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The universal radiative corrections common to neutron and superallowed nuclear beta decays (also
known as “inner” corrections) are revisited in light of a recent dispersion relation study that found
þ2.467ð22Þ%, i.e., about 2.4σ larger than the previous evaluation. For comparison, we consider several
alternative computational methods. All employ an updated perturbative QCD four-loop Bjorken sum rule
defined QCD coupling supplemented with a nucleon form factor based Born amplitude to estimate axial-
vector induced hadronic contributions. In addition, we now include hadronic contributions from low Q2

loop effects based on duality considerations and vector meson resonance interpolators. Our primary result,
2.426(32)%, corresponds to an average of a light-front holographic QCD approach and a three-resonance
interpolator fit. It reduces the dispersion relation discrepancy to approximately 1.1σ and thereby provides
a consistency check. Consequences of our new radiative correction estimate, along with that of the
dispersion relation result, for Cabibbo-Kobayashi-Maskawa unitarity are discussed. The neutron lifetime-
gA connection is updated and shown to suggest a shorter neutron lifetime less than 879 s. We also find an
improved bound on exotic, non–Standard Model, neutron decays or oscillations of the type conjectured as
solutions to the neutron lifetime problem, BRðn → exoticsÞ < 0.16%.
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I. INTRODUCTION

Precision tests of the Standard Model (SM) require
accurate calculations of electroweak radiative corrections
(RCs) [1–7]. For example, unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix leads
to orthonormal relationships among row and column matrix
elements and provides a means to search for indications
of “new physics” via departures from SM expectations.
However, for those searches to be credible, strong inter-
action effects must be reliably evaluated.
Consider the precise CKM first-row unitarity condition

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: ð1Þ

Employing the particle data group 2018 average based on
superallowed 0þ → 0þ nuclear beta decays [8,9],

jVudj ¼ 0.97420ð10ÞNPð18ÞRC; ð2Þ
as extracted by Hardy and Towner [9], using a universal
electroweak radiative correction [10] (also known as the
“inner” correction),

ΔV
R ¼ 0.02361ð38Þ; ð3Þ

along with the Kμ2=πμ2 and Kl3 weighted averages [8] of
jVusj ¼ 0.2253ð7Þ and jVusj ¼ 0.2231ð8Þ, respectively,

jVusj ¼ 0.2243ð9Þ ð4Þ
(where the uncertainty has been increased by a scale factor
S ¼ 1.8 to account for Kμ2 and Kl3 inconsistencies), and
negligible jVubj2 ∼Oð10−5Þ implies

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9994ð4Þudð4Þus: ð5Þ
Alternatively, one may employ the updated [11] Kμ2=πμ2
constraint jVusj=jVudj ¼ 0.2313ð5Þ to derive the unitarity
condition [12],

jVudj ¼ 0.97427ð11Þ unitarity condition fromKμ2=πμ2:

ð6Þ
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Both Eqs. (2) and (5) are in good accord with those SM
expectations. However, that confirmation has recently been
questioned. A new analysis of the universal radiative
corrections to neutron and superallowed nuclear beta decays
based on a dispersion relations (DRs) study of hadronic
effects by Seng et al. [13] finds a roughly 0.1% larger

ΔV
R ¼ 0.02467ð22Þ; ð7Þ

with reduced uncertainty. It leads to a smaller, more
precise [13]

jVudj ¼ 0.97370ð14Þ DR result ½13�; ð8Þ

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9984ð3Þð4Þ: ð9Þ

Both Eqs. (8) and (9) exhibit an apparent roughly 3.2σ
violationof unitarity. Taken literally, it couldbe interpreted as
a strong hint of new physics. However, nuclear structure
effects and other corrections to Vud and Vus are still being
investigated [14,15]. [We note that the average Vus and its
uncertainty in Eq. (4) depend very mildly on the value ofVud
extracted from superallowed nuclear beta decays. For sim-
plicity, we keep the constraint in Eq. (4) fixed throughout our
presentation.]
Although the use of DRs for such an analysis represents

a major advancement in the calculation of electroweak
radiative corrections, it is important to reexamine the input
leading to Eq. (7) and compare with other computational
approaches. In that way, one can better assess their
consistency and individual reliabilities. Close examination
may reveal issues with the RCs or other inputs. For that
reason, we update here an alternative study of the radiative
corrections to neutron and superallowed nuclear beta
decays, estimate hadronic uncertainties, and discuss vari-
ous possible implications.
Before going into detail, let us briefly preview our study.

