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In 2þ 1 dimensions, QED becomes exactly solvable for all values of the fermion charge e in the limit of
many fermions Nf ≫ 1. We present results for the free energy density at finite temperature T to next-to-
leading-order in large Nf . In the naive large Nf limit, we uncover an apparently UV-divergent contribution

to the vacuum energy at order Oðe
6N3

f

ϵ Þ, which we argue would become a finite contribution of order

Oðe6N4
fÞ when resumming formally higher-order 1=Nf contributions. Still in the limit of large Nf, we find

the finite-temperature free energy to be well-behaved for all values of the dimensionless coupling e2Nf=T,
and to be bounded from above by the free energy of Nf free fermions and bounded from below by non-
interacting QED3. We invite follow-up studies from finite-temperature lattice gauge theory at large but
fixed Nf to test our results in the regime e2Nf=T ≫ 1.
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I. INTRODUCTION

The conjectured duality between strongly coupled gauge
theories and classical gravity in one higher dimension has
been an extremely successful tool to effectively calculate
properties of large N gauge theories at strong coupling and
finite temperature [1–4].
Unfortunately, while generally expected to be correct,

there is no formal proof of the conjecture. Furthermore,
only certain gauge theories have known gravity duals, and
this list does not include gauge theories that are realized in
nature such as QED or QCD. Finally, while gauge-gravity
duality allows calculations in a regime where the coupling
of the field theory is effectively infinite, the gravity dual is
just as hard (or harder) to solve than the original field theory
for intermediate values of the coupling, which are often
physically relevant.
This provides the motivation to revisit and generalize

existing tools to solve quantum field theories (and specifi-
cally gauge theories realized in nature) at finite temperature
for arbitrary (weak or strong) values of the coupling. At
first glance, this project seems to be dead on arrival: if
techniques existed to, say, solve QCD nonperturbatively,

using gauge-gravity dual results for N ¼ 4 super-Yang–
Mills theory as a proxy for QCD would not have been
needed. Surprisingly, however, a number of large N
quantum field theories can be solved at finite temperature
for all values of the coupling, including scalar field theories
[5–7], Wess–Zumino models [7] and Gross–Neveu models,
albeit in two spatial dimensions (2þ 1d).
In 3þ 1 dimensions, divergences requiring a renorma-

lization program spoil much of the beauty of the exact (and
sometimes analytic) results found in 2þ 1d. This typically
leads to the large N 3þ 1-dimensional theories exhibiting a
Landau pole, as is the case for scalar theories [8] and four-
dimensional QED [9,10]. While the theories are still useful
in the effective theory sense, cutoff effects near the Landau
pole imply that in 3þ 1 dimensions, the strong-coupling
limit of these theories is ambiguous.
For this reason, we are led to consider QED in 2þ 1

dimensions (“QED3”) at finite temperature in the limit of
many fermionsNf ≫ 1, which is free of a Landau pole, and
hence is unambiguously defined for any value of the
coupling (cf. Refs. [11–13]). Because the theory does
not exhibit any logarithmic divergences at leading and
next-to-leading order in large Nf, in the massless fermion
case QED3 is essentially a finite quantum field theory, and
there are no logarithmic scale dependencies in the coupling.
This implies that the free energy f ∝ T3 of QED3 scales as
the third power of the temperature, with a coefficient that is

only dependent on the (dimensionless) coupling e2Nf

T .
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In this work, we determine the difference ðfðTÞ−fð0ÞÞ=
T3 in QED3 nonperturbatively for all (weak to strong)

values of the dimensionless coupling e2Nf

T to NLO at
large Nf using well-established field theory techniques.
Our results thus generalize studies of QED3 at T ¼ 0
[12,13] to arbitrary temperature, and may be useful as a
reference for lattice gauge theory studies [14–19], dualities
found for “cousins” of QED in 2þ 1 dimensions [20–22],
conformal QED3 studies [23,24], as well as condensed
matter systems [25].

