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We revisit the nonrelativistic quark model description of electromagnetic radiative decays in
bottomonium. We show that even for the simplest spectroscopic quark model the calculated widths
can be in good agreement with data once the experimental masses of bottomonium states and the photon
energy are properly implemented in the calculation. For transitions involving the lower lying spectral states
this implementation can be easily done via the long wavelength approximation. For transitions where this
approximation does not apply we develop a new method of implementing the experimental energy
dependencies.
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I. INTRODUCTION

Electromagnetic radiative decays of hadrons provide
useful information on the hadron structure. Their quark
model description is based on the elementary emissionmodel
(EEM) that assumes that the decay takes place through the
emission of the photon by a quark (or antiquark) of the
hadron, see for example Ref. [1]. As the electromagnetic
transition operator is known, without any free parameter,
radiative decays may be a powerful tool to discriminate
among different spectroscopic hadron models.
In practice this discrimination may be rather difficult.

Think, for example, of heavy quarkonium (bottomonium
and charmonium) for which the nonrelativistic quark
potential model is undoubtedly the more successful one
in the spectral description of states below the open flavor
meson-meson thresholds, see for instance Ref. [2] and
references therein. [This is so even for the low lying
charmonium states for which the calculated speed of the

quarkQ, or the antiquark Q̄, given by jpQj
MQ

where pQ ðMQÞ is
the three-momentum (mass) of the quark, can be about half
of the speed of light.] Then, in order to build the
electromagnetic transition operator for I → γF, where I
and F are bottomonium or charmonium states, a non-
relativistic reduction of the well known pointlike quark

photon interaction up to jpQj
MQ

order is carried out. Moreover,

for transitions where the wavelength of the emitted photon
is larger than the hadronic size scale of the process the
operator is further simplified to the so-called long wave-
length approximation (LWLA). Hence the comparison of
calculated radiative widths to data may be testing not only
the hadron structure model but also the hadron decay model
approximation. This could be the reason why different
spectroscopic quark models are successful (or fail) in the
description of the same radiative decays [2–4].
In this article we center on bottomonium for which the

nonrelativistic spectroscopic quark model as well as the
nonrelativistic form of the electromagnetic transition oper-
ator can be reasonably taken for granted, and examine the
requirements needed to get an accurate general description
of radiative decays. We shall show that such a description
may be attained, even from the simplest quark potential
model wave functions reasonably fitting the spectroscopy,
when the calculated mass differences between bottomo-
nium states approximate the experimental ones. In the case
that there is a discrepancy of tens of MeV at most, a good
description is still feasible if the measured masses are
properly implemented in the calculation.
The contents of the article are organized as follows. In

Sec. II we use the simplest spectroscopic (Cornell) potential
model, yet incorporating the basic QCD ingredients for a
physical description of bottomonium, for the calculation of
the masses of the S and P spin triplet states far below open
flavor thresholds. In Sec. III we recall the nonrelativistic
form of the electromagnetic operator and focus on S ↔ P
transitions between spin triplet states since these are
quantitatively the more important ones and there are more
data available. In Sec. IV we take the LWLA that permits to
factor out the final and initial state mass difference
dependence in the operator. This allows us to implement
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the experimental masses in the calculation what turns out to
be crucial for an accurate description of decays within the
range of validity of the LWLA. In Sec. V we pursue the
mass difference factorization in the general case to get a
good description of measured decays beyond the LWLA
range of validity and to generate reliable predictions for not
yet measured ones. Finally in Sec. VI our main results and
conclusions are summarized.

II. SPECTROSCOPIC QUARK MODEL

The simplest nonrelativistic quark model physical
description of bottomonium ðbb̄Þ comes out from the
Hamiltonian

HC ¼ p2

Mb
þ VCðrÞ; ð1Þ

where VCðrÞ is a Cornell-like potential [2,5,6]

VCðrÞ ¼ σr −
ζ

r
ð2Þ

with r standing for the b − b̄ radial distance and σ and ζ for
the string tension and the chromoelectric Coulomb strength
parameters respectively. This static potential form has been
justified from quenched lattice QCD calculations, see
Ref. [7] and references therein. It should be kept in mind
though that in the spirit of the nonrelativistic quark model
calculations σ and ζ are effective parameters through which
some nonconsidered corrections to the potential may be
implicitly taken into account. Any different set of values of
the parameters σ, ζ and Mb defines a different Cornell
potential model. From now on we fix the Coulomb strength
to ζ ¼ 100 MeV fm corresponding to a strong quark-gluon
coupling αs ¼ 3ζ

4ℏ ≃ 0.38 in agreement with the value
derived from QCD from the hyperfine splitting of 1p
states in bottomonium [8]. As for σ we expect, from lattice
studies [7] a value around 900 MeV=fm. Then, we choose
it altogether with the quark mass, Mb, to get a reasonable
fit, within a few tens of MeV, to the masses of 0−ð1−−Þ and
0þðJþþÞ, J ¼ 0, 1, 2, spin triplet states (let us recall that the
neglected spin-spin contribution to the mass is three times
smaller for triplet than for singlet states). More precisely,
we define our model by (notice that this model does not
contain any additive constant in the potential)

σ ¼ 850 MeV=fm;

ζ ¼ 100 MeV fm;

Mb ¼ 4793 MeV; ð3Þ

from which a reasonable overall description of the spectral
masses is obtained as shown in Table I.
Some comments are in order. First, the low lying

1−− masses are well reproduced within 15 MeV.
The discrepancy between the calculated mass of the 4S

state at 10608 MeV and the experimental mass at
10579.4 MeV may be indicating mixing of the 4S and 3D
states. So, themeasured resonancewouldhave a dominant 4S
component, whereas a not yet discovered resonance at about
10750 MeV would have a dominant 3D component. Notice
that S −D mixing should be also present for the 5S and 4D
states, apart from a possible additional mixing with the
lowest hybrid state [11]. For higher 1−− states, not included
in the table, the first S− wave open flavor meson-meson
threshold, BB̄1 at 11003 MeV, may play an important role.
Second, the calculated masses for 1P and 2P and 3P

states differ from the corresponding measured 3P2 masses
by less than 10 MeV. Therefore we may consider that our
model fits reasonably well the 1−−, 2þþ, and to a lesser
extent 1þþ, spectroscopy.
Third, the calculated speed of the quark or antiquark is at

most 0.3c what justifies the nonrelativistic form of the
electromagnetic operator up to jpbj

Mb
order we shall make

use of.
Certainly potential corrections should be incorporated to

the model for a more accurate description of the spectrum.
We shall assume henceforth that for states far below (about
100 MeV or more) their corresponding S− wave open

TABLE I. Calculated 1−− and Jþþ bottomonium masses,MCor,
far below their corresponding S−wave open flavor meson-meson
threshold (see for example Ref. [9] for a compilation of the values
of these thresholds). The spectroscopic notation nL, where n and
L are the radial and orbital angular momentum numbers respec-
tively, has been used to characterize the HC eigenstates. Masses
for experimental resonances, MPDG, have been taken from
Ref. [10]. For p waves we quote separately the np0, np1 and
np2 states. The root mean square radii for the calculated states,
hr2i12, are also reported.

