numerically negligible. For the case of the R ratio, there is a
contribution proportional to the square of the strange-quark mass
which can be calculated; for details, we refer to Ref. [14].

4The absence of a term linear in y again strongly suppresses
D ¼ 4 OPE contributions for the optimal-weight FESRs.

5In Ref. [17], s0 dependence was considered, but all final
values quoted for αsðm2

τ Þ were obtained from moments at
s0 ¼ m2

τ .6For other tests of the tOPE strategy, based on the hadronic
τ-decay data, see Ref. [13].
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strategy affect the value extracted for αs using this strategy.
Wewill use the recent compilation of exclusive experimental
data for the R ratio provided in Ref. [18], which was also
recently employed in a determination of αs using a different
strategy [14]. The sum-of-exclusive-modes part of the
compilation of Ref. [18] reaches up to s ¼ 4 GeV2, after
which the compilation relies on inclusive datasets. We show
these data in Fig. 1 in the region 2 GeV2 ≤ s ≤ 6 GeV2,
with the transition from exclusive to inclusive regions
clearly visible. In Ref. [14], it was found that including
the much more scarce data above s ¼ 4 GeV2 leads to
values of αs consistent with those found from the exclusive
data, but without decreasing the error. Also, using Eq. (1.6)
with only values of s0 in the inclusive region leads to a still
consistent, but higher, value of αs with a much larger error.
The reason is that the inclusive data for theR ratio tend to be
larger than what onewould expect from perturbation theory,
cf. the red solid and dashed curves in Fig. 1. However,
despite the visually apparent tension between the inclusive
data and perturbation theory, it was found that the larger
values of these data are consistent with it being a statistical
fluctuation, given the strong correlations that exist between
the inclusive data points at different values of s.
Given all this, we will limit ourselves in this paper to an

investigation of the tOPE approach using the R-ratio data
up to s ¼ 4 GeV2; this is the same region employed in the
determination of αs in Ref. [14].
The rest of this paper is organized as follows. Having

already reviewed the tOPE strategy and the goal of this
paper in this section, we discuss in more detail the
assumptions on which our investigation will rely, and
elaborate further on our methodology, in Sec. II. Then, in
Sec. III, we will present our results, which are shown in
Figs. 3–10 and explained in the main text. A final section
restates our assumptions and contains our conclusions.

A preliminary account of this work was presented in
Ref. [19].

II. ASSUMPTIONS AND METHODOLOGY

The tOPE strategy has often been employed previously
in analyses of FESRs based on hadronic τ-decay data. As
our aim is to use values of s0 greater than m2

τ to test the
strategy, we will focus instead on FESRs based on EM
spectral data. The spectral function obtained from the R
ratio is, of course, not the same as the spectral functions
obtained from τ decays. Here, we discuss the differences in
some detail, spelling out the assumptions underlying our
use of analyses based on the former to cast light on those
based on the latter.
It has been advocated, in the literature applying the tOPE

strategy to τ-decay data, that analyses of the sum V þ A of

FIG. 2. αsðm2
τ Þ as a function of s0. Blue points (open circles)

are correlated optimal-weight fit results, red points (squares) are
diagonal optimal-weight fit results, cyan pionts (filled circles) are
correlated kl-spectral weights fit results, and magenta points
(triangles) are diagonal kl-spectral weights fit results. Red, cyan,
and magenta points are slightly offset horizontally for better
visibility.

1.0

1.5

2.0

2.5

3.0

2 3 4 5 6

s GeV2

FIG. 1. A blowup of R ratio in the region 2 ≤ s ≤ 6 GeV2. The
red solid and red dashed lines show the results obtained from
perturbation theory with αsðm2

τ Þ ¼ 0.28 and αsðm2
τ Þ ¼ 0.32,

respectively. The vertical dashed line is s ¼ m2
τ .

