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We present a formulation for N ¼ 1 supersymmetric Cremmer-Scherk theory in 3þ 1 dimensions.
Originally, Cremmer and Scherk presented the purely bosonic Abelian gauge-symmetry breaking with the
field content of an Abelian vector Aμ and a second-rank tensor Bμν. In our present paper, we perform both
the non-Abelian generalization and the supersymmetrization of Cremmer-Scherk theory. Our field content
is the Yang-Mills multiplet ðAμ

I; λIÞ and the non-Abelian antisymmetric tensor multiplet ðBμν
I; χI ;ϕIÞ,

where χI is a Majorana spinor, and ϕI has spin 0−, with the adjoint index I ¼ 1; 2;…; dimG of a non-
Abelian group G. As a preliminary step, we establish supersymmetric Proca-Stückelberg formulation with
the field content ðAμ

I ; λIÞ and ðφI; χI;ϕIÞ, where φI (or ϕI) serves as the coordinates (or an adjoint
representation) of the non-Abelian gauge group G. In the Abelian limit, our system is equivalent to the
system with the gauged R symmetry of the chiral multiplet ðφ; χ;ϕÞ which has a superspace action. We
next perform the duality transformation from φI to Bμν

I to reach supersymmetric Cremmer-Scherk theory.
Unlike similar formulations in the past, both of our Bμν

I and Aμ
I fields are physical and propagating, as the

most nontrivial and new ingredient in our model. Our super-Proca-Stückelberg formulation provides an
important foundation of our super-Cremmer-Scherk formulation, different from conventional chiral-
superfield formulations.

DOI: 10.1103/PhysRevD.100.066021

I. INTRODUCTION

There has been considerable development in building
consistent interactions of the so-called “non-Abelian tensor”
fields [1]. How to establish consistent theories for non-
Abelian tensors had been a persistent problem, due to
inconsistencies such as noninvariance of their field strengths.
This problem has been recently resolved by “tensor hier-
archy” formulations [1]. The key feature is that the conven-
tional field strength of a non-Abelian tensor should be
modified by a generalized Chern-Simons term. For example,
the naive conventional field strengthGð0Þ

μνρ
I for a second-rank

non-Abelian tensor Bμν
I isGð0Þ

μνρ
I ≡ 3D½μBνρ�I [2]. In tensor-

hierarchy formulations [1,2], this is modified to, e.g.,1

Gμνρ
I ≡ 3D½μBνρ�I þ fIJKF½μνJCρ�K ð1:1Þ

by the newChern-Simons term fIJKFJ ∧ CK , whereCμ
I is a

new extra vector field, and Fμν
I ≡ 2∂ ½μAν�I þ gfIJKAμ

JAν
K

is the non-Abelian Yang-Mills (YM) field strength.
Accordingly, Cμ

I has its proper field strength with another
Chern-Simons term:

Hμν
I ≡ 2D½μCν�I þ gBμν

I: ð1:2Þ

One can confirm the invariances of the field strengthsG and
H under the tensorial transformations with the parameters β
and γ, and YM-gauge transformation with the parameter α:

δαðBμν
I;Cμ

I;Aμ
IÞ¼ ð−fIJKαJBμν

K;−fIJKαJCμ
K;þDμα

IÞ;
ð1:3aÞ

δβðBμν
I; Cμ

I; Aμ
IÞ ¼ ðþ2D½μβν�I;−gβμI; 0Þ; ð1:3bÞ

δγðBμν
I; Cμ

I; Aμ
IÞ ¼ ð−fIJKFμν

JγK;Dμγ
I; 0Þ: ð1:3cÞ

These systematic results strongly indicate many potential
applications of tensor-hierarchy formulations [1,2], such as
nonsupersymmetric applications to higher dimensions [3].
Examples with supersymmetrization are such as the super-
symmetrization [4,5] of Proca-Stückelberg formulations
[6], or the supersymmetrization [7] of the Jackiw-Pi model
[8], and even the supersymmetric composite models [9].
In view of these successful results, we expect many

more applications. Cremmer-Scherk formulation [10] is
one such example, because it contains a tensor field Bμν.
The original Cremmer-Scherk theory [10] was designed for
spontaneous dynamical breaking of Uð1Þ symmetry, which
was different from the then-known Proca-Stückelberg [6]
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1We use the indices I; J;… ¼ 1; 2;…; dimG for a gauge

group G. Accordingly, fIJK is the structure constant of G.
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or the Nambu-Goldstone-Higgs (NGH) mechanism [11],
and is also referred to as “topologically massive gauge
theory.” The original motivation of [10] was to study gauge
breakings in dual resonance theories [12]. As such, there
are potential applications to the theories of superstring [13],
supermembrane [14], or extended objects [15]. Motivated
by these developments, we try in our present paper to
accomplish the “non-Abelianization” and supersymmetri-
zation of Cremmer-Scherk theory [10].
The field content of the original Cremmer-Scherk theory

[10] was the Abelian vector Aμ and a second-rank anti-
symmetric tensor Bμν with the basic Lagrangian2

LCS ¼ −
1

4
ðFμνÞ2 −

1

12
ðGμνρÞ2 −

1

4
mϵμνρσBμνFρσ ð1:4aÞ

¼∇ −
1

4
ðFμνÞ2−

1

12
ðGμνρÞ2þ

1

6
mϵμνρσGμνρAσ; ð1:4bÞ

with Fμν ≡ 2∂ ½μAν� and Gμνρ ≡ 3∂ ½μBνρ�. In terms of the
Hodge-dual field strength Nμ ¼ ð1=6ÞϵμνρσGνρσ , Eq. (1.4b)
is recast into

L0
CS¼−

1

4
ðFμνÞ2þ

1

2
ðNμÞ2þmNμAμþΛð∂μNμÞ: ð1:5Þ

In (1.5), the field Nμ is a fundamental independent field, so
that we resort to a Lagrange-multiplier Λ to force the
Bianchi “identity” ∂μNμ ¼ 0 as a constraint. In modern
language, this process is the so-called “duality transforma-
tion” [16]. The field equation of Nμ is algebraic:
Nμ ≐ −mAμ þ ∂μΛ,

3 which enables us to eliminate Nμ

from (1.5) to reach the Lagrangian

L00
CS ¼ −

1

4
ðF0

μνÞ2 −
1

2
m2ðA0

μÞ2; ð1:6Þ

with A0
μ ≡ Aμ −m−1∂μΛ. The Lagrangian (1.6) is nothing

but that for a massive Abelian vector A0
μ. This Cremmer-

Scherk formulation [10] is an alternative way of breaking
gauge symmetry, different from the conventional NGH
mechanism [11]. Notice also that the massive component of
Aμ is still physical with its propagating modes.
There were further works similar to the generalization of

the original Cremmer-Scherk theory [10] to non-Abelian
gauge groups in [17,18] with the field content ðAμ

I; Bμν
IÞ or

ðAμ
I;φIÞ, where Bμν

I and φI are Hodge dual to each other.
This series of formulations is sometimes referred to as

“scalar-tensor theory.” Also the supersymmetrizations of
such systems were performed in [19–21]. Even though
these works have similarity to the supersymmetrization
of [10], they are not quite the same, because their YM field
becomes auxiliary, lacking its propagating degrees of
freedom as a vector field. For example, in the super-
symmetrization in [21] based on [18], the purely bosonic
field content in [18] is ðAμ

I; Bμν
I; Cμ

IÞ, where Aμ
I is the

standard YM-gauge vector, while Cμ
I is an extra vector.

The essential part of the Lagrangian of [18] in our
notation is

LHK ¼ −
1

4
ϵμνρσBμν

IFρσ
I −

1

4
ðHμν

IÞ2 − 1

2
m2ðAμ

IÞ2 ð1:7Þ

with the conventional YM field strength: Fμν
I ≡ 2∂ ½μAν�I þ

mfIJKAμ
JAν

K , and H as the field strength of the extra
vector field Cμ

I:

Hμν
I ≡ 2D½μCν�I ≡ 2∂ ½μCν�I þ 2mfIJKA½μJCν�K: ð1:8Þ

Due to the topological B ∧ F term in (1.7) [22], the
Bμ

I-field equation yields the pure-gauge condition
Fμν

I ≐ 0 ⇒ Aμ
I ≐ m−1∂μφ

I þOðΦ2Þ,4 resulting in the
σ-model kinetic term −ð1=2Þð∂μφ

IÞ2 þOðΦ3Þ from the
−ð1=2Þm2ðAμ

IÞ2 term. In other words, the YM fields in
[18,21] are simply auxiliary lacking their kinetic terms.
Because of this, we do not regard [19,21] as a genuine
supersymmetrization of (1.4) or [10].
Additionally, as stressed in non-Abelian tensor-hierarchy

analyses [1,2], the Bμν
I kinetic term needs special care for

consistent interactions, when the YM field strength is not
vanishing, as in the non-Abelian generalization of [10].
In our present paper, we perform a genuine supersym-

metrization of the Cremmer-Scherk theory [10], in which all
YM fields have kinetic terms. In particular, we maintain the
physical propagation of both Aμ

I and Bμν
I , which are the

most crucial parts of the theory. Our YM field strength will
not end up with the pure-gauge equationFμν

I ≐ 0 as in [17].
We first consider a new N ¼ 1 supersymmetric Proca-
Stückelberg formulation with the field content of the YM
multiplet ðAμ

I; λIÞ and a chiral multiplet (CM) ðφI; χI;ϕIÞ,
where φI are the coordinates of the group manifold G. This
formulation is more economical than our previous similar
formulations [4,5]. Since the scalar φI are the coordinates of
the group manifold G, transforming under G differently
fromϕI , conventional globalR symmetry in the CM [23,24]
is lost in the non-Abelian case.
We next perform a duality transformation [16] from the

scalars φI to their Hodge-dual Bμν
I . Thus the resulting

2We use the symbol ¼∇ for an equality up to a surface term,
and our metric is ðημνÞ ¼ diag:ð−;þ;þ;þÞ. The constant m has
the dimension of mass, serving also as a minimal-coupling
constant. Accordingly, the engineering dimensions for bosons
(or fermions) is 0 (or 1=2).

3We use the symbol ≐ for a field equation, distinguished from
a simple equality.

4We use the symbol OðΦnÞ for the nth order in terms of
fundamental fields.
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system is nothing but the N ¼ 1 supersymmetrization of
the Cremmer-Scherk theory [10].
As will be seen, our supersymmetric Cremmer-Scherk

formulation has nonpolynomial structure, that has not been
well covered in general non-Abelian tensor-hierarchy for-
mulations [1,2]. The nonpolynomial feature itself, though, is
not new. In fact, the aforementioned papers [17,19–21] have
dealt with nonpolynomial interactions. However, Ref. [17]
did not perform the supersymmetric generalization of such a
system in four dimensions (4D). Also, in [19–21] the tensor
multiplet is shown to be equivalent to the supersymmetric
nonlinear σ model in terms of CM, in which scalars and
pseudoscalars are described by a chiral superfield. In con-
trast, our pseudoscalar ϕI in a CM ðφI; χI;ϕIÞ transforms
differently from the coordinate scalar φI. This provides the
additional difference between our result and [19–21].
In the next section, we establish the non-Abelian gener-

alization of Proca-Stückelberg theory, as the basis of our
objective. In Sec. III, we give the N ¼ 1 supersymmetric
non-Abelian Proca-Stückelberg theory. In Sec. IV, we
perform a duality transformation [16] from φI to its
Hodge-dual Bμν

I . After this procedure, we reach N ¼ 1

supersymmetric Cremmer-Scherk theory. Concluding
remarks will be given in Sec. V. In the Appendix, we give
the superspace [25] reconfirmation of supersymmetric
Proca-Stückelberg theory.