II. SETUP

Let us consider QED with Nf massless fermions defined
by the Lagrangian

L ¼ −
1

4
FμνFμν þ ψ̄aði=∂ þ e=AÞψa; ð1Þ

where Aμ is the photon gauge field, Fμν ¼ ∂μAν − ∂νAμ is
the photon field strength tensor, ψa with a ¼ 1; 2;…; Nf

are four-component spinors (both in D ¼ 3 and D ¼ 4
space-time dimensions), e is the fermion charge, and
=A ¼ γμAμ. The Lagrangian (1) is manifestly invariant under
gauge transformations. QED at finite temperature T may be
defined as given by the Lagrangian (1) with imaginary time
on a Euclidean manifold, with the timelike direction
compactified on a circle with radius β ¼ T−1 (see e.g.,
[26]). The resulting D-dimensional Euclidean action is
given by

SE ¼
Z

dDx

�
1

4
FμνFμν þ ψ̄að=∂ − ie=AÞψa

�
; ð2Þ

where Aμ, ψa are the Euclidean versions of the gauge
field and the fermion, respectively, and =A ¼ γEμAμ with
γE0 ¼ γ0, γE1;2;3 ¼ −iγ1;2;3 the Euclidean γ-matrices satisfy-
ing fγEμ ; γEν g ¼ 2δμν. Note that while the gauge field obeys
periodic boundary conditions in the timelike direction, the
fermions require antiperiodic boundary conditions.
Gauge invariance of SE implies that there are gauge

configurations Aμ along which SE does not change. The
existence of these “flat directions” implies that the QED
partition function, defined as Z ¼ R

DAe−SE , is ill defined,
because integration along the flat directions leads to
divergences.1 In order to make sense of the theory in the
noncompact formulation, it is necessary to break gauge
invariance. This is customarily done using the Faddeev–
Popov formalism by introducing the ghost fields c̄, c, such
that, for instance in the class of covariant gauges, the
gauge-fixed Euclidean action becomes [26]

SE ¼
Z

dDx

�
1

4
FμνFμν þ ψ̄að=∂ − ie=AÞψa

þ 1

2ξ
ð∂μAμÞ2 þ ∂μc̄∂μc

�
; ð3Þ

where the anticommuting ghosts fulfill periodic boundary
conditions just like the bosonic gauge field. The partition
function defined from the gauge-fixed action (3) is well-
defined, and hence (3) will be used as the definition of QED
in the following. While not gauge invariant, the action (3) is
invariant under Becchi-Rouet-Stora-Tyutin (BRST) trans-
formations

δAμ ¼ ∂μcζ; δc̄ ¼ 1

ξ
∂μAμζ; δc ¼ 0;

δψ̄a ¼ −iecψ̄aζ; δψa ¼ iecψaζ; ð4Þ

where ζ is an anticommuting space-time independent
parameter such that fζ;cg¼fζ;c̄g¼fζ;ψag¼fζ;ψ̄ag¼0.
BRST invariance of the action (3) guarantees that
many important features of gauge theories, such as Ward–
Takahashi identities, are maintained even if gauge invari-
ance has been broken.
The gauge-fixed Euclidean action (3) may be used to

evaluate properties of QED at finite temperature perturba-
tively when expanding e−SE in a Taylor series around
vanishing coupling e ¼ 0. However, it is possible to resum
an infinite number of contributions in this Taylor series by
suitably rewriting SE ¼ S0 þ SI, for instance with

S0¼
Z

dDx

�
1

4
FμνFμνþ ψ̄að=∂þmÞψa

þ 1

2ξ
ð∂μAμÞ2þ∂μc̄∂μc

�
þ1

2

Z
dDxdDyAμΠμνAν;

SI¼−ie
Z

dDxψ̄a=Aψa−
1

2

Z
dDxdDyAμðxÞΠμνðx−yÞAνðyÞ;

ð5Þ

where the same term was added and subtracted in (3).
Using S0 instead of (3) with e ¼ 0 as the reference action
allows one to nonperturbatively resum an infinite number
of Feynman diagrams (“Dyson series”). Nevertheless, it is
important to maintain BRST invariance of S0 in order to
avoid introducing gauge-dependent artifacts. One finds that
BRST invariance of S0 requires ∂μΠμν ¼ 0, which is a
condition that we will check a posteriori.

