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At hadron colliders, the leading production mechanism for a pair of photons is from quark-antiquark
annihilation at the tree level.However, due to large gluon-gluon luminosity, the loop-induced process gg → γγ
provides a substantial contribution. In particular, the amplitudesmediated by the top quark become important
at the tt̄ threshold and above. In this paper we present the first complete computation of the next-to-leading
order (NLO) corrections (up to α3S) to this process, including contributions from the top quark. These entail
two-loop diagrams with massive propagators whose analytic expressions are unknown and have been
evaluated numerically. We find that the NLO corrections to the top-quark induced terms are very large at low
diphoton invariant massmðγγÞ and close to the tt̄ threshold. The full result including fivemassless quarks and
top quark contributions at NLOdisplays amuchmore pronounced change of slope in themðγγÞ distribution at
tt̄ threshold than at LO and an enhancement at high invariant mass with respect to the massless calculation.

DOI: 10.1103/PhysRevD.100.071501

I. INTRODUCTION

The production of a pair of photons (diphoton) is one of
the most important processes at hadron colliders. Not only
because the final state signature is experimentally very
clean, but also because of the great phenomenological
relevance for Standard Model (SM) physics and beyond. Its
differential cross section has been precisely measured at the
Tevatron [1,2] and the LHC [3,4]. The signature has
provided one of the two golden channels (the other being
H → 4l) for the discovery of the Higgs boson [5,6].
Currently, the H → γγ decay remains one of the cleanest
final states to study the properties of the Higgs boson and
its production mechanisms. Being so experimentally neat,
the diphoton spectrum is also scrutinized in the search of
new physics at the LHC, see e.g., [7,8], such as peak/dip
structures coming from new scalar or spin-2 resonances
decays and the interference with the standard model
background or more exotic features, such as multiple

resonances as predicted by extradimensional [9–11] or
clockwork models [12].
At hadron colliders, the leading order (LO) contribution to

diphoton final states, comes from quark-antiquark annihila-
tion qq̄ → γγ. Next-to-leading order (NLO) corrections (at
orderαS) to this process have been calculatedmany years ago
[13]. Next-to-next-to-leading order (NNLO) corrections (at
order α2S) have also obtained [14,15] and are available in
public codes such as 2γNNLO [14], MCFM [15] and
MATRIX [16]. At this order, a new channel arises, i.e., gluons
can fuse into diphoton, a quantum process induced by loops
of quarks [Fig. 1(a)]. This contribution, while being formally
part of the NNLO corrections, is not only finite and gauge-
invariant per se but also anomalously large, due to the gluon-
gluon luminosity. It is common, therefore, to consider
loop-induced gluon fusion production which starts at order
α2S as an independent diphoton production mechanism. NLO
corrections of this process (α3S), which include two-loop
gg → γγ contributions, were calculated some time ago but
only in the case of massless internal quarks [15,17].
The top-quark contribution has been known only at

one loop so far. In the low energy region, it is strongly
suppressed due to the large top-quark mass, the amplitude
scaling as s2=m4

t . Once the energy becomes comparable to
the top mass and in particular close and above the top pair
threshold, it becomes enhanced due to the opening of an
imaginary part due to rescattering. This transition region is
particularly interesting, because it is very sensitive to the
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top mass and could provide a handle on a top quark mass
that is free from the usual hadronic systematic uncertain-
ties. In the ultra-high energy limit the top quark contribu-
tion can be estimated by treating it as a massless quark:
naively summing over the electric charges, the inclusion
of the top quark increases the gluon fusion contribution
by ðP6F e

2
qÞ2=ð

P
5F e

2
qÞ2 − 1 ≈ 86%.