II. NON-ABELIANIZATION OF PROCA-
STÜCKELBERG THEORY AND CREMMER-

SCHERK THEORY

Before considering supersymmetry, we perform the non-
Abelian generalization of Cremmer-Scherk formulation
[10], i.e., non-Abelian generalization of (1.4). Compared
with [17], the difference is that our Lagrangian keeps the
kinetic term of the YM field, while in [17] the YM field
strength vanishes, yielding the pure-gauge configuration
such as Aμ

I ¼ ∂μφ
I þOðΦ2Þ, used for the σ model.

As stated in the Introduction, we first review the purely
bosonic non-Abelian Proca-Stückelberg formulation with
the field content ðAμ

I;φIÞ [4,5]. The original papers on
Proca-Stückelberg formulations [6] were only for the
Abelian group. The basic formulation for purely bosonic
non-Abelian Proca-Stückelberg theory has been already
presented in our past two papers [4,5]. However, since there
is subtlety with the non-Abelian case, we recapitulate the
details for completeness.
The field content for non-Abelian Proca-Stückelberg

theory consists of the scalar φI for the coordinates of the
group manifold G [26], and the YM gauge field Aμ

I . Under
an infinitesimal YM-gauge-transformation δT with the
parameter αI, these fields transform as

δTeφ ¼ −mαeφ; δαe−φ ¼ þme−φα; ð2:1aÞ

δTAμ
I ¼ Dμα

I ≡ ∂μα
I þmfIJKAμ

JαK; ð2:1bÞ

In (2.1a), the adjoint index I is suppressed for eφ ≡
expðφITIÞ and α≡ αITI, where TI are the generators of
G. Note that the right side of the first equation in (2.1a) is
not the commutator −½α; eφ�, but −αeφ, because φI are the
coordinates of the group manifold G. Because of the
transformation (2.1a), the “field strength” for φ defined
by [4,5]

Pμ
I ≡ ½ð∂μeφÞe−φ�I þmAμ

I; ð2:2Þ

transforms covariantly:

δTPμ
I ¼ −mfIJKαJPμ

K: ð2:3Þ

The important property of the field strength P is its Bianchi
identity (BId):5

D½μPν�I ≡ 1

2
mFμν

I þ 1

2
fIJKPμ

JPν
K: ð2:4Þ

As a corollary, we have the gauge-transformation rule, and
the covariant-derivative rule:

δTðDμeφÞ ¼ −mαðDμeφÞ; ð2:5aÞ

DμðDνeφÞ≡ ∂μðDνeφÞ þmAμðDνeφÞ ð2:5bÞ

½Dμ; Dν�eφ ¼ mFμνeφ; ð2:5cÞ

where the adjoint indices are suppressed. These equations
are relevant to superspace formulation in the Appendix.
Because of the covariant transformation property (2.3) of

Pμ
I , we can consider the Proca-Stückelberg Lagrangian6

LPS ¼ −
1

4
ðFμν

IÞ2 − 1

2
ðPμ

IÞ2 ð2:6Þ

invariant under non-Abelian gauge transformation:
δTLPS ¼ 0.
Our next step is to perform the duality transformation

[16]: φI → Bμν
I , namely, from the field strength Pμ

I to its
Hodge dual Gμνρ

I . To do this, we first replace Pμ
I by a new

fundamental field Qμ
I , and add a constraint Lagrangian

so that the B-field equation implies the BId (2.4) like
D½ρQI

σ� − ð1=2ÞmFρσ
I − ð1=2ÞfIJKQρ

JQσ
K ≐ 0 [16]. The

total Lagrangian now is

5Equation (2.4) is equivalent to a Maurer-Cartan equation,
when Fμν

I ¼ 0.
6Except for the field strength F μν

I in [4,5] replaced by Fμν
I,

(2.6) agrees with the nonsupersymmetric ðAμ
I;φIÞ subsector of

the supersymmetric Proca-Stückelberg Lagrangians in [4,5].
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L0
PS ¼ −

1

4
ðFμν

IÞ2 − 1

2
ðQμ

IÞ2

þ 1

2
ϵμνρσBμν

I

�
DρQσ

I −
1

2
mFρσ

I −
1

2
fIJKQρ

JQσ
K

�
:

ð2:7Þ
Note that the multiplier field Bμν

I has its proper gauge
transformation

δβBμν
I ¼ 2D½μβν�I; ð2:8Þ

which leaves the action I0PS for (2.7) invariant. The con-
firmation δβI0PS¼0 needs the Jacobi identityfIJ½KjfJjLM�≡0.
The original Lagrange-multiplier field Bμν

I is now a
dynamical field as usual [16], via the algebraic Q-field
equation from (2.7):

Πμ
νIJQν

J ≡
�
δμ

νδIJ þ 1

2
ϵμ

νρσfIJKBρσ
K

�
Qν

J

≐ G̃μ
ð0ÞI; ð2:9Þ

where G̃ð0Þ I
μ ≡ ð1=6ÞϵμρστGð0Þ I

ρστ , and Gð0Þ I
μνρ ≡ 3D½μBνρ�I ,

while Πμ
νIJ stands for the square-bracket part in (2.9).

Obviously, the Q-field equation is nonpolynomial, due to
the involvement of the B term inside Πμ

νIJ. For simplicity,
we solve (2.9) for Q up to OðΦ3Þ terms:

Qμ
I ≐ ðΠ−1ÞμνIJG̃ð0ÞJ

ν

¼
�
δμ

νδIJ −
1

2
ϵμνρσfIJKBρσ

K

�
G̃ð0ÞJ

ν þOðΦ3Þ

¼ G̃μ
I; ð2:10aÞ

Gμνρ
I ≡Gð0Þ I

μνρ − 3fIJKG̃ð0Þ
½μ

JBνρ�K þOðΦ3Þ; ð2:10bÞ

where G̃μ
I ≡ ð1=6ÞϵμρστGρστ

I . Following the usual duality-
transformation procedure [16], we substitute (2.10a) back
into (2.7) to yield our non-Abelian Cremmer-Scherk
Lagrangian:

LNACS ¼ −
1

4
ðFμν

IÞ2 − 1

12
ðGμνρ

IÞ2 − 1

4
mϵμνρσBμν

IFρσ
I

þ 1

2
ϵμνρσfIJKBμν

IG̃ρ
JG̃σ

K þOðΦ4Þ: ð2:11Þ

Since we keep only OðΦ1Þ;OðΦ2Þ and OðΦ3Þ terms in the
Lagrangian, the definition ofGμνρ

I in (2.10b) does not need
OðΦ3Þ. Needless to say, (2.11) is reduced to the Abelian
case (1.4a), when fIJK ¼ 0.
There were some works in the past for non-

Abelianization of Cremmer-Scherk theory [10], such as
[27]. However, in those theories, the field strength for Bμν

I

is like

G0
μνρ

I ≡ 3D½μBνρ�I þ 3fIJKF½μνJCρ�K; ð2:12Þ

introducing the new extra vector field Cμ
I . This is nothing

but one of the general prescriptions in tensor-hierarchy
formulations [1,2]. The drawback of such formulations [27]
is that the field equation of the new vector Cμ

I yields an
undesirable condition fIJKFνρ

JG0
μ
νρK ≐ 0, due to the lack

of the Cμ
I-kinetic term. Therefore, such formulations do

not really serve as the genuine non-Abelianization of
Cremmer-Scherk theory [10].
Note that the two important terms of the B ∧ F and

B ∧ G̃ ∧ G̃ types coincide with the result in [17]. Notice
also that (2.10) has not been covered by the general non-
Abelian tensor-hierarchy formulations [1], because of the
nonpolynomial structure of the field strength (2.10b). Even
though similar nonpolynomial structure was already pre-
sented in [17], the main difference in our system is that the
YM field has its kinetic term intact, i.e., our YM field is
physical and not auxiliary.

III. N = 1 SUPERSYMMETRIC
PROCA-STÜCKELBERG FORMULATION

IN FOUR DIMENSIONS

Our next task is to supersymmetrize the last section. To
this end, we first need to supersymmetrize the Proca-
Stückelberg Lagrangian (2.6). We can in principle use our
previous results in [4,5]. However, we present a new
simpler supersymmetric Proca-Stückelberg formulation
in this paper. Our new field content is more economical
than [4,5] with only two multiplets: the non-Abelian YM
multiplet ðAμ

I; λIÞ and the Proca-Stückelberg multiplet
ðφI; χI;ϕIÞ with no other multiplet. The scalar φI para-
metrizes the coordinates of the gauge-group G, while a
pseudoscalar ϕI is in the adjoint representation. Thus the
two spin-zero fields 0þ and 0− within a CM play different
roles under the same group G.
Our new action ISPS ≡

R
d4xLSPS for a supersymmetric

Proca-Stückelberg theory has the Lagrangian

LSPS ¼ −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄IDλIÞ − 1

2
ðPμ

IÞ2 þ 1

2
ð χ̄ID χIÞ

−
1

2
ðDμϕ

IÞ2 þmðλ̄I χIÞ − 1

2
m2ðϕIÞ2

− imfIJKðλ̄Iγ5 χJÞϕK −
1

2
fIJKðλ̄IγμλJÞPμ

K; ð3:1Þ

where

Pμ
I ≡ ½ðDμeφÞe−φ�I ≡ ½ð∂μeφÞe−φ�I þmAμ

I; ð3:2aÞ

F μν
I ≡ 2∂ ½μAν�I þmfIJKAμ

JAν
K þm−1fIJKPμ

JPν
K

≡ Fμν
I þm−1fIJKPμ

JPν
K; ð3:2bÞ

Dμλ
I ≡ ∂μλ

I þmfIJKAμ
JλK;

Dμ χ
I ≡ ∂μ χ

I þmfIJKAμ
J χK: ð3:2cÞ
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Equation (3.2a) implies that φI serve as the coordinates of
the group manifold G. In other words, supersymmetric
Proca-Stückelberg Lagrangian (3.1) is nothing but the
supersymmetric gauged σ-model version of the group
manifold G. The reason why we need the modified field
strength F μν

I for the Aμ
I-kinetic term is similar to the

formulation in [4,5]. This is justified by the superinvariance
δQISPS ¼ 0, as will be described around (3.7) below. This
will be further justified in our superspace formulation in the
Appendix. This is also understood as the origin of the
intrinsic nonpolynomial feature of our supersymmetric
Cremmer-Scherk formulation in the next section.
The P and F field strengths satisfy their BIds which are

also similar to the corresponding equations in [4,5]:

D½μPν�I ≡þ 1

2
mF μν

I; ð3:3aÞ

D½μF νρ�I ≡þfIJKF ½μνJPρ�K: ð3:3bÞ

Our action ISPS is invariant under N ¼ 1 supersymmetry,

δQAμ
I ¼ þðϵ̄γμλIÞ −m−1fIJKðϵ̄ χJÞPμ

K

≡ δ̃QAμ
I −m−1fIJKðϵ̄ χJÞPμ

K; ð3:4aÞ

δQλ
I ¼þ1

2
ðγμνϵÞF μν

Iþ imðγ5ϵÞϕIþfIJKλJðϵ̄χKÞ;
ð3:4bÞ

½ðδQeφÞe−φ�I ¼ þðϵ̄ χIÞ; ð3:4cÞ

δQ χ
I ¼−ðγμϵÞPμ

Iþ iðγ5γμϵÞDμϕ
I

− ihIJ;KLðγ5 χJÞðϵ̄χKÞϕL; ð3:4dÞ

δQϕ
I ¼ þiðϵ̄γ5 χIÞ; ð3:4eÞ

where hIJ;KL ≡ fIJMfMKL.
As a corollary, we mention the transformations of Pμ

I

and F μν
I . First, the general transformation rules are

δPμ
I¼Dμ½ðδeφÞe−φ�Iþ½mðδAμ

IÞþfIJKfðδeφÞe−φgJPμ
K�

¼Dμ½ðδeφÞe−φ�Iþmðδ̃Aμ
IÞ; ð3:5aÞ

δF μν
I ¼ 2D½μðδ̃Aν�IÞ þ 2fIJKðδ̃A½μJÞPν�K

− fIJK½ðδeφÞe−φ�JF μν
K; ð3:5bÞ

δ̃Aμ
I ≡ δAμ

I þm−1fIJK½ðδeφÞe−φ�JPμ
K: ð3:5cÞ

Note that the definition of δ̃QAμ
I in (3.4a) is consistent

with (3.5c). Accordingly, we also have the convenient
lemmas:

δQPμ
I ¼ þðϵ̄Dμ χ

IÞ þmðϵ̄γμλIÞ; ð3:6aÞ

δQF μν
I ¼ −2ðϵ̄γ½μDν�λIÞ þ 2fIJKðϵ̄γ½μλJÞPν�K

− fIJKðϵ̄ χJÞF μν
K: ð3:6bÞ

Note that the last m−1fðϵ̄ χÞP term in (3.4a) does not
remain in δQPμ

I, because it is canceled by the difference
term between δ̃QAμ

I and δQAμ
I . In the first two terms in

(3.5b), the variations are δ̃Aμ
I instead of δAμ

I , which are
reflected in (3.6b).
The supersymmetric invariance δQISPS ¼ 0 is confirmed

as follows: There are in total six sectors arising in
the variation δQISPS up to OðΦ4Þ: (i) m0Φ2, (ii) m1Φ2,
(iii)m2Φ2, (iv)m0Φ3, (v)m1Φ3, and (vi)m2Φ3 up toOðΦ4Þ.
The sector (i) has three subsectors: (a) λDF , (b) χD2ϕ,

and (c) χDP. These subsectors are routine confirmations
whose details we skip. The sector (ii) has three subsectors:
(a) m χF , (b) mλP, and (c) mλDϕ, which are also routine
sectors, and details are skipped. The sector (iii) has only
one sort of term: m2 χϕ, which is straightforward.
Sector (iv) is rather nontrivial with three subsectors:

(a) χλ̄Dλ, (b) λPF , and (c) χF 2. The subsector (a) needs
Fierz rearrangements. There arise five different structures
of γ matrices fIJKðϵ̄γ½n� χIÞðλ̄Jγ½n�DλKÞ, where ½n�ðn ¼
0;…; 4Þ represents the number of antisymmetric γ matrices.
Especially, the λ χ term in δQλ plays a sophisticated role for
the cancellations of these terms. The subsector (c) of (iv) for
χF2 terms is straightforward and details are skipped here.
However, the subsector (b) for λPF terms is the

most crucial sector, because this sector shows why
ðF μν

IÞ2 is needed instead of the conventional ðFμν
IÞ2 for

the Aμ
I-kinetic term.7 There are three terms contributing to

this sector, and their cancellations work like8

0 ≟ δQ

�
−
1

2
fIJKðλ̄IγμλJÞPμ

K −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄IDλIÞ

�����
λPF

¼ −fIJK
��

−
1

2
ϵ̄γρσF ρσ

I

�
γμλJ

�
Pμ

K

−
1

2
½þ2fIJKðϵ̄γμλJÞPν

K�F μνI

þ
�
−
1

2
ðϵ̄γρσÞF ρσ

I

�
γμDμλ

IjλPF ð3:7aÞ

¼∇ þ 1

2
fIJKðϵ̄γρσγμλJÞPμ

KF ρσ
I − fIJKðϵ̄γμλJÞPν

KF μνI

þ 1

2
ðϵ̄γρσμλIÞD½μF ρσ�IjλPF ð3:7bÞ

7This necessity is just the same pattern as in our previous
papers [4], but just for readers who doubt the validity of our
previous paper [4], we give the fresh details here.

8We use the symbol ≟ for equalities that are to be confirmed.
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¼ þ 1

2
fIJKðϵ̄γμρσλIÞPμ

JF ρσ
K þ fIJKðϵ̄γρλIÞPσJF ρσ

K

− fIJKðϵ̄γμλIÞPν
JF μνK þ 1

2
fIJKðϵ̄γρσμλIÞPσ

KF μρ
J

ð3:7cÞ

¼ 0 ðQ:E:D:Þ: ð3:7dÞ

The cancellations occurred between the first and fourth as
well as second and third terms in (3.7c). Note that in (3.7b),
we have used the F -BId (3.3b) after a partial integration.
In particular, if the field strength ðF μν

IÞ2 in the Aμ-kinetic
term were replaced by the conventional one ðFμν

IÞ2,
there would arise no λFP term from δQðF μν

IÞ2 via
ðδQPÞ ∧ P. Therefore there would be no cancellation of
λPF terms against the contribution from the Pauli term
fIJKðλ̄IγμλJÞPμ

K , which is needed independent of the choice
between F and F in the Aμ-kinetic term. Because of these
highly nontrivial mechanisms, the modified field strength
F μν

I is indispensable in the Aμ
I-kinetic term. This explains

why superinvariance of our action necessitates ðF μν
IÞ2

instead of ðFμν
IÞ2 for the Aμ-kinetic term. Note also that

there was no such necessity for the nonsupersymmetric case
in the last section. It is not due to our “convenient choice” or
“subjective taste” to use themodified field strengthF μν

I . It is
the superinvariance δQISPS ¼ 0 that determines the right
choice between F and F.
The sector (v) has six subsectors: (a) mλϕP, (b) mλ χ2,

(c) mλ3, (d) mλϕDϕ, (e) m χϕ2, and (f) m χϕF . Among
these, the subsector (b) needs Fierz rearrangements. To be
more specific, we have

0≟ δQ

�
þ1

2
ð χ̄IDχIÞ− imfIJKðλ̄Iγ5 χJÞϕK þmðλ̄I χIÞ

�����
mλχ2

¼þ1

2
mfIJKðϵ̄γμλJÞð χ̄Iγμ χKÞ− imfIJKðλ̄Iγ5 χJÞiðϵ̄γ5 χKÞ

þm½fIJKðϵ̄ χKÞλ̄J�χI ð3:8aÞ

¼ −
1

2
mfIJKðϵ̄γμλIÞð χ̄Jγμ χKÞ

þ
�
þ 1

4
mfIJKðϵ̄γμλIÞð χ̄Jγμ χKÞ

þ 1

8
mfIJKðϵ̄γμνλIÞð χ̄Jγμν χKÞ

�

þ
�
þ 1

4
mfIJKðϵ̄γμλIÞð χ̄Jγμ χKÞ

−
1

8
mfIJKðϵ̄γμνλIÞð χ̄Jγμν χKÞ

�
ð3:8bÞ

¼ 0 ðQ:E:D:Þ: ð3:8cÞ

Equation (3.8b) is the result of Fierz rearrangements for the
second and third terms in (3.8a). The cancellations in (3.8b)
resemble that for the stereotypical YM coupling to a
conventional CM. However, this justifies the contribution
of our peculiar term ðϵ̄ χÞλ in δQλ

I , and also the nontrivial
mixed mass term mðλ̄ χÞ in our Lagrangian LSPS, as well.
The remaining subsectors (a), (c), (d), (e) and (f) are

straightforward to handle. The sector (vi) has only one kind
of terms: m2 χϕ2, whose cancellation is straightforward,
and its details are skipped here. The sectors (v) and (vi) with
positive powers of m do not involve BIds, due to their
engineering dimensions. These terms are rather straightfor-
ward except for Fierz arrangements. However, such Fierz
arrangements are not special to our model, so that they are
skipped here.
The total consistency of our new multiplet ðφI; χI;ϕIÞ

with φI and ϕI transforming differently under gauge
transformation δT , we give additional nontrivial supporting
evidence. Namely, we can confirm the closures of super-
symmetry on all fields.
To this end, we prepare the field equations of all fields

Aμ
I;φI;ϕI; λI and χI:9

δLSPS

δAμ
I ¼ −DνF μνI −mPμ

I − fIJKF μν
JPνK

−mfIJKðλ̄JγμλKÞ − 1

2
mfIJKð χ̄Jγμ χKÞ

þmfIJKϕJDμϕK ≐ 0; ð3:9aÞ

δLSPS

½ðδeφÞe−φÞ�I ¼ þDμPμI −mfIJKðλ̄J χKÞ

þ fIJK
�
λ̄J
�
δLSPS

δλ̄K

��
≐ 0; ð3:9bÞ

δLSPS

δϕI ¼ þD2
μϕ

I −m2ϕI − imfIJKðλ̄Jγ5 χKÞ

≐ 0; ð3:9cÞ

δLSPS

δλ̄I
¼ þDλI þm χI − imfIJKðγ5 χJÞϕK

− fIJKðγμλJÞPμ
K ≐ 0; ð3:9dÞ

δLSPS

δχ̄I
¼þDχIþmλIþimfIJKðγ5λJÞϕK≐0: ð3:9eÞ

Note that the coefficient of the ðλ̄γλÞ term in (3.9a) is (−1),
while that of the ð χ̄γ χÞ term is ð−1=2Þ. This is caused by
the additional contribution to the former from the ðλ̄γλÞP
term in the Lagrangian. In (3.9b), the last term vanishes
upon the λ-field equation.

9These field equations are valid up to OðΦ3Þ, because of the
Lagrangian valid up to OðΦ4Þ.
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We now start confirming the closure of supersymmetry, starting with Aμ
I:

½δQðϵ1Þ; δQðϵ2Þ�Aμ
I ¼ ½ðϵ̄2γμδ1λIÞ −m−1fIJKðϵ̄2δ1 χJÞPμ

K −m−1fIJKðϵ̄2 χJÞδ1Pμ
K� − ð1 ↔ 2Þ

¼ þϵ̄2γμ

�
1

2
ðγρσϵ1ÞF ρσ

I þ imðγ5ϵ1ÞϕI þ fIJKλJðϵ̄1 χKÞ
�
− ð1 ↔ 2Þ

− ½m−1fIJK ϵ̄2f−ðγνϵ1ÞPν
J þ iðγ5γμϵ1ÞDμϕ

KgPμ
K − ð1 ↔ 2Þ�

− ½m−1fIJKðϵ2 χJÞfðϵ1Dμ χ
KÞ þmðϵ1γμλKÞg − ð1 ↔ 2Þ� ð3:10aÞ

¼ ξνF νμ
I þDμα

ð1ÞI þm−1fIJKξνPν
JPμ

K ð3:10bÞ

¼ ξν∂νAμ
I þDμα

ð0ÞI þDμα
ð1ÞI

¼ δPAμ
I þ δð0ÞT Aμ

I þ δð1ÞT Aμ
I ¼ δPAμ

I þ δTAμ
I ðQ:E:D:Þ: ð3:10cÞ

Here we have used

δ1 ≡ δQðϵ1Þ; δ2 ≡ δQðϵ2Þ;
ξμ ≡þ2ðϵ1γμϵ2Þ; δPAμ

I ¼ ξν∂νAμ
I; ð3:11aÞ

δð0ÞT ≡ δTðαð0ÞÞ; δð1ÞT ≡ δTðαð1ÞÞ; δT ≡ δð0ÞT þ δð1ÞT ;

ð3:11bÞ

αI ≡ αð0ÞI þ αð1ÞI; αð0ÞI ≡ −ξνAν
I;

αð1ÞI ≡m−1fIJKðϵ̄1 χJÞðϵ̄2 χKÞ; ð3:11cÞ

where δP stands for a translation operation with the
parameter ξμ. In (3.10a), there is a pair of like terms for
ðϵ̄1γμλÞðϵ̄2 χÞ that canceled each other. Notice the nontrivial
cancellation between the last ξP ∧ P term in (3.10b) and
the like term out of the first ξF term involving the like term
ξP ∧ P. The final form (3.10c) in terms of the translation
δP and the gauge transformation δT implies the closure
of supersymmetry on Aμ

I , as desired. In the closure-
confirmation computations, we keep only terms at
OðΦ1Þ;OðΦ2Þ and OðΦ3Þ, because our Lagrangian is
valid up to OðΦ4Þ.
Similarly the closure on eφ is