A. Photon self-energy

As in Refs. [27,28], the quantity Πμν is fixed by
calculating the full connected photon two-point function,
which in the limit Nf → ∞ becomes

1Note that this is different when choosing a compact formu-
lation of the Lagrangian by trading the gauge field Aμ with a
compact link variable Uμ ¼ eiAμ .
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GμνðxÞ ¼ hAμðxÞAνð0Þi;

¼ GμνðxÞ þ
Z
y;z

Gμαðx − yÞðΠαβðy − zÞ

− e2hψ̄aðyÞγαψaðyÞψ̄bðzÞγβψbðzÞiÞGβνðzÞ; ð6Þ
or, taking into account the extra minus sign arising from the
fermion loop,

ΠμνðxÞ ¼ −e2NfTrðΔðxÞγμΔð−xÞγνÞ þOðN0
fÞ;

ΔðxÞ ¼ 1

Nf
hψ̄ iðxÞψ ið0Þi: ð7Þ

Note that here GμνðxÞ, ΔðxÞ denote fully dressed propa-
gators, but to leading order in large Nf we can take the
fermion propagator ΔðxÞ to be free. It is easiest to express
the ΔðxÞ by going to Fourier space where

ψðxÞ¼
XZ

fKg
eiK·xψðKÞ;

XZ
fKg

≡T
X
fωng

μ2ϵ
Z

dD−1k
ð2πÞD−1 ;

ð8Þ

where fωng ¼ πTð2nþ 1Þ with n ∈ Z are the fermionic
Matsubara frequencies, μ is the renormalization scale
parameter and we use dimensional regularization with
ϵ > 0. With these conventions, the free fermion propagator
becomes

ΔðxÞ ¼
XZ

fKg

e−iK·xð−i=KÞ
K2

; ð9Þ

which leads to the photon self-energy given by

ΠμνðxÞ¼−e2Nf

XZ
fKg;fQg

e−iðK−QÞ·xTr½ð−i=KÞγμð−i=QÞγν�
K2Q2

:

ð10Þ

The trace is readily evaluated using the properties of
γ-matrices, finding

Tr½ð−i=KÞγμð−i=QÞγν� ¼ 4δμνK ·Q − 4KμQν − 4KνQμ:

In Fourier space, the photon self-energy thus becomes

ΠμνðPÞ ¼ −4e2Nf

XZ
fKg

δμνðK2 − P · KÞ − 2KμKν þ KμPν þ KνPμ

K2ðK − PÞ2 : ð11Þ

Let us first calculate the zero-temperature (vacuum) part of Π, which is given by

ΠT¼0
μν ðPÞ ¼ −4e2Nfμ

2ϵ

Z
dDK
ð2πÞD

Z
1

0

dx
δμνðK2 − P · KÞ − 2KμKν þ KμPν þ KνPμ

½K2xþ ðK − PÞ2ð1 − xÞ�2 : ð12Þ

Shifting the integration variable K → K þ ð1 − xÞP, the momentum integration is straightforward in dimensional
regularization where D ¼ 3 → 3 − 2ϵ with ϵ > 0. One finds

lim
m→0

ΠT¼0
μν ðPÞ ¼ 8e2Nf

ð4πÞD=2 μ
2ϵ

�
δμν −

PμPν

P2

�
Γ
�
2 −

D
2

�
Γ2ðD

2
Þ

ΓðDÞ ðP
2ÞD=2−1: ð13Þ

There are no logarithmic divergences in dimensional regu-
larization, and one can take the limit ϵ → 0, finding [12]

ΠT¼0;D¼3
μν ðPÞ ¼

�
δμν −

PμPν

P2

�
ΠVðPÞ;

ΠVðPÞ ¼
e2Nf

8

ffiffiffiffiffiffi
P2

p
: ð14Þ

At finite temperature, Lorentz covariance is broken
through the presence of a local matter rest frame. This
implies that Πμν may be decomposed into the most general
tensor structure that can be built out of δμν, Pμ and the rest
frame vector nμ ¼ ð1; 0Þ. The corresponding decomposition
is standard in quantum field theory (cf. Ref. [29])
and we use the complete and orthogonal tensor basis
spanned by

Aμν ≡ δμν −
PμPν

P2
−
ñμñν
ñ2

; Bμν ≡ ñμñν
ñ2

;

Cμν ≡ PμPν

P2
; Dμν ≡ ñμPν þ ñνPμ; ð15Þ

to evaluate the structure functions for Πμν ¼ ΠAAμνþ
ΠBBμν þ ΠCCμν þ ΠDDμν. Here ñμ ≡ nνðAμν þ BμνÞ.
Evaluating PμΠμν from (11) one finds