The diphoton spectrum also provides a privileged
observatory to search for new physics. While the resonant
production of new physics particles decaying into diphoton
can be searched with theory-independent side-band
method, the nonresonant or interference cases, require a
precise prediction of the SM contribution. Interference of
the resonant contribution with the SM continuum, provides
an important method to extract properties of the resonance,
such as the width. The case of Higgs boson has been
extensively investigated, see e.g., [18,19]. When new
physics resonances are produced mostly via gluon fusion,
such as for example scalars and spin-2 particles, the SM
contribution can interfere determining nontrivial structures
like peak-dip (or dip-peak) or just dip structures [20],
depending on the couplings and properties of the reso-
nance. As these new physics searches are particularly
motivated above the top pair threshold, including the
top-quark contribution is essential.
The computation of NLO corrections of the top-quark

induced contributions, requires the knowledge of highly
nontrivial two-loop amplitudes. While in the massless quark
limit the corresponding amplitudes have been known for a
long time [21], the computation of massive ones, is still a
challenge.Analytical results have become available in closed
form for some of the relevant Feynman integrals (planar) yet
the full set is unknown. On the other hand, numerical
methods have been introduced [22] that allow to perform
this calculation. In this paper, we compute the completeNLO
corrections to the gluon fusion channel gg → γγ, including
the top-quark contribution for the first time.

II. CALCULATION

The cross section at NLO accuracy can be written as

dσNLO ¼ dσBorn þ dσV þ dσR þ dσC;

where dσBorn is the leading order one-loop contribution,
dσV denotes the virtual (two-loop) contributions, dσR is the
real (one-loop, 2 → 3 contribution), and dσC represents the
collinear singularity to absorbed into the parton distribution
functions. The representative Feynman diagrams for the
Born, virtual and real contributions are shown in Fig. 1. We
define the gluon fusion process as the (gauge-invariant) set
of contributions to diphoton production coming from
amplitudes where the photons couple to gluons through
a closed quark loop. At the cross section level we include
terms which scale as ðPq e

2
qÞ2 up to order α3S. According to

our definition, the two-loop contribution where a quark-
antiquark pair annihilates into a virtual gluon pair which
then couple to diphoton via a quark loop, can contribute to
the gluon fusion process. However, in addition of not being
enhanced by the gluon-gluon luminosity, this two-loop
amplitude can only contribute to the ðPq e

2
qÞ2 term via its

square, which is Oðα4SÞ and therefore beyond the accuracy
of our computation [23]. Each of the three terms at NLO are
infrared/collinear divergent. Their sum, however, is free of
infrared/collinear divergences. To handle this cancellation,
we employ an in-house implementation of the dipole
subtraction method [24], which introduces counterterms
for each term dσifin ¼ dσi − dσidipole with i ¼ V;R;C. The
subtraction terms dσidipole are carefully chosen such that
they cancel locally the infrared/collinear divergences of
each term, and sum up to zero [24].
Once the subtraction method is in place, one is left with

the calculation of the matrix elements for the virtual and
real contributions. The latter corrections require the com-
putation of one-loop five point amplitudes, which can be
done automatically. In particular, the matrix element for
gg → γγg subprocess, as well as gqðq̄Þ → γγqðq̄Þ and
qq̄ → γγg subprocesses are needed. To this aim, we adopt
RECOLA2 [25] and MADGRAPH5_AMC@NLO [26], as well
as analytical expression for the light-quark contributions
[27–29].
We have implemented the light quark contribution from

Ref. [21] in our code. We have then considered the
calculation of the top-quark contribution. Two-loop dia-
grams have been generated by QGRAF [30], and processed
by FORM [31,32], to generate corresponding amplitudes.
They are fed into REDUZE [33] to perform the corresponding

(a) (b) (c) (d) (e)

FIG. 1. Representative Feynman diagrams for gg → γγ at NLO: the Born (a), real corrections (b,c), and virtual corrections (d,e). In our
computation photons couple only to the quarks running in the closed loop, i.e., 5 massless quarks u, d, c, s, b and the top quark t.
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loop momentum redefinition and to classify them into 33
integral families according to the propagator structure. We
then adopt a projectionmethod to decompose the amplitudes
into 10 independent tensor structures, reducing the compu-
tation into that of scalar integrals with irreducible numer-
ators. Employing the C++ version of FIRE5 [34] with LITERED

[35] to perform the integration-by-part reduction, we finally
obtain the corresponding form factors as a linear combination
of 1180 master integrals, distributed into the 33 integral
families. We evaluate the master integrals family by family,
not considering the relations among the master integrals of
different families. The calculation of the master integrals is
based on numerical integration of differential equations,
with initial condition provided by an in-house implementa-
tion of sector decomposition method [36]. The numerical
integration of differential equation is donewithODEINT [37].
Starting from the original initial conditions, several points in
the physical region are pre-computed and results are stored.
During the phase space integration, the closest point in the
precomputed set is adopted as the new initial condition. The
average time to evaluate the amplitude is around 1 second,
with at least Oð10−9Þ precision at the master integral level.
The one-loop amplitude up to Oðϵ2Þ order is computed
within the samemethod.We refer the reader to [22] for more
details on our method and its extensive validation. Here we
stress that, whenever available, we have compared the
numerical value of the master integrals with those in the
literature [38–40], and found excellent agreement.
We renormalize αS in the MS scheme with five flavors.

