
 

Exotic branes from del Pezzo surfaces

Justin Kaidi *

Mani L. Bhaumik Institute for Theoretical Physics Department of Physics and Astronomy University of California,
Los Angeles, California 90095, USA

(Received 8 May 2019; published 23 September 2019)

We revisit a correspondence between toroidal compactifications of M-theory and del Pezzo surfaces, in
which rational curves on the del Pezzo are related to 1

2
-BPS branes of the corresponding compactification.

We argue that curves of higher genus correspond to nongeometric backgrounds of the M-theory
compactifications, which are related to exotic branes. In particular, the number of “special directions”
of the exotic brane is equal to the genus of the corresponding curve. In addition to predicting three new
nongeometric backgrounds, we discuss a relation between addition of curves in the del Pezzo and the brane
polarization effect.
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I. INTRODUCTION

Despite their name, exotic branes are now understood to
be ubiquitous and, due to the brane polarization effect,
unavoidable even in traditional brane configurations [1,2].
A distinguishing feature of exotic branes is their unortho-
dox tension, which can scale as g−αs with α > 2 and which
has distinguished behavior along some special directions.

One denotes by bðcr;…;c2Þ
α the exotic brane with tension

Tpðbðcr;…;c2Þ
α Þ ¼ Rn1…Rnb−p

gαslbþ1
s

Yr
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ck

lck
s

�k

when the exotic brane world volume has pþ 1 noncompact
directions (the maximum being pþ 1 ¼ bþ 1), Ri are the
radii of the internal directions, and r ≥ 2.
One way to obtain exotic branes is to wrap traditional,

higher-dimensional branes on compactification cycles and
apply U-duality transformations to obtain objects which
do not have any clear interpretation in terms of wrapped
higher-dimensional branes [3,4]. An interesting question is
to determine what exactly these exotic branes do corre-
spond to in the uncompactified theory.
It has been argued [1,2] that exotic branes have a higher-

dimensional origin as nongeometric backgrounds such as
T-folds and U-folds, which extend the traditional notion
of a manifold to allow for duality transformations in the

transition functions between patches [5–9]. The fact that
exotic branes involve nontrivial T- or U-duality monodromy
means that they cannot be realized by any globally well-
defined solutions of supergravity. Indeed, there may be
configurations for which there is not even a local description
in supergravity [2,10]. Instead, a complete description of
these objects is expected to arise only after a manifestly T- or
U-duality invariant formulation of the underlying theory
has been obtained. One such formulation which has led to
considerable progress is double field theory [11,12] and its
generalization to exceptional field theory [13–15]. Exotic
branes have been successfully studied in these formalisms in
e.g., [10,16–20].
There is however another tentative U-duality invariant

formulation of toroidal compactifications of M-theory,
known as the “mysterious duality” [21–24]. In this “duality”,
M-theory on a rectangular torus Tk with vanishing C-field
vev is put into correspondence with the del Pezzo surface
dPk. In addition to a map between moduli spaces, the
correspondence suggests the identification of the spectrum
of rational curves on dPk (subject to some constraints to be
reviewed below) with the spectrum of 1

2
-BPS branes in the

Tk compactification. One might naturally wonder whether
the higher genus curves in dPk also correspond to something
in string theory. We will argue below that they correspond
to nongeometric backgrounds, which can give rise to exotic
branes upon further compactification.

II. THE MYSTERIOUS DUALITY

We begin by briefly reviewing the correspondence
between Tk compactifications of M-theory and the kth
del Pezzo surface dPk. First, some basic facts about these
surfaces will be needed. Recall that dPk is P2 blown up at
k-points, k ≤ 8. For P2 there is a unique class of a curve
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H ∈ H2ðP2;ZÞ. Since two lines generically intersect at a
point, one has the intersection pairing H ·H ¼ 1. With
each blow-up, one adds an exceptional curve Ei such that
H2ðdPk;ZÞ ¼ spanfH;E1;…; Ekg, with the intersection
pairings

H ·H ¼ 1 H · Ei ¼ 0 Ei · Ej ¼ −δij ð1Þ

The canonical class for these surfaces is given by KdPk
¼

−3H þP
k
i¼1 Ei.