ð½δQðϵ1Þ;δQðϵ2Þ�eφÞe−φ
¼fδ1½ðδ2eφÞe−φ�− ðδ2eφÞðδ1e−φÞg− ð1↔ 2Þ ð3:12aÞ

¼ ½δ1ðϵ̄2 χIÞþðδ2eφÞe−φðδ1eφÞe−φ�− ð1↔ 2Þ
¼ ϵ̄2ð−γμϵPμ

Iþ iγ5γμϵ1Dμϕ
IÞ− ð1↔ 2Þþ ½ðϵ̄2 χÞ;ðϵ̄1 χÞ�

ð3:12bÞ

¼ þξμPμ þ fIJKðϵ̄2 χJÞðϵ̄1 χKÞTI ð3:12cÞ

¼ þðδPeφÞe−φ þ ðδTeφÞe−φ ðQ:E:D:Þ: ð3:12dÞ

Here we regard each term as generator valued, e.g.,
½ðϵ̄2χÞ;ðϵ̄1χÞ�≡fIJKðϵ̄2χJÞðϵ̄1χKÞTI , while δPeφ≡ξμ∂μeφ,
and δTeφ ≡ −mαeφ with αI ≡ αð0ÞI þ αð1ÞI , consistent
with (2.1a) and (3.11). In (3.12a), the second term inside
the braces is to subtract the δ1 acting on e−φ. In (3.12b),
the Dϕ term does not contribute, due to ðϵ̄2γ5γμϵ1Þ−
ð1 ↔ 2Þ ¼ 0. The χ2 term in (3.12c) is interpreted as the
αð1Þ term in ðδTeφÞe−φ. This highly nontrivial sophisti-
cated and subtle rearrangement at the quadratic order
for the closure provides supporting evidence for the
consistency of our system. This component closure
computation is reconfirmed in superspace as (A9) and
(A10) in the Appendix.
As for the closure on ϕI , it goes as

½δQðϵ1Þ; δQðϵ2Þ�ϕI ¼ δ1½þiðϵ̄γ5 χIÞ� − ð1 ↔ 2Þ
¼ þiϵ̄2γ5½−ðγμϵ1ÞPμ

I þ iðγ5γμϵ1ÞDμϕ
I

− ihIJ;KLðγ5 χJÞðϵ̄1 χKÞϕL� − ð1 ↔ 2Þ
ð3:13aÞ

¼ ξμ∂μϕ
I −mfIJKαð0ÞJϕK

−mfIJKαð1ÞJϕK

¼ δPϕ
I þ δTϕ

I ðQ:E:D:Þ: ð3:13bÞ

The Pμ
I-linear term in (3.13a) does not contribute due to

ðϵ̄1γ5γμϵ2Þ − ð1 ↔ 2Þ ¼ 0. The χ2ϕ term in (3.13a) pro-
duces the gauge transformation with the parameter αð1ÞI,
consistent with (3.11c). Even though this looks simple,
it is crucial that the closures on both of the spin-zero
fields φI and ϕI work without trouble, despite the dif-
ferent δT transformations of ϕI and φI . The superspace
reconfirmation of this closure is given as (A8) in the
Appendix.
The closure on λI is also one of the most nontrivial,

because of the λ-field equation involved:
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½δ1; δ2�λI ¼ δ1

�
þ 1

2
ðγμνϵ2ÞF μν

I þ imðγ5ϵ2ÞϕI þ fIJKλJðϵ̄2 χKÞ
�
− ð1 ↔ 2Þ ð3:14aÞ

¼ þ 1

2
ðγμνϵ2Þ½−2ðϵ̄1γμDνλ

IÞ − 2fIJKðϵ̄1γμλJÞPν
K − fIJKðϵ̄1 χJÞF μν

K� − ð1 ↔ 2Þ
þ ½imðγ5ϵ2Þiðϵ̄1γ5 χIÞ� − ð1 ↔ 2Þ

þ fIJK
�
þ 1

2
ðγμνϵ1ÞF μν

J þ imðγ4ϵ1ÞϕJ

�
ðϵ̄2 χKÞ − ð1 ↔ 2Þ

þ fIJKλJ ϵ̄2½−ðγμϵ1ÞPμ
K þ iðγ5γμϵ1ÞDμϕ

K� − ð1 ↔ 2Þ ð3:14bÞ

¼ þξμDμλ
I þ δTλ

I −
1

4
ξμγμ

�
δLSPS

δλ̄I

�
−
1

4
ζμνγμν

�
δLSPS

δλ̄I

�
ð3:14cÞ

≐ δPλ
I þ δTλ

I ðQ:E:D:Þ: ð3:14dÞ
Here ζμν ≡ ðϵ̄2γμνϵ1Þ. In (3.14b), we have used (3.6b). Proper Fierz arrangements for the quadratic-fermionic terms and
considerable cancellations among like terms in (3.14b) lead to (3.14c). By the use of the λ-field equation for the first time in
(3.14c), we reach (3.14d). Since the λ-field equation is valid up to OðΦ3Þ, we ignored a χ2λ term in (3.14c).
The closure on χI is equally nontrivial:

½δQðϵ1Þ; δQðϵ2Þ� χI ¼ δ1½−ðγμϵÞPμ
I þ iðγ5γμϵÞDμϕ

I� − ð1 ↔ 2Þ
¼ ½−ðγμϵ2Þfðϵ̄1Dμ χ

IÞ −mðϵ̄1γμλIÞg
þ iðγ5γμϵÞiðϵ̄1γ5Dμ χ

IÞ þ imfIJKðϵ̄1γμλJÞðγ5γμϵ2ÞϕK� − ð1 ↔ 2Þ ð3:15aÞ

¼ þξμDμ χ
I −

1

2
ξμγμ

�
δLSPS

δ χ̄I

�
ð3:15bÞ

≐ þδP χ
I þ δT χ

I ðQ:E:D:Þ: ð3:15cÞ
As in the case of λ, after Fierz arrangements, cancellations of like terms in (3.15a), and upon the use of the χ-field equation
in (3.15b), we reach (3.15c).10

We give yet another confirmation among field equations. This is performed by varying the λ and χ-field equations under
supersymmetry:

0 ≟ δQ

�
δLSPS

δλ̄I

�
¼ δQ½DλI þm χI − imfIJKðγ5 χJÞϕK − fIJKðγμλJÞPμ

K�

¼ þðγμϵÞ
�
δLSPS

δAμ
I

�
þ fIJK

�
δLSPS

δλ̄J

�
ðϵ̄ χKÞ ð3:16aÞ

≐ 0: ð3:16bÞ
We have not used any field equation except for the last equality (3.16b). Similarly for the χ-field equation, we get

0 ≟ δQ

�
δLSPS

δ χ̄I

�
¼ δQ½þD χI þmλI þ imfIJKðγ5λJÞϕK�

¼ −ϵ
�

δLSPS

fðδQeφÞe−φgI
�
− fIJKϵ

�
λ̄J
�
δLSPS

δλ̄K

��
− iðγ5ϵÞ

�
δLSPS

δϕI

�
≐ 0: ð3:17Þ

As before, no field equation has been used until the last equality in (3.17).
As the final consistency confirmation, we show the divergence of the Aμ-field equation (3.8a) which is supposed to

vanish by the use of all of our field equations:

10Just as the closure on λ, since the χ-field equation is valid up to OðΦ3Þ, we ignored a χ3 term.
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0 ≟ Dμ

�
δLSPS

δAμ
I

�

¼ Dμ

�
−DνF μνI −mfIJKðλ̄JγμλKÞ −mPμI −

1

2
mfIJKð χ̄Jγμ χKÞ þmfIJKϕJDμϕK − fIJKF μν

JPνK

�

¼ −
1

2
mfIJKFμν

JF μνK − 2mfIJKðλ̄JDλKÞ −mDμPμI −mfIJKð χ̄JD χKÞ þmfIJKϕJD2
μϕ

K

− fIJKðDμF μνJÞPνK − fIJKF μνJðDμPν
KÞ ð3:18aÞ

¼ −2mfIJK
�
λ̄J
�
δLSPS

δλ̄K

��
−m

�
δLSPS

fðδeφÞe−φgI
�
−mfIJK

�
χ̄J
�
δLSPS

δ χ̄K

��
þmfIJKϕJ

�
δLSPS

δϕK

�
− fIJK

�
δLSPS

δAμ
J

�
Pμ

K

≐ 0: ð3:18bÞ

In (3.18a), the first factor Fμν
I is replaced by

F μν
I − fIJKPμ

JPν
K , while the last term vanishes, because

of the P-BId (3.3a). Even though each of the remaining
terms in (3.18a) are directly related to the middle sides of
field equations (3.9), the last equalities in (3.9) with “≐”
themselves have not been used until the last equality in
(3.18b). Since this confirmation involves all five field
equations in our system, it would have failed, if there
were any inconsistency among field equations, or that with
supersymmetry and/or with gauge covariance.
For the validity of our unconventional CM, we mention

the following three points: The first reasoning is rather
logical: We already know that a similar situation with a
tensor multiplet was presented in [4]. The tensor multiplet
(TM) in [4] has the component fields ðBμν

I; χI;φIÞ in terms
of the notation in [4]. The reason why the TM in [4] does
not follow the conventional tensor (linear) multiplet
[25,28], i.e., why it cannot be described in terms of a
scalar superfield L, is as follows: On the scalar superfield L
[25,28], the commutator (but not anticommutator) of two
spinorial derivatives gives

½∇α; ∇̄_β�L ¼ c1ðσcdeÞα _βGcde þ c2trðWαW̄ _βÞ; ð3:19Þ

where α (or _β) is for the positive (or negative) chirality.
Note that L is singlet under the YM group, without an
adjoint index. Obviously, this is impossible for non-
Abelian TM in [4], because the G term in (3.19) should
carry the adjoint index, while the trðWW̄Þ term does not,
due to its trace operation. The attempt to make the WW̄
term be replaced by something like fIJKðWα

JW̄ _β
KÞ does

not work either, because such a term vanishes for an
Abelian case. Because of this lack of fundamental scalar
superfield, we do not have superspace action formulation at
the present time.
The second reasoning is rather intuitive. Since the spin-

zero fields φI and ϕI serve different tasks under G, it is
obvious that this multiplet cannot be described in terms of a

common superfield, such as the scalar superfield LI

carrying the common index for φI and ϕI . The third
reasoning is based on the analogy of higher-dimensional
supersymmetry, e.g., 11D [29] or 10D [30] with no explicit
action formulation in superspace in terms of off-shell
superfields. In view of this analogy, the lack of action
formulation in superspace for our on-shell system is
nothing bizarre, even though our system is in 4D.
Note that our results above are highly sophisticated, so

that their cancellations are neither trivial results, nor
accidental coincidences. In particular, the sophisticated
cancellations of quadratic-order terms in the closure on
φ has not been well presented by papers in the past. These
computational and intuitive considerations provide the
supporting evidence for two important aspects:
(1) N ¼ 1 supersymmetry necessitates themodified field

strength F μν
I instead of the conventional one Fμν

I .
(2) Our nonconventional CM ðφI; χI;ϕIÞ with φI and

ϕI transforming differently under δT is consistent
with N ¼ 1 supersymmetry. This has been con-
firmed with couplings to the YM multiplet ðAμ

I; λIÞ.
Our supersymmetric Proca-Stückelberg theory given by

(3.1) through (3.4) is more economical than our previous
formulations [4,5]. Notice that in our CM ðφI; χI;ϕIÞ, the
spin-zero fields φI and ϕI play completely different roles,
because the former is for the coordinates of the group
manifold G, while the latter is in the adjoint representation
of G. To our knowledge, this supersymmetric Proca-
Stückelberg theory has not been presented before in the past.

IV. SUPERSYMMETRIC CREMMER-SCHERK
THEORY BY DUALITY TRANSFORMATION

We perform next the supersymmetric duality transfor-
mation [16] from φI to Bμν

I applied to the Lagrangian LSPS
(3.1). We follow the same pattern for the nonsupersym-
metric case in Sec. II. Accordingly, we reach the TM
ðBμν

I; χI;ϕIÞ coupled to YM-multiplet ðAμ
I; λIÞ. As is
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usual in duality transformations [16], we first rewrite Pμ
I as

Qμ
I in (3.1), regarding the latter as an independent field.