The top-quark mass is renormalized on shell. We have
checked that UV divergences are cancelled by the corre-
sponding counterterms, and IR and collinear divergences
cancel with the dipole subtraction terms. We have also
checked that our implementation for the massless contri-
bution at NLO agrees with that of MCFM [15,41]. To
monitor the numerical accuracy during the evaluation, we
exploit the t ↔ u symmetry and calculate two independent
yet equivalent values of the integral in each point of the
phase space. With the uncertainties estimated through
adopting different initial conditions, as well as exchanging
t and u, we conclude that the uncertainty arising from the
numerical evaluation is smaller than 0.4% times LO
contribution, at both inclusive and differential level.

III. RESULTS

We adopt the following input parameters αð0Þ ¼
1=137.035999139, mt ¼ 173.0GeV, Γt ¼ 1.41 GeV [42].
In order to regulate Coulomb divergences in the top pair
threshold region, we include the top quark width. We adopt
the complex mass scheme, e.g., the top quark mass is
replaced by the complex quantity μt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t − imtΓt

p

everywhere. The renormalization scale and factorization
scale are set to μR ¼ μF ¼ mðγγÞ=2, and we vary them
by a factor of two around the central scale to assess scale

uncertainties. We choose PDF4LHC15_nlo_100_pdfas [43]
and the corresponding αS for both the LO and the
NLO results, and the results are presented for 13 TeV
LHC. We apply the following cuts pTðγ1Þ > 40 GeV,
pTðγ2Þ > 25 GeV, jηðγÞj < 2.5. No photon isolation is
applied.
In Fig. 2, we show the differential cross section for the

case where only the top-quark contribution is taken into
account, at LO and NLO, as well as corresponding scale
uncertainties. Both LO and NLO cross sections peak
around the top-quark pair threshold. The NLO corrections
lead to a large K-factor (KNLO ¼ σNLO=σLO), especially in
the low invariant mass region. Even when the invariant
mass mðγγÞ is low, the total center of mass energy in the
real correction can be above the top pair threshold, and thus
the top-quark loop can get resolved, leading to such
enhancement. Furthermore, the photon pT cuts enhance
the real corrections since at LO photons are back-to-back
and therefore have both pT > 40 GeV, while at NLO
the second photon can be softer. As mðγγÞ increases, the
K-factor decreases, reaching a local maximum of value
around 2.8 at the top-quark pair threshold. In such a region,
the top quarks in the loop are produced on shell and almost
at rest, and can exchange a Coulomb gluon leading to
an enhancement (tamed by the top-quark width). Such
corrections are well known and universal. They can be
resummed by employing bound state techniques, see e.g.,
[44], though we present only fixed-order results here.
For a better view of the top-quark contribution, in Fig. 3

we show the differential cross section close to the top pair
threshold region. Here, the top-quark and the five massless
quarks contributions have a different phase, leading to
a destructive interference that decreases the cross section.

FIG. 2. The differential cross section in mðγγÞ is shown for
gg → γγ considering only the top quark in the loop, with the
bands indicating the scale uncertainties.
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As already mentioned, the exchange of a Coulomb gluon
leads to large NLO corrections at the top-quark pair
threshold. Thus, the destructive interference decreases
the cross section further and the change of slope below
and above twice the top mass is more visible at NLO than at
LO. Our results provide a key ingredient for improving the
resummed predictions in the threshold region and also
reinforce the hope that such slope change could be
exploited to extract a short-distance (potential) mass for
the top quark [44]. Further studies will be needed to
carefully assess the expected precision reachable at the
LHC and at future colliders.
In the top inset of Fig. 4, we show the differential cross