TABLE I. Fit results with optimal weights. We show the fits at
s�0 ¼ m2

τ and at a value of s�0 for which the fit has a p value greater
than 10%. Errors shown are fit errors only.

s�0 (GeV2) χ2=dof p value αsðm2
τ Þ αsðm2

τ Þ (diag)
m2

τ 62.7=1 2 × 10−15 0.308(4) 0.245(10)
3.6 0.669=1 0.41 0.264(5) 0.256(12)

TABLE II. Fit results with kl spectral weights. We show the fits
at s�0 ¼ m2

τ and at a value of s�0 for which the fit has a p value
greater than 10%. Errors shown are fit errors only.

s�0 (GeV2) χ2=dof p value αsðm2
τ Þ αsðm2

τ Þ (diag)
m2

τ 87.8=1 7 × 10−21 0.322(3) 0.281(6)
3.7 1.97=1 0.16 0.277(5) 0.268(9)
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the nonstrange V and A channels are preferable, based on
the notion that this sum will be less sensitive to duality
violations and that, in general, nonperturbative effects
may be smaller for the sum than for the individual V or
A channels. Of course, in the EM case, only a V-channel
spectral function is available, as the photon does not couple
to axial currents. There are two reasons to believe that,
nevertheless, it is reasonable to expect that useful lessons
can be learned by considering the purely V-channel EM
current only.
First, it was found in Ref. [14] that for a determination of

αs from R-ratio data in the region above about 3.25 GeV2

duality violations can be neglected, with results that are
fully consistent with a sum-rule analysis of the τ-based

spectral data which modeled duality violations below the τ
mass. This observation implies that the OPE should provide
a good representation of the contour integral over ΠðsÞ
in Eq. (1.7b) if the radius s0 is chosen to be not smaller
than approximately 3.25 GeV2. As we will draw our main
conclusions from fits of electroproduction data with values
of s0 above the τ mass, it therefore appears that the issue
of sensitivity to duality violations does not constitute a
problem for tests of the tOPE strategy based on EM
V-channel data.
Moreover, the tOPE-based results obtained in Ref. [17]

show excellent consistency for the values of αs extracted
from V-channel fits and V þ A-channel fits, employing the
weights of Eqs. (1.10) and (1.11). The values obtained from

3 3.5 4

s
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2
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FIG. 3. Comparison of Iexpw ðs0Þwith Ithw ðs0Þwith parameter values obtained from diagonal fits with optimal weights, as a function of s0
with s�0 ¼ m2

τ .
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kl spectral weights differ by slightly more than 1σ between
V and V þ A,7 while those obtained from optimal weights
differ by much less than 1σ. In both cases, the quality of the
V-channel fits is better than that of the V þ A-channel fits,
as measured by the χ2 value per degree of freedom.
Therefore, while we have to assume that V-channel-only

investigations can shed light on the tOPE strategy as
applied to τ decays, it appears to us that this is, in fact,
a rather innocuous assumption.
A second difference between a τ-based analysis and an

R-ratio-based analysis is that the nonstrange spectral
functions obtained from τ decays have isospin I ¼ 1, while
the spectral function obtained from the R ratio has both

I ¼ 1 and I ¼ 0 components.8 We thus need to assume that
the OPE behavior of the scalar polarization ΠEM is similar
to that of the scalar polarization ΠI¼1, if we want to use
R-ratio-based tests to investigate the validity of the tOPE
strategy as applied to analyses of hadronic τ-decay data.
In this paper, we will make this assumption, believing

that it is well motivated. If the strange-quark mass ms were
to be negligibly small, like the up- and down-quark masses,
the I ¼ 1 and I ¼ 0 currents would be components of an
SUð3Þ-flavor multiplet, and any conclusions reached in the
study of the EM polarization would directly apply to the
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FIG. 4. The double-differences, Δð2Þ
w ðs0; s�0Þ, obtained from diagonal fits with optimal weights, as a function of s0 with s�0 ¼ m2

τ .

7Very similar results were found in Ref. [16].