JPC Cornell
nL states

MCor
MeV

MPDG
MeV

hr2i12
fm

1−− 1S 9459 9460.30� 0.26 0.22
2S 10 012 10023.026� 0.31 0.51
1S 10 157 10163.7� 1.4
3S 10 342 10355.2� 0.5 0.75
2D 10 438
4S 10 608 10579.4� 1.2 0.96
3D 10 682
5S 10 841 1.15

10889.9þ3.2
−2.6

4D 10 902
0þþ 1P 9920 9859.44� 0.42� 0.31 0.41
1þþ 1P 9920 9892.78� 0.26� 0.31 0.41
2þþ 1P 9920 9912.21� 0.26� 0.31 0.41
0þþ 2P 10 259 10232.5� 0.4� 0.5 0.67
1þþ 2P 10 259 10255.46� 0.22� 0.50 0.67
2þþ 2P 10 259 10268.65� 0.22� 0.50 0.67
0þþ 3P 10 531 0.88
1þþ 3P 10 531 10513.4� 0.7 0.88
2þþ 3P 10 531 10524.0� 0.8 0.88
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flavor meson-meson thresholds these corrections may be
taken into account, at least to some extent, via first order
perturbation theory. Then the model provides us with
an appropriate set of bottomonium wave functions to be
tested.
It is also worthwhile to point out that although this model

does not contain couple channel corrections it has proved to
be useful as a starting point for the implicit incorporation
(through the modification of the potential) of dominant
spectroscopic threshold effects in bottomonium as well as
in charmonium [9,12,13]. Alternatively, couple channel
corrections have been explicitly implemented through
unquenched quark models from a nonrelativistic [6,14]
or a semirelativistic [15] quark-antiquark Hamiltonian.

III. ELECTROMAGNETIC DECAY MODEL

Let us consider the decay I → γF where I and F are the
initial and final bottomonium states respectively. In the rest
frame of the decaying meson I the total width is given by
[we follow the PDG conventions, see Ref. [10] (p. 567)]

ΓI→γF ¼ k0
8πM2

I

1

ð2JI þ 1Þ
X
λ¼�1

X
mI;mF

jMλ
JF;mF;JI ;mI

j2; ð4Þ

where k0 is the energy of the photon and MI , JI and mI
stand for the mass of I, its total angular momentum and its
third projection respectively. The polarization of the photon
is represented by λ (as usual we choose the three-momen-
tum of the photon in the Z direction) and the transition
matrix element byMλ

JF;mF;JI ;mI
. This matrix element can be

obtained from the interaction Hamiltonian Hint as

ð2πÞ3δð3ÞðPI − k − PFÞMλ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p ffiffiffiffiffiffiffi
2k0

p
hFγjHintjIi; ð5Þ

where ðEI;PIÞ ¼ ðMI; 0Þ, ðEF;PFÞ and ðk0; kÞ are the
meson and photon four-momenta.
In the elementary emission decay model the radiative

transition I → γF takes place through the emission of the
photon by the quark or the antiquark of I. By proceeding to a
nonrelativistic reduction of the interaction hamiltonian at the
quark level (we use the radiation gauge so that the time
component of the electromagnetic field vanishes,A0ðxÞ ¼ 0)
the operator to be sandwiched between the meson states
reads, see for example [1],

hk;λjHIj0i ¼−
1ffiffiffiffiffiffiffi
2k0

p
X
α¼1;2

eα
2Mα

× ðe−ik·rαpαþ pαe−ik·rα − iσα× ke−ik·rαÞ · ðϵλkÞ�;
ð6Þ

where the subindices 1 and 2 refer to quark b and antiquark b̄
respectively, e1 (e2) is the b (b̄) electric charge, eb ¼ − 1

3
jej,

ϵλk stands for the photon polarization vector and k is now a
vector number, not an operator. Then, having into account the
quantum numbers characterizing the initial and final states

jIi ¼ jPI; JI; mI; nILI; SIi; ð7Þ

jFi ¼ jPF; JF;mF; nFLF; SFi; ð8Þ

where jJ;m; nL; Si stand for theHC eigenstates previously
calculated, introducing center of mass

R ¼ r1 þ r2
2

; P ¼ p1 þ p2 ð9Þ

and relative

r ¼ r1 − r2; p ¼ p1 − p2
2

ð10Þ

operators and integrating over R, the center of mass spatial
degrees of freedom, the transition matrix element can be
written as

Mλ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mα

×hJF;mF;ðnFLFÞbb̄;ðSFÞbb̄jŌαjJI;mI;ðnILIÞbb̄;ðSIÞbb̄i;
ð11Þ

where

Ōα ¼
�
ð−1Þαðeið−1Þαðk·r2 Þpþ peið−1Þαðk·r2 ÞÞ þ iσα × keið−1Þαðk·r2 Þ

−
�
PI þ PF

2

�
eið−1Þαðk·r2 Þ

�
· ðϵλkÞ�: ð12Þ

The first, second and third addends on the right-hand side
correspond to electric, magnetic and convective terms
respectively since they come from the corresponding terms
in the quark electromagnetic current entering in the inter-
action Hamiltonian.
For practical calculations we use

½pi; eið−1Þαðk·r2 Þ� ¼
X
j

½pi; rj�
∂eið−1Þαðk·r2 Þ

∂rj
¼ ð−1Þα ki

2
eið−1Þαðk·r2 Þ; ð13Þ

where the subscripts i; j ¼ 1; 2; 3 label the Cartesian
components, or equivalently

peið−1Þαðkr2 Þ ¼ eið−1Þαðk·r2 Þpþ ð−1Þα k
2
eið−1Þαðk·r2 Þ: ð14Þ

Then, by realizing that in the rest frame of the decaying
meson PI ¼ 0 and PF ¼ −k, where k is in the Z direction,
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one has PF · ðϵλkÞ� ¼ 0 ¼ k · ðϵλkÞ�, and the operator Ōα

reduces to

Oα ¼ ðeið−1Þαðk·r2 Þðð−1Þα2pþ iσα × kÞÞ · ðϵλkÞ� ð15Þ

or equivalently to

O0
α ¼ ððð−1Þα2pþ iσα × kÞeið−1Þαðk·r2 ÞÞ · ðϵλkÞ�: ð16Þ

Detailed expressions for the direct calculation of electric
and magnetic amplitudes in configuration space for 3S1 →
γ3PJ and 3PJ → γ3S1 transitions can be found in
Appendices A and B.
It is important to emphasize that the p operator in

Eqs. (15) or (16) makes the matrix element on the rhs of
Eq. (11) to have a specific dependence on the Hc
eigenvalues for the initial and final states, see below.
Indeed, the explicit extraction of this dependence will
become essential for an accurate description of radiative
decays.