We first recall the lowest-order one-loop universal radiative
corrections to neutron and superallowed nuclear beta decay
rates in the framework of the SM. Leading-log QED
effects, beyond one-loop order, controlled by the renorm-
alization group are included. Overall, they increase the RC
by about 0.1%. However, some care must be exercised in
examining compound effects, particularly since the DRs
result to be compared with differs from the earlier calcu-
lations by a similar approximately 0.1%. That difference

could be offset by smaller changes in several other
contributions to the decay rates.
Consider the weak vector amplitude stemming from tree-

and loop-level effects. At very low momentum transfer,
vector-current induced effects are protected from strong
interactions by vector-current conservation. Hadronic effects,
nevertheless, enter the vector amplitude via γW box diagrams
(and to a lesser extent ZW box diagrams), see Fig. 1, where
the operator product expansion of quark axial and vector
currents can produce a vector amplitude. In that way, short-
distance QCD and long-distance hadronic structure depend-
ence are induced by the nonconserved axial current.
Up until 2006 [10], only the lowest-order, OðαsÞ, QCD

perturbative correction to the box diagrams was considered
[16–18].Nonperturbative long-distancehadronic corrections
were estimated by evaluating a Born amplitude parametrized
by inserting axial and vector nucleon dipole form factors in
Fig. 1, an approach introduced in Ref. [19].
Those OðαÞ (with α ≃ 1=137.036) vector and axial-

vector induced corrections, universal to all beta decays,
were estimated to be

ΔV
R ¼ α

2π

�
3 ln

mZ

mp
þ ln

mZ

mA
þ 2CBorn þ Ag

�
: ð10Þ

The 3 lnðmZ=mpÞ short-distance vector-current induced
contribution is free of QCD corrections, while the remain-
ing terms, due to the axial-vector current, exhibit strong
interaction effects. In Eq. (10),mA ∼ 1.2 GeV is a hadronic
short-distance cutoff as employed in Ref. [20], Ag ∼ −0.34
represents its perturbative QCD corrections, and CBorn ∼
0.85 denotes the Born (elastic) amplitude contribution. All
three terms depend on hadronic structure and/or perturba-
tive QCD. Collectively, those axial-vector induced loop
contributions increase the decay rate by about 2.9α=π ∼
6.7 × 10−3. Although such contributions represent a rela-
tively minor part of the full one-loop universal radiative
corrections, they carry most of the theoretical uncertainty.
A strategy for improving strong interaction effects

emerged, when it was shown [10] that the perturbative
QCD corrections to beta decays and the Bjorken sum rule
(BjSR) [21,22], the latter now known to four-loop QCD
order [23–25], are identical in the chiralþ isospin sym-
metry limits modulo small singlet contributions that we
do not consider [26,27]. Therefore, one can make use of
theoretical and experimental BjSR results to define an

W γ

pn

eνe

W Z

pn

eνe

Z W

pn

eνe

FIG. 1. γW and ZW box corrections to neutron decay.
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effective physical QCD coupling [28] that spans the pertur-
bative and (as more recently argued) nonperturbative loop
momentum domains and is continuous throughout the Q2

transition region (see, for example, Refs. [29–34]). An
identical perturbative situation arises for the Gross-
Llewellyn-Smith (GLS) nonsinglet sum rule [35], which is
employed in the DR approach. In fact, that sum rule is closer
in structure to the γW box diagram and the leading-twist term
in its operator product expansion. However, accessing
relevant low Q2 data in that case is less straightforward.
Employing the knownBjSR or equivalentGLS nonsinglet

sum rule four-loopQCD corrections as input allows a precise
evaluation of the perturbativeQCDcorrections to the γW box
diagrams for loop momentum above the demarcation scale
Q2

0 [see Eq. (12) and discussion below],Q
2
0 < Q2 < ∞, with

little uncertainty. Below Q2 ¼ Q2
0, a nonperturbative evalu-

ation of hadronic loop effects is required. For that purpose,
we depend primarily on a nucleon-based form factor Born
amplitude contribution. In addition, one of our new
approaches employs a somewhat speculative analytic exten-
sion of the BjSR coupling based on light-front holographic
QCD (LFHQCD) [36,37] (see also Ref. [38] for a peda-
gogical introduction). Our use of that nonperturbative
interpolator represents a novel application and fundamental
test of that approach. It introduces a nonperturbative αg1ðQ2Þ
given by

αg1ðQ2Þ
π

¼ expð−Q2=Q2
0Þ for 0 < Q2 < Q2

0; ð11Þ

where g1 designates its dependence on the polarized structure
function g1ðx;Q2Þ from which it is derived [see Eq. (20)].
The transition scale we use,

Q2
0 ¼ 1.10ð10Þ GeV2; ð12Þ

is fixed by matching nonperturbative and perturbative
couplings [39,40] using αsðmZÞ ¼ 0.1181ð10Þ and the
four-loop QCD code in Refs. [39,40]. The matching is quite
smooth and leads to additional Q2 < Q2

0 nonperturbative
loop effects that were neglected in 2006 [10] under the
assumption that they were included via the Born amplitude.
However, as demonstrated by the DR study [13] such effects
are distinct and should be separately included. Fortunately,
they are relatively small. Nevertheless, they are a source of
some uncertainty, and estimates of their magnitude represent
the main difference between distinct calculations. In that
regard, the DR uses the GLS nonsinglet sum rule data at low
Q2 for guidance, while our method follows ideas developed
from BjSR studies [10]. Both have the same perturbative
QCD corrections modulo singlet contributions (although the
DR approach applies only the first three loops of the known
four-loop effects [13]) and include similar estimates of the
Born amplitude but differ in the low Q2 evaluation of other
hadronic effects. In addition to the anti-de Sitter (AdS-)based