8Since the up- and down-quark masses can be taken to vanish
in a sum-rule extraction of αs, we can assume the τ-based spectral
functions to be purely I ¼ 1.
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I ¼ 1 case. For jsj ¼ s0, the OPE for ΠEMðsÞ differs from
that for ΠI¼1ðsÞ by terms of order m2

s=s0, which for s0 ≥
m2

τ is smaller than m2
s=m2

τ ∼ 0.003. Indeed, in Ref. [14], it
was found that the effect of ms on the central values of
αsðm2

τÞ and the OPE condensates C6;8;10 is significantly
smaller than the fit error on the values of these parameters.
In addition, we emphasize again that Ref. [14] finds
excellent agreement between αs determinations based on
the R ratio and the τ data, if the OPE is treated consistently
and the same strategy is used in both cases [11,20,21]. We
conclude that it seems unlikely that the presence of an
I ¼ 0 component in the EM case would have a significant
impact on the applicability of the tOPE strategy to R-ratio
data, in comparison with τ-decay data, at least if the value
of s0 is large enough.

In our study of the tOPE, we will repeat the V-channel
fits carried out in Ref. [17], employing the weights (1.10)
and (1.11), but now using the R-ratio data compilation of
Ref. [18]. We will consider values of s0 ranging fromm2

τ to
4 GeV2. If we find a good fit, we will compare the
experimental spectral moments Iexpw ðs0Þ and their theoreti-
cal representation based on that fit Ithw ðs0Þ as follows. First,
if we fit at the value s0 ¼ s�0, we compute the differences

Δexp
w ðs0; s�0Þ≡ Iexpw ðs0Þ − Iexpw ðs�0Þ;
Δth

w ðs0; s�0Þ≡ Ithw ðs0Þ − Ithw ðs�0Þ; ð2:1Þ
as a function of s0. Note that the correlations between
spectral integrals at different s0, as well as those between
OPE integrals at different s0, are very strong; working
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FIG. 5. Comparison of Iexpw ðs0Þ with Ithw ðs0Þ with parameter values obtained from diagonal fits with kl spectral weights, as a function
of s0 with s�0 ¼ m2

τ .
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with the differences in Eq. (2.1) helps to avoid being
misled by these correlations when comparing experimental
and fitted theory integrals. Then, in order to compare
experiment and theoretical representation, we compute the
differences

Δð2Þ
w ðs0; s�0Þ≡ Δth

w ðs0; s�0Þ − Δexp
w ðs0; s�0Þ; ð2:2Þ

where all correlations, including those between data and fit
parameters, are fully taken into account. Considering these
double-differences avoids any issues with under- or over-
estimating errors in the comparison between theory and

experiment. Note that, by construction, Δð2Þ
w ðs�0; s�0Þ ¼ 0,

with zero uncertainty.

We will have reason to consider both fully correlated χ2

fits and what we will refer to as “diagonal” fits, where, in
the positive quadratic form to be minimized, we only retain
the diagonal part of the covariance matrix for the integrated
spectral data (in computing this covariance matrix, how-
ever, the full data covariance matrix is taken into account).
We emphasize that, when computing errors on the fitted
parameter values produced by such diagonal fits, we take
into account the full covariance matrix for the integrated
spectral data, without ignoring any correlations. Although
correlated fits are more popular, such diagonal fits can
also be a useful tool in cases where the strong correlations
make a correlated fit fail. For a detailed explanation of
the diagonal fit procedure, we refer the reader to the
Appendix of Ref. [11]. All correlations, including those
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τ .

BOITO, GOLTERMAN, MALTMAN, and PERIS PHYS. REV. D 100, 074009 (2019)

074009-8



between data and fit parameters, are always fully taken into
account in the computation of the single and double-
differences Δexp =th

w ðs0; s�0Þ and Δð2Þ
w ðs0; s�0Þ, for both types

of fits.

