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We present a formulation for N = 1 supersymmetric Cremmer-Scherk theory in 3 + 1 dimensions.
Originally, Cremmer and Scherk presented the purely bosonic Abelian gauge-symmetry breaking with the
field content of an Abelian vector A, and a second-rank tensor B,,. In our present paper, we perform both
the non-Abelian generalization and the supersymmetrization of Cremmer-Scherk theory. Our field content
is the Yang-Mills multiplet (A,”, ") and the non-Abelian antisymmetric tensor multiplet (B,,', ', ¢'),
where y! is a Majorana spinor, and ¢’ has spin 0~, with the adjoint index / = 1,2, ...,dim G of a non-
Abelian group G. As a preliminary step, we establish supersymmetric Proca-Stiickelberg formulation with
the field content (A, ) and (¢, y'. ¢"), where ¢’ (or ¢') serves as the coordinates (or an adjoint
representation) of the non-Abelian gauge group G. In the Abelian limit, our system is equivalent to the
system with the gauged R symmetry of the chiral multiplet (¢, y, ¢») which has a superspace action. We
next perform the duality transformation from ¢’ to BWI to reach supersymmetric Cremmer-Scherk theory.
Unlike similar formulations in the past, both of our Bﬂb’ and A”I fields are physical and propagating, as the
most nontrivial and new ingredient in our model. Our super-Proca-Stiickelberg formulation provides an
important foundation of our super-Cremmer-Scherk formulation, different from conventional chiral-

superfield formulations.
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I. INTRODUCTION

There has been considerable development in building
consistent interactions of the so-called “non-Abelian tensor”
fields [1]. How to establish consistent theories for non-
Abelian tensors had been a persistent problem, due to
inconsistencies such as noninvariance of their field strengths.
This problem has been recently resolved by “tensor hier-
archy” formulations [1]. The key feature is that the conven-
tional field strength of a non-Abelian tensor should be
modified by a generalized Chern-Simons term. For example,
the naive conventional ﬁeld strength G,(,,,Z, for a second-rank

non-Abelian tensor B,,” is G,(,,,E,, =3D,B,, I'12]. In tensor—
hierarchy fonnulatlons [1,2], this is modlﬁed to, €. g ,

G, =3DB,,;" + fUKF,, C,K (L1)

by the new Chern-Simons term /K F/ A CX, where C,"isa
new extra vector field, and F,,/ = 28,A,)" + gf""*A,’ A%
is the non-Abelian Yang-Mills (YM) field strength.
Accordingly, C #1 has its proper field strength with another
Chern-Simons term:
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'We use the indices I1,J,...=1,2,...,dimG for a gauge
group G. Accordingly, £/ K is the structure constant of G,
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H,'=2D,C,' +gB, . (1.2)
One can confirm the invariances of the field strengths G and
H under the tensorial transformations with the parameters
and y, and YM-gauge transformation with the parameter :

6(1(3;41/ ,C 1 A ) (—f”Ka‘IBW,K,—f”K(X‘ICﬂK,—FDM(lI),

(1.3a)
83(B," . C,LLAS) = (+2Dypy" —gp,". 0), (1.3b)
13} (BWI,CI/,AI/) = (—f”KFWJ}/K,DﬂyI,O). (1.3¢)

These systematic results strongly indicate many potential
applications of tensor-hierarchy formulations [1,2], such as
nonsupersymmetric applications to higher dimensions [3].
Examples with supersymmetrization are such as the super-
symmetrization [4,5] of Proca-Stiickelberg formulations
[6], or the supersymmetrization [7] of the Jackiw-Pi model
[8], and even the supersymmetric composite models [9].

In view of these successful results, we expect many
more applications. Cremmer-Scherk formulation [10] is
one such example, because it contains a tensor field B,
The original Cremmer-Scherk theory [10] was designed for
spontaneous dynamical breaking of U(1) symmetry, which
was different from the then-known Proca-Stiickelberg [6]
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or the Nambu-Goldstone-Higgs (NGH) mechanism [11],
and is also referred to as “topologically massive gauge
theory.” The original motivation of [10] was to study gauge
breakings in dual resonance theories [12]. As such, there
are potential applications to the theories of superstring [13],
supermembrane [14], or extended objects [15]. Motivated
by these developments, we try in our present paper to
accomplish the “non-Abelianization” and supersymmetri-
zation of Cremmer-Scherk theory [10].

The field content of the original Cremmer-Scherk theory
[10] was the Abelian vector A, and a second-rank anti-
symmetric tensor B, with the basic Lagrangian®

1 1 1
ﬁCS - Z (F/w)z 12 (G/w/)) - Z meﬂmeﬂbF/m (1 421)
v 1 1 1 vpo
:_Z(F/w)z _E(Gm/p)z —l-gme” ! Gm//)Am (]4b)

with F,, =20,A, and G, = 30,B,,. In terms of the
Hodge-dual field strength N, = (1/6)¢,””’G,,,, Eq. (1.4b)
is recast into

1 1
g = —Z(FW)2 +=(N,)*+mN, A"+ A(9,N*).

: (1.5)

In (1.5), the field N, is a fundamental independent field, so
that we resort to a Lagrange-multiplier A to force the
Bianchi “identity” 0,N* = 0 as a constraint. In modern
language, this process is the so-called “duality transforma-
tion” [16]. The field equation of N, is algebraic:
N,=-mA, + 8”A,3 which enables us to eliminate N,
from (1.5) to reach the Lagrangian

1 1
s = =7 (Flu)? =5 m*(4})?,

; . (1.6)

with A, = A, — m‘lﬁﬂl\. The Lagrangian (1.6) is nothing
but that for a massive Abelian vector A. This Cremmer-
Scherk formulation [10] is an alternative way of breaking
gauge symmetry, different from the conventional NGH
mechanism [11]. Notice also that the massive component of
A, is still physical with its propagating modes.

There were further works similar to the generalization of
the original Cremmer-Scherk theory [10] to non-Abelian
gauge groups in [17,18] with the field content (A, B,,") or
(A", ¢"), where B, and ¢' are Hodge dual to each other.
This series of formulations is sometimes referred to as

*We use the symbol Y for an equality up to a surface term,
and our metric is (17,,) = diag.(—, +. 4. +). The constant m has
the dimension of mass, serving also as a minimal-coupling
constant. Accordingly, the engineering dimensions for bosons
(or_fermions) is O (or 1/2).

We use the symbol = for a field equation, distinguished from
a simple equality.

“scalar-tensor theory.” Also the supersymmetrizations of
such systems were performed in [19-21]. Even though
these works have similarity to the supersymmetrization
of [10], they are not quite the same, because their YM field
becomes auxiliary, lacking its propagating degrees of
freedom as a vector field. For example, in the super-
symmetrization in [21] based on [18], the purely bosonic
field content in [18] is (A,’, B,/ C,), where A, is the
standard YM-gauge vector, while C,’ is an extra vector.
The essential part of the Lagrangian of [18] in our
notation is

1 1 1
LHK = _Zeﬂypryvleal - Z (H/wl)z - Emz(A;tl)z (17)

with the conventional YM field strength: F /wl = 28[,,A,,]' +
mfl7KA, A K, and H as the field strength of the extra
vector field C,":

HWI = ZD[ﬂCD]I = 2(9[}46'”]1 + 2mfIJKA[#JCD]K. (1 8)
Due to the fopological B A F term in (1.7) [22], the
BM’ -field equation yields the pure-gauge condition
F, 0= A =m"0,¢' + O(®?),* resulting in the
o-model kinetic term —(1/2)(0,¢")* + O(®*) from the
—(1/2)m*(A,")? term. In other words, the YM fields in
[18,21] are simply auxiliary lacking their kinetic terms.
Because of this, we do not regard [19,21] as a genuine
supersymmetrization of (1.4) or [10].