IV. LONG WAVELENGTH APPROXIMATION

In the limit that the wavelength of the emitted photon is
sufficiently large as compared to the hadronic size scale of
the process (we shall be more quantitative below) we can
approximate eið−1Þαðk·r2 Þ ≃ 1. This simplifies the transition
operator to

ðOαÞLWLA ¼ ðð−1Þα2pþ iσα × kÞ · ðϵλkÞ� ¼ ðO0
αÞLWLA:

ð17Þ

Furthermore, using

p ¼ −i
Mb

2
½r; HC� ð18Þ

we get

ðMλ
JF;mF;JI ;mI

Þ
LWLA

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2

× hJF;mF; ðnFLFÞbb̄; ðSFÞbb̄j
× ð−1Þαð−iÞðMI −MFÞrþ iσα × k

× jJI; mI; ðnILIÞbb̄; ðSIÞbb̄i · ðϵλkÞ�;
ð19Þ

where we have substituted the difference between the HC
eigenvalues for the initial and final states by their mass
difference. Moreover, for values of jkj ¼ k0 such that
k2

2MF
≪ MF we can neglect the kinetic energy of the final

meson and substitute MI −MF ≃ k0 and EF ≃MF.
It is very important to remark that in the LWLA
(i) the amplitude does not depend explicitly on the

quark mass;
(ii) the mass dependence has been explicitly fac-

tored out.
Therefore, if we implement the experimental masses in the
calculation then the comparison of the calculated widths
with data is directly testing the spectroscopic model wave
functions (the underlying assumption justifying this pro-
cedure is that the difference between the calculated masses
and the experimental ones can be obtained in most cases
from these wave functions by applying first order pertur-
bation theory).
For radiative transitions like 3S1 → γ3PJ and 3PJ → γ3S1,

with J ¼ 0, 1, 2, the magnetic term does not contribute, as
one can easily check from Eq. (B3) when jkjjrj → 0. Thus,
in the LWLA these transitions are purely electric dipole E1

transitions. More precisely, using r · ðϵλkÞ� ¼
ffiffiffiffi
4π
3

q
ðYλ

1ðr̂ÞÞ�r
and some angular momentum algebra we can write the
amplitude as

ðMλ
JF;mF;JI ;mI

Þ
LWLA

¼ i
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
ebð−1ÞLI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LF þ 1

p
Cλ;mF;mI
1;JF;JI

×

�
LF 1 LI

0 0 0

��
1 LF LI

SF JI JF

�
ðMI −MFÞ

Z
∞

0

drr2ðRnFLF
Þ�rRnILI

; ð20Þ

where RnILI
ðRnFLF

Þ is the radial wave function of the initial (final) state,

Cλ;mF;mI
1;JF;JI

≡ ð−1ÞJF−1−mI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JI þ 1

p �
1 JF JI
λ mF −mI

�
; ð21Þ

with ðÞ standing for the 3j symbol, and

�
1 LF LI

SF JI JF

�
≡ ð−1Þ1þLFþSFþJI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2LI þ 1Þð2JF þ 1Þ

p �
1 LF LI

SF JI JF

�
; ð22Þ

with fg standing for the 6j symbol.
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From Eqs. (20) and (4) and using MI −MF ≃ k0, eb ¼
− 1

3
jej and jej2 ¼ 4πα̂, where α̂ ≃ 1

137
is the fine structure

constant, the LWLA width reads

ΓLWLA ¼ 4α̂k30EF

27MI
ð2LF þ 1Þ

�
LF 1 LI

0 0 0

�
2

× ð2LI þ 1Þð2JF þ 1Þ
�

1 LF LI

SF JI JF

�
2

×

				
Z

∞

0

dr r2ðRnFLF
Þ�rRnILI

				
2

; ð23Þ

which is just the standard expression for the dipole electric
amplitude in the literature, see for instance Ref. [16], if one
takes into account that

ð2LF þ 1Þ
�
LF 1 LI

0 0 0

�
2

ð2LI þ 1Þ ¼ max ðLI; LFÞ:

ð24Þ

For the practical application of Eq. (20) the range of
validity of the LWLA needs to be established. For this
purpose we may reason that for values of jrj ≥ 2hr2i1=2F ,
where 2hr2i1=2F approximates the size of the final state
(notice that the size of the initial state is always bigger), the
radial wave function for this state almost vanishes giving a
negligible contribution to the matrix element (20). Hence
for values of jkj such that jkj2hr2i1=2F < 1we expect that the
values of jrj contributing dominantly to the matrix element
satisfy jkjjrj < 1

2
⇒ eið−1Þαðk·r2 Þ ≃ 1. Hence we may adopt

jkj2hr2i1=2F < 1 ð25Þ

as a criterion of validity of the LWLA. In Tables II and III

we list the experimental values, jkjExpt ¼ ðM2
I−M

2
F

2MI
Þ
Expt

, and

the calculated values of jkjExpt2hr2i1=2F from our spectro-
scopic model for 3S1 → γ3PJ and 3PJ → γ3S1 transitions.
We see that, according to our criterion, the LWLA can

only be valid for ϒð2SÞ → γχbJð1PÞ, ϒð3SÞ → γχbJð2PÞ,
ϒð4SÞ → γχbJð3PÞ and χbJð1PÞ → γϒð1SÞ. As a test we

can compare the widths ΓðTheorÞ
LWLA obtained from Eq. (23),

where the superindex (Theor) means that they are obtained
from the calculated spectral masses (and the calculated

jkjTheor from them), with the corresponding widths ΓðTheorÞ
p=M

obtained from Eqs. (A5), (A12) and (B3), when the
complete operator Oα in (15) (for 3S1 → γ3PJ) and O0

α

in Eq. (16) (for 3PJ → γ3S1) are used. The results are shown
in Table IV, first and fifth columns respectively.
The similarity of the calculated widths, ΓðTheorÞ

LWLA and

ΓðTheorÞ
p=M , for the considered processes confirms the validity

of the LWLA within a few percent of error. On the other

TABLE II. Experimental values of the photon energy jkjExpt
and calculated values of jkjExptð2hr2i12Þ3PJ

from our model for
3S1 → γ3PJ radiative transitions.

3S1 → γ3PJ jkjExpt (MeV) jkjExptð2hr2i12Þ3PJ

ϒð2SÞ → γχb0ð1PÞ 162.2 0.67
ϒð2SÞ → γχb1ð1PÞ 129.4 0.54
ϒð2SÞ → γχb2ð1PÞ 110.2 0.46
ϒð3SÞ → γχb0ð2PÞ 122.3 0.83
ϒð3SÞ → γχb1ð2PÞ 99.5 0.68
ϒð3SÞ → γχb2ð2PÞ 86.6 0.59
ϒð3SÞ → γχb0ð1PÞ 484.1 2.01
ϒð3SÞ → γχb1ð1PÞ 451.7 1.88
ϒð3SÞ → γχb2ð1PÞ 433.5 1.80
ϒð4SÞ → γχb1ð3PÞ 65.8 0.59
ϒð4SÞ → γχb2ð3PÞ 55.3 0.47
ϒð4SÞ → γχb0ð2PÞ 341.2 2.32
ϒð4SÞ → γχb1ð2PÞ 319.0 2.17
ϒð4SÞ → γχb2ð2PÞ 306.2 2.08
ϒð4SÞ → γχb0ð1PÞ 695.5 2.89
ϒð4SÞ → γχb1ð1PÞ 664.3 2.76
ϒð4SÞ → γχb2ð1PÞ 646.2 2.69
ϒð5SÞ → γχb1ð3PÞ 370.0 3.68
ϒð5SÞ → γχb2ð3PÞ 359.8 3.57
ϒð5SÞ → γχb0ð2PÞ 637.6 4.32
ϒð5SÞ → γχb1ð2PÞ 616.0 4.18
ϒð5SÞ → γχb2ð2PÞ 603.5 4.10
ϒð5SÞ → γχb0ð1PÞ 981.7 4.08
ϒð5SÞ → γχb1ð1PÞ 951.5 3.95
ϒð5SÞ → γχb2ð1PÞ 933.8 3.88

TABLE III. Experimental values of the photon energy jkjExpt
and calculated values of jkjExptð2hr2i12Þ3S1 from our model for
3PJ → γ3S1 radiative transitions.