III. RESULTS

We begin with showing and discussing some numerical
results from fits employing the tOPE strategy, using fixed-
order perturbation theory (FOPT).9 In Table I we show

tOPE fit results with optimal weights. We first attempted
a correlated fit at s�0 ¼ m2

τ , precisely following the strategy
of Ref. [17], but employing R-ratio data instead of hadronic
τ-decay data. We find, as the table shows in the first line,
that this fit is very bad. To the right of the double vertical
line, we show the corresponding value of αsðm2

τÞ obtained
from a diagonal fit. Not surprisingly, the fit values of
αsðm2

τÞ for these two fits do not agree. We observe that,
while the correlated fit produces what, nominally at
least, looks like a reasonable result for αsðm2

τÞ, this result
cannot be accepted because of the very bad fit quality. The
value of αsðm2

τÞ from the diagonal fit, on the other hand, is
very low in comparison with the world average, αsðm2

τÞ ¼
0.315ð9Þ [25,26].
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FIG. 7. Comparison of Iexpw ðs0Þ with Ithw ðs0Þ with parameter values obtained from correlated fits with optimal weights, as a function of
s0 with s�0 ¼ 3.6 GeV2.

9Results from contour-improved perturbation theory (CIPT)
[22] are very similar, and we will thus restrict ourselves to FOPT,
for simplicity. For detailed studies comparing FOPT with CIPT,
see Refs. [23,24].
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We repeated the same exercise employing kl
spectral weights, with the results shown in the first line
of Table II. The results look qualitatively similar to
those shown in Table I, but they are not in quantitative
agreement.
Clearly, our attempts to apply the tOPE strategy of

Ref. [17] at s�0 ¼ m2
τ to the electroproduction data lead to

disastrous results, and an obvious question is what causes
this to happen. Assuming that there is no problem with the
data (which have been extensively used in Refs. [14,18])
leads to the conclusion that the tOPE strategy does not
provide a good fit of the R-ratio data, while, according
to Refs. [16,17], it does provide a good fit of the τ-decay

data.10 In fact, it was already observed in Ref. [14] that the
OPE does not give a good representation of the wτ-spectral
integral of the R-ratio data for s0 ≲ 3.25 GeV2 even when
no terms from the OPE selected by Eq. (1.9) were neglected
in the analysis. Since consistently good fits were obtained
at higher values, 3.25≲ s0 ≤ 4 GeV2, in Ref. [14], it seems
reasonable to infer that s0 ¼ m2

τ is too small for the OPE to
reliably describe the R ratio through the spectral integrals
appearing in the FESRs (1.6)—even more so if, in addition,
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FIG. 8. The double-differences, Δð2Þ
w ðs0; s�0Þ, obtained from correlated fits with optimal weights, as a function of s0 with

s�0 ¼ 3.6 GeV2.

10Reference [13] confirms this, even though that reference
explains why this does not imply that the tOPE is a reliable
strategy.
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the OPE is naively truncated. Another possible contributor
to the difference might be that the R-ratio spectral integrals,
being more precise than their counterparts obtained from
τ-decay data, provide a more stringent test of the tOPE
strategy.11

In order to make progress, given this somewhat incon-
clusive state of affairs, we proceed to consider fits of
Eq. (1.6) using a value s0 ¼ s�0 larger than m

2
τ . We increase

s�0 (in steps of 0.1 GeV2, starting from s�0 ¼ 3.2 GeV2)
until the corresponding correlated fit produces a p value

greater than 10%, a value that would not, by itself, rule out
the hypothesis that the data would be well described by the
tOPE. For the optimal and kl spectral weight sets, we find
this occurs for s�0 ¼ 3.6 GeV2 and s�0 ¼ 3.7 GeV2, respec-
tively. Both correlated and diagonal fit results are shown in
the second lines of Tables I and II, respectively. We see that
the results obtained from correlated and diagonal fits are in
good agreement for both sets of weights. However, the
correlated fit values for αsðm2

τÞ obtained from the optimal
and kl spectral weight fits are around 2.5σ or more apart.12

We show results for the strong coupling for each of these
types of fits, as a function of s�0, in Fig. 2, with correlated fit
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FIG. 9. Comparison of Iexpw ðs0Þ with Ithw ðs0Þ with parameter values obtained from correlated fits with kl spectral weights, as a function
of s0 with s�0 ¼ 3.7 GeV2.