Additionally, as stressed in non-Abelian tensor-hierarchy
analyses [1,2], the B/w[ kinetic term needs special care for
consistent interactions, when the YM field strength is not
vanishing, as in the non-Abelian generalization of [10].

In our present paper, we perform a genuine supersym-
metrization of the Cremmer-Scherk theory [10], in which all
YM fields have kinetic terms. In particular, we maintain the
physical propagation of both A,” and B,,, which are the
most crucial parts of the theory. Our YM field strength will
not end up with the pure-gauge equation ¥,/ = 0asin[17].
We first consider a new N = 1 supersymmetric Proca-
Stiickelberg formulation with the field content of the YM
multiplet (A,”, 2') and a chiral multiplet (CM) (¢, ', ¢"),
where ¢ are the coordinates of the group manifold G. This
formulation is more economical than our previous similar
formulations [4,5]. Since the scalar ¢’ are the coordinates of
the group manifold G, transforming under G differently
from ¢, conventional global R symmetry in the CM [23,24]
is lost in the non-Abelian case.

We next perform a duality transformation [16] from the
scalars ¢’ to their Hodge-dual B,,'. Thus the resulting

“We use the symbol O(®") for the nth order in terms of
fundamental fields.
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system is nothing but the N = 1 supersymmetrization of
the Cremmer-Scherk theory [10].

As will be seen, our supersymmetric Cremmer-Scherk
formulation has nonpolynomial structure, that has not been
well covered in general non-Abelian tensor-hierarchy for-
mulations [1,2]. The nonpolynomial feature itself, though, is
not new. In fact, the aforementioned papers [17,19-21] have
dealt with nonpolynomial interactions. However, Ref. [17]
did not perform the supersymmetric generalization of such a
system in four dimensions (4D). Also, in [19-21] the tensor
multiplet is shown to be equivalent to the supersymmetric
nonlinear ¢ model in terms of CM, in which scalars and
pseudoscalars are described by a chiral superfield. In con-
trast, our pseudoscalar ¢’ in a CM (¢!, y!, ¢') transforms
differently from the coordinate scalar ¢’. This provides the
additional difference between our result and [19-21].

In the next section, we establish the non-Abelian gener-
alization of Proca-Stiickelberg theory, as the basis of our
objective. In Sec. III, we give the N = 1 supersymmetric
non-Abelian Proca-Stiickelberg theory. In Sec. IV, we
perform a duality transformation [16] from ¢! to its
Hodge-dual BW’ . After this procedure, we reach N =1
supersymmetric Cremmer-Scherk theory. Concluding
remarks will be given in Sec. V. In the Appendix, we give
the superspace [25] reconfirmation of supersymmetric
Proca-Stiickelberg theory.

IL. NON-ABELIANIZATION OF PROCA-
STUCKELBERG THEORY AND CREMMER-
SCHERK THEORY

Before considering supersymmetry, we perform the non-
Abelian generalization of Cremmer-Scherk formulation
[10], i.e., non-Abelian generalization of (1.4). Compared
with [17], the difference is that our Lagrangian keeps the
kinetic term of the YM field, while in [17] the YM field
strength vanishes, yielding the pure-gauge configuration
such as A,/ = 8,9’ + O(®?), used for the ¢ model.

As stated in the Introduction, we first review the purely
bosonic non-Abelian Proca-Stiickelberg formulation with
the field content (A,”, ') [4,5]. The original papers on
Proca-Stiickelberg formulations [6] were only for the
Abelian group. The basic formulation for purely bosonic
non-Abelian Proca-Stiickelberg theory has been already
presented in our past two papers [4,5]. However, since there
is subtlety with the non-Abelian case, we recapitulate the
details for completeness.

The field content for non-Abelian Proca-Stiickelberg
theory consists of the scalar ¢’ for the coordinates of the
group manifold G [26], and the YM gauge field A,’. Under
an infinitesimal YM-gauge-transformation 6; with the
parameter a!, these fields transform as
(2.1a)

ore? = —mae?, 06 ? = +me ?a,

5TA/41 — D’u(xl = aﬂal + mfIJKAM'I(XK, (21b)

In (2.1a), the adjoint index [ is suppressed for e? =
exp(¢!T!) and a = /T, where T! are the generators of
G. Note that the right side of the first equation in (2.1a) is
not the commutator —[a, ¢?], but —ae?, because ¢’ are the
coordinates of the group manifold G. Because of the
transformation (2.1a), the “field strength” for ¢ defined
by [4.5]

P =[(0e”)e ) +mA,, (2.2)
transforms covariantly:
6P, = —mf%a P K. (2.3)

The important 5property of the field strength P is its Bianchi
identity (BId):

1 1
DyP) = 5mF,' + 5 f"FP,/PX.

v

(2.4)

As a corollary, we have the gauge-transformation rule, and
the covariant-derivative rule:

6r(Dye?) = —ma(D,e?), (2.5a)
D,(D,e?) = 0,(D,e?) +mA,(D,e”) (2.5b)
[D,.D,]e? = mF,,e?, (2.5¢)

where the adjoint indices are suppressed. These equations

are relevant to superspace formulation in the Appendix.
Because of the covariant transformation property (2.3) of

P!, we can consider the Proca-Stiickelberg Lagrangian®

1 1
EPS = _Z(F;wl)2 - 5 (Pﬂl)z (26)
invariant under non-Abelian gauge transformation:
5T£PS = 0

Our next step is to perform the duality transformation
[16]: ¢' - B,,’, namely, from the field strength P, to its
Hodge dual G,,,,,". To do this, we first replace P, by a new
fundamental field Q,’, and add a constraint Lagrangian
so that the B-field equation implies the BId (2.4) like
DLDQ{;] - (1/2)mF,,' — (1/2)f7%Q,’0,% =0 [16]. The

total Lagrangian now is

’Equation (2.4) is equivalent to a Maurer-Cartan equation,
when F,,/ = 0.

%Except for the field strength F,,/ in [4,5] replaced by F,,,
(2.6) agrees with the nonsupersymmetric (A”’ ,@") subsector of
the supersymmetric Proca-Stiickelberg Lagrangians in [4,5].
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1 1
‘C%S = _Z(F;w])z _E (Qﬂl)z
1 1
+2€MvﬂaB (Danl _EmFPf’l _Ef”KQpJQaK>'

(2.7)

Note that the multiplier field B,,’ has its proper gauge
transformation

4B, = 2Dyp,), (2.8)

which leaves the action I}g for (2.7) invariant. The con-
firmation &;/pg =0 needs the Jacobi identity f/IK| f/ILM] =,

The original Lagrange-multiplier field Bﬂb’ is now a
dynamical field as usual [16], via the algebraic Q-field
equation from (2.7):

1
H”V”Qy] = 5MD61J + 5 EyU/)”fUKBMK QyJ

=G, 01, (2.9)

where G\ = (1/6)e,/"Gyi', and Gl)' =3D},B,,",
while I1,*" stands for the square-bracket part in (2.9).
Obviously, the Q-field equation is nonpolynomial, due to
the involvement of the B term inside I1,*"/. For simplicity,
we solve (2.9) for Q up to O(®?) terms:

Qﬂl = (IT"! )ﬂyIJGIEO)J

= |58 - ; guwro flIKR K 4 O(0?)

=G,/ (2.10a)
Gup' = Gy =35GB, K + O(@%), (2.10b)
where G,/ = (1/6)€,”*G,,,,". Following the usual duality-

transformatlon procedure [16], we substitute (2.10a) back
into (2.7) to yield our non-Abelian Cremmer-Scherk
Lagrangian:

[

1

1
'CNACS = (F/wl)z - E (G/wpl)z - ZmeﬂypGByyleal

—_

+oen kB, G, G, + O(®). (2.11)
Since we keep only O(®'), O(CI>2) and O(®?) terms in the
Lagrangian, the definition of G;wp in (2.10b) does not need
O(®?). Needless to say, (2.11) is reduced to the Abelian
case (1.4a), when f/K = 0.