3PJ → γ3S1 jkjExpt (MeV) jkjExptð2hr2i12Þ3S1
χb0ð1PÞ → γϒð1SÞ 390.9 0.87
χb1ð1PÞ → γϒð1SÞ 423.5 0.94
χb2ð1PÞ → γϒð1SÞ 441.7 0.98
χb0ð2PÞ → γϒð2SÞ 206.9 1.07
χb1ð2PÞ → γϒð2SÞ 229.4 1.19
χb2ð2PÞ → γϒð2SÞ 243.1 1.26
χb0ð2PÞ → γϒð1SÞ 742.9 1.66
χb1ð2PÞ → γϒð1SÞ 764.2 1.70
χb2ð2PÞ → γϒð1SÞ 777.1 1.73
χb1ð3PÞ → γϒð3SÞ 157.0 1.19
χb2ð3PÞ → γϒð3SÞ 167.5 1.27
χb1ð3PÞ → γϒð2SÞ 478.7 2.47
χb2ð3PÞ → γϒð2SÞ 488.8 2.53
χb1ð3PÞ → γϒð1SÞ 1000.4 2.23
χb2ð3PÞ → γϒð1SÞ 1009.9 2.25
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hand, their comparison to data, ΓPDG
Expt , third column in the

table, makes clear that ΓðTheorÞ
LWLA or ΓðTheorÞ

p=M are far from the
experimental widths except for ϒð3SÞ → γχb2ð2PÞ. By
realizing that this may have to do with the fact that only
for this transition the calculated spectral mass difference
M3S −M2P ¼ 83 MeV is very close to the measured one
Mϒð3SÞ −Mχb2ð2PÞ ¼ 86 MeV, we can try to implement the
experimental photon energy jkjExpt and the measured mass
differences instead of the spectral ones for all the transitions
to check whether some improvement can be achieved or
not. This implementation can be very easily done in the
LWLA since the mass dependence in the amplitude is
explicitly factorized. A look at the table shows that the

resulting widths that we denote as ΓðTheor-ExptÞ
LWLA , second

column in the table, are within the error data intervals
except for ϒð3SÞ → γχb0ð2PÞ and ϒð2SÞ → γχb0ð1PÞ
where they are less than a 30% and a 10% off respectively.

Keeping always in mind that higher jpbj
Mb

orders might be
playing some role, this deviations may indicate some
deficiency in the calculated 3P0 wave functions. Actually
we could have expected this to occur since our model fits
much better the 3P1;2 masses than the 3P0 ones. This means
that one should go beyond first order perturbation theory,
that gives rise to a mass shift but keeps unaltered the wave
function, to get an accurate description of the 3P0 states
from our model. This can be confirmed by artificially
making the parameters to have slightly different values only
for 3P0 states in order to fit their masses. Thus, for instance,
taking ðσÞ3P0

¼ 875 MeV fm−1 and ðζÞ3P0
¼ 120 MeV fm,

the calculated masses and widths are much closer to data.

Hence, we may conclude that the implementation of the
experimental masses is an essential ingredient for the
explanation of radiative decays.
Following this argumentation we may be confident with

our predictions ΓðTheor-ExptÞ
LWLA , second column in the table, for

χb1ð1PÞ → γϒð1SÞ and χb1ð1PÞ → γϒð1SÞ whereas for
χb0ð1PÞ → γϒð1SÞ we expect a 30% of uncertainty at
most. For the sake of comparison let us add that our
predicted values are quite in agreement (within a 25%
difference) with the ones obtained from other nonrelativ-
istic spectroscopic quark models and from potential non-
relativistic QCD, see Table II in Ref. [17]. For an alternative
theoretical treatment of these decays, see Ref. [18].
Regarding ϒð4SÞ → γχbJð3PÞ we expect our predicted

widths ΓðTheor-ExptÞ
LWLA , second column in the table, to be

accurate for ϒð4SÞ → γχb1ð3PÞ and ϒð4SÞ → γχb2ð3PÞ
and more uncertain for ϒð4SÞ → γχb0ð3PÞ since the last
one is based on an educated guess for the χb0ð3PÞ mass.
It is also interesting, for the sake of completeness, to

calculate from Eqs. (A5), (A12) and (B3) the widths when
jkjExpt and the experimental masses, when explicitly
appearing, are implemented. This means that the measured
masses are used in the explicit energy factors entering in the
calculation of the width [see Eqs. (4) and (11)] but not in
the evaluation of the matrix element in Eq. (11) that still
depends implicitly on the calculated spectral masses (this
will be detailed in the next section). We call these widths

ΓðMixedÞ
p=M , fourth column in the table. An inspection of the

table makes clear that except forϒð3SÞ → γχb2ð2PÞwhere,
as explained above, the spectral and experimental mass

difference coincides, the widths ΓðMixedÞ
p=M are out of the error

TABLE IV. Calculated widths to order p=M as compared to data for ϒð2SÞ → γχbJ ð1PÞ, ϒð3SÞ → γχbJ ð2PÞ,
ϒð4SÞ → γχbJ ð3PÞ and χbJ ð1PÞ → γϒð1SÞ. Our educated guess for the unknown χb0ð3PÞ mass has been

10492 MeV. Notation as follows. ΓðTheorÞ
LWLA : width in the LWLA without any external input. ΓðTheor-ExptÞ

LWLA : width in

the LWLA implemented with the experimental masses and photon energy. ΓPDG
Expt : measured widths [10]. ΓðMixedÞ

p=M :

width with the experimental photon energy and partially implemented experimental masses. ΓðTheorÞ
p=M : width without

any external input.

Radiative decay ΓðTheorÞ
LWLA (KeV) ΓðTheor-ExptÞ

LWLA (KeV) ΓPDG
Expt (KeV) ΓðMixedÞ

p=M (KeV) ΓðTheorÞ
p=M (KeV)

ϒð2SÞ → γχb0ð1PÞ 0.30 1.61 1.2� 0.3 0.5 0.29
ϒð2SÞ → γχb1ð1PÞ 0.89 2.46 2.2� 0.3 1.28 0.91
ϒð2SÞ → γχb2ð1PÞ 1.48 2.55 2.3� 0.3 1.82 1.51
ϒð3SÞ → γχb0ð2PÞ 0.54 1.72 1.14� 0.20 0.77 0.54
ϒð3SÞ → γχb1ð2PÞ 1.63 2.78 2.6� 0.5 1.99 1.66
ϒð3SÞ → γχb2ð2PÞ 2.72 3.03 2.7� 0.5 2.87 2.77
ϒð4SÞ → γχb0ð3PÞ 0.75 1.06 0.83 0.74
ϒð4SÞ → γχb1ð3PÞ 2.24 1.47 1.97 2.27
ϒð4SÞ → γχb2ð3PÞ 3.74 1.37 2.70 3.79
χb0ð1PÞ → γϒð1SÞ 34.58 22.82 33.23 38.58
χb1ð1PÞ → γϒð1SÞ 34.58 28.81 32.05 33.71
χb2ð1PÞ → γϒð1SÞ 34.58 32.71 33.21 33.73
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data intervals. This points out to the need of making explicit
all the mass dependencies in the transition amplitude for
their correct experimental implementation if we pretend an
accurate decay description beyond the LWLA regime.
Therefore, we have shown that
(i) In its range of validity the LWLA, which allows for

an easy separation of the mass and wave function
dependencies in the transition amplitude, is the more
suitable method to give accurate account of the
radiative transitions in bottomonium. This is so even
for the simplest spectroscopic model, once the
experimental masses are properly implemented.