11The fact that our investigation uses only V-channel data,
instead of V þ A, is much less likely to explain the difference,
given the good quality fits of the τ-based V-channel data obtained
in Ref. [17]. 12Note that these two values are essentially 100% correlated.
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results for αsðm2
τÞ for optimal (kl spectral) weights shown as

blue (cyan) points and diagonal fit results shown as red
(magenta) points. We emphasize that correlated fits with s�0
smaller than 3.6 GeV2 have very small p values, which
rapidly deteriorate down toward s�0 ¼ m2

τ . In the region
where good correlated fits can be obtained, i.e., for
s�0 ≳ 3.6 GeV2, there is good agreement with diagonal fits
for each set of weights, with the correlated fits yielding the
smaller errors. However, there is less good agreement
between the results obtained using the optimal and kl
spectral weight sets. If we were to attempt to extract a value
ofαsðm2

τÞ from this collectionof fits,wewouldhave to accept
a central value of roughly 0.26–0.27, which is again very low

compared to the world average and, in particular, compared
with the values obtained in Refs. [11,14,16,17,20,21].
A much more stringent test of the quality of these fits,

and thus the assumptions underlying the tOPE strategy, is
provided by consideration of the double-differences

Δð2Þ
w ðs0; s�0Þ defined in Eq. (2.2), which we will turn to

next. As explained above, a fundamental assumption of the
tOPE strategy is that it provides a good theoretical des-
cription of the data for the spectral moments Iexpw ðs0Þ above
s0 ≈m2

τ . Given a fit at some s0 ¼ s�0, we can vary s0 and

plotΔð2Þ
w ðs0; s�0Þ as a function of s0. If the assumption is cor-

rect, we should find good agreement between theory (fitted
at s�0) and experiment, for any value s0 ≥ m2

τ . This means
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FIG. 10. The double-differences, Δð2Þ
w ðs0; s�0Þ, obtained from correlated fits with kl spectral weights, as a function of s0 with

s�0 ¼ 3.7 GeV2.
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we should find that Δð2Þ
w ðs0; s�0Þ ¼ 0 within errors for m2

τ ≤
s0 ≤ 4 GeV2 for all weights w included in the fit.
In Figs. 3–10, we show the data and the fitted theory

curves, as well as the double-differencesΔð2Þ
w ðs0; s�0Þ for the

diagonal fits at s�0 ¼ m2
τ in the optimal (Figs. 3 and 4) and

kl spectral (Figs. 5 and 6) weight cases, for the correlated
fit at s�0 ¼ 3.6 GeV2 in the optimal-weight case (Figs. 7
and 8), and for the correlated fit at s�0 ¼ 3.7 GeV2 in the kl
spectral weight case (Figs. 9 and 10). We emphasize again
that all errors shown in all five panels in all four double-
difference plots have been computed taking all correlations,
including those between data and the fit parameters, into
account.
Figures 3, 5, 7, and 9, which show the data comparedwith

the fitted theory curves (using central values for the fit
parameters), showwhat the fits look like, as a function of s0.
It is clear that the theory, fixed by a fit at s0 ¼ s�0, does not do
a very good job of describing the s0 dependence, but, given
the strong correlations, it is hard to ascertain, from these
figures alone, how bad this problem actually is. It is for this
reason that we focus on the comparison between experiment
and theory provided by the “double-difference” figures,

where we consider the quantity Δð2Þ
w ðs0; s�0Þ as a function of

s0 for the fixed values of s�0 used in the corresponding fits.
These results are shown in Figs. 4, 6, 8, and 10.
Three different observations are of relevance for assess-