We next add to (3.1) a constraint Lagrangian LBDQ ≈
BI ∧ ½DQI − ð1=2ÞmF I�. This constraint Lagrangian
“forces” the BId (3.3a) on Qμ

I, after the replacement of
Pμ

I by Qμ
I [16]. The Bμν

I field is initially a “multiplier”
field, but its field strengthGμνρ

I becomes eventually dual to
Qμ

I with propagation [16].
At this stage, our original supersymmetric Proca-

Stückelberg Lagrangian (3.1) becomes

L0
SPS ¼ −

1

4
ðF μν

IÞ2 þ 1

2
ðλ̄IDλIÞ − 1

2
ðQμ

IÞ2 þ 1

2
ð χ̄ID χIÞ

−
1

2
ðDμϕ

IÞ2 þmðλ̄I χIÞ − 1

2
m2ðϕIÞ2

− imfIJKðλ̄Iγ5 χJÞϕK −
1

2
fIJKðλ̄IγμλJÞQμ

K

þ 1

2
ϵμνρσBμν

I

�
DρQσ

I −
1

2
mF ρσ

I

�
; ð4:1Þ

where

F μν
I ≡ Fμν

I þm−1fIJKQμ
JQν

K; ð4:2Þ

with the original m−1P2 term in F ρσ
I now replaced by

m−1Q2.
Our next task is to get the algebraic field equation for the

independent fieldQμ
I, and eliminate it from (4.1) [16]. The

variation of (4.1) by Qμ
I yields its field equation

Πμ
νIJQν

J≡
�
δμ

νδIJþm−1fIJKF μ
νKþ1

2
ϵμ

νρσfIJKBρσ
K

�
Qν

J

≐ G̃ð0ÞI
μ −

1

2
fIJKðλ̄JγμλKÞþOðΦ3Þ: ð4:3Þ

The Πμ
νIJ refers to the inside of the square brackets on the

second side. Equation (4.3) is nothing but the supersym-
metric generalization of the purely bosonic case (2.9). As in
the previous section, we keep only the OðΦ1Þ and OðΦ2Þ
terms for the expression of Qμ

I:

Qμ
I ≐ ðΠ−1ÞμνIJ

�
G̃ð0ÞJ

ν −
1

2
fJKLðλ̄KγνλLÞ

�

¼
�
δμ

νδIJ −m−1fIJKF μν
K −

1

2
ϵμνρσfIJKBρσ

K

�

×

�
G̃ð0ÞJ

ν −
1

2
fJKLðλ̄KγνλLÞ

�
þOðΦ3Þ

¼ G̃μ
I −

1

2
m−1fIJKðλ̄JγμλKÞ

þm−1fIJKFμν
JG̃ν

K þOðΦ3Þ: ð4:4Þ

This is nothing but the supersymmetrization of (2.10a).

Following [16], our next task is to substitute (4.4) into
Qμ

I everywhere in the Lagrangian (4.1), and reach the
action ISCS ≡ R

d4xLSCS for supersymmetric Cremmer-
Scherk theory:

LSCS ¼ −
1

4
ðF μν

IÞ2 þ 1

2
ðλ̄IDλIÞ − 1

12
ðGμνρ

IÞ2

þ 1

2
ð χ̄ID χIÞ − 1

2
ðDμϕ

IÞ2 − 1

4
mϵμνρσBμν

IF ρσ
I

þmðλ̄I χIÞ − 1

2
m2ðϕIÞ2 − imfIJKðλ̄Iγ5 χJÞϕK

−
1

2
fIJKðλ̄IγμλJÞG̃μ

K þ 1

2
ϵμνρσfIJKBμν

IG̃ρ
JG̃σ

K;

ð4:5Þ

up to OðΦ4Þ terms. The field strength Gμνρ
I is the same as

(2.10b), while F μν
I is defined by (4.2) with Q replaced by

G̃. Or more explicitly,

Gμνρ
I ≡þGð0ÞI

μνρ − 3fIJKG̃½μJBνρ�K þOðΦ3Þ; ð4:6aÞ

F μν
I ≡þ2∂ ½μAν�I þmfIJKAμ

JAν
K þm−1fIJKG̃μ

JG̃ν
K

þOðΦ3Þ; ð4:6bÞ

satisfying their BIds

D½μGνρσ�I ≡ −3fIJK
�
D½μG̃νjJ −

1

2
mF ½μνjJ

�
Bjρσ�K

þOðΦ3Þ; ð4:7aÞ

D½μF ρσ�I ≡þ2fIJKðD½μG̃νjJÞG̃jρ�K þOðΦ3Þ: ð4:7bÞ

The difference between Fμν
I andF μν

I in the second term in
(4.7a) does not matter, because the difference is only at
OðΦ3Þ. As (4.7a) shows, the definition of our G field
strength involves G̃ itself. This implies that our system
is intrinsically nonpolynomial, which has not been
covered before by the general non-Abelian tensor-hierarchy
formulations [1,2].
Our BId (4.7a) is valid only up to OðΦ3Þ. Even though

the involvement of the bare B field in the BId (4.7a)
looks unconventional, it can be understood as follows:
The B-field equation from (4.5) is

D½μG̃ν�I −
1

2
mF μν

I þ fIJKðλ̄Jγ½μDν�λKÞ
þm−1fIJKD½μðF ν�ρJG̃ρ

KÞ þOðΦ3Þ ≐ 0: ð4:8Þ

This implies that the coefficient factor of the bare B field in
(4.7a) vanishes by the use of B-field equation (4.8) up to
OðΦ2Þ, as desired.
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Our action ISCS is invariant underN ¼ 1 supersymmetry,

δQAμ
I ¼ þðϵ̄γμλIÞ −m−1fIJKðϵ̄ χJÞG̃μ

K þOðΦ3Þ; ð4:9aÞ

δQλ
I ¼ þ 1

2
ðγμνϵÞF μν

I þ imðγ5ϵÞϕI þ fIJKλJðϵ̄ χKÞ;
ð4:9bÞ

δQBμν
I ¼ þiðϵ̄γ5γμν χIÞ − 2im−1fIJKðϵ̄γ5γ½μλJÞG̃ν�K

−
1

2
ϵμν

jrσfIJKðϵ̄ χJÞFρσ
K

þ fIJKðϵ̄ χJÞBμν
K þOðΦ3Þ; ð4:9cÞ

δQ χI ¼ −ðγμϵÞG̃μ
I þ iðγ5γμϵÞDμϕ

I þ 1

2
fIJKðγμϵÞðλ̄JγμλKÞ

−m−1fIJKðγμϵÞF μ
νJG̃ν

K þOðΦ3Þ; ð4:9dÞ

δQϕ
I ¼ þiðϵ̄γ5 χIÞ: ð4:9eÞ

For example, the difference between Fρσ
K and F ρσ

K in
(4.9c) will not matter, because of OðΦ3Þ terms ignored.
Notice the peculiarm−1F G̃ term atOðm−1Þ in (4.9d) which
does not arise in general non-Abelian tensor-hierarchy
formulation [1].
Relevantly, we have the useful corollary:

δQG̃μ
I ¼ −½ϵ̄γμðD χI þmλIÞ� þ ðϵ̄Dμ χ

IÞ þmðϵ̄γμλIÞ
þm−1fIJKDρ½ðϵ̄γμρσλJG̃σ

K�
þm−1fIJKDν½ðϵ̄ χJÞFμν

K�
þ fIJKðϵ̄ χJÞG̃μ

K − fIJKðϵ̄γμν χJÞG̃ν
K

−
i
2
fIJK½ϵ̄γ5γμρσðD χJ þm χJÞ�Bρσ

K þOðΦ3Þ;
ð4:10aÞ

δQF μν
I ¼ −2ðϵ̄γ½μDν�λIÞ − 2m−1fIJKðϵ̄γ½μD χJÞG̃ν�K

− 2m−1fIJKðϵ̄ χJÞD½μG̃ν�K þOðΦ3Þ: ð4:10bÞ

Note that the bare B-linear term in the last line in (4.10a)
vanishes upon the χ-field equation: D χJ þmλJ ≐ OðΦ2Þ.
Because if there were such a bare B term, the
commutator ½δβ; δQ�G̃μ

I would be problematic with the
δβ transformation:

δβBμν
I ¼ 2D½μβν�I − 2fIJKβ½μJG̃ν�K þOðΦ2Þ; ð4:11Þ

with the derivative D½ρβσ�K created by the bare B-term
in (4.10a).
To avoid misinterpretation here, the argument in the

previous paragraph is meant for the consistency of the
commutator ½δβ; δQ�G̃μ

I. We stress that the χ-field equation
is used in (4.10a) only for the consistency of commutator

½δβ; δQ�G̃μ
I, but not for our superinvariance confirmation

δQISCS ¼ 0 that we will perform shortly. Since our
supersymmetric formulation is on shell, we can use
field equations for commutator algebras or in closure
confirmations.
Relevantly, under the δβ transformation, the G-field

strength transforms as

δβGμνρ
I ¼ þ6fIJKβ½μjJ

�
DjνjG̃jρ�K −

1

2
mF jνρ�K

�
þOðΦ2Þ

≐ OðΦ2Þ: ð4:12Þ

This vanishes up to the required order by the use of the B-
field equation given below in (4.17b). Note that this
invariance is highly nontrivial. In the conventional ten-
sor-hierarchy formulations [1,2] with (1.1) and (1.2), the
variation of the extra vector field Cμ

I cancels the unwanted
term F ∧ β, as desired. In our present formulation,
even though there arises no F ∧ β, the price to be paid
is the term −6fIJKðDβJÞ ∧ G̃K arising from 3DðδβBIÞ ¼
3Dð2DβI − 2fIJKβJ ∧ G̃KÞ in (4.6a). This term is exactly
canceled by another contribution from −3fIJKG̃J ∧
ðδβBKÞ ¼ −3fIJKG̃J ∧ ð2DβKÞ in (4.6a). In other words,
the factor G̃ is involved in the definition ofG itself in such a
sophisticated way that the unwanted derivative term
fIJKG̃J ∧ DβK is canceled. Even though this peculiar
structure had been known since [17], it does not seem to
have been covered in general non-Abelian tensor-hierarchy
formulations [1,2].
The supersymmetric invariance δQISCS ¼ 0 up toOðΦ4Þ

can be confirmed as follows: There are in total seven
sectors in δQISCS: (i) m0Φ2, (ii) m1Φ2, (iii) m2Φ2,
(iv) m−1Φ3, (v) m0Φ3, (vi) m1Φ3, and (vii) m2Φ3.
The sector (i) has three subsectors: (a) λDF , (b) χD2ϕ,

and (c) χDG. These are rather parallel to the super Proca-
Stückelberg formulation in Sec. III, e.g., the previous Q is
now replaced by G̃. However, we need to avoid possible
misinterpretation about (4.10), i.e., we should not use the
χ-field equation in there. To be more specific, subsector
(c) works like

0 ≟ δQ

�
þ 1

2
ðG̃μ

IÞ2 þ 1

2
ð χ̄ID χIÞ�

�����
χDG

¼ ½ðϵ̄Dμ χ
IÞ − ðϵ̄γμD χIÞ�G̃μIj χDG

þ ½þðϵ̄γμÞG̃μ
I�γνDν χ

Ij χDG

¼∇ − ðϵ̄ χIÞDμG̃
μI − ðϵ̄γμD χIÞG̃μI þ ðϵ̄γμD χIÞG̃μ

I

≡OðΦ3Þ ðQ:E:D:Þ: ð4:13Þ

Here the last two terms cancel each other, while the G-BId
(4.7a) has been used for the first term. There are OðΦ2Þ
terms in DμG̃

μI , but they contribute to subsector (d) χBDG
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of (v) m0Φ3 sector, and subsector (f) m χBF of (vi) mΦ3

sector, as will be seen shortly.
Sector (ii) has three subsectors: (a) m χF , (b) mλG and