(ii) The description of radiative decays out of the range
of validity of the LWLA requires the explicit
factorization of all the mass dependencies in the
transition amplitude for its correct experimental
implementation.

V. BEYOND THE LONG WAVELENGTH
APPROXIMATION

The need of going beyond the LWLA has dealt in the past
to the evaluation of some corrections to ðOαÞLWLA, see for
example Ref. [2]. Maybe the most common form of the
corrected operator is the one where the LWLA mass
dependence in the amplitude is preserved while substituting
the overlap integral

R∞
0 dr r2ðRnFLF

ðrÞÞ�rRnILI
ðrÞ in

Eq. (23) by the corrected one (henceforth we shall use
k≡ jkj).
Z

∞

0

dr ðRnFLF
ðrÞÞ�r2 3

k

�
kr
2
j0

�
kr
2

�
− j1

�
kr
2

��
RnILI

ðrÞ;

ð26Þ

where j0 and j1 stand for spherical Bessel functions.
However, this prescription, that reproduces the good

description of transitions within the range of applicability

of the LWLA when the experimental masses and photon
energy are implemented, seems not to work for
ϒð3SÞ → γχbJð1PÞ, where the LWLA is not valid. In
Table V we show the results from this prescription,
ΓCLWLA, where the subindex CLWLA stands for corrected
long wavelength approximation, for three different non-
relativistic quark models (NRQM), all of them fitting
reasonably well the spectrum. Model I is just our model
where the experimental masses and kExpt have been used
in the calculation of the widths. Model II is another
Cornell potential model with a different set of parameter
values (σII ¼ 925.5 MeV=fm, ζII ¼ 102.61 MeV fm and
ðMbÞII ¼ 5180 MeV apart from a constant fixing the
origin of the potential) chosen to get a reasonable fit to
the mass centers of gravity of 1S, 1P and 2S states [6].
Model III, see Ref. [4] and references therein, contains
many more terms in the potential apart from the Cornell
ones (spin-spin, spin-orbit, tensor…) pretending a unified
description of the light and heavy quark meson spectra.
(For the sake of completeness we show also results for the
measured decays for which the LWLA may be applied.)
A glance at the table makes evident that the calculated

CLWLA widths are in good agreement with data for
processes where the LWLA applies, like ϒð3SÞ →
γχbJð2PÞ and ϒð2SÞ → γχbJð1PÞ, but they are in complete
disagreement for ϒð3SÞ → γχbJð1PÞ, where the LWLA
does not apply. Moreover, in this last case predicted widths
for the same decay from different models may differ very
much from each other. This points out to an extreme
sensitivity of the corrected overlap integral to the details of
the wave functions. One could think then of using this
sensitivity as a very stringent test of the wave functions.
However, before going on with this thought, and according
to our discussion in Sec. IV, one should check whether the
assumed mass and wave function dependence separation in
the CLWLA should be taken or not for granted. Next we
show that it should not and that the difficulties in the

TABLE V. Calculated widths in the CLWA as compared to data for ϒð3SÞ → γχbJ ð1P; 2PÞ and
ϒð2SÞ → γχbJ ð1PÞ. Notation as follows. ðΓCLWLAÞI : width from model I defined in Sec. II with the experimental
masses and photon energy implemented. ðΓCLWLAÞII : width from model II, see Ref. [16]. ðΓCLWLAÞIII : width from
model III, see Ref. [4]. ΓPDG

Expt : measured widths [10].

Radiative decay ðΓCLWLAÞI (KeV) ðΓCLWLAÞII (KeV) ðΓCLWLAÞIII (KeV) ΓPDG
Expt (KeV)

ϒð3SÞ → γχb0ð1PÞ 1 × 10−7 0.001 0.15 0.054� 0.013
ϒð3SÞ → γχb1ð1PÞ 0.004 0.008 0.16 0.018� 0.012
ϒð3SÞ → γχb2ð1PÞ 0.01 0.015 0.08 0.20� 0.06
ϒð3SÞ → γχb0ð2PÞ 1.67 1.35 1.21 1.14� 0.20
ϒð3SÞ → γχb1ð2PÞ 2.73 2.20 2.13 2.6� 0.5
ϒð3SÞ → γχb2ð2PÞ 3.02 2.40 2.56 2.7� 0.5
ϒð2SÞ → γχb0ð1PÞ 1.58 1.29 1.09 1.2� 0.3
ϒð2SÞ → γχb1ð1PÞ 2.43 2.00 1.84 2.2� 0.3
ϒð2SÞ → γχb2ð1PÞ 2.52 2.04 2.08 2.3� 0.3
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description of these decays may be surmounted through a
proper factorization of the mass dependencies in the
transition amplitude. For this purpose let us consider the
matrix element entering in the evaluation of the amplitude
(11) (we may equivalently use Oα or O0

α). By denoting

jΨi≡ jJ;m; ðnLÞbb̄; ðSÞbb̄i ð27Þ

we can write the amplitude as

hOαiFI ≡ hΨFjOαjΨIi ¼ hOαielectricFI þ hOαimagnetic
FI ; ð28Þ

where

hOαielectricFI ¼ hΨFjeið−1Þαðk·r2 Þð−1Þα2p · ðϵλkÞ�jΨIi ð29Þ

and

hOαimagnetic
FI ¼ hΨFjeið−1Þαðk·r2 Þiσα × k · ðϵλkÞ�jΨIi: ð30Þ

In order to extract the mass dependence in hOαielectricFI we
introduce a Parseval identity (