There were some works in the past for non-
Abelianization of Cremmer-Scherk theory [10], such as
[27]. However, in those theories, the field strength for B}w’
is like

G,

Hup _3D[ﬂBl'/’ +3fHKF[ﬂ ]K’

(2.12)

introducing the new extra vector field C,’. This is nothing
but one of the general prescriptions in tensor-hierarchy
formulations [1,2]. The drawback of such formulations [27]
is that the field equation of the new vector C,’ yields an
undesirable condition f"/XF,,/G»K =0, due to the lack
of the C, ! Kinetic term. Therefore such formulations do
not really serve as the genuine non-Abelianization of
Cremmer-Scherk theory [10].

Note that the two important terms of the B A F and
B A G A G types coincide with the result in [17]. Notice
also that (2.10) has not been covered by the general non-
Abelian tensor-hierarchy formulations [1], because of the
nonpolynomial structure of the field strength (2.10b). Even
though similar nonpolynomial structure was already pre-
sented in [17], the main difference in our system is that the
YM field has its kinetic term intact, i.e., our YM field is
physical and not auxiliary.

III. N=1 SUPERSYMMETRIC
PROCA-STUCKELBERG FORMULATION
IN FOUR DIMENSIONS

Our next task is to supersymmetrize the last section. To
this end, we first need to supersymmetrize the Proca-
Stiickelberg Lagrangian (2.6). We can in principle use our
previous results in [4,5]. However, we present a new
simpler supersymmetric Proca-Stiickelberg formulation
in this paper. Our new field content is more economical
than [4,5] with only two multiplets: the non-Abelian YM
multiplet (A,’, 1) and the Proca-Stiickelberg multiplet
(@', y', @) with no other multiplet. The scalar ¢’ para-
metrizes the coordinates of the gauge-group G, while a
pseudoscalar ¢’ is in the adjoint representation. Thus the
two spin-zero fields 0" and 0~ within a CM play different
roles under the same group G.

Our new action Igps = [ d*xLgpg for a supersymmetric
Proca-Stiickelberg theory has the Lagrangian

1 1 - 1 1,
Lgps = _Z(fﬂvl)z + E(AID/V) - E(P/V + E(ZIDXI)

(DR () = S ()
= imf U Ry WS = 3 R RE, ()

where

P =[(D,e?)e ) =[(0,e?)e ) +mA,,

(3.2a)

Jf:'}wl = 28[}4141/]] + mfIJKAﬂJADK + m_lfHKP”JPbK

= F,/ +m fUKp,Ip K, (3.2b)
D = 0,0 + mfUKA,IIK,
D,y =0, 4" +mf%A,7 yX. (3.2¢)
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Equation (3.2a) implies that ¢’ serve as the coordinates of
the group manifold G. In other words, supersymmetric
Proca-Stiickelberg Lagrangian (3.1) is nothing but the
supersymmetric gauged o-model version of the group
manifold G. The reason why we need the modified field
strength 7,/ for the A,/-kinetic term is similar to the
formulation in [4,5]. This is justified by the superinvariance
0olsps = 0, as will be described around (3.7) below. This
will be further justified in our superspace formulation in the
Appendix. This is also understood as the origin of the
intrinsic nonpolynomial feature of our supersymmetric
Cremmer-Scherk formulation in the next section.

The P and F field strengths satisfy their BIds which are
also similar to the corresponding equations in [4,5]:

DyP," =+~ mf,w’, (3.3a)
D F,, = +f"5F,, P& (3.3b)

Our action Igpg is invariant under N = 1 supersymmetry,

5QA;41 _ +(57ﬂ/11) _ m—lfIJK(é)(J>PﬂK

=5pA,! —m UK (& )P K, (3.4a)

S =+ (7"”) Fu' +im(yse)p' + f75 (e4%),

(3.4b)

[(6ge?)e™]! = +(&x"). (3.4c)
dox' ==(r"e)P,' +i(ysr'e) D¢’

— il K (ys ) ex®) et (3.4d)

S = +i(ersxh), (3.4¢)

where hIJ,KL = fIJMfMKL.
As a corollary, we mention the transformations of PMI
and F ﬂ,/ . First, the general transformation rules are

8P,'=D,[(6¢")e~?)' +[m(5A,") + fVK{(5e*)e~?} P K]

M
=D,[(5¢")e~?)' +m(A,"). (3.5a)
8F ' =2D,(5A,") + 2K (54,7 )P, K
— fUK[(se?)e~?) F K, (3.5b)
SA, = 6A,1 + m~ fUK[(5e?)e ] P K. (3.5¢)

Note that the definition of SQAMI in (3.4a) is consistent
with (3.5¢). Accordingly, we also have the convenient
lemmas:

SoP,' = +(eD, x") + m(ey,A"), (3.6a)
5Q,/T}wl = —2(@]/[/41)”])41) +2 ”K(é}’[ﬂﬂj)PD]K
f”K(E’)(J)]: K. (3.6b)

Note that the last m~'f(¢y)P term in (3.4a) does not
remain in 5QP// , because it is canceled by the difference
term between dpA,” and 5,A,”. In the first two terms in
(3.5b), the variations are 5A,! instead of 54,, which are
reflected in (3.6Db).

The supersymmetric invariance §y/sps = 0 is confirmed
as follows: There are in total six sectors arising in
the variation Sylgps up to O(@*): (i) m°®?, (i) m'®?,
(i) m>®2, (iv) m°®3, (v) m' @3, and (vi) m*>®> up to O(d*).

The sector (i) has three subsectors: (a) ADF, (b) yD?*¢,
and (c) yDP. These subsectors are routine confirmations
whose details we skip. The sector (ii) has three subsectors:
(@) myF, (b) mAP, and (c) mAD¢, which are also routine
sectors, and details are skipped. The sector (iii) has only
one sort of term: m? y¢, which is straightforward.

Sector (iv) is rather nontrivial with three subsectors:
(@) yADA, (b) APF, and (c) yF?2. The subsector (a) needs
Fierz rearrangements. There arise five different structures
of y matrices fYK(&y, x')(X'y"DIK), where [n](n =
0, ..., 4) represents the number of antisymmetric y matrices.
Especially, the 1y term in 6,4 plays a sophisticated role for
the cancellations of these terms. The subsector (¢) of (iv) for
yF? terms is straightforward and details are skipped here.

However, the subsector (b) for APF terms is the
most crucial sector, because this sector shows why
(F,')* is needed 1nstead of the conventional (F,,')?* for
the A I kinetic term.” There are three terms contrlbutmg to
this sector and their cancellations work like®

05, [— % K@ 2T )PK — % (Fu')* + % (Z’m’)] -
:_fIJK|:< 67//;(;]_- >y;4/11:|PK
; [+2fIJK(€]/ /1./)1)1/ ]:ﬂul
+ -3 @ | D s (3.7
v + % FIK (&yproyia)) P”K ]_—MI — FUK( &, AP K Fml
+ 3 @ADL F i (3.70)

"This necessity is just the same pattern as in our previous
papers [4], but just for readers who doubt the validity of our
previous paper [4], we give the fresh details here.