(c) mλDϕ. These are also parallel to the Proca-Stückelberg
formulation. Similarly, sector (iii) has only one straightfor-
ward subsector: m2 χϕ.
Sector (iv) has two subsectors: (a) m−1λG̃DG̃ and

(b) m−1 χFDG. Compared with the last section, these
subsectors have the contributions from ð1=2ÞðG̃μ

IÞ2 instead
of B ∧ DQ-term, which is now absent. For these terms, the
peculiar Oðm−1Þ terms in δQG̃ and δQF in (4.10) play
crucial roles.
Sector (v) has five subsectors: (a) λ2D χ, (b) λGF ,

(c) χF 2, (d) χBDG, and (e) χG2. Subsectors (b), (c)
and (e) are parallel to Sec. III. Subsector (a) needs caveat,
because it is related to (4.10a), where we should not use the
χ-field equation. To be more specific, we get

0≟ δQ

�
þ1

2
ðλ̄IDλIÞþ1

2
ð χ̄IDχIÞ−1

2
fIJKðλ̄IγμλJÞG̃μ

K

�����
λ2Dχ

¼þ½þfIJKðϵ̄χKÞλ̄J�DλIþ
�
−
1

2
fIJKðϵ̄γμÞðλ̄IγμλJÞ

�
DχK

−
1

2
fIJKðλ̄IγμλJÞð−ϵ̄γμνDν χ

KÞ ð4:14aÞ

¼∇0 ðQ:E:D:Þ: ð4:14bÞ

The third term in (4.14a) is due to the identity −γμD χI þ
Dμ χ

I ≡ −γμνDν χ
I for the D χ terms in (4.10a). As in

(4.13), we do not use the χ-field equation in (4.14). While
we need no Fierz arrangement, we need a partial integration
to arrange all terms with ðλ̄JγμλKÞ with no derivative.
Subsector (d) χBDG is also nontrivial. It goes like

0 ≟ δQ

�
þ 1

2
ðG̃μ

IÞ2 þ 1

2
ϵμνρσfIJKBμν

IG̃ρ
JG̃σ

K þ 1

2
ð χ̄ID χIÞ − 1

4
mϵμνρσBμν

IF ρσ
I

�����
χBDG

ð4:15aÞ

¼
�
ðϵ̄Dμ χ

IÞ − ðϵ̄γμD χIÞ − i
2
fIJKðϵ̄γ5γμρσD χJÞBρσ

K

�
G̃μI

����
χBDG

þ fIJKϵμνρσBμν
I½ðϵ̄Dρ χ

JÞ − ðϵ̄γρD χJÞ�G̃σ
K

þ
�
ðϵ̄γμÞ 1

2
ϵμ

νρσfIJKBνρ
JG̃σ

K

�
D χI −

1

4
mϵμνρσBμν

Im−1fIJK2½ðϵ̄Dρ χ
JÞ − ðϵ̄γρD χJÞ�G̃σ

K ð4:15bÞ

¼ 0 ðQ:E:D:Þ: ð4:15cÞ

Out of four terms in (4.15a) the δQ½ðG̃μ
IÞ2�j χBDG term is

what we promised after (4.13) above. Relevantly, we
should not use the χ-field equation in this confirmation.
Even though we wrote χBDG, there are two categories
of terms in (4.15b): ϵμνρσfIJKðϵ̄ χIÞBμν

JDρG̃σ
K and

ϵμνρσfIJKðϵ̄γμD χIÞBνρ
JG̃σ

K , which are equivalent to
χBDG after partial integration(s). However, there arises
no term like ϵμνρσfIJKðϵ̄ χIÞðDρBμν

JÞG̃σ
K, because it

is proportional to ϵμνρσfIJKðϵ̄ χIÞG̃σJG̃σ
K þOðΦ4Þ ¼

OðΦ4Þ. Even though the first two terms in (4.15b)
seem only at OðΦ2Þ, they contribute the aforemen-
tioned two categories ϵμνρσfIJKðϵ̄ χIÞBμν

JDρG̃σ
K and

ϵμνρσfIJKðϵ̄γμD χIÞBνρ
JG̃σ

K , because of the BId (4.7a),
and the implicit BG̃ term in G̃ as in (4.6a). In view of
these nontrivial manipulations, these cancellations are by
no means accidental coincidences.
Sector (vi) has seven subsectors: (a) mλϕG, (b) mλ χ2,

(c) mλ3, (d) mλϕdϕ, (e) m χϕF , (f) m χBF , and
(g) mλBG. Subsectors (a) through (e) are similar to
Sec. III, while (f) and (g) are new. Subsector (g) is rather

straightforward to be skipped, while the contributions by
G̃μ

I to (f) m χBF is subtle, because this subsector is what
we promised after (4.13):

0 ≟ δQ

�
þ 1

2
ðG̃μ

IÞ2 − 1

4
mϵμνρσBμν

IF ρσ
I

�����
m χBF

¼ þðϵ̄Dμ χ
IÞG̃μIjm χBF −

1

4
mϵμνρσ½fIJKðϵ̄ χJÞBμν

K�F ρσ
I

¼∇ − ðϵ̄ χIÞ
�
þ 1

4
mϵμνρσfIJKF μν

JBρσ
K

�

−
1

4
mϵμνρσfIJKðϵ̄ χIÞBμν

JF ρσ
K ð4:16aÞ

¼ 0 ðQ:E:D:Þ: ð4:16bÞ

The first term in (4.15a) is from the G-BId (4.7a). Sector
(vii) has only one sector m2 χϕ2 parallel to Sec. III.
We can also confirm the mutual consistencies of all of

our field equations:
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δLSCS

δAμ
I ¼ −DνF μνI þ 1

6
mϵμνρσGνρσ

I þmfIJKϕJDμϕK

þ 1

2
fIJK½ðλ̄JγμλKÞ þ ð χ̄Jγμ χKÞ� þOðΦ3Þ ≐ 0;

ð4:17aÞ

δLSCS

δBμν
I ¼þ1

2
DρGμνρI −

1

4
mϵμνρσF ρσ

I

þ 1

2
m−1ϵμνρσfIJKDρðF σ

τJG̃τ
KÞ

þ 1

2
ϵμνρσfIJKðλ̄JγρDσλ

KÞ þOðΦ3Þ ≐ 0; ð4:17bÞ

δLSCS

δϕI ¼ þD2
μϕ

I −m2ϕI − imfIJKðλ̄Jγ5λKÞ þOðΦ3Þ ≐ 0;

ð4:17cÞ

δLSCS

δλ̄I
¼ þDλI þm χI − imfIJKðγ5 χJÞϕK

− fIJKðγμλJÞG̃μ
L þOðΦ3Þ ≐ 0; ð4:17dÞ

δLSCS

δ χ̄I
¼ þD χI þmλI þ imfIJKðγ5λJÞϕK þOðΦ3Þ ≐ 0:

ð4:17eÞ

For example, the divergence of (4.17a) is confirmed to
vanish, upon the use of other field equations, as in (3.18).
The most crucial consistency is the divergence of (4.17b):

0 ≟ Dν

�
δLSCS

δBμν
I

�

¼ þ 1

4
mfIJKFνρ

JGμνρK

þ 1

4
m−1ϵμνρσfIJK½Dν; Dρ�ðF σ

τJG̃τ
KÞ

−
1

4
mϵμνρσD½νF ρσ�I þ

1

8
ϵμνρσfIJK½Dν; Dσ�ðλ̄JγρλKÞ

þOðΦ3Þ ð4:18aÞ

≐þ1

4
mfIJKF νρ

JGμνρK−
1

4
mϵμνρσfIJKF νρ

JG̃σ
KþOðΦ3Þ

¼OðΦ3Þ: ð4:18bÞ

The terms ½D;D�F G̃ and ½D;D�ðλ̄γλÞ in the second and
third lines in (4.18a) are already at OðΦ3Þ. We also
combined (4.7b) with (4.8) for the DF term in (4.18a)
to reach (4.18b). Finally, the two terms in (4.18b) canceled
each other. It is easy to see that the two terms in (4.18b)
cancel each other.
For the fermionic field equations (4.17d) and (4.17e), we

can vary them under supersymmetry (4.9), and get the

vanishing results as desired. In particular, the peculiar term
m−1FG at Oðm−1Þ in δQ χ of (4.9d) cancels other like
terms arising in these variations.
Our system looks so involved with nonpolynomial

interactions with unnecessary complication. This raises
the question why we cannot follow more straightforward
tensor-hierarchy formulations [1,2]. In order to answer such
questions, we mention the following points. First, the
nonpolynomial feature of our system is traced back to
the corresponding feature in the supersymmetric Proca-
Stückelberg formulation in Sec. III. It is mainly caused by
the nontrivial P ∧ P term in F . Second, we are formulating
the non-Abelian tensor without any more extra fields. If we
could use an extra vector field such as Cμ

I in (1.1) and
(1.2), it would be much simpler. However, our objective in
this paper is to supersymmetrize Cremmer-Scherk theory
[10], as economically as possible, with the bosonic fields
Aμ

I and Bμν
I alone with no more vector fields. In other

words, minimizing the number of supermultiplets, we have
to pay the price of nonpolynomial interactions. Third, this
should not be regarded as a drawback, because we are
reaching a new formulation for consistent non-Abelian
tensor interactions that was not covered by previous tensor-
hierarchy formulations [1,2].
We can investigate now the tensorial transformation

invariance associated with Bμν
I . To be more specific, our

action ISCS is invariant also under the tensorial trans-
formation for the Bμν

I field (4.11) with the important
lemma (4.12). Since the B field itself goes down from
OðΦ1Þ to OðΦ0Þ under δβ, and our Lagrangian is fixed up
to OðΦ4Þ, the action invariance is required only up to
OðΦ3Þ. Accordingly, the transformation for δβB is required
only within OðΦ1Þ, while OðΦ2Þ terms are ignored. The
transformation rule δβG (4.12) contains also the field
strength G itself on its rhs, reflecting again the intrinsic
nonpolynomial structure of our system.
Notice the absence of any derivative term Dβ on the

parameter β in (4.12), as desired for a field strength. This
nontrivial fact is confirmed, by using δβBμ

I of (4.11) in
(4.6a):

½LHS of ð4.12Þ� ¼ þ3D½μj½Djνjβjρ�I − 2fIJKβjνjJG̃jρ�K�
− 3fIJKG̃½μjJð2DjνjβjρjKÞ þOðΦ2Þ

ð4:19aÞ

¼ þ6fIJKβ½μjJ
�
DjνjG̃jρ�K −

1

2
mF jνρ�K

�

þOðΦ2Þ ð4:19bÞ
¼ ½RHSof ð4.12Þ� ðQ:E:D:Þ: ð4:19cÞ

Herewe have kept onlyOðΦ1Þ terms, e.g., fIJKðδβG̃½μJÞBρ�K

is already at OðΦ2Þ, due to δβG̃μ
J ¼ OðΦ1Þ. Note that the
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Dβ terms are canceled within (4.19a), while only βDG
and mβF terms are left in (4.19b), as desired. In other
words, even though the definition of G contains the bare B
field in theG ∧ B term, its variation withDβ is canceled by
the like term arising from DðδβBÞ yielding ðDβÞG. This
also justifies the nontrivial Chern-Simons term G ∧ B in
the G-field strength (4.6a).
After all, the invariance δβISCS ¼ OðΦ3Þ is also con-

firmed in a nontrivial way.11 This follows from LSCS

containing the bare B term: B ∧ G̃ ∧ G̃. The variation of
the B field here has the derivative ðDβÞ ∧ G̃ ∧ G̃. After a
partial integration, this term cancels exactly the variation
β ∧ ðDG̃Þ ∧ G̃ term coming out of the ðG̃Þ2 term.
Eventually, the existence of the bare B term like B ∧ G̃ ∧
G̃ in our Lagrangian will not hurt.
There are differences as well as similarities compared

with our previous supersymmetric non-Abelian tensor
formulation [4]. The latter had two multiplets: YM multi-
plet ðAμ