P
int jΨintihΨintj) in terms of

eigenstates of the Cornell potential

hOαielectricFI ¼
X
int

hΨFjeið−1Þαðk·r2 ÞjΨinti

× hΨintjð−1Þα2p · ðϵλkÞ�jΨIi: ð31Þ

Then, substituting p ¼ −i Mb
2
½r; HC� we are left with

hOαielectricFI ¼ −iMb

X
int

hΨFjeið−1Þαðk·r2 ÞjΨinti

× ðMI −MintÞhΨintjð−1Þαr · ðϵλkÞ�jΨIi; ð32Þ

so that the mass dependencies have been factored out.
Notice also that the multiplicative quark mass factor in
Eq. (32) cancels the same dividing factor in the amplitude
(11). Therefore, this form of the matrix element preserves
the nice feature of separating explicitly the mass and
wave function dependencies in the amplitude. Actually,
it is trivial to check that for eið−1Þαðk·r2 Þ ≃ 1 the LWLA is
recovered since then jΨinti ¼ jΨIi is the only surviving
contribution. It should be remarked though that for

eið−1Þαðk·r2 Þ ≠ 1 the mass and wave function separation
dependence in the amplitude is completely different to
the one assumed in the CLWLA. Hence the results obtained
from the CLWLA beyond the LWLA regime should not be
taken for granted.
It has to be added that for eið−1Þαðk·r2 Þ ≠ 1 there is also

a magnetic contribution to the amplitude (11) which
depends on Mb. Though this introduces an undesired
additional model dependence we shall see that for the
transitions we are interested in this magnetic contribution
has no significant effect on the calculated widths and can
be obviated.
For the sake of completeness and convenience for

later calculations we also write the resulting expression
for O0

α:

hO0
αielectricFI ¼ −iMb

X
int

ðMint −MFÞ

× hΨFjð−1Þαr · ðϵλkÞ�jΨintihΨintjeið−1Þαðk·r2 ÞjΨIi:
ð33Þ

Expressions (32) and (33) tell us that a good description
of a complete set of intermediate states apart form the initial
and final ones is needed to accurately reproduce radiative
decay widths from a non perfect spectroscopic quark
model. Otherwise said, radiative decays are testing the
whole spectral model description.

A. 3S1 → γ3PJ transitions

Let us apply Eq. (32) to the calculation of 3S1 → γ3PJ

transitions. Working in configuration space and using r ·

ðϵλkÞ� ¼
ffiffiffiffi
4π
3

q
ðYλ

1ðr̂ÞÞ�r and the well-known expansion

eið−1Þαðk·r2 Þ ¼
X∞
l¼0

ðið−1ÞαÞl
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
jl

�
kr
2

�
Y0
l ðr̂Þ;

ð34Þ

the electric part of the amplitude reads, with the same
notation as in Eq. (20),

ðMλ ðelectricÞ
JF;mF;JI ;mI

Þ3S1→γ3PJ ¼ i
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI;SFeb

X∞
l¼0

X
nint;Lint;Jint;mint

ð−1ÞlþLFþLIð4lþ 1Þð2Lint þ 1Þ

× C0;mint;mF
2l;Jint;JF

Cλ;mint;mI
1;Jint;JI

�
Lint 2l LF

0 0 0

��
Lint 1 LI

0 0 0

��
JF 2l Jint
Lint SF LF

��
JI 1 Jint
Lint SI LI

�

× ðMI −MintÞ
�Z

∞

0

dr r2ðRnFLF
Þ�j2l

�
kr
2

�
RnintLint

��Z
∞

0

dr r2ðRnintLint
Þ�rRnILI

�
: ð35Þ
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This is our master formula, substituting (A5), for a
proper implementation of the mass dependencies in the
amplitude.
Let us realize that although this formal expression

contains a sum over a complete set of intermediate states
only a few contributions survive, the ones making the 6j
symbols to be different from 0. The underlying reason is
that due to the matrix element

hΨintjr · ðϵλkÞ�jΨIð3S1Þi ¼ hΨintj
ffiffiffiffiffiffi
4π

3

r
ðYλ

1ðr̂ÞÞ�rjΨIð3S1Þi
ð36Þ

appearing in hOαielectricFI only intermediate 3PJint states with
Jint ¼ 0, 1, 2 may give a nonvanishing contribution.
Furthermore, from the exponential expansion we see that
only the l ¼ 0 and l ¼ 2 partial waves contribute to the
matrix element hΨFð3PJÞjeið−1Þαðk·r2 ÞjΨintð3PJintÞi.
From Eq. (35) for the electric part and Eq. (B3) for the

magnetic one the widths are straightforwardly evaluated. In
practice, the magnetic contribution hardly plays any role
and the sum over intermediate states in the electric part does
not need for many terms to converge. More precisely, for
ϒðnISÞ → γχbJðnFPÞ the consideration of nintP with nint ≤
4 assures convergence to less than a 2% error when nI ≤ 4

[for the not experimentally measured 3P0ð3PÞ we have
made an educated guess taking it to be 20 MeV lower than
the measured 3P1ð3PÞ mass; for the not yet measured
3P0;1;2ð4PÞ resonances we have used the Cornell predicted
states from our model; the Cornell wave functions have
been used in all cases]. For nI ¼ 5 the same level of
convergence requires to include nint ¼ 5 [for the not yet
measured 3P0;1;2ð5PÞ resonances we have used the Cornell
predicted states from our model].
We call the calculated widths ΓðTheor-ExptÞ

p=M consistently
with the notation used in Table IV. The results from model I
(our model) and model II are compiled in Table VI. Notice
that Eq. (35) cannot be consistently applied to model III
since its Hamiltonian H contains a spin-orbit term, there-
fore p ≠ −i Mb

2
½r; H�. Nonetheless, we have checked that

for transitions where the calculated mass difference from
model III agrees with data, the results obtained from
Eqs. (A5) and (B3) are in good agreement with the ones
in Table VI from models I and II.
As can be checked, the improvement with respect to the

CLWLA is enormous. The extreme sensitivity of the results
to the wave function used has disappeared and the widths
obtained for ϒð3SÞ → γχb0ð1PÞ and ϒð3SÞ → γχb2ð1PÞ
are much closer to data, being now about 25% off the
experimental intervals. This modest disagreement can be
justified in our model from the lack of an accurate wave
function description for 3P0 states (notice that they always
enter as intermediate states in the calculation of the widths).
As forϒð3SÞ → γχb1ð1PÞ our calculated width is 1 order

of magnitude bigger than current data. Moreover, within
our Cornell potential model framework the calculated value
lies necessarily in between the calculated ϒð3SÞ →
γχb0ð1PÞ and ϒð3SÞ → γχb2ð1PÞ widths. This is again
in contrast with data. Indeed, the experimental situation is
rather bizarre as compared to any other ϒðnISÞ →
γχbJðnFPÞ case where the ϒðnISÞ → γχb1ðnFPÞ measured
width lies always in between those for ϒðnISÞ →
γχb0ðnFPÞ andϒðnISÞ → γχb2ðnFPÞ. Moreover, the exper-
imental relative error in the measurement of the ϒð3SÞ →
γχb1ð1PÞ width is much larger than for ϒð3SÞ → γχb0ð1PÞ
and ϒð3SÞ → γχb2ð1PÞ. Then, it would be very important,
in our opinion, to refine as much as possible the meas-
urement of the ϒð3SÞ → γχb1ð2PÞ width to solve this
puzzle.
Meantime we think our predictions for not yet measured

3S1 → γ3PJ decays, also listed in Table VI, may be taken as
reasonable within 25% of uncertainty.

B. 3PJ → γ3S1 transitions

For 3PJ → γ3S1 transitions we proceed in the same
manner but using for convenience Eq. (33) instead of
Eq. (32). The final expression for the electric part of the
amplitude element is now

TABLE VI. Calculated 3S1 → γ3PJ widths to order p=M
implemented with the experimental masses and photon energy:

ΓðTheor-ExptÞ
p=M . The widths are evaluated with models I and II and

compared to data when available [10]. Our educated guess for the
unknown χb0ð3PÞ mass has been 10492 MeV.