'We use the symbol = for equalities that are to be confirmed.
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1 oo _ .
— +§fIJK(€},yp AI)P/;J]:/)UK + f”K<€}/p/11)P Jj:paK

1
_ fIJK (é}/ﬂﬂl)Pyj.'F’“/K + Ef”K(éy’”’”/ll)PgKfW,J

(3.7¢)

=0 (Q.E.D.). (3.7d)
The cancellations occurred between the first and fourth as
well as second and third terms in (3.7¢). Note that in (3.7b),
we have used the F-BId (3.3b) after a partial integration.
In particular, if the field strength (F )% in the A,-kinetic
term were replaced by the conventional one (F WI )%,
there would arise no AFP term from &5y(F, ") via
(6gP) A P. Therefore there would be no cancellation of
APF terms against the contribution from the Pauli term
FUK@2!y#27)P,X, which is needed independent of the choice
between F and F in the A,-kinetic term. Because of these
highly nontrivial mechanisms, the modified field strength
F !'is indispensable in the A, !_kinetic term. This explains
why superinvariance of our action necessitates (F,,")?
instead of (F,,’)* for the A,-kinetic term. Note also that
there was no such necessity for the nonsupersymmetric case
in the last section. It is not due to our “convenient choice” or
“subjective taste” to use the modified field strength F /. Itis
the superinvariance 6ylsps = 0 that determines the right
choice between F and F.

The sector (v) has six subsectors: (a) mA¢P, (b) ma y?,
(c) mA3, (d) migpDep, (€) my¢?, and (f) m ypF. Among
these, the subsector (b) needs Fierz rearrangements. To be
more specific, we have

2

02|+ 3 (/D) = Xy W+ m( )|

miz
= +%mf”’<(€m’)(;?’y”x’() —imfY% (2 ysx)i(ers %)
+mlfK (ex*) 2 1 (3.82)
mf"* &y, A" (2 2*)
+ [+j—1mf”’<(57,4/1’)(5(’y"x")
+ émf”K(%M’)(i/y"”xK)]
+ [+ 41_1 mf!% @y, AN (v 1%)
- g @A) (' 1) (3.80)

=0 (QED.). (3.8¢)

Equation (3.8b) is the result of Fierz rearrangements for the
second and third terms in (3.8a). The cancellations in (3.8b)
resemble that for the stereotypical YM coupling to a
conventional CM. However, this justifies the contribution
of our peculiar term (€ )4 in 6y, and also the nontrivial
mixed mass term m(1y) in our Lagrangian Lgpg, as well.

The remaining subsectors (a), (c), (d), (e) and (f) are
straightforward to handle. The sector (vi) has only one kind
of terms: m? y¢>, whose cancellation is straightforward,
and its details are skipped here. The sectors (v) and (vi) with
positive powers of m do not involve Blds, due to their
engineering dimensions. These terms are rather straightfor-
ward except for Fierz arrangements. However, such Fierz
arrangements are not special to our model, so that they are
skipped here.

The total consistency of our new multiplet (¢, ¥/, ¢")
with ¢’ and ¢’ transforming differently under gauge
transformation 67, we give additional nontrivial supporting
evidence. Namely, we can confirm the closures of super-
symmetry on all fields.

To this end, we prepare the field equations of all fields
Al @ @' A" and 7

5['SPS

A > = _Dbf';wl _ mPMI _fIJKfIwJPbK
u
= mf K@ ) = Smf K Gl v o)
+ mflUK I prgpK = (3.9a)
oL 3
T i = +D, P mf ()
oL .
+ UK [ﬂ( AS’?SH =0, (3.9b)
oL 7
5(21135 = +D2p" — mPp! — imfE (A ys 4¥)
- 07 (39C)
oL
ﬁ = +DA + my" —imfUK (ys x ) ¥
— fUK ()P K =0, (3.9d)
0Lsps — Dy mil UK (K =0 (3.9
57 mA' +imf"" (ys2") (3.9¢)

Note that the coefficient of the (yA) term in (3.9a) is (=1),
while that of the (yy y) term is (—1/2). This is caused by
the additional contribution to the former from the (1yA)P
term in the Lagrangian. In (3.9b), the last term vanishes
upon the A-field equation.

*These field equations are valid up to O(®?), because of the
Lagrangian valid up to O(®*).
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. . . I'
We now start confirming the closure of supersymmetry, starting with A,":

[5Q(€1)’5Q(€2)]A#1 = [(527@;51/1]) —m™! f17K(,6, }(J)PMK - m_lf”K(éz)(])51P;4K] - (1<2)

_ |1 . _
= +e2y, 5(7’)661)7pa] + im(yse @' + f7KV (& %) | = (1 < 2)

= [~ e = (r'e)) P + ilysr*e ) D" }P,K = (1 < 2))]

— [m™' f7K (ex " ){(e1D, 1

— gufwl 4 D”a(l)l + m—lf[]KéypyJP”K

)+ m(er,d%)} = (1 < 2)]

(3.10a)

(3.10b)

=&9,A," + D,a"" + D,aV!

= 5pA, + YA+ 84 = 8pA, + 674, (QED.).

Here we have used

5] = (SQ(GI),
&' =+2(er"er).

52 = 5Q(€2),

SpA,l = E&D,A,, (3.11a)

80 =6p(a®), 8V =6p(a)),  sr=o + o)),
(3.11b)

o = a®! 4 oI, a0 = —&AL,
oV = m™ UK () 1) (82 29). (3.11¢)

where Jp stands for a translation operation with the
parameter &“. In (3.10a), there is a pair of like terms for
(€17#2) (&, x) that canceled each other. Notice the nontrivial
cancellation between the last £P A P term in (3.10b) and
the like term out of the first £F term involving the like term
EP A P. The final form (3.10c) in terms of the translation
op and the gauge transformation &7 implies the closure
of supersymmetry on Aﬂl , as desired. In the closure-
confirmation computations, we keep only terms at
O(®'), O(®?) and O(®?), because our Lagrangian is
valid up to O(®%).
Similarly the closure on e? is

([6o(e1), 8g(e2)]e?)e™

={61[(62¢")e7"] = (82¢7)(81¢7")} —(1<2)  (3.12a)

=[61(&x") + (5,¢7)e?(61e”)e 7| = (1 - 2)
=& (—reP, +iysy'e D) — (1 2) +[(e2x). (€1 7))

(3.12b)
= +&P, + fK(&r 1) (&1 )T (3.12¢)
— 1 (Spe?)e + (57¢%)e™?  (QED.). (3.12d)

(3.10¢)

|

Here we regard each term as generator valued, e.g.,
[(E200). (B )] =5 (ai” ) (&14%)T", while Spe?=E0,e?,
and pe? = —mae? with o = a9’ + oV consistent
with (2.1a) and (3.11). In (3.12a), the second term inside
the braces is to subtract the J; acting on ¢~%. In (3.12b),
the D¢ term does not contribute, due to (éysye;)—
(1 <> 2) = 0. The y? term in (3.12¢) is interpreted as the
all) term in (57e?)e~?. This highly nontrivial sophisti-
cated and subtle rearrangement at the quadratic order
for the closure provides supporting evidence for the
consistency of our system. This component closure
computation is reconfirmed in superspace as (A9) and
(A10) in the Appendix.

As for the closure on ¢/, it goes as

[Bo(e1). bg(ex)]p" = 61 [+i(ersy')] — (1 < 2)

= +igyys[—(r'e)) P, + i(ysy'e)) Dy’
— ih" K (ys ) (81 %) 9" = (1 < 2)

(3.13a)
— éﬂ@ﬂd)l _ mf”Ka<0)J¢K
_ mf”Ka(l)J¢K
=6pd! +6r¢" (Q.E.D.). (3.13b)

The P”I -linear term in (3.13a) does not contribute due to
(€,7s7"€;) — (1 <> 2) = 0. The y?¢ term in (3.13a) pro-
duces the gauge transformation with the parameter a(!)’,
consistent with (3.11c). Even though this looks simple,
it is crucial that the closures on both of the spin-zero
fields ¢’ and ¢’ work without trouble, despite the dif-
ferent &, transformations of ¢/ and ¢'. The superspace
reconfirmation of this closure is given as (AS8) in the
Appendix.