I; λI; Cμνρ
IÞ and a TM ðBμν

I; χI;ϕIÞ. Similarities
are such as two multiplets YM and TM in both formula-
tions. The YM symmetry is also broken in both formula-
tions.12 However, the most important difference is that in
our present formulation, the YM field becomes massive by
the dualized Proca-Stückelberg mechanism. Another differ-
ence is that in our previous formulation [4], the third-rank
auxiliary field Cμνρ

I becomes massive after the gauge-
symmetry breaking by absorbing Bμν

I . In our present
formulation, the YM multiplet ðAμ

I; λIÞ has no aux-
iliary field.
Needless to say, LSCS in (4.5) is the non-Abelian

supersymmetric completion of purely bosonic Abelian
terms: ðFμνÞ2; ðGμνρÞ2 and ϵμνρσBμνFρσ in (1.4a), as a
nonconventional gauge-symmetry breaking mechanism
in [10].
We mention one important aspect of the duality trans-

formation [16]: φI → Bμν
I. The realization of this duality

transformation is nontrivial, because this was possible
thanks to the very peculiar coupling of the Nambu-
Goldstone (NG) field φI . For any duality transformation
[16] (old potential field) → (new potential field) to be
possible, the old potential field should appear only as a field
strength, but not as a bare field.
For example, a duality transformation from the pseudo-

scalar ϕI to its hypothetical dual tensor field Kμν
I does not

work. This is because there is a minimal YM coupling:
Dμϕ

I ≡ ∂μϕ
I þmfIJKAμϕ

K, so its BId corresponding to
the case of φI in (2.4) is

D½μDν�ϕI ¼ 1

2
mfIJKFμν

JϕK; ð4:20Þ

with the bare field ϕK at the end. The routine constraint
Lagrangian [16] plus the kinetic term of ϕI is13

LH ¼ −
1

2
ðHμ

IÞ2

þ 1

2
ϵμνρσKμν

I

�
D½ρHσ�I −

1

2
mfIJKFρσ

JϕK

�
; ð4:21Þ

where Kμν
I is the multiplier field, Dμϕ

I is replaced by an
independent field Hμ

I , and the field strength of Kμν
I

namely Lμνρ
I ≡ 3D½μKνρ�I is dual to Hμ

I . For the duality
transformation ϕI → Kμν

I to be possible, the old field ϕI

should be only in terms of the field strength Dμϕ
I that is

replaced by Hμ
I. The trouble is that the bare field ϕI still

remains in (4.21). Because of this, the field equation ofHμ
I

does not totally eliminate old field ϕI. This is why a duality
transformation [16] from ϕI → Kμν

I fails. The important
and novel feature of BId (2.4) compared with (4.20) is that
no bare field φI is involved in the BId (2.4), so a duality
transformation φI → Bμν

I is possible. The duality trans-
formation φI → Bμν

I is possible thanks to the BId (2.4)
without the involvement of the bare φ field. The lesson here
is that we have to distinguish which field strengths can be
dualized to their Hodge duals by duality transformations
[16], in particular, when dealing with many modified field
strengths accompanied by generalized Chern-Simons terms
such as tensor hierarchies [1–2].

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented the non-Abelian and the
genuine supersymmetric generalization of Cremmer-
Scherk theory [10] in D ¼ 3þ 1, by including both kinetic
terms of Aμ

I and Bμν
I. This formulation is based on

supersymmetric Proca-Stückelberg theory in Sec. III,
which is more economical than our previous formulations
with extra vector multiplets [4,5].
The salient features of our formulations are summarized

as follows: In our present paper, we have succeeded in the
new supersymmetric formulations of gauge-symmetry
breaking originally by Cremmer-Scherk [10] for non-
Abelian tensors, combining many different novel formu-
lations in the past. The field content is the YM multiplet
ðAμ

I; λIÞ and the tensor-multiplet ðBμν
I; χI;ϕIÞ.

As a very important foundation of our super-Cremmer-
Scherk formulation, we have presented a new supersym-
metric Proca-Stückelberg formulation with only two
multiplets: YM multiplet ðAμ

I; λIÞ and CM ðφI; χI;ϕIÞ.11Actually, this had been known since [17] associated
with nonpolynomiality, but we reconfirm it due to its importance.

12We use here the word “broken” in the sense of the original
Proca-Stückelberg formulation [6]. This is neither conventional
spontaneous breaking nor “by-hand” explicit breaking.

13There are other ϕI-dependent terms in LSCS, but just for
simplicity of the argument here, we look into only these terms.
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This formulation is more economical than our previous
formulations [4,5]. In particular, φI and ϕI playing different
roles under G.
We have provided enough supporting evidence for the

consistency of our CM ðφI; χI;ϕIÞ coupled to non-Abelian
SYM ðAμ

I; λIÞ, where φI and ϕI transform differently
under G. For example, we have given detailed confirmation
of the closure on all fields in (3.10) through (3.15). We
have also reconfirmed the closures on ϕI and φI in the
corresponding superspace formulation (A8) through (A10).
The total consistency among field equations is also recon-
firmed in (3.16) and (3.17), by varying fermionic field
equations under supersymmetry, yielding all bosonic field
equations. Additionally, the consistency of the divergence
of the YM-field equation is reconfirmed in (3.18) with
enough details with intermediate steps.
In order to elucidate the crucial necessity of the field

strength F μν
I instead Fμν

I in our Lagrangian LSPS in (3.1),
we have shown in (3.7) the decisive terms in the variation
δQISPS. The sector λPF in this variation clearly showed the
necessity of F μν

I instead Fμν
I in the Aμ-kinetic term.

Our supersymmetric Cremmer-Scherk formulation is
intrinsically nonpolynomial, which has not been covered
by the general non-Abelian tensor-hierarchy formulations
[1,2]. In particular, the presence of the Bμν

I kinetic term
with nonpolynomial structure is crucial. The nonpolyno-
mial feature itself was already known in [17], but our
supersymmetrization of both Aμ

I and Bμν
I with their

physical propagations was not accomplished in D¼3þ1
in the past [17,19–21].
We have seen that despite the nonpolynomial involve-

ment of φI in the field strength Pμ
I ≡ ½ðDμeφÞe−φ�I , the

duality transformation [16] of φI to its Hodge dual Bμν
I is

possible in a nontrivial and nonpolynomial way. In other
words, our formulation provides a new link between our
new supersymmetric Proca-Stückelberg theory and super-
symmetric Cremmer-Scherk theory [17].
Our supersymmetric Cremmer-Scherk formulation has

the term ϵμνρσBμν
IF ρσ

I analogous to BF theories [22].
However, we have the YM vector Aμ

I physically propagat-
ing with its kinetic term, and therefore it is not pure gauge:
Fμν

I ≠ 0, as opposed to [17,19–21]. In this sense, the link
with the σ model is entirely different from [17,19–21].
Our superspace reformulation in the Appendix is not

based on the conventional chiralmultiplets [19–21]. Instead,
it is based on the superspace BIds. This method may cast
doubt on the validity of such a formulation, because in 4D
any component field in a supermultiplet is supposed to be
expressed as the θ ¼ 0 sector of the super covariant
derivative of a certain (pre)potential superfield [25,31].
To such a reasonable viewpoint, we respond as follows:

Our system is an on-shell system, so that the conventional
superfield methods for off-shell formulations [25,31] do not
apply here. A typical on-shell system is N ¼ 1 supergravity

in 10D [30], and no off-shell formulation has been
established in 10D. In such on-shell formulations, the only
known method is to satisfy all BIds of all super field
strengths, as we have done in our Appendix.
Despite the lack of off-shell superspace action of our

system, there is an exceptional aspect. Namely, in the
Abelian limit fIJK → 0, our super-Proca-Stückelberg
Lagrangian LSPS (3.1) coincides with the Lagrangian
respecting the gauged real-shift R symmetry (3.4.35) in
superspace [31] and (3.4.39) in component [31]. This
special case does have the off-shell superspace-action
formulation. As such, our super-Proca-Stückelberg system
is interpreted as non-Abelian generalization of that with the
real-shift Abelian R symmetry. The details of this statement
are given in the paragraphs with (A11) through (A14) in
Appendix.
As a whole, our investigation based on duality trans-

formations [16] for supersymmetric σ models, and non-
conventional gauge-symmetry breaking in supersymmetric
gauge theories provides a new avenue for supersymmetric
formulation of non-Abelian tensors [1,2]. Our final
super-Cremmer-Scherk theory is based on super-Proca-
Stückelberg theory, as its very important foundation. Our
formulation has a very economical set of super multiplets,
which was neither explicitly presented as an application of
tensor-hierarchy formulations [1,2] nor in the context of
chiral-superfield formulations [19–21]. We have opened a
new direction of supersymmetry in 4D, which has not been
exploited in the past.
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APPENDIX: SUPERSPACE REFORMULATION
OF SUPERSYMMETRIC PROCA-

STÜCKELBERG THEORY

As a reconfirmation of our N ¼ 1 supersymmetric
Proca-Stückelberg theory, we reformulate it in superspace
[25]. The importance of this superspace reformulation is
summarized as five points. First, it is the good reconfir-
mation of Sec. III for its consistency. Second, our scalar φI

and pseudoscalar ϕI transform differently under gauge
group, so we cannot use the conventional superfield
formulation in terms of chiral superfields [19–21]. Third,
our result here will be of importance for the future
applications of similar superspace formulations. Fourth,
our intrinsic nonpolynomial structure of our super-
Cremmer-Scherk formulation originates from the P ∧ P
term in the modified field strength F in (3.2b), which will
be also reconfirmed by our superspace formulation. Fifth,
our superspace BIds do not automatically provide correct
field contents. Instead, the superspace reformulation
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provides nontrivial reconfirmation of the consistency of our
system, where any inconsistency will show up explicitly.
Our fundamental superfields are AA

I , λαI, BAB
I , χαI and

φI .14 Our superfield strengths PA
I and FAB

I are defined by

PA
I ≡ ½ðEAeφÞe−φÞ�I þmAA

I ≡ ½ð∇AeφÞe−φÞ�I; ðA1aÞ

FAB
I ≡ E½AABÞI − CAB

CAC
I

þmfIJKAA
JAB

K þm−1fIJKPA
JPB

K

¼ FAB
I þm−1fIJKPA

JPB
K

¼ FAB
I þm−1½PA; PBgI; ðA1bÞ

where EA ≡ EA
M∂M, and CAB

C ≡ E½AEBÞM, as usual [25].
Our superspace BIds for PA

I and FAB
I are

∇½APBÞI − TAB
CPC

I −mFAB
I ≡ 0; ðA2aÞ

∇½AFBCÞI−T ½ABjDFDjCÞI−
1

2
fIJKF ½ABJPCÞK≡0; ðA2bÞ

similar to [4,5]. These are also superspace generalizations
of the component BIds (3.3). The following superspace
constraints satisfy the BIds at engineering dimensions
0 ≤ d ≤ 1:

Tαβ
c ¼ þ2ðγcÞαβ; F αb

I ¼ −ðγbλIÞα; ðA3aÞ

Pα
I ¼ − χα

I; ∇αϕ
I ¼ −iðγ5 χIÞα; ðA3bÞ

∇α χβ
I ¼ −ðγcÞαβPc

I − iðγ5γcÞαβ∇cϕ
I

þ ihIJ;KL χαKðγ5 χJÞβϕL; ðA3cÞ

∇αλβ
I ¼ þ 1

2
ðγcdÞαβF cd

I − imðγ5ÞαβϕI þ fIJK χα
Jλβ

K:

ðA3dÞ

All other independent components, such as F αβ
I are zero.