On the other hand, Type IIB is put into correspondence
with the Hirzebruch surface F0 ¼ P1 × P1, with compac-
tification on Tk again corresponding to the k point blow-up,
which we denote Fk. The 2-cycles corresponding to the two
P1 in F0 are denoted by l1, l2. We may think of one of the
P1 as being trivially fibered over the other—since two
fibers should not intersect one other, but each intersects the
base once, we conclude that li · lj ¼ 1 − δij. Each blow-
up adds an exceptional curve ea, with the intersection
pairings

li · lj ¼ 1 − δij li · ea ¼ 0 ea · eb ¼ −δab ð2Þ

The canonical class for these surfaces is KF k ¼ −2l1−
2l2 þ

P
k
a¼1 ea.

It is well known that F k ≅ dPkþ1; this is the del Pezzo
analog of T-duality [21]. In particular, the bases of 2-cycles
for the two surfaces are related by

H ↦ l1 þ l2 − e1 E1 ↦ l2 − e1 E2 ↦ l1 − e1

ð3Þ

as well as Eaþ1 ↦ ea for the remaining exceptional curves.
Furthermore, the invariance of F0 under exchange of l1

and l2 is interpreted as the invariance of Type IIB under
S-duality.
In what sense do the del Pezzo surfaces “correspond” to

the M-theory compactifications? First, there exists a map
between the moduli spaces on the two sides. For rectan-
gular M-theory compactifications with zero C-field vev,
the moduli are the k radii Ri of the rectangular torus Tk

and the 11-dimensional Planck length lp. These should be
identified under those elements of the U-duality group
which preserve the rectangular torus and vanishing C-field
conditions, i.e., the Weyl group WðEkÞ ⊂ EkðkÞðZÞ. The
moduli space is then Rkþ1

þ =WðEkÞ. For the del Pezzos,
the moduli are the kþ 1 “volumes” fωðHÞ;ωðEiÞg of the
2-cycles,1 subject to identification by those diffeomorphisms

which leave the canonical class invariant. It is a remarkable
fact that such diffeomorphisms are given by WðEkÞ for
dPk, thus reproducing the moduli space found before.
The dictionary between the moduli proposed in [21] is2

ωðHÞ ↔ −3 loglp ωðEiÞ ↔ − logRi ð5Þ

Even more remarkable is the fact that the 1
2
-BPS branes in

M-theory compactifications are in one-to-one correspon-
dence with rational (i.e., genus zero) curves in the del
Pezzo. Given such a rational curve C ∈ H2ðdPk;ZÞ, we
may calculate the tension Tp and the worldvolume dimen-
sion pþ 1 of the corresponding brane via

Tp ¼ expωðCÞ pþ 1 ¼ dC ð6Þ

In the above, dC is the degree of the curve C, defined as its
intersection with the anticanonical class,

dC ¼ −KdPk
· C: ð7Þ

For future reference, we note that the adjunction formula
[25] allows us to relate dC to the self-intersection and genus
g of C as follows,

C · C ¼ 2gðCÞ − 2þ dC: ð8Þ

As an example of this “duality”, consider uncompacti-
fied M-theory, which corresponds to P2. The latter has
two genus zero curves H and 2H, and a canonical class
K ¼ −3H. Using the rules outlined in (5) and (6) we
conclude that H corresponds to a 2-brane of tension l−3

p ,
while 2H corresponds to a 5-brane of tension l−6

p . These
correspond to the familiar M2 and M5 branes. We also see
an example of a general phenomenon—branes which are
electromagnetically dual correspond to rational curves Ce
and Cm which are Serre dual, i.e.,

Ce þ Cm ¼ −K: ð9Þ

This same procedure was repeated for Type IIA/B and
compactifications thereof in [21], with agreement in all
cases. For the uncompactified case, we list the set of
rational curves and their corresponding tensions and string
theory interpretations in Table I. Note importantly that we
have required 0 ≤ dC ≤ 10 to get a physical interpretation
for the corresponding objects.