LFHQCDapproach,we also evaluate hadronic effects using a
three-resonance interpolator function fixed by boundary
conditions. Consistency of the two approaches reinforces
their individual credibility. The results are subsequently
averaged to give our current best estimate of the radiative
corrections.
After presenting our updated evaluation of the RC to

neutron decay, we take this opportunity to discuss its
implications for our recent analysis of the neutron life-
time-gA connection [41] in light of the new very precise
Perkeo III [42,43] experimental result

gA ¼ 1.2764ð6Þ Perkeo III ð2018Þ ½42; 43�; ð13Þ

which increases the average of post-2002 experiments to

gaveA ¼ 1.2762ð5Þ : ð14Þ

That value, taken together with the average trap neutron
lifetime, τtrapn ¼ 879.4ð6Þ s, is used to (conservatively)
improve our previous bound on exotic neutron decays
from less than 0.27% to less than 0.16%. It actually
suggests, as we later discuss, that one should probably
anticipate a future reduction in the neutron lifetime to the
range 878–879 s or a decrease in the value of gA.

II. RADIATIVE CORRECTIONS TO
NEUTRON DECAY

We begin by reviewing the electroweak radiative cor-
rections for neutron decay and then isolate a subset that is
also universal to superallowed Fermi decays called ΔV

R .
The inclusive neutron decay rate or inverse lifetime τ−1n in
the SM is predicted to be

1

τn
¼ G2

μjVudj2
2π3

m5
eð1þ 3g2AÞð1þ RCÞf; ð15Þ

where Gμ ¼ 1.1663787ð6Þ × 10−5 GeV−2 is the Fermi
constant obtained from the muon lifetime and gA is the
axial-current coupling obtained from the neutron decay
asymmetry, A0 ¼ 2gAð1 − gAÞ=ð1þ 3g2AÞ. f ¼ 1.6887ð1Þ
is a phase space factor that includes the Fermi function, a
relatively large roughly þ3% final state enhancement due
to Coulomb interactions. RC stands for radiative correc-
tions, which have been taken, up until recently, to be
þ0.03886ð38Þ based on a study [10] in 2006. The more
recent DR approach [13] found þ0.03992ð22Þ, a signifi-
cant increase outside of the error budgets. In the case of
neutron decay, RCs are computed explicitly for the vector-
current amplitude, and gA is defined via Eq. (15) so that g2A,
g2V , and f have the same and factorable RCs [20]. That gA
as defined via Eq. (15) is measured in neutron decay
asymmetry studies, after correcting for residual recoil,
weak magnetism, and small OðαÞ corrections as discussed
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by Wilkinson [44] and Shann [45]. Corrections to the
asymmetry reduce its magnitude by about 1% and corre-
spondingly decrease gA by about 0.25% [42,43].
The purpose of this paper is to update and improve the

2006 RC calculation approach [10], compare it to the recent
DR result [13], and try to understand any remaining
difference. It is predicated in part by the DR finding that
nonperturbative low Q2 effects not covered by the Born
contribution are present and should be included along with
a post-2006 four-loop calculation of perturbative QCD
corrections to the nonsinglet BjSR [25] and GLS sum rule.
The factorized components of the lowest-order RC to

neutron decay are given by

RC¼ α

2π

�
ḡðEmÞþ3 ln

mZ

mp
þ ln

mZ

mA
þ2CBornþAg

�
; ð16Þ

where ḡðEmÞ represents long-distance loop corrections
as well as bremsstrahlung effects averaged over the
neutron beta decay electron spectrum and Em ¼
1.292581 MeV is the end point electron energy specific
to neutron decay. We find its updated value is slightly
shifted to

α

2π
ḡðEmÞ ¼ 0.015035; ð17Þ

which reduces RC by 2 × 10−5. That contribution to the
neutron decay RCs in Eq. (17) is specific to the neutron
spectrum and is not maintained for other beta decays,
although the function gðEÞ used to derive it is universal to
all beta decays (see, however, Ref. [15]). It, along with the
3 lnðmZ=mpÞ term in Eq. (10), is independent of strong
interaction effects [46]. The rest of that RC expression
represents axial current induced effects that are dependent
on strong interactions. They provide the main focus for
this paper.