Similarly, the following constraints are obtained from
BIds at d ¼ 3=2:

∇αPb
I ¼ −∇b χα

I −mðγbλIÞα; ðA4aÞ

∇αF bc
I ¼ þðγ½b∇c�λIÞα þ fIJK χα

JF bc
K

− fIJKðγ½bjλJÞαPjc�K: ðA4bÞ

Finally, our superfield equations are obtained from
(A2)–(A4) at d ¼ 3=2 and 2:15

ð=∇λIÞαþmχα
I −fIJKðγbλJÞαPb

K − imfIJKðγ5 χJÞαϕK ≐ 0;

ðA5aÞ

ð=∇ χIÞα þmλα
I þ imfIJKðγ5λJÞαϕK ≐ 0; ðA5bÞ

∇aPaI −mfIJKðλ̄J χKÞ ≐ 0; ðA5cÞ

∇bF abI þmPa
I þmfIJK½ðλ̄JγaλKÞ þ

1

2
ð χ̄Jγa χKÞ�

−mfIJKϕJ∇aϕ
K − fIJKF a

bJPb
K ≐ 0; ðA5dÞ

∇2
aϕ

I −m2ϕI − imfIJKðλ̄Jγ5 χKÞ ≐ 0: ðA5eÞ

For example, the λ field Eq. (A5a) is obtained by the
operation

ð=∇λÞα ¼ þ 1

2
f∇α;∇βgλβI −

1

2
fIJKFα

βJλβ
K

¼ 1

2
∇αð∇βλβ

IÞ þ 1

2
∇βð∇αλβ

IÞ ðA6aÞ

¼þ1

2
fIJK∇αðλ̄JχKÞ

þ1

2
∇β

�
þ1

2
ðγcdÞαβF cd

I−imðγ5ÞαβϕIþfIJK χαJλβK
�

¼þ3

2
ð=∇λIÞαþ

1

2
mχα

I−
1

2
fIJKðγbλJÞαPb

K

−
i
2
mfIJKðγ5χJÞαϕK: ðA6bÞ

Needless to say, (A3) and (A4) have been used. In (A6a),
the χ2λ term out of the Fλ term has been ignored because
it is at OðΦ3Þ. The same is also true for the χ-field
equation by

ð=∇ χÞα ¼ þ 1

2
f∇α;∇βg χβI ¼

1

2
∇αð∇β χβ

IÞ þ 1

2
∇βð∇α χβ

IÞ
¼ −ð=∇ χIÞα − 2mλα

I − 2imfIJKðγ5 χJÞαϕK; ðA7Þ

yielding (A5b).
The bosonic superfield equations (A5c) through (A5e)

are obtained by applying spinorial derivatives on the
fermionic superfield equations (A5a) and (A5b). Since
the computations will be just parallel to the component case
(3.16) and (3.17), their details are skipped here.
These superfield equations are consistent with our

component Lagrangian (3.1) and field equations in (3.9).

14We use the superspace coordinate indices A ¼ ða; αÞ;
B ¼ ðb; βÞ;…, where a; b;… ¼ ð0Þ; ð1Þ; ð2Þ; ð3Þ (or α; β;… ¼
1, 2, 3, 4) are for bosonic (or fermionic) coordinates. For curved
coordinates we use M ¼ ðm; μÞ; N ¼ ðn; νÞ;…, where
m; n;… ¼ 0, 1, 2, 3 (or μ; ν;… ¼ 1, 2, 3, 4). Our anti-
symmetrization in superspace is normalized as M½ABÞ≡
MAB − ð−1ÞABMBA, without the factor of 1=2. We use these
superspace notations only in this Appendix.

15These superfield equations are valid up to OðΦ3Þ, because
our Lagrangian LSPS is valid up to OðΦ4Þ.

HITOSHI NISHINO and SUBHASH RAJPOOT PHYS. REV. D 100, 066021 (2019)

066021-16



Since our superspace-formulation system is an on-shell
system without any auxiliary fields, these field equations
are valid modulo field equations. For example, the λ-field
equation term in (3.9b) does not show up explicitly in
superspace in (A6), because they are parts of superspace
“constraints” satisfying BIds at dimensions d ≥ 3=2.
As has been also mentioned in Sec. III, because of the

lack of fundamental scalar superfield such as L, which was
valid for an Abelian TMs [28], we do not have a superspace
action formulation at the present time.
In order to dispel skepticism about the coexistence of

two fields φI and ϕI with the different transforming
properties under gauge group G, we first reconfirm the
closure (3.13) on ϕI in superspace:

2ðγcÞαβ∇cϕ
I ¼ f∇α;∇βgϕI −mfIJKFαβ

JϕK

¼ ∇ðα∇βÞϕI −mfIJKFαβ
JϕK

¼ ∇ðαj½−iðγ5ÞjβÞγ χγ�
−mfIJKð−m−1fJLM χα

L χβ
MÞϕK ðA8aÞ

≟ −iðγ5Þðβjγ½−ðγdÞjαÞγPd
I − iðγ5γdÞjαÞγ∇dϕ

I

þ ihIJ;KL χjαÞKðγ5 χJÞγϕL�
− hIK;LM χα

L χβ
MϕK ðA8bÞ

¼ þ2ðγdÞαβ∇dϕ
I ðQ:E:D:Þ ðA8cÞ

up to OðΦ3Þ. In (A8a), the P-linear term vanishes, due to
the antisymmetry ðγ5γdÞðαβÞ ¼ 0. Also in (A8a), we used
F αβ

I ¼ Fαβ
I þ fIJK χα

J χβ
K and F αβ

I ¼ 0. In (A8b), the
χ2ϕ terms cancel each other as desired, thanks to the Jacobi
identity hI½J;K�L ¼ −hIL;JK.
To see the consistency of the coexistence of φI and ϕI ,

we finally reconfirm the closure (3.12): ½∇ðαð∇βÞeφÞ�e−φ by
two different methods. The first one is using the definition
of Pα

I:

½∇ðαð∇βÞeφÞ�e−φ ¼ ∇ðαj½ð∇βÞeφÞe−φ� þ ð∇ðαeφÞð∇βÞe−φÞ
¼ ∇ðαPβÞ − ð∇ðαeφÞe−φð∇βÞeφÞe−φ

ðA9aÞ

¼ −½−2ðγcÞðαβÞPc − iðγ5γcÞðαβÞ∇cϕ�
−m−1PðαPβÞ; ðA9bÞ

¼ þ2ðγcÞαβð∇ceφÞe−φ −m−1 χðα χβÞ;

ðA9cÞ

where all terms are generator valued, carrying TI, e.g.,
∇ðαPβÞ ≡ ð∇ðαPβÞIÞTI , etc. In (A9a), we used Pα ¼ − χα,
while in (A9b), we also used that ðγ5γcÞðαβÞ ¼ 0.

The second method is to use the anticommutator
f∇α;∇βg:

½∇ðαð∇βÞeφÞ�e−φ ¼ ½f∇α;∇βgeφ�e−φ
¼ ðþTαβ

c∇ceφ þmFαβeφÞe−φ ðA10aÞ

¼ ½þ2ðγcÞαβ∇ceφ

þmðF αβ −m−1PαPβÞeφ�e−φ ðA10bÞ

¼ þ2ðγcÞαβð∇ceφÞe−φ −m−1 χðα χβÞ:

ðA10cÞ

In Eq. (A10a), we used f∇α;∇βgeφ¼Tαβ
c∇ceφþmFαβeφ

which is the superspace version of (2.5c). Note that the
gauge field strengthFαβ in (A10a) differs fromF αβ, and the
difference is corrected in (A10b). Needless to say, we also
used the constraint F αβ ¼ 0 in (A10b).
As desired, the two results (A9c) and (A10c) based on

two different methods agree with each other, showing the
consistency of our system. It is crucial that the χ2 terms at
the quadratic order are consistent, which are by no means a
simple accidental coincidence. It also involves the subtle
difference between F αβ and Fαβ, which should not be
screwed up. The closure (3.12) in component language was
tricky, but we also saw this subtlety is reflected also in
superspace language in an equally sophisticated way.
The confirmations (A9) and (A10) are equivalent to the

satisfactions of superspace BId (A2a) at the engineering
dimension d ¼ 1. In particular, the closures (A9) and (A10)
justify the correct structure of ∇α χβ

I in (A3c), and
equivalently δQ χI in (3.4d) in component. This is hardly
trivial results, because it further verifies the total consis-
tency of the coexistence of φI and ϕI transforming differ-
ently under the gauge groupG. The satisfaction of our BIds
is not the result of accidental coincidences.
At the present time, we have neither a superspace action

formulation nor an off-shell formulation with auxiliary
fields. This is similar to higher-dimensional supersym-
metry, where only on-shell formulations are known in
superspace. Typical examples are such as 10D supergravity
[30] or 11D supergravity [29].
Even though we have no superspace action formulation,

at least in the Abelian limit (fIJK → 0), our system can be
shown to be equivalent to that with gauged [31] R
symmetry [24], as follows. First, we generalize the original
R symmetry in [24] to the Abelian automorphism sym-
metry of 4D, N ¼ 1 Poincaré superalgebra. It is realized in
terms of the superspace Grassmann coordinates together
with relevant fermionic component fields. Certain freedoms
exist in representations due to extra transformations on
superfields. To be more specific, a chiral superfield Φ is
transformed under R symmetry, either by a phase:
δβΦ ¼ iβΦ, real shift: δαΦ ¼ α, or pure imaginary shift:
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δγΦ ¼ iγ. The chiral superfields with different realizations
of R symmetry are formally related as Φ¼eΦ

0
or Φ ¼ eiΦ

00
.

For example, the free chiral superfield Lagrangian ΦΦ̄ is
invariant (up to a total divergence) under all these three
types of the R-symmetry representations. In the Abelian
limit fIJK → 0, the real-shift R symmetry is

δαφ ¼ −mα; δαAa ¼ ∂aα; δαϕ ¼ 0; ðA11Þ

where φ (or ϕ) is identified with the real (or imaginary) part
of the spin-0 fields of Φ. Our action ISPS (3.1) in the
Abelian limit fIJK → 0 is actually invariant under δα
because of δαPa ¼ δαð∂aφþmAaÞ ¼ 0.
Second, we can regard Eq. (3.4.35) in superfield for-

mulation in [31] as the gauging of the shift realization of R
symmetry. In other words, Eq. (3.4.35) in [31],

IAbelian ¼
1

2

Z
d6zWαWα þm2

Z
d8zV2

þ im
Z

d8zVðΦ − Φ̄Þ þ 1

2

Z
d8zΦ̄Φ; ðA12Þ

can be interpreted as supersymmetric Abelian Proca-
Stückelberg theory. Here we are following the conventional
superspace notation [31], such as Wα ≡ −ð1=4ÞD̄2DαV.
The real-shift R symmetry is gauged in (A12), as IAbelian is
invariant under [31]

δαΦ¼mΛ; δαΦ̄¼mΛ̄; δαV ¼ i
2
ðΛ̄−ΛÞ: ðA13Þ

The component Lagrangian of (A12) is equivalent to
(3.4.39) in [31]:

LAbelian ¼ −
1

4
ðFabÞ2 þ

1

2
ðλ̄∂λÞ − 1

2
m2ðAaÞ2 þ

1

2
ð χ̄∂ χÞ

−
1

2
ð∂aϕÞ2 þmðλ̄ χÞ − 1

2
m2ϕ2; ðA14Þ

up to appropriate normalizations. The only minor differ-
ence is that (3.4.39) in [31] keeps auxiliary fields F and D,
while using the gauge φ ¼ 0. The gauge φ ¼ 0 is equiv-
alent to the absorption of our φ field into the longitudinal
component of Aa: Pa ≡ ∂aφþmAa → þmAa. Modulo
these points, (A14) is nothing but our Lagrangian LSPS

(3.1) in theit Abelian limit fIJK → 0. In other words, in the
Abelian limit of (3.1), we have the superspace action
formulation (A12) in terms of the chiral Φ and real V
superfields. Hence in the Abelian limit, the two superfields
V and Φ are fully disentangled off-shell and prior to any
gauge fixing.
From this viewpoint, our supersymmetric Proca-

Stückelberg Lagrangian LSPS (3.1) can be interpreted as
the non-Abelian generalization of the Abelian case (A12),
(A14) or (3.4.39) in [31].
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