PμΠμνðPÞ ¼ −4e2Nf

XZ
fKg

PνK2 þ KνðP − KÞ2 − K2Kν

K2ðK − PÞ2
¼ 0 ¼ ΠCPν þ P2ΠDñν; ð16Þ

which impliesΠC¼ΠD ¼ 0 and confirms that BRST invari-
ance is satisfied for the action (5). The structure functionsΠA,
ΠB may be found by considering the components

THERMAL FREE ENERGY OF LARGE NF QED IN 2þ 1 … PHYS. REV. D 100, 073009 (2019)

073009-3



Πμμ ¼ ðD − 2ÞΠAðPÞ þ ΠBðPÞ

¼ −4ðD − 2Þe2Nf

XZ
fKg

K2 − P · K
K2ðK − PÞ2 ; ð17Þ

Π00 ¼
jpj2
P2

ΠBðPÞ

¼ −4e2Nf

XZ
fKg

K2 − P · K − 2k20 þ 2k0p0

K2ðK − PÞ2 : ð18Þ

The corresponding thermal sums may be evaluated using
standard finite-temperature field theory methods [30], and
the finite temperature parts are given for instance in the
Appendix of Ref. [31]:

ΠT≠0
μμ ¼4ðD−2Þe2Nf

×Re
Z

dD−1k
ð2πÞD−1

nFðjkjÞ
jkj

2ip0jkjþ2p ·k
2ip0jkjþ2p ·k−P2

;

ΠT≠0
00 ¼4ðD−2Þe2Nf

×Re
Z

dD−1k
ð2πÞD−1

nFðjkjÞ
jkj

ip0jkjþ2k2−p ·k
2ip0jkjþ2p ·k−P2

; ð19Þ

where Refðp0Þ ¼ 1
2
ðfðp0Þ þ fð−p0ÞÞ. For D ¼ 3, the

remaining angular integration may be carried out to find

ΠT≠0;D¼3
μμ ¼ 4e2NfRe

Z
∞

0

dknFðkÞ
2π

×

�
1 −

ffiffiffiffiffiffi
P2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4k2 − 4ip0k

p
�
;

ΠT≠0;D¼3
00 ¼ 4e2NfRe

Z
∞

0

dknFðkÞ
2π

×

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4k2 − 4ip0k

p
ffiffiffiffiffiffi
P2

p
�
: ð20Þ

III. PARTITION FUNCTION FOR QED3

The partition function for QED3 is given by

Z ¼
Z

Dψ̄DψDc̄DcDAe−S0−SI ; ð21Þ

with S0, SI given in Eqs. (5). To leading and next-to-leading
order in large Nf, S0 already resums all the relevant “daisy-
type” diagram contributions, such that contributions from
SI only appear at order OðN−1

f Þ, which we neglect. Hence
the free energy density for QED3 to NLO in large Nf is
given by

f ¼ −
T
V
lnZ ¼ fghost þ ffermion þ fphoton; ð22Þ

with

fghost ¼ −
XZ

K
lnK2; ffermion ¼ −2Nf

XZ
fKg

lnK2;

fphoton ¼
1

2

XZ
K
ln detG−1

μν ðKÞ ð23Þ

where we used the fact that all the path integrals are
Gaussian in momentum space. Here G−1

μν ðKÞ is the inverse
photon propagator in momentum space, which from the
expression given in S0 takes the form

G−1
μν ¼K2δμν−KμKν

�
1−

1

ξ

�
þΠμνðKÞ;

¼ðK2þΠAðKÞÞAμνþðK2þΠBðKÞÞBμνþ
K2

ξ
Cμν;

ð24Þ
using the projectors given in (15). The fermion contribution
and the ghost contribution are easy to evaluate:

fghost ¼−2
Z

d2k
ð2πÞ2 lnð1−e−k=TÞ¼ ζð3ÞT3

π
;

ffermion ¼−4Nf

Z
d2k
ð2πÞ2 lnð1þe−k=TÞ¼−

3Nfζð3ÞT3

2π
;

ð25Þ
where only the matter contribution of the thermal sums give
nonvanishing contributions. Note that the ghost contribu-
tion equals that of two free bosonic degrees of freedom
(d.o.f.), but with negative sign.
The determinant in fphoton is given by the product of the

eigenvalues of G−1
μν , which are the factors multiplying the

orthogonal projectors above. Using
PR

ln ξ ¼ 0 in dimen-
sional regularization, the contribution from the eigenvalue
from Cμν gets canceled by half of the ghost contribution.
Therefore, the OðN0

fÞ contribution to the free energy from
photons and ghosts is given by

fghost þ fphoton ¼
1

2

XZ
ln

�ðK2 þ ΠAÞðK2 þ ΠBÞ
K2

�
: ð26Þ

The photon polarization contributions ΠA;B consist of a
zero-temperature piece and a finite-temperature contribu-
tion given in (14), (20) above, which for D ¼ 3 become