III. AXIAL CURRENT LOOP CONTRIBUTIONS
TO RC

The complete radiative corrections to neutron decay in
Eq. (10), including axial-current induced and QED leading-
log summation effects, can be written to a good approxi-
mation as [20]

RC ¼ 0.03186þ 1.017ANP þ 1.08AP; ð18Þ

where the þ0.03186 corresponds to the pure vector-current
induced part of the RC including higher-order effects. ANP
and AP represent lowest-order α long-distance nonpertur-
bative (NP) and short-distance perturbative (P) contribu-
tions to RC from axial-current effects in γW and ZW box
diagrams (see Fig. 1). Coefficients of the OðαÞ contribu-
tions in Eq. (18) follow from QED leading-log enhance-
ments and interference with other parts of the vector-current

induced RC. The short-distance parts in our approach
correspond to loop momentum Q2 > Q2

0 [see Eq. (12)],
while long-distance parts correspond to Q2 < Q2

0.
For the universal ΔV

R used by Hardy and Towner in their
analysis of superallowed beta decays [9,47], one finds a
corresponding approximate relationship:

ΔV
R ¼ 0.01671þ 1.022ANP þ 1.065AP: ð19Þ

The terms in Eqs. (18) and (19) were derived using the
leading-log QED summation described in Appendix 1 of
Ref. [20].
We subsequently employ Eqs. (18) and (19) to present

updated radiative corrections for the neutron and super-
allowed beta decays. Note that when applied to the DR
OðαÞ corrections Eqs. (18) and (19) give somewhat larger
effects than those reported in Ref. [13]. However, for the
most part, whenever we refer to DR results, values cited
correspond to the original literature [13].
The short-distance axial-current γW box diagram is the

primary source of AP. It is well described using an effective
QCD coupling αg1ðQ2Þ defined for Q2 > Q2

0 via the
isovector BjSR,

Z
1

0

dx½gp1 ðx;Q2Þ − gn1ðx;Q2Þ� ¼ gA
6

�
1 −

αg1ðQ2Þ
π

�
; ð20Þ

where g1 is the polarized structure function at Bjorken x.
That prescription incorporates the leading OðαÞ axial-
current induced amplitude from the γW box diagram,
given by

BoxðγWÞVA ¼ α

8π

Z
∞

0

dQ2
m2

W

Q2 þm2
W
FðQ2Þ; ð21Þ

where the asymptotic behavior of FðQ2Þ,

FðQ2Þ → 1

Q2

�
1 −

αg1ðQ2Þ
π

�
; ð22Þ

will be called the Bjorken (Bj) function and αg1 is defined
to be the sum of the four-loop (or more if known) QCD
corrections to the BjSR [25],

αg1ðQ2Þ
π

¼ as þ ð4.583 − 0.3333nfÞa2s
þ ð41.44 − 7.607nf þ 0.1775n2fÞa3s
þ ð479.4 − 123.4nf þ 7.697n2f − 0.1037n3fÞa4s ;

ð23Þ

where as ¼ α
MS

ðQ2Þ
π and nf denotes the number of (effec-

tively massless) quark flavors. That expression defines a
coupling αg1 which is valid perturbatively for Q2 > Q2

0.
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The behavior of αg1 with Q2 is shown in Fig. 2.
Discontinuities in that plot are caused by changes in the
number of active flavors in Eq. (23); we change nf whenffiffiffiffiffiffi
Q2

p
crosses a quark decoupling threshold. Note, however,

that Eq. (23) is derived in massless QCD. There are very
small singlet contributions [26,27] to the BjSR that enter
the four-loop QCD corrections. However, at the level of
precision we consider, their effect is negligible.
In our first LFHQCD approach, for the nonperturbative

domain Q2 < Q2
0, we employ the following prescription,

which is supported by low Q2 experimental studies of the
BjSR (down to aboutQ2 ¼ 0.2 GeV2) [48]. We continue to
use the expression in Eq. (22) but with [33]

αg1
π

¼ expð−Q2=Q2
0Þ for Q2 < Q2

0; ð24Þ

and FðQ2
0 ¼ 1.10ð10Þ GeV2Þ ¼ 0.575ð50Þ GeV−2, based

on matching with the perturbative prediction obtained from

αMS
s ðm2

ZÞ, evolved using a five-loop beta function [39]. Its
functional exponential form is consistent with lowQ2 BjSR
data and normalization αg1ðQ2 ¼ 0Þ ¼ π as suggested by
AdS duality studies [33,49]. The Born (elastic) contribu-
tions to the hadronic corrections are computed separately
using form factors for loop momenta Q2 < Q2

0.
In 2006 [10],when only three-loopQCDcorrections to the

BjSR were known and considered, the transition Q2
0 turned

out to be close to 0.7 GeV2. Our current use of a four-loop
based coupling αg1 along with charm and bottom quark
threshold masses, as well as improved low Q2 data, have
increased the transition Q2

0 [see Eq. (12)] and now better
establish the AdS duality interpretation, features central to
our update.

We can use the Bj function defined by Eqs. (22)–(24) to
evaluate the integral over Q2 in Eq. (21) for the different
domains of the γW box diagram using αsðm2

ZÞ ¼
0.1181ð10Þ,mc ¼ 1.5 GeV,mb ¼ 4.8 GeV (as decoupling
thresholds of heavy quarks; see Ref. [50] for an up-to-date
discussion of quark masses), andmt ¼ 173.2 GeV with the
results

I1 ¼ 0.199
α

π
0 < Q2 < Q2

0; ð25Þ

I2 ¼ 1.965ð21Þ α
π

Q2
0 < Q2 < ∞; ð26Þ

where Ii ¼ 2 × the γW integrated box amplitude contribu-
tion, as appropriate for radiative corrections to the decay
rates. To those loop effects, we must add the ZW box
diagram contribution [7] see Eq. (21),