1The generalized Kähler class ω ∈ H2ðdPk;RÞ is not unique
and can in fact be shifted such that it is orthogonal to the
canonical class. Indeed, we may decompose ω ¼ ω⊥ þ λK such
that ω⊥ · K ¼ 0. The choice of parameter λ corresponds to a
choice of scale [21].

2For simplicity, we neglect factors of 2π in formulas for
volumes/tensions. Also, note that for F0 ↔ Type IIB the map is

ωðl1Þ ↔ −2 log ls ωðl2Þ ↔ −2 logls − log gs ð4Þ
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III. EXOTIC BRANES

In Table I we see already the appearance of exotic branes,
albeit rather familiar ones—these are the 703 and 9

0
4B, which

are the S-duals of D7 and D9 branes. Exotic branes will
appear as rational curves whenever they are codimension
≤2 in the compactification, as is the case for 703 and 904B in
uncompactified Type IIB. Instead of trying to catalogue
all exotic branes obtained via compactification, our goal
will be to obtain all 10- and 11-dimensional nongeometric
backgrounds which reduce to the exotic branes upon
appropriate compactification. We will see that these non-
geometric backgrounds correspond to higher genus curves
in the del Pezzos. Our strategy will be to compactify the
theory, identify some codimension-2 exotic branes, trans-
late these branes to curves in the del Pezzo, and then take
the blow-down (i.e., decompactification) limit.
Note that if r ¼ r0 is the largest number for which the

index cr0 in bðcr;…;c2Þ
α is nonzero, we will refer to the exotic

brane as an (r0 − 1)-exotic brane. All traditional branes are
0-exotic. Unless otherwise specified, we will be working
with only 0- and 1-exotic branes here. A more thorough
analysis will be presented in upcoming work.

A. M-theory and Type IIA

Let us begin by compactifying M-theory or Type IIA on
T4 or T3 to d ¼ 7. From the string theory point of view, it is
known that there are 20 codimension-2 1

2
-BPS objects in

d ¼ 7, including thirteen 1-exotic branes and seven
wrapped D-branes [2]. In the del Pezzo picture, these must
correspond to rational curves C ∈ H2ðdP4;ZÞ such that
dC ¼ 5. A generic element of H2ðdP4;ZÞ may be written
as C ¼ mH − nE −

P
3
i¼1 niEi. Note that we have singled

out one of the exceptional curves E—from the perspective
of M-theory E is on equal footing with the other Ei,
but from the Type IIA perspective E will be taken to be the
M-theory circle, i.e., the second element of H2ðdP1;ZÞ.
Making use of (8), we have the following constraints on
fm; n; nig,

3m − n −
X3

i¼1

ni ¼ 5 m2 − n2 −
X3

i¼1

n2i ¼ 3 ð10Þ

One finds 20 integers solutions to these constraints. The
resulting curves and the corresponding codimension-2
objects in d ¼ 7 M-theory and Type IIA are shown in
Table II. We see that we have obtained a number of exotic
objects, including e.g., the Kaluza-Klein monopole KK5A,
which in standard notation is 512A
Having identified these exotic branes with particular

curves in the del Pezzo, we would now like to understand
where they originate from in the uncompactified theory.
From the del Pezzo point of view, the decompactification
limit simply corresponds to blowing down the exceptional
curves. Beginning with the case of Type IIA, we blow
down the Ei and see that 522A descends from the curve
4H − 2E ∈ H2ðdP1;ZÞ, the 433 descends from 4H − E,
the KK5A descends from the anticanonical class −KdP1

¼
3H − E, and the 613 descends from 3H. These curves were
not included in Table I since they are not rational—rather
they have genus 2, 3, 1, and 1 respectively. It is these higher
genus curves that we claim correspond to the nongeometric
backgrounds underlying exotic branes.
Because we began by considering only rational curves

in d ¼ 7, we have obtained only a subset of the possible
nongeometric backgrounds. We may continue this analysis
by compactifying to lower dimensions d ≥ 3, leading to the
following general conclusion. For a curve Cmn ¼ mH − nE
on dP1, we first define the exotic brane noncompact world
volume dimension as

bC þ 1 ¼ dC − 2gðCÞ ð11Þ
which is the generalization of (6) to higher genus. Then for
every curve Cmn (subject to restrictions given momentarily)
we obtain a nongeometric background,

Cmn ∈ H2ðdP1;ZÞ ↔ ½ðbCmn
ÞgðCmnÞ
m−n �: ð12Þ

The brackets on the right-hand side indicate that we are
really referring to equivalence classes of higher-dimensional
nongeometric backgrounds, labeled by their lower-
dimensional exotic branes. The elements in each equivalence

TABLE I. Rational curves for dP1 and F0, together with their
string theory interpretations.