Radiative decay



ΓðTheor-ExptÞ
p=M

�
I

KeV



ΓðTheor-ExptÞ
p=M

�
II

KeV
ΓPDG
Expt

KeV

ϒð3SÞ → γχb0ð1PÞ 0.08 0.09 0.054� 0.013
ϒð3SÞ → γχb1ð1PÞ 0.21 0.23 0.018� 0.012
ϒð3SÞ → γχb2ð1PÞ 0.34 0.34 0.20� 0.06
ϒð4SÞ → γχb0ð2PÞ 0.05 0.05
ϒð4SÞ → γχb1ð2PÞ 0.12 0.13
ϒð4SÞ → γχb2ð2PÞ 0.20 0.21
ϒð4SÞ → γχb0ð1PÞ 0.05 0.04
ϒð4SÞ → γχb1ð1PÞ 0.11 0.12
ϒð4SÞ → γχb2ð1PÞ 0.17 0.17
ϒð5SÞ → γχb0ð3PÞ 0.08 0.08
ϒð5SÞ → γχb1ð3PÞ 0.22 0.22
ϒð5SÞ → γχb2ð3PÞ 0.33 0.34
ϒð5SÞ → γχb0ð2PÞ 0.05 0.07
ϒð5SÞ → γχb1ð2PÞ 0.15 0.17
ϒð5SÞ → γχb2ð2PÞ 0.21 0.25
ϒð5SÞ → γχb0ð1PÞ 0.04 0.04
ϒð5SÞ → γχb1ð1PÞ 0.09 0.10
ϒð5SÞ → γχb2ð1PÞ 0.13 0.14
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MλðelectricÞ

JF;mF;JI ;mI

�3PJ→γ3S1 ¼ i
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI;SFeb

X∞
l¼0

X
nint;Lint;Jint;mint

ð−1Þlð4lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2LI þ 1Þð2LF þ 1Þ

p

× C0;mI;mint
2l;JI ;Jint

Cλ;mF;mint
1;JF;Jint

�
LI 2l Lint

0 0 0

��
LF 1 Lint

0 0 0

��
Jint 2l JI
LI SI Lint

��
Jint 1 JF
LF SF Lint

�

× ðMint −MFÞ
�Z

∞

0

dr r2ðRnFLF
Þ�rRnintLint

��Z
∞

0

dr r2ðRnintLint
Þ�j2l

�
kr
2

�
RnILI

�
: ð37Þ

This is our master formula, substituting Eq. (A12), for a
proper implementation of the mass dependencies in the
amplitude.
From Eq. (37) for the electric part and Eq. (B3) for the

magnetic we can predict the widths for not yet measured
processes. Our results are shown in Table VII. Regarding
convergence we have used nint ≤ 5 in all cases to assure
convergence at the level of 2% error. For the not exper-
imentally measured 3P0ð3PÞ we have made an educated
guess taking it to be 20 MeV lower than the measured
3P1ð3PÞ mass; for the not yet measured 3P0;1;2ð4P; 5PÞ
resonances we have used the Cornell predicted states from
our model; the Cornell wave functions have been used in
all cases.
[Notice that one could alternatively choose (32) for

3PJ → γ3S1 transitions (or (33) for 3S1 → γ3PJ ones). The
only difference is in the set of intermediate contributing
states that would be formed by S and D waves. This adds
support to our former assertion that radiative decays may
serve as a stringent test of the whole spectral model
description.]

These predictions and the ones in Table VI are the main
results of our research. Their comparison to future data will
be a definite test of the proposed formalism to deal with
radiative decays beyond the LWLA.

VI. SUMMARY

Starting from a simple nonrelativistic quark potential
model fitting well the low lying spin triplet 1−− and 2þþ
(and to a lesser extent 1þþ) bottomonium spectroscopy we
have calculated 3S1 → γ3PJ and 3PJ → γ3S1 decay widths
by using a nonrelativistic reduction, up to jpbj

Mb
order, of the

elementary emission model transition operator. In this
decay model the emission of the photon is assumed to
take place by the quark or the antiquark of the decaying
meson. A great simplification applies when the wavelength
of the emitted photon is much larger than the hadronic size
scale for the transition. This occurs for example for decays
involving the lowest lying spectral states. Then, in this long
wavelength approximation the amplitude dependence on
the mass and wave function of the initial and final mesons
can be factored out. This permits a step by step analysis of
the requirements needed to get an accurate description of
data from a spectroscopic potential model. As a general
result, we have shown that the implementation of the
experimental masses and photon energy, instead of the
calculated ones, in the evaluation of the transition ampli-
tude is an essential requirement for predictions to be in
accord with data. This implementation is justified under the
assumption that the difference between the measured
masses and the calculated ones corresponds in most cases
to a first order perturbative effect. The comparison of the
resulting widths with data supports this assumption since
the only modest (25%) deviation from data corresponds to
transitions involving 0þþ states for which the difference
between the calculated and measured masses is signifi-
cantly bigger than for the 2þþ and 1þþ cases.
For general transitions between bottomonium states

where the LWLA does not necessarily apply a new method
to factor out the mass and wave function dependence of the
amplitude has been developed and applied to 3S1 ⟷ 3PJ
transitions. This method is based on the introduction of a
complete set of intermediate Cornell states in the calcu-
lation of the amplitude. Thus, for instance, the 3S1 → γ3PJ
amplitude can be written as a sum of LWLA like

TABLE VII. Calculated 3PJ → γ3S1 widths to order p=M
implemented with the experimental masses and photon energy:

ΓðTheor-ExptÞ
p=M . Our educated guess for the unknown χb0ð3PÞ mass

has been 10492 MeV.

Radiative decay ðΓðTheor-ExptÞ
p=M Þ

I
(KeV) ðΓðTheor-ExptÞ

p=M Þ
II
(KeV)

χb0ð2PÞ → γϒð2SÞ 10.08 8.70
χb1ð2PÞ → γϒð2SÞ 14.06 11.99
χb2ð2PÞ → γϒð2SÞ 17.07 14.70
χb0ð2PÞ → γϒð1SÞ 9.95 9.08
χb1ð2PÞ → γϒð1SÞ 11.83 10.77
χb2ð2PÞ → γϒð1SÞ 14.76 13.22
χb0ð3PÞ → γϒð3SÞ 5.23 4.81
χb1ð3PÞ → γϒð3SÞ 8.33 7.25
χb2ð3PÞ → γϒð3SÞ 10.63 9.24
χb0ð3PÞ → γϒð2SÞ 3.99 3.69
χb1ð3PÞ → γϒð2SÞ 4.82 4.42
χb2ð3PÞ → γϒð2SÞ 5.80 5.27
χb0ð3PÞ → γϒð1SÞ 5.51 5.31
χb1ð3PÞ → γϒð1SÞ 6.57 6.25
χb2ð3PÞ → γϒð1SÞ 8.45 7.88
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amplitudes from the initial to intermediate P− wave states
with coefficients depending on the intermediate and final
states. The introduction of intermediate states for an
accurate description of the decay widths from a nonperfect
spectroscopic model indicates that radiative decays beyond
the LWLA may serve as a very stringent test of the
spectroscopic wave functions. As a matter of fact, any
inaccuracy in the calculation of 3S1 → γ3PJ amplitudes for
which the LWLA applies translates into an inaccuracy for
general 3S1 → γ3PJ transitions beyond the LWLA. From
the scarce data available we have verified that the same
level of inaccuracy (25%) may be expected in both cases.
This makes us confident in our predictions for not yet
measured decay widths which may serve as a guide for
future experimental searches.
In summary, we have developed a formalism to get an

accurate description of the electromagnetic 3S1 ⟷ 3PJ

bottomonium transition widths from a jpbj
Mb

order elementary
emission decay model and a simple nonrelativistic spectro-
scopic Cornell potential model. Our formalism can be used
for more refined nonrelativistic potentials as far as they
only depend on the quark-antiquark separation. Couple
channel corrections whose effect has been partially ana-
lyzed in unquenched quark models [15] can be also
incorporated through the correction to the wave functions.