IZW ¼ 0.060
α

π
; ð27Þ

and the Born [10] integral

IBorn ¼ 0.85
α

π
0 < Q2 < Q2

0: ð28Þ

In these calculations and in the figures, we disregard the
error in Q2

0, since its effect is negligible in comparison with
the uncertainties assigned to the electroweak corrections.
Contributions of QED vacuum polarization are incorpo-
rated via the coefficients in Eqs. (18) and (19).
Our first estimate, which follows the 2006 evaluation

[10] but with a four-loop BjSR coupling definition and
higher Q2

0 value, does not include the contribution in
Eq. (25). The Born contribution in Eq. (28) leads to

ANP ¼ 0.85
α

π
¼ 1.97 × 10−3; ð29Þ

while the sum of Eqs. (26) and (27) gives

AP ¼ 2.025ð21Þ α
π
¼ 4.70ð5Þ × 10−3: ð30Þ

Plugging those values into Eqs. (18) and (19) gives

RC ¼ 0.03895; first approximation; ð31Þ

ΔV
R ¼ 0.02374; first approximation; ð32Þ

for our updated first approximation radiative corrections to
neutron and superallowed nuclear beta decays.
In our next, more complete AdS-motivated [33] approach,

we retain the nonperturbative low Q2 contribution from
Eq. (25) and find ANP ¼ 2.44 × 10−3, which leads to

RC ¼ 0.03942ð32ÞAdS BjSR approach; ð33Þ

ΔV
R ¼ 0.02421ð32ÞAdS BjSR approach: ð34Þ

FIG. 2. Effective coupling αg1 [33] as a function of Q2. The
nonperturbative exponential form of Eq. (24) is used for low Q2

(dashed red), and the perturbative QCD expression (23) is used
for high Q2 (solid blue). Note the remarkably smooth matching
between the two regimes. The discontinuities are caused by
decoupling of heavy quarks [39,40].
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The two methods differ by 0.00047, with the latter about
midway between our first approximation and the DR results
[13]. The generic error attached to Eqs. (33) and (34) as well
as to later alternative approaches,�3.2 × 10−4, results from
an error budget of roughly �20% of I1, �10% of IBorn and
�5% of the perturbative contribution ðI2 þ IZWÞ, all added
in quadrature. The �20% uncertainty in I1 corresponds to a
contribution I1 ¼ ð0.20� 0.04Þα=π, where the error spans
the range of values considered in our analysis. In the case
of the IBorn, �10% uncertainty covers the corresponding
DR calculation [13,14] as well as a very large range of the
integration limit values Q2

0. The perturbative part includes
QCD effects as well as uncalculated two-loop electroweak
corrections. Further reduction of that error is likely to require
a first principle’s lattice calculation along with a more
complete two-loop electroweak comparison between neu-
tron beta decay and muon decay.
The values and uncertainties given above should be

compared with the DR results [13],

RC ¼ 0.03992ð22ÞDR result ½13�; ð35Þ

ΔV
R ¼ 0.02467ð22Þ: ð36Þ

It is interesting to contrast the AdS-based (34) value,

Vud ¼ 0.97391ð18ÞAdS BjSR approach; ð37Þ

with

Vud ¼ 0.97370ð14ÞDR result ½13�: ð38Þ

We note that the value of Vud in Eq. (37) has moved closer
to unitarity expectations (approximately 0.9742). An addi-
tional shift of about −0.0006 in the universal radiative
corrections to superallowed decays or an equivalent change
in another part of those studies would fully restore unitarity.
To examine the sensitivity of our estimate to the specific

Bj function interpolator used to integrate through the
nonperturbative Q2 < Q2

0 region, we consider the reso-
nance sum interpolator approach introduced in 2006 [10]
but with somewhat modified matching conditions used to
determine FðQ2Þ in the low-momentum domain. The new
conditions allow us to better specify the nonperturbative
constraints implied by the very precise perturbative require-
ments. In that way, we can match the nonperturbative and
perturbative values of FðQ2Þ.
The underlying model of our next interpolator is large N

for SUðNÞ QCD, which predicts FðQ2Þ should correspond
to an infinite sum of vector and axial-vector resonances. For
an approximation to that model, we can use a finite sum of
resonances with residues set by the boundary and matching
conditions. We can then integrate over Q2 between 0
and Q2

0, i.e., including the nonperturbative domain in an
approximation to that model. For that purpose, we chose

the sum of three resonances with residues determined using
three matching or boundary conditions. We impose
conditions:

(i) We require that in the domain Q2
0 ≤ Q2 < ∞ the

three-resonance interpolator leads to the same per-
turbative corrections to the decay rates as the BjSR
approach. This implies that the three-resonance
FðQ2Þ function satisfies the integral conditionR
∞
Q2

0

m2
W

Q2þm2
W
FðQ2ÞdQ2 ¼ 7.86, four times the coeffi-

cient of α=π in I2 [cf. Eq. (26)]. We apply a
condition on the integral rather than asymptotic
matching in order to better reflect the effect of
perturbative QCD.