ing the lessons to be learned from the results shown in the
double-difference figures. First, in obtaining results from a
fit at s0 ¼ s�0, it has been assumed that the tOPE strategy
provides a valid theory representation at that value of s0.
This implies, with certainty, that this strategy should
provide a good theory representation for any value of

s0 ≥ s�0. The plots of Δð2Þ
w ðs0; s�0Þ for s0 > s�0 directly test

this assumption. Second, if the claim is that the tOPE
strategy works at s0 ¼ m2

τ , this implies that, for any

s�0 ∈ ½m2
τ ; 4 GeV2�, Δð2Þ

w ðs0; s�0Þ should be consistent with
zero for all s0 ≥ m2

τ , irrespective of the value of s�0 used in
the fit. Finally, for a fit to five spectral moments [whether
employing Eq. (1.10) or Eq. (1.11)] to be successful,

Δð2Þ
w ðs0; s�0Þ has to be consistent with zero as a function

of s0 for each of the five weights in the set. If Δð2Þ
w ðs0; s�0Þ

shows a significant deviation from zero for just one or two
weights, this indicates a problem with the fit, and thus with
the tOPE strategy.
From Figs. 3, 5, 7, and 9, we see that the fitted theory

curves do agree within errors with all five of the corre-
sponding weighted spectral integrals for s0 in the vicinity of
the tOPE fit point s0 ¼ s�0. This is, however, not typically
the case for s0 farther away from s�0. One clearly observes,

however, that, for many weights, Δð2Þ
w ðs0; s�0Þ, shown in

Figs. 4, 6, 8, and 10, is not consistent with zero for m2
τ ≤

s0 ≤ 4 GeV2 and that many points are, in fact, many σ

away from zero. This is particularly true for the correlated
fits shown in Figs. 8 and 10 in the region 3.25 GeV2 ≤
s0 < s�0. This casts serious doubt on the validity of the tOPE
strategy in the whole region we have investigated here, i.e.,
the region between s ≈m2

τ and s ¼ 4 GeV2.

IV. DISCUSSION AND CONCLUSION

In this paper, we have continued our investigation of the
validity of the truncated OPE approach to FESR analyses,
an investigation of relevance, for example, to the determi-
nation of αs from such analyses of hadronic τ-decay data.
The key observation is that if the tOPE approach works at a
“fit point” s�0 near m

2
τ (a) it should certainly work at higher

values of s�0 and, (b) given a fit at s0 ¼ s�0 equal to m2
τ or

higher, there should be good agreement between the
experimental spectral moments and the theory representa-
tions employing the OPE parameter fit values at s0 ≥ s�0.
Under rather mild assumptions, tests of these two

observations can be carried out using R-ratio data, for
which very precise results are available up to s ¼ 4 GeV2

[18,27]. The two assumptions are that (i) it is sufficient to
consider only EM vector-channel data (with the axial-
channel data available in τ decays not being accessible
through eþe− → hadrons) and (ii) the presence of an I ¼ 0
component in the R-ratio data does not change the behavior
of the OPE in an essential way as far as the tOPE strategy is
concerned. We discussed these two assumptions, and the
reasons for expecting them to be reliable, in detail in Sec. II.
The tOPE approach makes two basic assumptions. The

first is that violations of quark-hadron duality can be
ignored already at energies as low as the τ mass, and
the second is that the expansion in 1=s0 of the integrated
OPE, though in actual fact divergent, acts as if it were
rapidly converging already at s0 ¼ m2

τ . If we assume that in
the region s0 ≳m2

τ duality violations are relatively unim-
portant (an assumption that is consistent with the results of
Ref. [14]),13 the question centers on the nature of the OPE
for values of Q2 with jQ2j ¼ s0 in this region.
Our central results are shown in Figs. 4, 6, 8, and 10. If

the tOPE were to be valid, they should show data points
consistent with zero for all s0 ≥ m2