However, the formalism cannot be easily generalized to
charmonium where it can be checked that higher orders in
jpcj
Mc

play an important role. Work along this line is in
progress.

ACKNOWLEDGMENTS

This work has been supported by Ministerio de
Economía y Competitividad of Spain (MINECO) and
EU Feder Grant No. FPA2016-77177-C2-1-P and by
SEV-2014-0398. R. B. acknowledges a FPI fellowship
from the Ministerio de Ciencia, Innovación y
Universidades of Spain under Grant No. BES-2017-
079860. We are grateful to J. Segovia for providing us
with a set of wave functions for comparison.

APPENDIX A: ELECTRIC TRANSITIONS

Electric transitions are driven by the p− dependent term
in the transition operator (12). For the 3S1 → γ3PJ case we
use for convenience the electric part of Eq. (15):

ðOαÞelectric ¼ eið−1Þαðk·r2 Þð−1Þα2p · ðϵλkÞ� ðA1Þ

so that the amplitude can be written as

MλðelectricÞ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mb

hJF;mF;ðnFLFÞbb̄;ðSFÞbb̄jðOαÞelectricjJI;mI;ðnILIÞbb̄;ðSIÞbb̄i: ðA2Þ

In configuration space p ↪ −i∇. As the initial state, LI ¼ 0, has no angular dependence, and the photon travels along the
Z axis one has

p · ðϵλkÞ�jðnILIÞbb̄i ↪ −i
ffiffiffiffiffiffi
4π

3

r
ðYλ

1ðr̂ÞÞ�
dRnILI

dr
1ffiffiffiffiffiffi
4π

p ; ðA3Þ

where RnILI
is the radial wave function of the initial state. Then, using the expansion of the exponential

eið−1Þαðk·r2 Þ ¼
X∞
l¼0

ðið−1ÞαÞl
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
jl

�
kr
2

�
Y0
l ðr̂Þ ðA4Þ

and some angular momentum algebra one gets

ðMλðelectricÞ
JF;mF;JI ;mI

Þ3S1→γ3PJ ¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI ;SF

eb
Mb

X∞
l¼0

ð1 − ð−1ÞlÞ
�
I l−1

�
k
2

�
þ I lþ1

�
k
2

��

× ilþ1Bl;LF
Cλ;mF;mI
l;JF;JI

�
LF l LI

0 0 0

��
JI l JF
LF SF LI

�
; ðA5Þ

where

I l∓1

�
k
2

�
≡

Z
∞

0

dr r2ðRnFLF
Þ�jl∓1

�
kr
2

��
−i

dRnILI

dr

�
ðA6Þ
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Bl;LF
≡ ð−1ÞLFþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2LF þ 1Þ

2

r
ðA7Þ

Cλ;mF;mI
l;JF;JI

≡ ð−1ÞJF−l−mI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JI þ 1

p �
l JF JI
λ mF mI

�
ðA8Þ

and

�
j1 j2 j12
j3 j j23

�
≡ ð−1Þj1þj2þj3þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þð2j23 þ 1Þ

p �
j1 j2 j12
j3 j j23

�
; ðA9Þ

with fg standing for the 6j symbol.
As for the 3PJ → γ3S1 case we use for convenience

ðO0
αÞelectric ¼ ð−1Þα2p · ðϵλkÞ�eið−1Þ

αðk·r
2
Þ; ðA10Þ

so that the amplitude can be written as

MλðelectricÞ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mb

hJF;mF; ðnFLFÞbb̄; ðSFÞbb̄jðO0
αÞelectricjJI;mI; ðnILIÞbb̄; ðSIÞbb̄i: ðA11Þ

By proceeding as above one gets

ðMλðelectricÞ
JF;mF;JI ;mI

Þ3PJ→γ3S1 ¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI;SF

eb
Mb

X∞
l¼0

ð1 − ð−1ÞlÞ
�
J l−1

�
k
2

�
þ J lþ1

�
k
2

��

× ilþ1Bl;LF
Cλ;mF;mI
l;JF;JI

�
LF l LI

0 0 0

��
JI l JF
LF SF LI

�
; ðA12Þ

where

J l∓1

�
k
2

�
≡

Z
∞

0

dr r2
�
−i

dRnFLF

dr

��
jl∓1

�
kr
2

�
RnILI

: ðA13Þ

APPENDIX B: MAGNETIC TRANSITIONS

The magnetic transitions are driven by the σ− dependent term in the transition operator (12)

ðOαÞmagnetic ¼ iσα × k · ðϵλkÞ�eið−1Þ
αðk·r

2
Þ; ðB1Þ

so that the amplitude can be written as

MλðmagneticÞ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mb

hJF;mF; ðnFLFÞbb̄; ðSFÞbb̄jðOαÞmagneticjJI; mI; ðnILIÞbb̄; ðSIÞbb̄i: ðB2Þ

A straightforward but lengthy calculation yields

MλðmagneticÞ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p eb
Mb

λk
X∞
l¼1

ðð−1Þl þ ð−1ÞSF−SIÞKl−1

�
k
2

�
ilþ1Dl;LF

�
LF l − 1 LI

0 0 0

��
SI 1 SF
1
2

1
2

1
2

�
A;

ðB3Þ

where
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Kl−1

�
k
2

�
≡

Z
∞

0

dr r2ðRnFLF
Þ�jl−1

�
kr
2

�
RnILI

; ðB4Þ

Dl;Lf
≡ ð−1ÞLFþlþ1

2
ð2l − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2LF þ 1Þ

p
ðB5Þ

A≡ Xl

J̃¼max ð1;jl−2jÞ
C0; λ;λ
l−1;1; J̃ C

λ; nf; ni
J̃; Jf; Ji

2
664
Lf l− 1 Li

Sf 1 Si

Jf J̃ Ji

3
775 ðB6Þ

and

2
664
j1 j2 j12
j3 j4 j34
j13 j24 j

3
775≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2j12 þ 1Þð2j34 þ 1Þð2j13 þ 1Þð2j24 þ 1Þ
p

8>><
>>:

j1 j2 j12
j3 j4 j34
j13 j24 j

9>>=
>>;
; ðB7Þ

with fg standing for the 9j symbol.
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