Curve class T Type IIA

E l−1
s g−1s D0

H − E l−2
s F1

H l−3
s g−1s D2

2H − E l−5
s g−1s D4

2H l−6
s g−2s NS5A

3H − 2E l−7
s g−1s D6

4H − 3E l−9
s g−1s D8

Curve class T Type IIB

l1 l−2
s F1

l2 l−2
s g−1s D1

l1 þ l2 l−4
s g−1s D3

2l1 þ l2 l−6
s g−1s D5

l1 þ 2l2 l−6
s g−2s NS5B

3l1 þ l2 l−8
s g−1s D7

l1 þ 3l2 l−8
s g−3s 703

4l1 þ l2 l−10
s g−1s D9

l1 þ 4l2 l−10
s g−4s 904B
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class have the same del Pezzo origin—for example, one

has ½7ð1;0Þ3 � ∼ ½433� in Type IIA and ½7ð2;0Þ3 � ∼ ½4ð1;3Þ3 � ∼ ½163�,
½6ð1;1Þ3 � ∼ ½343� in Type IIB.
With themap (12),wemaynowclassify all backgrounds—

geometric and nongeometric—which descend to 1
2
-BPS

traditional and 1-exotic branes in Type IIA. These are labeled
by Cmn with m, n ∈ Z such that

bCmn
þ 1 ≥ 0 gðCmnÞ ≥ 0

bCmn
þ gðCmnÞ þ 1 ≤ 10: ð13Þ

We list all possibilities in Table III, indexed by the power α of
gs in the tension formula, T ∼ g−αs . In the current case, we
have α ¼ m − n.
Before moving on to Type IIB, we first describe the

situation for M-theory. Decompactification now involves
blow-down of E as well. The exotic brane 53 is then seen to
descend from the curve 4H ∈ H2ðP2;ZÞ, while the KK6
descends from the anticanonical class −KP2 ¼ 3H. These
curves are again not rational—they are of genus 3 and 1,
respectively. More generally, given a curve Cn ¼ nH, we
claim that there is a corresponding class of nongeometric
backgrounds in M-theory,

Cn ∈ H2ðP2;ZÞ ↔ ½ðbCnÞgðCnÞ� ð14Þ

labeled by 1-exotic branes so long as (13) is satisfied.3 In
fact, these conditions restrict us to n ∈ f1;…; 5g, which
give five corresponding (non)geometric backgrounds ½20�,
½50�, ½61�, ½53�, and ½26�. This reproduces the standard M2
andM5 branes, the KK6, and the two known 1-exotic brane
backgrounds [17,19].

B. Type IIB

Wemay repeat the above exercise for Type IIB. We begin
by considering the theory compactified on T3. The spec-
trum of 1

2
-BPS codimension-2 objects may be obtained by

T-dualizing the Type IIA spectrum presented above. Recall
that at the level of the del Pezzo, T-duality just amounts to a
change of basis 2-cycles, as shown in (3). Implementing
this change of basis and using (4), we obtain the spectrum
of curves and corresponding branes shown in Table IV.
One may again obtain the (non)geometric backgrounds

in higher dimensions corresponding to each of these by
tuning the exceptional curves to zero. Thus for example we
conclude that the exotic brane 522B descends from a ten-
dimensional nongeometric background corresponding to
the cycle 3l1 þ 2l2, while the uplift of the exotic brane
523 corresponds to the cycle 2l1 þ 3l2. Recalling that
S-duality is implemented by exchange of l1 and l2, we

also conclude that ½522B�↔
S ½523�, as is known [17,19].