(ii) There should be no 1=Q4 terms in the expansion of
FðQ2Þ for large Q2 or [see Eq. (39)] m2

1Aþm2
2Bþ

m2
3C ¼ 0. This condition enforces chiral symmetry

asymptotically.
(iii) We employ Fð0Þ ¼ A=m2

1 þ B=m2
2 þ C=m2

3 with
Fð0Þ arbitrary until we consider two possible ways
to fix its value, i.e., using either the perturbative value
ofFðQ2

0Þ or the AdS value ofFð0Þ as a normalization
condition for the three-resonance interpolator.

These conditions are similar to those imposed in 2006 [10]
with some improvements. Because of the larger Q2

0

employed, the integral in condition 1 is extended down
to Q2

0. More importantly, as pointed out in the DR analysis,
the condition Fð0Þ ¼ 0 used in 2006 was not justified.
Instead, we use the perturbative value of FðQ2

0Þ to normal-
ize the three-resonance interpolator and determine its
underlying uncertainty.
After solving the three coupled condition equations, one

finds [for the three-resonance form of FðQ2Þ with given
vector and axial-vector masses]

FðQ2Þ ¼ A
Q2 þm2

1

þ B
Q2 þm2

2

þ C
Q2 þm2

3

; ð39Þ

m1 ¼ 0.776 GeV; m2 ¼ 1.230 GeV;

m3 ¼ 1.465 GeV; ð40Þ

A ¼ −1.511ð9Þ þ 1.422ð3ÞFð0Þ;
B ¼ 6.951ð40Þ − 3.533ð10ÞFð0Þ;
C ¼ −4.476ð21Þ þ 2.092ð7ÞFð0Þ: ð41Þ

That interpolator, integrated over 0 < Q2 < Q2
0, leads to

I1ðthree resonanceÞ¼ ½0.094ð9Þþ0.103ð3ÞFð0Þ�α
π
: ð42Þ

With that change in I1, the radiative corrections become a
function of Fð0Þ,
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RC ¼ 0.03917þ 2.43 × 10−4Fð0Þ;
ΔV

R ¼ 0.02396þ 2.45 × 10−4Fð0Þ: ð43Þ
If we match the interpolator in Eq. (39) with the perturba-
tive value FðQ2

0Þ ¼ 0.575ð50Þ, we find Fð0Þ ¼ 1.42ð15Þ
and the radiative corrections, which we adopt as the three-
resonance solution,

RC ¼ 0.03952ð32Þ
ΔV

R ¼ 0.02431ð32Þ

�
three-resonance solution; ð44Þ

where a small uncertainty, �4 × 10−5, is accounted for in
the �32 × 10−5 overall errors. To test the sensitivity of our
results to the specific resonance mass scales employed, we
have redone the three-resonance interpolator with each of
m1;2;3 reduced by 5%, onemi at a time. Although the values
of A, B, and C are significantly modified, the different
interpolators, value of I1, and radiative corrections are
essentially unchanged, as illustrated in Fig. 3. Indeed, our
results are rather insensitive to reasonable changes in themi
values.
For an alternative prescription, we evaluate the radiative

corrections resulting from the three-resonance interpolator
for the AdS boundary condition Fð0Þ ¼ 1

Q2
0

¼ 0.91 GeV−2

and find

RC ¼ 0.03939ð32Þ;
ΔV

R ¼ 0.02418ð32Þ: ð45Þ
Those values are in very good agreement with the AdS
BjSR results in Eqs. (33) and (34). They provide a nice
consistency check on the AdS BjSR approach. We do not

consider them as independent since both employ the same
Fð0Þ boundary condition.
The Q2 dependences of the various interpolators are

illustrated in Fig. 4. The band surrounding the Fð0Þ ¼
1.42ð15Þ curve corresponds to the uncertainty associated
with the error in αsðm2

ZÞ ¼ 0.1181ð10Þ. Similar bands (not
shown) exist for the other curves as well, but all are small
in comparison with our overall uncertainty,�32 × 10−5 for
the radiative corrections. The good agreement between the
AdS and three-resonance solution for Fð0Þ ¼ 0.91 GeV−2

helps validate the AdS approach. In all cases, the radiative
corrections are proportional to areas under the curves.
The dashed curve in Fig. 4 corresponds to an example of

a two-resonance interpolating function given by

F2ðQ2Þ ¼ 1.66
Q2 þm2

1

−
0.66

Q2 þm2
2

; ð46Þ

which exhibits the following features:

F2ð0Þ ¼ 2.32; F2ðQ2
0Þ ¼ 0.732;

F2ð2 GeV2Þ ¼ 0.450: ð47Þ
It roughly represents our approximation of an effective DR
interpolator for 0 < Q2 < 2 GeV2. Integrating α

4πF2ðQ2Þ
over that domain leads to 0.47α=π, in good agreement with
the 0.48ð7Þα=π found in the DR study [13]. Those con-
tributions are to be compared with the roughly 0.35α=π
coming from our three-resonance interpolator when inte-
grated over that same Q2 domain. That 0.13α=π difference
combined with the 0.06α=π Born difference ¼ 0.19α=π is

FIG. 3. Interpolators as in Eq. (39), with m1;2;3 as in Eq. (40)
(solid brown line), and with mi decreased by 5%: i ¼ 1 (blue,
dashed-dotted), i ¼ 2 (red, dashed), and i ¼ 3 (green, dotted).
Lower panel: differences between an interpolator with a de-
creased value ofmi and the interpolator with mass values given in
Eq. (40) (the same line styles as in the upper panel).