The closure on A/ is also one of the most nontrivial,
because of the A-field equation involved:
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[61.6,)4" = 8, {4'% (y"ex) F ot + im(yser)d’ +f”KﬂJ(52)(K)] - (1< 2) (3.14a)

= +é (]/’”’52)[—2(51)/”Db/11) - 2fIJK(El7/ﬂj'J)PDK - fUK(él)(J)fﬂVK] - (1 g 2)
+ [im(ys€2)i(& 175 x")] — (1 < 2)

F 1 [ ) B i) | @) = (10 2)

+ 7KW e [—(r*e))P,X + i(ysy'e)) D, %] — (1 < 2) (3.14b)

1 5£SPS 1 v 5£SPS
- +§”Dﬂﬂl + 57‘&1 - Z?j”yﬂ <7 - ZC” }//“, W (314C)
= 5pi! + 6,1 (QED.). (3.14d)

Here {* = (&,y*"€;). In (3.14b), we have used (3.6b). Proper Fierz arrangements for the quadratic-fermionic terms and
considerable cancellations among like terms in (3.14b) lead to (3.14c¢). By the use of the A-field equation for the first time in
(3.14c¢), we reach (3.14d). Since the A-field equation is valid up to O(<I>3), we ignored a y?A term in (3.14c).

The closure on y’ is equally nontrivial:

[6o(e1).60(ex) ¥ = 61[=(r*e)P," + i(ysy*e)D,¢'] — (1 < 2)
= [_(7”62){(51D,4)(1) - m(él}/ﬂlll)}

+ i(ysr*e)i(eysDy ") + imf1% (17,4 ) (ysy'er)p¥] = (1 < 2) (3.15a)

1 SLsps
- +§”D;¢)(I—Efﬂ7y< 5)_(] ) (315b)
= 48,4 + 5,4 (QED.). (3.15¢)

As in the case of 4, after Fierz arrangements, cancellations of like terms in (3.15a), and upon the use of the y-field equation
in (3.15b), we reach (3.15¢)."

We give yet another confirmation among field equations. This is performed by varying the A and y-field equations under
supersymmetry:

A

— ) (B + (P ) 3160
m

’ oL
0L 5Q< SPS) _ 5Q[D/11 + m)(l _ iMf”K(]/sj(J)(]ﬁK —f”K(yﬂ/lj)P”K]

= 0. (3.16b)

We have not used any field equation except for the last equality (3.16b). Similarly for the y-field equation, we get

. o (L .
035, (—5;?) = So[+D " + mal + imfVK (y527) K]

] o) o

As before, no field equation has been used until the last equality in (3.17).
As the final consistency confirmation, we show the divergence of the A,-field equation (3.8a) which is supposed to
vanish by the use of all of our field equations:

"Just as the closure on A, since the y-field equation is valid up to O(®%), we ignored a y* term.
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02 p, (LS
“\ 6A,

- 1
— D” [_va:wzl _ mf”K(lj}/”/lK> _ mPﬂI _ Emf”K()_(J}’M)(K) + mf”KngD”(ﬁK _ f]JK}-WJPvK]

1

_ __mfIJKFWJ}—WK _ szIJK(ZJDlK) _ mDﬂPﬂI _ mfIJK()—(JD){K) + mfIJK¢JD’24¢K

2
_ fIJK (D”]:;wj)PyK _ f[JK]:;wJ (D”P,/K)

(3.18a)

ol [/_V <5§_1511:s>] —m {%} — mflIK |:)—(J <5§;;S>} + mflK ! <5§;1€S> — UK <55iif’ls> pX

=0.

In (3.18a), the first factor F W’ is replaced by
Fu' = f7%pP, P, while the last term vanishes, because
of the P-BId (3.3a). Even though each of the remaining
terms in (3.18a) are directly related to the middle sides of
field equations (3.9), the last equalities in (3.9) with “=”
themselves have not been used until the last equality in
(3.18b). Since this confirmation involves all five field
equations in our system, it would have failed, if there
were any inconsistency among field equations, or that with
supersymmetry and/or with gauge covariance.

For the validity of our unconventional CM, we mention
the following three points: The first reasoning is rather
logical: We already know that a similar situation with a
tensor multiplet was presented in [4]. The tensor multiplet
(TM) in [4] has the component fields (B,,,’, ', ¢') in terms
of the notation in [4]. The reason why the TM in [4] does
not follow the conventional tensor (linear) multiplet
[25,28], i.e., why it cannot be described in terms of a
scalar superfield L, is as follows: On the scalar superfield L
[25,28], the commutator (but not anticommutator) of two
spinorial derivatives gives

[vw vﬂ]L = CI(GCde)aﬁche + C2tr(WaWﬁ)’ (319)
where a (or f3) is for the positive (or negative) chirality.
Note that L is singlet under the YM group, without an
adjoint index. Obviously, this is impossible for non-
Abelian TM in [4], because the G term in (3.19) should
carry the adjoint index, while the tr(WW) term does not,
due to its trace operation. The attempt to make the WW
term be replaced by something like f"/%(W,’W;X) does

not work either, because such a term vanishes for an
Abelian case. Because of this lack of fundamental scalar
superfield, we do not have superspace action formulation at
the present time.

The second reasoning is rather intuitive. Since the spin-
zero fields @' and ¢’ serve different tasks under G, it is
obvious that this multiplet cannot be described in terms of a

(3.18b)

|
common superfield, such as the scalar superfield L’
carrying the common index for ¢/ and ¢'. The third
reasoning is based on the analogy of higher-dimensional
supersymmetry, e.g., 11D [29] or 10D [30] with no explicit
action formulation in superspace in terms of off-shell
superfields. In view of this analogy, the lack of action
formulation in superspace for our on-shell system is
nothing bizarre, even though our system is in 4D.

Note that our results above are highly sophisticated, so
that their cancellations are neither trivial results, nor
accidental coincidences. In particular, the sophisticated
cancellations of quadratic-order terms in the closure on
@ has not been well presented by papers in the past. These
computational and intuitive considerations provide the
supporting evidence for two important aspects:

(1) N = 1 supersymmetry necessitates the modified field

strength F,/ instead of the conventional one F,,”.

(2) Our nonconventional CM (¢?, x!, ¢') with ¢! and

@' transforming differently under §; is consistent
with N =1 supersymmetry. This has been con-
firmed with couplings to the YM multiplet (A,/, 2").

Our supersymmetric Proca-Stiickelberg theory given by
(3.1) through (3.4) is more economical than our previous
formulations [4,5]. Notice that in our CM (¢, ¥/, ¢'), the
spin-zero fields ¢’ and ¢’ play completely different roles,
because the former is for the coordinates of the group
manifold G, while the latter is in the adjoint representation
of G. To our knowledge, this supersymmetric Proca-
Stiickelberg theory has not been presented before in the past.

IV. SUPERSYMMETRIC CREMMER-SCHERK
THEORY BY DUALITY TRANSFORMATION

We perform next the supersymmetric duality transfor-
mation [16] from ¢’ to B,,” applied to the Lagrangian Lgps
(3.1). We follow the same pattern for the nonsupersym-
metric case in Sec. II. Accordingly, we reach the TM
(B, . x'.#") coupled to YM-multiplet (A,”,2"). As is
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usual in duality transformations [16], we first rewrite PM’ as
Q," in (3.1), regarding the latter as an independent field.
We next add to (3.1) a constraint Lagrangian Lgpg =

A [DQ' = (1/2)mF!]. This constraint Lagrangian
“forces” the BId (3.3a) on Qﬂl , after the replacement of
P,/ by 0,/ [16]. The B, field is initially a “multiplier”
field, but its field strength G, becomes eventually dual to
Q," with propagation [16].