τ . Instead, these figures
show very significant disagreements, as a function of s0,
between the experimental values of the spectral moments
and the theory representations based on the tOPE fits at
various fit points s�0, for both the optimal-weight- and kl-
spectral-weight-based fits. We emphasize that the error bars
shown for the double-differences, defined in Eq. (2.2), take
all correlations into account, including those between data
and the fit parameter values.
The first two of these figures show the results of diagonal

fits at s�0 ¼ m2
τ , which we considered after we found that

13The fact that the weights (1.10) and (1.11) are doubly
pinched also serves to suppress such integrated duality violations.
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correlated fits do not work at this s�0 (cf. Tables I and II).
More important are the fits at s�0 ¼ 3.6 GeV2 (for optimal
weights, shown in Fig. 8) and s�0 ¼ 3.7 GeV2 (for kl
spectral weights, shown in Fig. 10). These are correlated χ2

fits with acceptable p values, where the figures nonetheless
show very serious mismatches between the experimental
data and the theory representations provided by the fits. We
observe that if the tOPE strategy does not work for a value
of s�0 significantly larger than m2

τ it certainly cannot be
expected to be reliable at s�0 ¼ m2

τ , thus making our tests at
s�0 ¼ m2

τ less relevant. Nevertheless, the fact that correlated
fits at s�0 ¼ m2

τ do not work stands in sharp contrast to what
is found with data from hadronic τ decays [13,17]. One
should note, however, that a good fit quality is a necessary
but not a sufficient condition that must be fulfilled by a
reliable description of the data. Further consistency checks
performed in Ref. [13], for example, revealed problems
with the results of the τ-based tOPE analysis, in spite of the
fact that the tOPE fits produced good χ2 results. We have
shown here that close scrutiny rules out results based on
this strategy when applied to eþe− → hadrons data as well,
even in the cases where acceptable fit qualities are obtained.
In this case, when one applies the tOPE strategy to the more
precise R-ratio data at values of s�0 up to m2

τ (cf. Tables I
and II), one also finds that the fits are bad, as judged by the
p values.
We may also ask what our results imply for the OPE

itself, rather than just for the tOPE strategy. Our tests probe
the integrated OPE up to dimension 16, for both the optimal
and kl spectral weight sets. As the OPE is (at best) an
asymptotic expansion, the question is to which order one
can expect to be able to use it while still having the
truncated expansion approach the underlying true physical
value. The answer to this question will, of course, depend
on the value of s0. The analysis in Ref. [14] showed that
the OPE provides a consistent representation of the EM
vacuum polarization up to dimensionD ¼ 10, a conclusion
supported, in particular, by the consistency of the results
for the effective D ¼ 6 condensate, C6, obtained using
different weights with degree up to 4, in the region
m2

τ ≤ s0 ≤ 4 GeV2. It is possible that the OPE starts to
already diverge before one reaches the term of dimension
16 for s0 in the range betweenm2

τ and 4 GeV2, but it is also

possible that it approaches the (unknown) exact answer
reasonably well, to this order, and in this range. Our tests
leave this question undecided. What they do show is that,
even if the OPE is still approaching the true answer out to
D ¼ 16, it is not doing so rapidly enough that terms with
D > 10 (for the optimal weights) or D > 8 (for the kl
spectral weights) can be neglected, in the sum rules
considered here. In any case, our analysis provides a clear
message that it is safest to restrict the analysis to those
observables which only receive a contribution from the
lower-dimension terms in the OPE.
Our main conclusion is that, even if one considers an

energy region in which duality violations are likely to be
strongly suppressed, the tOPE strategy leads to inconsistent
results, thus invalidating the neglect of higher-order terms
in the OPE in that energy region. Taken together with our
earlier investigations of the tOPE strategy reported in
Ref. [13], the implication is that the tOPE strategy is not
a reliable one. It should thus no longer be employed, for
example, in the extraction of αs from hadronic τ decays or
R-ratio data, up to at least s ¼ 4 GeV2, particularly since
an alternative method which does not suffer from the
shortcomings of the tOPE strategy exists [11,14,20,21].
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