ΠAðPÞ¼ΠVðPÞ−
4e2NfT

jpj2
Z

∞

0

dk
2π

nFðkTÞ

×

�
p2
0þ

ffiffiffiffiffiffi
P2

p
Re

ðip0þ2kTÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2−4k2T2−4ip0kT

p
�

ΠBðPÞ¼ΠVðPÞþ4e2NfT
P2

jpj2
Z

∞

0

dk
2π

nFðkTÞ

×

�
1−

1ffiffiffiffiffiffi
P2

p Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2−4k2T2−4ip0kT

q �
; ð27Þ
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and where the integration momenta have been scaled by the
temperature and ΠVðPÞ was defined in Eq. (14). Particular
care must be taken when evaluating the thermal contribu-
tions in the static limit p0 → 0, finding

ΠA − ΠV ¼ −
e2Nfjpj

π

Z
1

0

dynFðyjpj=2Þ
y2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ;

ΠB − ΠV ¼ 2e2NfT ln 2

π

þ e2Nf

π
jpj

Z
1

0

dynFðyjpj=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
: ð28Þ

One recognizes the 2þ 1 dimensional Debye mass

m2
D ≡ 2e2NfT ln 2

π
; ð29Þ

in the zero momentum limit of ΠB − ΠV .
We further split the photon contributions as

fA;B ¼ 1

2

XZ
K
ln ðK2 þ ΠA;BðKÞÞ ¼ fV þ fðMÞ

A;B ;

fV ≡ 1

2

XZ
K
ln ðK2 þ ΠVðKÞÞ;

fðMÞ
A;B ≡ 1

2

XZ
K
ln

�
1þ ΠA;BðKÞ − ΠVðKÞ

K2 þ ΠVðKÞ
�
; ð30Þ

where for large K the asymptotic form of ΠA;B − ΠV ∝ 1
K2

means that the fðMÞ
A;B is both IR- and UV-safe, and thus can

be handled numerically.
The term fV is further split into

fV ¼ 1

4

XZ
K
lnK2 þ 1

2

XZ
K
ln

� ffiffiffiffiffiffi
K2

p
þ ΠVðKÞffiffiffiffiffiffi

K2
p

�

¼ −
ζð3ÞT3

4π
þ fV;1 þ fV;2;

fV;1 ¼
Z

dDK
ð2πÞD nBðik0Þ ln

� ffiffiffiffiffiffi
K2

p
þ ΠVðKÞffiffiffiffiffiffi

K2
p

�

fV;2 ¼
1

2

Z
dDK
ð2πÞD ln

� ffiffiffiffiffiffi
K2

p
þ ΠVðKÞffiffiffiffiffiffi

K2
p

�
; ð31Þ

where nBðxÞ ¼ 1
ex=T−1. Physically, fV;2 corresponds to the

vacuum free energy, while fV;1 corresponds to the finite-
temperature free energy contribution from the vacuum self-
energy. The thermal contribution fV;1 may be rewritten by
deforming the contour to run along the Minkowski axis
rather than the Euclidean axis because the integrand only
has a branch cut, but no singularities anywhere on the
principal Riemann sheet [9]. Taking the limit ϵ → 0, this
leads to

fV;1¼−
Z

d2k
ð2πÞ2

Z
∞

k

dω
π
nBðωÞImln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2þk2

p
þe2Nf

8

�
:

ð32Þ

The contribution may be further simplified as

fV;1 ¼ −
Z

∞

0

dω
π

nBðωÞ
Z

ω2

0

dðk2Þ
4π

arctan

�
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p

e2Nf

�
;