At this stage, our original supersymmetric Proca-
Stiickelberg Lagrangian (3.1) becomes

1 1 1
sps = 1 (Fu')? - E(Q/)z + E(J?IDZ’)

— 3D+ ml ) =)

1‘1 I
+5 (D)

_ 1 _
= imfUK Glys YK = 2 PRl 0, F
1 1
+56"B,, (D,, 0, —5 m.7-'/,(,1> : (4.1)
where
‘7:#’/1 = FMDI + m_lf”KQ”JQl,K, (42)

with the original m~'P? term in F,,’ now replaced by
m~' Q2.

Our next task is to get the algebraic field equation for the
independent field Q,/, and eliminate it from (4.1) [16]. The
variation of (4.1) by 0, yields its field equation

I/]JQ J = y51]+m—1fIJKf zzK_'_;e upafIJKB K Qyj

- }gO)I_%fIJK(;'LJy”;LK)_+_O(q)3)‘ (4_3)

The I1,*"/ refers to the inside of the square brackets on the
second side. Equation (4.3) is nothing but the supersym-
metric generalization of the purely bosonic case (2.9). As in
the previous section, we keep only the O(®') and O(®?)
terms for the expression of Qul :

Qﬂ[ = (1T~ )ﬂul] [G,(,O)J _ %fJKL (ZK},U/IL)]
m= fUKE K — % P LUK B/}{;K}
[Gi fJKL (157 AL)] + O(@?)
~G,/- %m—lfUK(/‘IJ},MK)
+m  fUEF, G K+ O(@%). (4.4)

This is nothing but the supersymmetrization of (2.10a).

Following [16], our next task is to substitute (4.4) into
Qﬂl everywhere in the Lagrangian (4.1), and reach the
action Igcg = f d*xLgcg for supersymmetric Cremmer-

Scherk theory:

— 1 1N\2 1 a2l 1 1 I1N\2
Lscs = — 4(}—;”/) +2(/1D/1) 12<G/wp>
1 1 1
E( ID)( ) 5 (Dﬂ¢1)2 _ Zmeﬂmeuu]fpal

- 1 ) _
M) = 32 = imf R s )
_ %f”K (/_117;4/1])@”1( + %eﬂbpafIJKB”DIGpjégK’
(4.5)

up to O(®*) terms The field strength G, is the same as
(2.10b), while F,, I'is defined by (4.2) with Q replaced by
G. Or more explicitly,

Gy =+GY) —3fKG,'B,,

K4 0@, (4.6a)

-7:/41/] = +28[uAv]I + mf”KA”JA,/K + m_lfIJKGﬂJGDK

+O(®3), (4.6b)
satisfying their BIds
~ 1
Dy,G,,y = =3f1K <DLuGuJ - 5’"%»’) ;P
+ O(®%), (4.7a)
.7: 01 =42 ”K(DU,G | )G‘p + O(q)z) (47b)

The difference between F,,' and F,,” in the second term in
(4.7a) does not matter, because the difference is only at
O(®%). As (4.7a) shows, the definition of our G field
strength involves G itself. This implies that our system
is intrinsically nonpolynomial, which has not been
covered before by the general non-Abelian tensor-hierarchy
formulations [1,2].

Our BId (4.7a) is valid only up to O(®?). Even though
the involvement of the bare B field in the BId (4.7a)
looks unconventional, it can be understood as follows:
The B-field equation from (4.5) is

DG, mf L SRy Dy

+m™! f”KDU,(}'D]f’JG,,K) +0(@%) =0. (4.8
This implies that the coefficient factor of the bare B field in
(4.7a) vanishes by the use of B-field equation (4.8) up to
O(®?), as desired.
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Our action /gcg is invariant under N = 1 supersymmetry,
SoA,l = +(ey, ) —m7 UK (&4 )G K + O(@3), (4.9a)
1
O =+ (ye) Ty + im(yse)d’ + f1EA (Ex"),
(4.9b)
5QB/41/1 = +l(é]/5]/,w)(1) - 2im_1fIJK(éy5y[uAJ>sz]K
1
+ f%(ex) B + O(@7),

”y\rﬁflJK(éXJ)Fpo_K

(4.9¢)

. 1 _
Sox' =—-("e)G," +i(ysr'e)D, @' + Ef”’((y"e) (Ay,A%)

—m~ UK (pre) F M G K + O(@P), (4.9d)

Sod" = +i(ersy'). (4.9¢)
For example, the difference between F,,X and F,,X in
(4.9¢) will not matter, because of O(®?*) terms ignored.
Notice the peculiar m~! FG term at O(m~") in (4.9d) which
does not arise in general non-Abelian tensor-hierarchy
formulation [1].

Relevantly, we have the useful corollary:

850G, = —[er, (D x' + mil)] + (€D, x) + m(ey,A")
+m! fIJK D/, [ ( é},ﬂ/)o- U GO_K]
+m~ fUED,[(ex)F, ]
+f”K(é)(J)GﬂK —f”K(éyﬂp)(J)GUK
SN Ersn D+ my B,k + O(@Y),

(4.10a)

SoF ! = =2y, DyAl) — 2m~" fK (ey,D 1) G, K
—2m~' fYK (" \D,G,X + O(®).  (4.10b)

Note that the bare B-linear term in the last line in (4.10a)
vanishes upon the y-field equation: D 3/ + mi’ = O(®?).
Because if there were such a bare B term, the
commutator [5,80]G,’ would be problematic with the
0y transformation:

8sB,' = 2D B, = 21K, G K + O@%),  (4.11)
with the derivative D[pﬁ(,]’( created by the bare B-term
in (4.10a).

To avoid misinterpretation here, the argument in the
previous paragraph is meant for the consistency of the

commutator (s, 5]G,". We stress that the y-field equation
is used in (4.10a) only for the consistency of commutator

[5/j, 5Q]Gﬂl , but not for our superinvariance confirmation
0olscs =0 that we will perform shortly. Since our
supersymmetric formulation is on shell, we can use
field equations for commutator algebras or in closure
confirmations.

Relevantly, under the 5/; transformation, the G-field
strength transforms as

i 1
8sGup’ = +61% By’ (D G =5 mF vaK) + 0@

= O(®?). (4.12)
This vanishes up to the required order by the use of the B-
field equation given below in (4.17b). Note that this
invariance is highly nontrivial. In the conventional ten-
sor-hierarchy formulations [1,2] with (1.1) and (1.2), the
variation of the extra vector field C,/ cancels the unwanted
term F A f, as desired. In our present formulation,
even though there arises no F A S, the price to be paid
is the term —6f"X(Dp’) A G arising from 3D(5,4B") =
3D(2Dp" — 2fVKB/ A GX) in (4.6a). This term is exactly
canceled by another contribution from —3f/KG’/ A
(65BX) = =3fVKG’ A (2DK) in (4.6a). In other words,
the factor G is involved in the definition of G itself in such a
sophisticated way that the unwanted derivative term
fYKG’ A DBX is canceled. Even though this peculiar
structure had been known since [17], it does not seem to
have been covered in general non-Abelian tensor-hierarchy
formulations [1,2].

The supersymmetric invariance 5y/scs = 0 up to O(®*)
can be confirmed as follows: There are in total seven
sectors in Splscs: (1) mP®@?, (i) m'®?%, (i) m*®?,
(iv) m~'®3, (v) mO®3, (vi) m' @3, and (vii) m>®3.