section at LO and NLO for the full result, i.e., including five
massless quarks along with the top quark (full) and the
NLO result for the massless quarks only (5F only) averaged
over 50 GeV wide bins. In the middle inset, we plot the
K-factor (KNLO ¼ σNLO=σLO), which shows that NLO
corrections for the top quark contribution in the high
invariant mass regions are more important than those for
the light quarks. Moreover, we plot the ratio between the
“full” and “5F only” contributions at LO and NLO, in the
lower inset. It clearly shows that the effect of the top quark

mass is negligible in the low energy region both at LO and
NLO as the top-quark contribution is parametrically sup-
pressed as Oðs2=m4

t Þ. As the energy increases toward the
top-quark pair threshold, the inclusion of the top-quark
contribution leads to destructive interference, thus decreases
the cross section. This behaviour is not affected by NLO
corrections. However, as evident from the ratio as well as the
K-factor plots, above threshold NLO corrections become
large. In the region 400 GeV < mðγγÞ < 1000 GeV, the full
calculation yields a larger K-factor than the corresponding
one obtainedwithmassless quarks only. Reweighting the full
LO contribution with the K-factor obtained from the light-
quark contribution would therefore underestimate the full
results by 5%–10%. Starting at about 400GeV, the top-quark

FIG. 3. The differential cross section in mðγγÞ before and after
the inclusion of the top-quark contribution in gg → γγ is shown
for the top pair threshold region.

FIG. 4. The differential cross section in mðγγÞ for gg → γγ is
shown in the cases of light quarks only and the full result
(including the top quark). The band indicates the scale uncer-
tainties for “NLO (full)”. The corresponding K-factor as well as
the ratio between full and 5F are shown.

TABLE I. The differential cross section of gg → γγ for various contribution at LO and NLO are shown for different values of diphoton
invariant mass mðγγÞ. “5F only” means only including the five massless quarks, “top only” means only including the top quark,
“interference”means only the interference term between the light quarks and the top quark, and “full”means all the above contributions.
The cross section for qq̄ → γγ is also shown for comparison.

fb=GeV qq̄ → γγ, LO gg → γγ, LO gg → γγ, NLO

mðγγÞ[GeV] Full 5F only Top only Interference Full 5F only Top only Interference

125 47.1 24.26(1) 100.1% <0.01% −0.1% 37.3(1) 100.1% <0.01% −0.1%
400 1.04 0.11342(5) 104.6% 1.9% −6.5% 0.1628(5) 99.3% 2.7% −2.0%
500 0.427 0.03951(7) 88.7% 2.8% 8.6% 0.0582(2) 82.7% 3.5% 13.9%
1000 0.0210 8.721ð8Þ × 10−4 63.2% 5.3% 31.5% 1.266ð2Þ × 10−3 60.5% 5.8% 33.6%
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contribution increases the cross section, and since the NLO
corrections for the top-quark-only case are more important
than the light-quark case, the full result displays a larger K-
factor. As a consequence, at NLO the ratio between the full
and 5F only results is larger, slowly approaching the
predictions for the 6F (massless) calculation (≈1.86).
In Table I, we provide benchmark values for the differ-

ential cross section. As discussed before, in the low invariant
mass region the top-quark contribution is tiny. For example,
at the Higgs mass region mðγγÞ ¼ mH ¼ 125 GeV, it is
around −0.1%. Going above top-quark pair threshold the
top-quark contribution decreases the cross section at LO, but
the NLO cross section is almost unchanged. Far above
threshold, the interference turns to be constructive, and very
slowly approaching the 6F (massless) limit.

IV. CONCLUSIONS

In this paper, we have presented the first complete
computation of the NLO corrections to gg → γγ in the
standard model, including both light-quarks and top-quark
contributions. We have studied the top-quark effects in
the total cross section and differentially, focusing on the
invariant mass spectrum of the photons. We find that the
NLO corrections are important everywhere, but especially
in the vicinity of the top-quark pair threshold, where indeed

an enhancement is expected on general grounds. A remark-
able feature of the NLO spectrum is that the change of slope
at the tt̄ threshold becomes much more evident. Our
calculation paves the way to improving the treatment of
the threshold region at NLO including (pseudo-) bound
state effects, with the goal to extract a short-distance top-
quark mass, and to include background-signal interference
effects at NLO accuracy in the production of new physics
heavy scalar resonances decaying to diphoton final states.
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