¼ −
Z

∞

0

dω
4π2

nBðωÞ
��

e4N2
f

64
þ ω2

�
arctan

8ω

e2Nf

−
e2Nfω

8

�
; ð33Þ

which is readily evaluated numerically. Alternatively, one

may investigate the weak coupling (e
2Nf

T ≪ 1) and strong

coupling (e
2Nf

T ≫ 1) limits, which are given by

lim
e2Nf=T→0

fV;1 ¼ −
ζð3ÞT3

4π
þ e2NfT2

96
þOðe4N2

fTÞ;

lim
e2Nf=T→∞

fV;1 ¼ −
4π2T4

45e2Nf
þOðT5=ðe4N2

fÞÞ: ð34Þ

From this one recoverswhat could already have been gleaned
from the original sum-integral representation in (31): for

weak couplingwhereΠV → 0, fV ¼ − ζð3ÞT3

2π , corresponding
to the free energy density of a single bosonic d.o.f.;
conversely, for strong coupling where K2 þ ΠV ≃ ΠV , the

fV;1 contribution vanishes and fV ¼ − ζð3ÞT3

4π , corresponding
to 1

2
d.o.f.

A. Apparently divergent vacuum
energy at four-loop order

Finally, let us discuss the vacuum contribution
fV;2 defined in (31), which vanishes identically for both
e2Nf ¼ 0, ∞. However, at face value fV;2 includes a
logarithmic divergence for any finite value of e2Nf.
This divergence arises at four-loop order in a
perturbative expansion, which can be seen by expanding
fV;2 in powers of ΠV∝e2Nf

ffiffiffiffiffiffi
K2

p
such that fV;2 ∝

ðe2NfÞ3
R

dDK
ðK2Þ3=2 ∝

ðe2NfÞ3
ϵ .

The appearance of the e6 coefficient is similar to the g6

infrared divergence encountered for non-Abelian gauge
theories, also known as the “Linde problem” [32].
However, we believe these issues are unrelated because
for the case of QED3, the apparent divergence is in the
ultraviolet, not in the infrared. In order to compute the
naively UV divergent contribution to fV;2 we first define an
auxiliary function gV;2 with
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gV;2 ≡ 1

2

Z
dDK
ð2πÞD

1

ðK2Þ1=2þϵ þ c

¼ c2

32π2

�
1

ϵ
þ 2 − γE þ ln

μ2π

c8
þOðϵÞ

�
; ð35Þ

where γE is Euler’s constant and the right-hand side has
been computed in dimensional regularization. By then

observing that, setting c0 ≡ μ2ϵ
8e2Nf

ð4πÞD=2 Γð2 − D
2
Þ Γ2ðD=2Þ

ΓðDÞ ,

f0V;2ðc0Þ ¼ gV;2ðc0Þ [see (31) and (13)], we find that,
integrating both sides of (35) with respect to c,

fV;2¼
1

96π2

�
e2Nf

8

�
3
�
1

ϵ
þ5

3
þ4 ln

μ̄2

e4N2
f=128

þOðϵÞ
�
;

ð36Þ
where μ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πe−γE
p

μ is the MS scheme renormalization
scale. The apparently divergent contribution to the free
energy density at four-loop (e6) is problematic: since there
are no divergences requiring renormalization for the
charge, mass or wave-function, the only way to cancel
the divergence would be by adding a vacuum-energy
counterterm to the Lagrangian. However, even after doing
so, this would imply that the vacuum energy thus found is
renormalization-scale dependent, since there are no other
divergences to cancel the nonvanishing derivative ∂fV∂μ̄ .
Since the free energy is a physical observable, this cannot
happen.
Further inspection reveals that the problem lies with the

naive Nf → ∞ limit. It is possible to consider further
corrections to the photon polarization tensor which are
formally suppressed by powers of Nf, for instance at the
two-loop level, cf. Ref. [33]. One two-loop contribution
(which by itself is not gauge invariant) originates from a
nonvanishing fermion self-energy, modifying the fermion
propagator as

Δ−1ðKÞ → i=Kð1þ ΣðKÞÞ: ð37Þ
To leading order in large Nf, ΣðKÞ may be calculated by
using the resummed photon propagator to find

ΣðKÞ ∝ 1

Nf
ln
e4N2

f

K2
; ð38Þ

which in turn suggests that similar contributions of
higher order in Nf may be nonperturbatively resummed
to give [12]

1þ ΣðKÞ ¼
�
c0 ×

e2Nfffiffiffiffiffiffi
K2

p
� 8

Nfπ
2

; ð39Þ

with a calculable constant c0. Including the self-energy
correction into the evaluation for the photon polarization
tensor (11) then suggests the modification