The sector (i) has three subsectors: (a) ADF, (b) yD?¢,
and (c) yDG. These are rather parallel to the super Proca-
Stiickelberg formulation in Sec. III, e.g., the previous Q is
now replaced by G. However, we need to avoid possible
misinterpretation about (4.10), i.e., we should not use the
y-field equation in there. To be more specific, subsector
(c) works like

5GP+ 5 (D)

= [(eD, x") — (Er, D XMGM| b6
+ ["‘(@”)Q/]V”DDZIHDG

0Z 680 |+5(GS)* +

xDG

L _ (ey")D,G" — (&, )G + (er"D 4')G,!

= O(@%) (QED.). (4.13)

Here the last two terms cancel each other, while the G-Bld
(4.7a) has been used for the first term. There are O(®?)
terms in D, G*!, but they contribute to subsector (d) yBDG
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of (v) m°®? sector, and subsector (f) m yBF of (vi) m®3
sector, as will be seen shortly.

Sector (ii) has three subsectors: (a) m yF, (b) mAG and
(c) mAD¢. These are also parallel to the Proca-Stiickelberg
formulation. Similarly, sector (iii) has only one straightfor-
ward subsector: m? yg.

Sector (iv) has two subsectors: (a) m~'AGDG and
(b) m™' yFDG. Compared with the last section these
subsectors have the contributions from (1/2)(G,”)? instead
of B A DQ-term, which is now absent. For these terms, the
peculiar O(m™") terms in 5,G and 5,F in (4.10) play
crucial roles.

Sector (v) has five subsectors: (a) A>Dy, (b) AGF,
(c) yF?, (d) yBDG, and (e) yG>. Subsectors (b), (c)
and (e) are parallel to Sec. III. Subsector (a) needs caveat,
because it is related to (4.10a), where we should not use the
yx-field equation. To be more specific, we get

) 1 1 Uik s
0280 [+5 (DY) +5 (2 Dr') ~5 1'% (z’mf)cf]

2Dy

e PIBH + |- 5 ) ) B2
- % PR (=€y, D, 1) (4.14a)
Y0 (QED.). (4.14b)

The third term in (4.14a) is due to the identity —y,,D 7+
D,y =-y,*D,y" for the Dy terms in (4.10a). As in
(4.13), we do not use the y-field equation in (4.14). While
we need no Fierz arrangement, we need a partial integration
to arrange all terms with (A/y#AX) with no derivative.
Subsector (d) yBDG is also nontrivial. It goes like

, i 1 1
0= 5Q[ E(G )2 26’“’”"]‘”1(3 1G,)G,X + - ( 7'Dyh —Zmel‘”p"Bm/]:pgl] (4.15a)
¥BDG
= = i = 4 2 vpc
= {(eDﬂx’) - @Dy =5 " @Ersnd Dx’)B,w’(] G + fKemB,! (€D, 1) = (er,Dx"))G,
xBDG
1 ~ 1 -

) 378,/ G D =y men I 2D, ) = e, DG (4.15b)
—0 (QED.). (4.15¢)

Out of four terms in (4.15a) the 55[(G,')?]| ppe term is
what we promised after (4.13) above. Relevantly, we
should not use the y-field equation in this confirmation.
Even though we wrote yBDG, there are two categories
of terms in (4.15b): e fK(gy"\B,,'D,G,X and
e fUK &y, D x")B,,’G,X, which are equivalent to
x¥BDG after partial integration(s). However, there arises
no term like e’ f“K(ey')(D,B,,")G,*, because it
is proportional to e fK(g GG K + O(d*) =
O(®*). Even though the first two terms in (4.15b)
seem only at O(®?), they contribute the aforemen-
tioned two categories e f/K(zy"\B,’D,G,X and
e fUK &y, D x")B,,’ G,X, because of the BId 4.7a),
and the implicit BG term in G as in (4.6a). In view of
these nontrivial manipulations, these cancellations are by
no means accidental coincidences.

Sector (vi) has seven subsectors: (a) mipG, (b) miy?,
() mA, (d) mipdp, (&) mypF, (f) myBF, and
(g) mABG. Subsectors (a) through (e) are similar to
Sec. III, while (f) and (g) are new. Subsector (g) is rather

|
straightforward to be skipped, while the contributions by
Gﬂ’ to (f) m yBF is subtle, because this subsector is what
we promised after (4.13):

| 1
5 (GﬂI)Z _ Z meﬂupﬂBﬂylf‘/mI:|

06, |:+
myBF

_ > 1 _
= +(€Dﬂ)(1)G”1‘m)(Bf _Zmeﬂylm[ HK(G)(J>BMDK]:F/)GI

1
_ (é)(]) |:+4m€,uy/)o'fIJKf'”DJBﬂO_K:|

1
-2 me"?? fUK (e 4y1\B,,’ F K (4.16a)

=0 (QED.). (4.16b)

The first term in (4.15a) is from the G-BId (4.7a). Sector
(vii) has only one sector m? y¢?> parallel to Sec. III.

We can also confirm the mutual consistencies of all of
our field equations:
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oL 1
6ASCIS _ _DD]_-/WI 4 6 meﬂypaGypgl 4 mfIJK¢JDﬂ¢K
"
1 - _ .
+ S KI5 + (7 )] + O(@%) =0,
(4.17a)
5£SCS 1 v 1 vpo
Hv
1 -
+ Em_leﬂylmeKDp (faTJGrK)
1 > .
+5eme KA y,D,25) + O(@) =0,  (4.17b)
oL =
55 = DM~ = im UK (R ysi) + O(@%) = 0,
(4.17¢)
oL .
S = DA ! imf K s )
- fUK(p2)G,E + O(@%) =0, (4.17d)
oL
6;‘S;S = +D ' +mAl + imfUK (ys27)pK + O(@3) = 0.

(4.17¢)

For example, the divergence of (4.17a) is confirmed to
vanish, upon the use of other field equations, as in (3.18).
The most crucial consistency is the divergence of (4.17b):

02 p, (2Escs
0B,

1
=+ Z mfIJKprJGﬂvpK

1 ~
+ Z m—leﬂvpo-fIJK [Dw Dp] (]:'o_rJGTK)

1 1 -
_ Z me;w/)o'D[yJ':'pﬂ]I + ge;wpﬁfljl( {Dw Da] (lJ)/[,ﬂK)

+0(@%) (4.18)

1 1 ~
-~ -I—meUKfW,JG”W)K _ZmeﬂupafIJKJf:‘WJGO_K + O(q)S)

=0(®%). (4.18Db)
The terms [D, D]FG and [D, D](JyA) in the second and
third lines in (4.18a) are already at O(®%). We also
combined (4.7b) with (4.8) for the DF term in (4.18a)
to reach (4.18b). Finally, the two terms in (4.18b) canceled
each other. It is easy to see that the two terms in (4.18b)
cancel each other.

For the fermionic field equations (4.17d) and (4.17e), we
can vary them under supersymmetry (4.9), and get the

vanishing results as desired. In particular, the peculiar term
m~'FG at O(m™") in 8y of (4.9d) cancels other like
terms arising in these variations.

Our system looks so involved with nonpolynomial
interactions with unnecessary complication. This raises
the question why we cannot follow more straightforward
tensor-hierarchy formulations [1,2]. In order to answer such
questions, we mention the following points. First, the
nonpolynomial feature of our system is traced back to
the corresponding feature in the supersymmetric Proca-
Stiickelberg formulation in Sec. III. It is mainly caused by
the nontrivial P A P term in F. Second, we are formulating
the non-Abelian tensor without any more extra fields. If we
could use an extra vector field such as C”’ in (1.1) and
(1.2), it would be much simpler. However, our objective in
this paper is to supersymmetrize Cremmer-Scherk theory
[10], as economically as possible, with the bosonic fields
A, and B, alone with no more vector fields. In other
words, minimizing the number of supermultiplets, we have
to pay the price of nonpolynomial interactions. Third, this
should not be regarded as a drawback, because we are
reaching a new formulation for consistent non-Abelian
tensor interactions that was not covered by previous tensor-
hierarchy formulations [1,2].