FIG. 4. Examples of FðQ2Þ at low Q2: 1
Q2 ð1 − αg1 ðQ2Þ

π Þ (solid
blue line); three-resonance interpolator based on FðQ2Þ in
Eq. (39) with two choices of Fð0Þ: Fð0Þ ¼ 1.42ð15Þ (gray band)
and Fð0Þ ¼ 1=Q2

0 (dash-dotted, green); and two-resonance in-
terpolator from Eq. (46) (dashed red line), meant to approximate
the low Q2 DR findings modulo the Born contribution. The area
under each curve is proportional to the size of the radiative
corrections.
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responsible for about a 4 × 10−4 difference (in the
0 < Q2 < 2 GeV2 domain) between the DR result and
our three-resonance interpolator finding.
The 1.1σ difference between the DR and our results may

therefore be traced primarily to our use of a larger αsðm2
ZÞ,

four loops rather than three in the QCD sum rule correc-
tions, different perturbative-nonperturbative matching,
and three rather than two vector/axial-vector poles in the
interpolator. More specifically, to reproduce the DR, lowQ2

contribution requires an interpolator with an Fð0Þ central
value near 2.3 GeV−2, while our matching conditions and
interpolator imply Fð0Þ ¼ 1.42ð15Þ GeV−2. From that per-
spective, it would be interesting if a more first principles
method, such as lattice QCD, could be employed to directly
compute the value of Fð0Þ.
In Table I, we compare the universal and neutron-

specific radiative corrections obtained from a dispersion
relation approach (line 1) with an earlier calculation from
2006 (line 2) as well as the AdS BjSR result (line 3), three-
resonance interpolator (line 4), and the average of lines 3
and 4 in line 5.
We take the average on line 5 as representative of our

study and use it in discussing implications. Although it is
somewhat smaller than the earlier DR result [13], both are
fairly consistent. In fact, the agreement can be viewed as a
validation of the LFHQCD and three-resonance interpola-
tor approaches.
Although we are consistent with the DR results at about

the 1.1σ level, i.e., approximately 4 × 10−4, the remaining
difference is important for interpreting CKM unitarity and
making predictions for neutron decay. In that regard, we
speculate on the basis of our analysis that the central value
difference may decrease if the DR approach is extended to
include four-loop QCD corrections, low Q2 corrections are
parametrized using three rather than two vector meson
mass scales, and perturbation theory matching is extended
below 2 GeV2.
We also note that the radiative corrections on lines 3, 4,

and 5 of Table I are reduced somewhat if larger values
of αsðm2

ZÞ are employed as input. For example, using
αsðm2

ZÞ ¼ 0.1200, a preferred value for some experimental
inputs into the world average [8] leads to a reduction by
roughly 1 × 10−4, which increases our Vud, as currently

extracted from superallowed Fermi decays [9], from
0.97389(18) to 0.97394(18).

IV. IMPLICATIONS OF LARGER RADIATIVE
CORRECTIONS

For our discussion of implications from larger radiative
corrections, we employ our averages given in line 5 of
Table I, ΔV

R ¼ 0.02426ð32Þ and RC ¼ 0.03947ð32Þ. That
scenario leads to Vud ¼ 0.97389ð18Þ, which comes closer
to CKM unitarity expectations than the DR value
Vud ¼ 0.97370ð14Þ. Combined with jVusj ¼ 0.2243ð9Þ
from Eq. (4) and jVubj2 ¼ 1.6 × 10−5, they correspond
to roughly 2.3 and 3.2σ deviations, respectively. The 3.2σ
deviation is large enough to start taking new physics
extensions of the SM seriously [51], while the 2.3σ effect
is more suggestive of missing SM effects. For example,
additional nuclear physics quenching of the Born correc-
tions to superallowed beta decays has been suggested as a
way of increasing Vud by about 0.00022 [14].
More specifically, if the quenching correction, as evalu-

ated in Ref. [14], is applied to our Vud ¼ 0.97389ð18Þ
result, it leads to VQ

ud ¼ 0.97414ð28Þ, where the increased
error is due to an additional nuclear quenching uncertainty.
Using it together with Vus ¼ 0.2243ð9Þ, one finds jVQ

udj2 þ
jVusj2 þ jVubj2 − 1 ¼ −0.00074ð68Þ, so the first CKM row
sum is consistent with unity at close to the 1σ level.
If instead we employ the precise relation [11,12]