As before, these examples may be generalized by consid-
ering further compactifications, leading to the proposal
that any curve Cmn ¼ ml1 þ nl2 corresponds to a class of
nongeometric backgrounds,

Cmn ∈ H2ðF0;ZÞ ↔ ½ðbCmn
ÞgðCmnÞ
n � ð15Þ

labeled by 1-exotic branes as long as it satisfies (13). We list
all possibilities in Table III, indexed by the power α of gs
in the tension formula, T ∼ g−αs . In the current case, we see
that α ¼ n.

TABLE II. Rational curves for dP4 and their d ¼ 7 M-theory and Type IIA interpretations. The multiplicities of configurations are
shown in bold. Note that all of the branes above are codimension-2, e.g., D6 represents a twice-wrapped D6.

Curve class T4 M-theory Type IIA

2H − Ei Ril−6
p ∼ Ril−6

s g−2s M5 (3) NS5 (3)

2H − E RMl−6
p ∼ l−5

s g−1s M5(1) D4(1)

3H − Ei − Ej − 2Ek RiRjR2
kl

−9
p ∼ RiRjR2

kl
−9
s g−3s KK6 (3) 613ð3Þ

3H − 2E − Ei − Ej RiRjR2
Ml

−9
p ∼ RiRjl−7

s g−1s KK6 (3) D6 (3)

3H − E − Ei − 2Ej RMRiR2
jl

−9
p ∼ RiR2

jl
−8
s g−2s KK6 (6) KK5A (6)

4H − E − 2E1 − 2E2 − 2E3 RMðR1R2R3Þ2l−12
p ∼ ðR1R2R3Þ2l−11

s g−3s 53ð1Þ 433ð1Þ
4H − 2E − Ei − 2Ej − 2Ek RiðRMRjRkÞ2l−12

p ∼ RiðRjRkÞ2l−10
s g−2s 53ð3Þ 522A (3)

TABLE III. (Non)geometric backgrounds descending to (exotic)
branes in Type IIA/B with tension T ∼ g−αs .

α Type IIA Type IIB

0 ½100� ½100�
1 ½001�; ½201�; ½401�; ½601�; ½801� ½ð−1Þ01�; ½101�; ½301�; ½501�; ½701�; ½901�
2 [5l2A] l ∈ f0;…; 4g [5l2B] l ∈ f0;…; 4g
3 ½613�; ½433�; ½253�; ½073� ½703�; ½523�; ½343�; ½163�; ½ð−1Þ83�
4 [904A], [5

3
4A], [1

6
4A] [904B], [5

3
4B], [1

6
4B]

5 ½265� ½545�; ½ð−1Þ85�
6 � � � � � �
7 ½097� � � � 3The right-hand side of the final line of (13) is now 11.
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C. Remarks

We now remark on the results in Table III. At orders
α ¼ 0, 1 we obviously reproduce the familiar geometric
backgrounds corresponding to the fundamental string and
Dp-branes. At order α ¼ 2, we obtain the NS5 back-
grounds ½502A=B�, the KK-monopoles ½512A=B�, as well
as three other nongeometric backgrounds. Their existence
has already been argued for—they correspond to the 1-exotic

branes completing the T-duality orbit 502A=B↔
T
512B=

A↔
T
522A=B↔

T
532B=A↔

T
542A=B [10,20].

The nongeometric backgrounds found at order α ¼ 3, 4,
5 capture all 1-exotic branes known in the literature [17,19].
The 0-exotic codimension-0 object ½904B� has the correct
tension to be the S-dual of the D9 brane [26]. In addition,
the del Pezzo curve classification predicts a pair of non-

geometric backgrounds ½ð−1Þ83�↔
S ½ð−1Þ85� of Type IIB. The

½ð−1Þ83� fits together with the known results via T-duality

ð−1Þ83↔
T
073, though this is not true for ½ð−1Þ85� at the level

of 1-exotic branes. The representative 1-exotic branes of
these two nongeometric backgrounds have not appeared in
previous catalogues [17,19,27] since those works studied
only exotic branes appearing in dimensions d ≥ 3, whereas
these new 1-exotic branes only appear upon compactifi-
cation to d ¼ 2. We are further led to propose that these are
the only additional 1-exotic branes appearing at d ¼ 2.
Likewise, at α ¼ 7 the del Pezzo analysis predicts a