ΠVðKÞ ¼ e2Nf

8

ffiffiffiffiffiffi
K2

p
→

�
e2Nf

8

�
1− 8

Nfπ
2ðK2Þ1=2þ

4

Nfπ
2 ;

ΠA;B − ΠV ∝
e2Nf

8
T →

�
e2Nf

8

�
1− 8

Nfπ
2

T
1þ 8

Nfπ
2 : ð40Þ

While these modifications do not modify most of the results
for the free energy discussed above at the OðN0

fÞ level,
there are two notable exceptions.
First, consider the contribution fV;2 in light of these

nonperturbative resummations of formally sub-leading
1=Nf corrections. Expanding fV;2 in powers of ΠV as

before, but with ΠV ∝
ffiffiffiffiffiffi
K2

p 1þ 8

Nfπ
2 one finds that the four-

loop perturbative expression is finite in dimensional regu-
larization because 8

Nfπ
2 takes over the role of ϵ. Hence we

find

fV;2 →
1

2

Z
dDK
ð2πÞD ln

�
ðK2Þ1=2−

4

Nfπ
2 þ

�
e2Nf

8

�
1− 8

Nfπ
2
�

∝
�
e2Nf

8

�
3

× Nf: ð41Þ

Thus the result of including the naively subleading terms in
the 1=Nf expansion is that the apparent UV divergence of
the free energy gets turned into a finite contribution to order
OðNfÞ. Therefore, after resummation, the vacuum free
energy is no longer renormalization-scale dependent, but
there is a nonvanishing and finite cosmological constant
contribution at order Oðe6N4

fÞ.

B. Suppression of in-medium tensor
contributions at strong coupling

The second instance where the formally subleading
corrections (40) become important is in the numerical
evaluation of the in-medium contribution in Eq. (30) near
zero temperature. Specifically, without taking (40) into
account, the temperature-dependence for the polarization
tensor components (27) may be scaled out by taking

P → TP̂, e2 → Tê2. As a consequence, one would expect
the in-medium contributions to ΠA;B to have nonvanishing
contributions to the free energy fA;B even in the zero
temperature limit.
However, taking into account (40), our calculation with

naive in-medium contributions can only be trusted in a
regime where

e2Nf

T
≪ eNfπ

2=8; ð42Þ

whereas for e2Nf

T → ∞, the OðN0
fÞ photon contribution to

the free energy is given by fV in (31).
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C. Numerical evaluation of thermal contribution

The thermal photon polarization tensor contribution to
the free energy is handled fully numerically by directly
evaluating

fðMÞ
A;B ¼ 1

2

XZ
K
ln

�
1þ ΠA;BðKÞ − ΠVðKÞ

K2 þ ΠVðKÞ
�
: ð43Þ

Specifically, this is done by performing the sum over
Matsubara frequencies and using Gauss-Legendre quad-
rature for the remaining integral as in Refs. [27,28]:

fðMÞ
A;B ¼

T3

16

XM
n¼−M

XN
i¼1

Wi ln

�
1þΠA;Bðωn;kiTÞ−ΠVðωn;kiTÞ

ω2
nþΠVðωn;kiTÞ

�
;

ð44Þ

where we used ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðxiπ

2
Þp þ 0þ to compactify the

infinite interval including a small regulator to avoid any IR
divergences. Here xi, Wi are the nodes and modified
weights, respectively, defined by the roots of the
Legendre polynomial of order N:

PNðxiÞ ¼ 0; Wi ¼
1

ð1 − x2i ÞðP0
NðxiÞÞcos2ðxiπ2 Þ

: ð45Þ

In practice, because of the symmetries of the integrand,
only nodes with n ≥ 0, xi ≥ 0 need to be summed over.
Tabulated values for xi can be easily generated with high
precision for N up to N ≃ 2000, but in practice N ≃ 200
seems sufficient to obtain percent level precision.
We note that, in practice, we find that fA ≤ 0 and fB ≥ 0

and of similar magnitude for all values of the coupling. The

numerical code for obtaining fðMÞ
A;B and fV;1 as well as

tabulated numerical results are publicly available at [34].