jVusj=jVQ
udj ¼ 0.2313ð5Þ; ð48Þ

the deviation from unity is further reduced to−0.00028ð62Þ,
or −0.45σ, in excellent agreement with CKM unitarity.
In a further application, we consider the RC to neutron

decay. Using 1þ RC ¼ 1.03947ð32Þ in the neutron lifetime
formula [41], one finds a master formula relating jVudj, τn,
and gA,

jVudj2τnð1þ 3g2AÞ ¼ 4905.7ð1.7Þ s: ð49Þ

Employing τtrapn ¼ 879.4ð6Þ s and post-2002 average gA ¼
1.2762ð5Þ leads to

Vud ¼ 0.9735ð5Þ: ð50Þ
The uncertainty in Vud from neutron decay measurements is
starting to become competitive in accuracywith superallowed
beta decay determinations. In addition, its central value
may also be indicating a deviation from unitarity. A central
value shift to unitarity and Vud ∼ 0.9742 would require a
reduction in either τn or gA. Given the recent precision of
Perkeo III, we consider gA fixed at the new post-2002 average
1.2762(5), which then suggests a τn < 879 s.
An alternate interpretation of the apparent violation of

CKM unitarity in Eq. (9) resulting from larger universal
radiative corrections, consistent with jVusj=jVudj ¼ 0.2313

TABLE I. Universal and neutron-specific radiative corrections.

Line
number ΔV

R RC Source

1 0.02467(22) 0.03992(22) [13] DR result
2 0.02361(38) 0.03886(38) [10] 2006 result
3 0.02421(32) 0.03942(32) AdS BjSR approach,

Eqs. (33) and (34)
4 0.02431(32) 0.03952(32) Three-resonance interpolator,

Eq. (44)
5 0.02426(32) 0.03947(32) Average of lines 3 and 4
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from Kμ2=πμ2, suggests the solution Vud ¼ 0.9735 and
Vus ¼ 0.2252, which requires new physics. One possible
explanation could be the existence of a 0.1% increase in the
muon decay rate from new physics, which shifts Gμ to a
value larger than the real GF. Alternatively, it could stem
from an opposite-sign effect in nuclear beta decay. That
solution agrees with the current central value in Eq. (50).
Of course, such a scenario would be very exciting. It will
also be well tested by the next generation of precise τn and
gA measurements.
Recently, we discussed [41] a resolution of the neutron

lifetime problem [the beam τbeamn ¼ 888.0ð2.0Þ s and trap
τtrapn ¼ 879.4ð0.6Þ s lifetime discrepancy] based on a pre-
cise connection between τn and gA, the axial coupling
measured in neutron decay asymmetries. We note that a
shift in the universal beta decay radiative corrections alone
makes a negligible change in the relationship

τnð1þ 3g2AÞ ¼ 5172.0ð1.1Þ s; ð51Þ

used for that study due to a cancelation of uncertainties and
common shifts between superallowed and neutron beta
decay rates. Similarly, a change in GF will not change
Eq. (51). However, a shift in the nuclear theory corrections
as suggested in Ref. [14] will modify it. For example, a
shift in Vud by þ0.0002 by further quenching of the Born
contribution would lower the 5172.0 s in Eq. (51) to
5169.9 s. More important is the recent increase in the post-
2002 gaverageA from 1.2755(11) to 1.2762(5) with the addition
of the Perkeo III result [42,43] in Eq. (13). That shift reduces
the predicted neutron lifetime from 879.5(1.3) s to

τn ¼ 878.7ð0.6Þ s ðprediction based on gA ¼ 1.2762ð5ÞÞ:
ð52Þ

That prediction is further reduced if Vud were to increase to
respect CKM unitarity. Indeed, one would expect τn closer
to 878 s.
We conclude by noting that the new post-2002 gA

average in Eq. (14) can be used in the analysis of
Ref. [41] to reduce the bound on exotic neutron decays
(such as n → dark particles [52,53]) from < 0.27% to

BRðexotic neutron decaysÞ < 0.16%ð95% one-sided CLÞ;
ð53Þ

where we have not allowed for negative exotic branching
ratios in the statistical distribution. That bound leaves little

chance for a 1% dark particle decay as the solution to the
neutron lifetime problem (unless one modifies the neutron
asymmetry with new physics, e.g., Ref. [54]).
We have presented an updated analysis of the radiative

corrections to neutron and superallowed nuclear beta
decays. It extends the BjSR function into the nonperturba-
tive low loop momentum region, incorporating four-loop
QCD effects as well as LFHQCD ideas and their con-
firmation by low-energy experimental data. The value
obtained was averaged with a slightly larger three-
resonance result. On the basis of our considerations, we
advocate the universal value ΔV

R ¼ þ2.426ð32Þ% as a
competitive result about midway between earlier estimates
[10] and the recent dispersion relation result [13]. Further
study of the remaining small difference is warranted. Tests
of both approaches will result from the next generation
of the neutron lifetime and gA asymmetry measurements
that aim for 10−4 sensitivity. Lattice calculations of FðQ2Þ
may be possible [55]. Will CKM unitarity be violated
and new physics be uncovered? Time will tell.
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