nongeometric background ½097� in Type IIA, corresponding
to the cycle 6H þ E ∈ H2ðdP1;ZÞ. This does not corre-
spond to any known exotic brane, nor is it connected via
T-duality to any Type IIB nongeometric background which
may be labeled by a 1-exotic brane. It appears as a 1-exotic
brane only at d ¼ 1.
We close this section by mentioning that, as in the

original work on the M-theory/del Pezzo correspondence,
we have imposed by hand a restriction (13) on the curves
of the del Pezzo in order to get a sensible physical
interpretation. It would be interesting to see whether the
curves violating these constraints could also be given some
interpretation in string and M-theory.

IV. BRANE POLARIZATION

In this final section we ask what addition of curves
corresponds to in string theory. Given classes Cm1n1 and
Cm2n2 , we may use (12) or (15) to obtain the Type IIA/B
backgrounds corresponding to the sum Cm1þm2;n1þn2 . These
formulas imply that objects of tension Ti ∼ g−αis add to an

object of tension T ∼ g
−
P

i
αi

s . This is the behavior expected
of branes undergoing brane polarization [2].
To have brane polarization, one often requires a specific

relative arrangement and angular momentum for the branes
participating in the process—this data is not yet known to
be captured by the del Pezzo. However, the del Pezzo
correspondence suggests that if a certain brane polarization
is possible, it must be between a set of branes whose
corresponding curves are related by addition. We will
require that (13) be satisfied by the sum Cm1þm2;n1þn2 .
We now give some simple examples involving two

branes polarizing to a third. We begin with Type IIA, where
the curves have the form Cmn ¼ mH − nE. By Table I, one
finds

C0;−1 þ C1;1 ∼ C1;0 ⇒ ½D0� þ ½F1� ∼ ½D2�:
This is the usual supertube effect [28]. A more exotic
example is

C2;1 þ C2;1 ∼ C4;2 ⇒ ½D4� þ ½D4� ∼ ½522A�:
Of course we could also have a polarization involving more
than one brane on the right-hand side, e.g.,

C2;1 þ C2;1 ∼ C3;1 þ C1;1 ⇒ ½D4� þ ½D4� ∼ ½KK5A� þ ½F1�:
These two spontaneous polarizations can be obtained by
dualizing the supertube effect, andwere discussed e.g., in [2].
On the other hand, note that C0;−1 and C1;0 only add to give
C1;−1, which has negative virtual genus. Thus we expect no
spontaneous polarization of an isolated D0 and D2 to a
third brane.
In Type IIB with curves Cmn ¼ ml1 þ nl2, we give the

following two examples,

C0;1 þ C2;1 ∼ C2;2 ⇒ ½D1� þ ½D5� ∼ ½KK5B�
C1;1 þ C1;2 ∼ C2;3 ⇒ ½D3� þ ½NS5� ∼ ½523�:

The first of these gives the Lunin-Mathur geometries
[29,30]. More generally, since we have found that the
KK-monopole always corresponds to the anticanonical
class, by (9) we conclude that electromagnetically dual
branes can always polarize to a KK-monopole. The second
process above is discussed in [2].
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TABLE IV. Rational curves for F3 ≅ dP4 and their d ¼ 7 Type
IIB interpretations. Multiplicities are shown in bold. All of the
branes above are codimension-2.

Curve class T4 Type IIB

l1 þ 2l2 − ei Ril−6
s g−2s NS5 (3)

2l1 þ l2 − ei Ril−6
s g−1s D5 (3)

2l1 þ 2l2 − 2ei − ej R2
i Rjl−8

s g−2s KK5B (6)

3l1 þ l2 − e1 − e2 − e3 R1R2R3l−8
s g−1s D7 (1)

l1 þ 3l2 − e1 − e2 − e3 R1R2R3l−8
s g−3s 703 (1)

3l1 þ 2l2 − ei − 2ej − 2ek RiðRjRkÞ2l−10
s g−2s 522B (3)

2l1 þ 3l2 − ei − 2ej − 2ek RiðRjRkÞ2l−10
s g−3s 523 (3)
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