IV. RESULTS AND DISCUSSION

Summarizing the previous section, the full free energy
density for QED3 in the large Nf limit is given by Eq. (22),
where ffermion and fghost are given in Eq. (25). The non-
trivial photon contributions fA;B from (30) were found to be
given by the sum

fA;B ¼ −
ζð3ÞT3

4π
þ fV;1 þ fV;2 þ fðMÞ

A;B ð46Þ

where fV;1; fV;2 and the matter contributions fðMÞ
A;B are given

in Eqs. (33), (36) and (44), respectively. As pointed out in
Sec. III A, fV;2 is UV-divergent in the naive large Nf limit,
with the expectation that this divergence gets turned into a
finite OðNfÞ contribution once higher order terms in 1=Nf

are resummed. Since this resummation is beyond the scope
of the present work, we focus on the difference between
vacuum and finite-temperature quantities where fV;2 drops
out. Since the free energy density is equal to minus the
pressure, we choose to study the pressure difference

PðTÞ − Pð0Þ. We normalize this difference by dividing
by the pressure of a free (noninteracting) bosonic d.o.f.

Pfree boson ¼ ζð3ÞT3

2π and find

PðTÞ − Pð0Þ
Pfree boson

¼ 3Nf −
2fV;1 þ fðMÞ

A þ fðMÞ
B

ζð3ÞT3

2π

: ð47Þ

Note that the leading OðNfÞ term in the normalized
pressure is 3Nf and not 4Nf because in three dimensions
each fermionic d.o.f. contributes only 3

4
of a bosonic d.o.f.

As discussed above, results for fV;1, f
ðMÞ
A , fðMÞ

B can be

obtained numerically for arbitrary values of e2Nf

T . However,
for reasons discussed in Sec. III B, for any finite Nf we
expect contributions that are naively higher order in 1=Nf

to suppress the in-medium contributions to ΠA;B for

sufficiently low temperatures/high values of e2Nf

T .
Therefore, we expect our numerically obtained results

for fðMÞ
A;B to lose validity at a large but finite value of

e2Nf

T . Following the arguments in Ref. [35], we expect the
e2Nf

T → ∞ limit of the pressure to be well approximated by

neglecting fðMÞ
A;B , but including fV;1.

Our main result for the pressure is shown in Fig. 1. For

weak coupling values e2Nf

T ≪ 1, we find that the normalized
pressure decreases monotonically from the free theory
value at 3Nf þ 1. This trend continues up to coupling

values of approximately e2Nf

T ≤ 16, at which point the
normalized pressure (47) is numerically given by

3 Nf

3 Nf+1/3

3 Nf+2/3

3 Nf+1

 0  0.2  0.4  0.6  0.8  1

e2 Nf/T=∞

e2 Nf/T=0

?

(P
(T

)-
P

(0
))

/P
(T

) fr
ee

 b
os

on

1/(1+e2 Nf/T)

Pressure of large Nf QED3

full Πμν
only T=0 Πμν

FIG. 1. Normalized pressure (47) in large Nf QED in 2þ 1d
for all coupling values (full line). For comparison, the normalized
pressure using only the vacuum polarization tensor is also shown
(dashed line). Horizontal axis has been compactified in order to

show the full range e2Nf

T ∈ ½0;∞Þ. Arrows indicate weak-coupling
and infinite coupling limit, respectively. The question mark
indicates that we do not trust our results using the full in-medium
polarization tensor to be a good approximation at large, but fixed
Nf in this region. See text for details.
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3Nf þ 0.333ð3Þ. For e2Nf

T ≥ 16, the normalized pressure
then starts to rise as a function of coupling, similar to what
has been reported in the case of QED4 in Refs. [9,10] (see
Fig. 1). (Note that apparent nonmonotonic behavior
shown in Fig. 1 is a result of the normalization used for
plotting; the (unnormalized) pressure itself is always
monotonically increasing with temperature as it should.)
Eventually, the normalized pressure hits a maximum below

3Nf þ 1 and starts to decrease again for e2Nf

T ≥ 100, with

the numerical evaluation of fðMÞ
A;B becoming more challeng-

ing in this region.
Based on the arguments given in Sec. III B, we suspect

that for fixed, but large Nf, the normalized pressure for
e2Nf

T ≫ 16 may continue to decrease toward 3Nf, departing

from our calculation that is using the in-medium polariza-
tion tensor evaluated in the naive large Nf limit. This is
indicated by a question mark and the result using only the
vacuum polarization tensor shown in Fig. 1. We would
invite follow-up studies from lattice gauge theory simu-

lations at finite temperature in particular for e2Nf

T ≥ 16 to
settle this issue.
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