We can investigate now the tensorial transformation
invariance associated with BW’ . To be more specific, our
action Igcg is invariant also under the tensorial trans-
formation for the Bﬂ,/’ field (4.11) with the important
lemma (4.12). Since the B field itself goes down from
O(®') to O(®°) under 84, and our Lagrangian is fixed up
to O(®*), the action invariance is required only up to
O(®%). Accordingly, the transformation for 0pB is required
only within O(®'), while O(®?) terms are ignored. The
transformation rule 64;G (4.12) contains also the field
strength G itself on its rhs, reflecting again the intrinsic
nonpolynomial structure of our system.

Notice the absence of any derivative term DS on the
parameter f in (4.12), as desired for a field strength. This
nontrivial fact is confirmed, by using §;B,” of (4.11) in
(4.6a):

[LHS of (4.12)] = 43Dy, [Dy, B, — zf”K:B\v\JGIP]K]
= 3fVEGy, " (2DyB, %) + O(@?)
(4.19a)
~ 1
= +6fUKﬁMJ <D|DG/,]K - Zm}_yp]K>

= [RHS of (4.12)]

(QED.). (4.19¢)

Here we have kept only O(®') terms, e.g., f1/%(5,G|,”) B, ¥
is already at O(®?), due to §3G,” = O(®'). Note that the
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Dp terms are canceled within (4.19a), while only DG
and mpF terms are left in (4.19b), as desired. In other
words, even though the definition of G contains the bare B
field in the G A B term, its variation with D is canceled by
the like term arising from D(64B) yielding (Df)G. This
also justifies the nontrivial Chern-Simons term G A B in
the G-field strength (4.6a).

After all, the invariance 83lscs = O(®?) is also con-
firmed in a nontrivial Way.11 This follows from Lgcg
containing the bare B term: B A G A G. The variation of
the B field here has the derivative (DB) A G A G. After a
partial integration, this term cancels exactly the variation
B A (DG)AG term coming out of the (G)> term.
Eventually, the existence of the bare B term like B A G A
G in our Lagrangian will not hurt.

There are differences as well as similarities compared
with our previous supersymmetric non-Abelian tensor
formulation [4]. The latter had two multiplets: YM multi-
plet (A,/,2',C,,,") and a T™M (B, y'.¢"). Similarities
are such as two multiplets YM and TM in both formula-
tions. The YM symmetry is also broken in both formula-
tions.' However, the most important difference is that in
our present formulation, the YM field becomes massive by
the dualized Proca-Stiickelberg mechanism. Another differ-
ence is that in our previous formulation [4], the third-rank
auxiliary field Cﬂl/ﬂl becomes massive after the gauge-
symmetry breaking by absorbing BW’ . In our present
formulation, the YM multiplet (A,’,A’) has no aux-
iliary field.

Needless to say, Lgcg in (4.5) is the non-Abelian
supersymmetric completion of purely bosonic Abelian
terms: (F,,)% (G,,)* and ¢“°B,F,, in (1.4a), as a
nonconventional gauge-symmetry breaking mechanism
in [10].

We mention one important aspect of the duality trans-
formation [16]: ¢/ — B/w[ . The realization of this duality
transformation is nontrivial, because this was possible
thanks to the very peculiar coupling of the Nambu-
Goldstone (NG) field ¢’. For any duality transformation
[16] (old potential field) — (new potential field) to be
possible, the old potential field should appear only as a field
strength, but not as a bare field.

For example, a duality transformation from the pseudo-
scalar ¢ to its hypothetical dual tensor field K,,,” does not
work. This is because there is a minimal YM coupling:
D" = 0,¢" + mf %A, ¥, so its BId corresponding to
the case of ¢! in (2.4) is

llActually, this had been known since [17] associated
with nonpolynomiality, but we reconfirm it due to its importance.
We use here the word “broken” in the sense of the original
Proca-Stiickelberg formulation [6]. This is neither conventional
spontaneous breaking nor “by-hand” explicit breaking.

1
D[”Dy]qﬁ’ = Emf”KFWquK, (4.20)
with the bare field ¢X at the end. The routine constraint
Lagrangian [16] plus the kinetic term of ¢’ is"?

1
5K, (DLDH,,]I —5m f’JKFpGJqSK) . (421)

where K,/ is the multiplier field, D,¢’ is replaced by an
independent field H,’, and the field strength of K,,’
namely L,,," =3D,K,," is dual to H,'. For the duality
transformation ¢’ — K,/ to be possible, the old field ¢’
should be only in terms of the field strength Dﬂqﬁ’ that is
replaced by H,'. The trouble is that the bare field ¢’ still
remains in (4.21). Because of this, the field equation of H ﬂl
does not totally eliminate old field ¢’. This is why a duality
transformation [16] from ¢/ — K le fails. The important
and novel feature of BId (2.4) compared with (4.20) is that
no bare field ¢’ is involved in the BId (2.4), so a duality
transformation ¢! — B,wl is possible. The duality trans-
formation ¢’ — B,,' is possible thanks to the BId (2.4)
without the involvement of the bare ¢ field. The lesson here
is that we have to distinguish which field strengths can be
dualized to their Hodge duals by duality transformations
[16], in particular, when dealing with many modified field
strengths accompanied by generalized Chern-Simons terms
such as tensor hierarchies [1-2].

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented the non-Abelian and the
genuine supersymmetric generalization of Cremmer-
Scherk theory [10] in D = 3 + 1, by including both kinetic
terms of A,/ and B,'. This formulation is based on
supersymmetric Proca-Stiickelberg theory in Sec. III,
which is more economical than our previous formulations
with extra vector multiplets [4,5].

The salient features of our formulations are summarized
as follows: In our present paper, we have succeeded in the
new supersymmetric formulations of gauge-symmetry
breaking originally by Cremmer-Scherk [10] for non-
Abelian tensors, combining many different novel formu-
lations in the past. The field content is the YM multiplet
(A", 2") and the tensor-multiplet (B, ', ¢").

As a very important foundation of our super-Cremmer-
Scherk formulation, we have presented a new supersym-
metric Proca-Stiickelberg formulation with only two
multiplets: YM multiplet (A,/, ') and CM (¢, ¥, ¢").

BThere are other @'-dependent terms in Lgcg, but just for
simplicity of the argument here, we look into only these terms.

066021-14



SUPERSYMMETRIC CREMMER-SCHERK THEORY

PHYS. REV. D 100, 066021 (2019)

This formulation is more economical than our previous
formulations [4,5]. In particular, ¢! and ¢’ playing different
roles under G.

We have provided enough supporting evidence for the
consistency of our CM (¢!, x!, ¢') coupled to non-Abelian
SYM (A,/,2"), where @' and ¢' transform differently
under G. For example, we have given detailed confirmation
of the closure on all fields in (3.10) through (3.15). We
have also reconfirmed the closures on ¢/ and ¢’ in the
corresponding superspace formulation (A8) through (A10).
The total consistency among field equations is also recon-
firmed in (3.16) and (3.17), by varying fermionic field
equations under supersymmetry, yielding all bosonic field
equations. Additionally, the consistency of the divergence
of the YM-field equation is reconfirmed in (3.18) with
enough details with intermediate steps.

In order to elucidate the crucial necessity of the field
strength F,,” instead F,,” in our Lagrangian Lgpg in (3.1),
we have shown in (3.7) the decisive terms in the variation
0olsps. The sector APF in this variation clearly showed the
necessity of F,,/ instead F,,/ in the A,-kinetic term.

Our supersymmetric Cremmer-Scherk formulation is
intrinsically nonpolynomial, which has not been covered
by the general non-Abelian tensor-hierarchy formulations
[1,2]. In particular, the presence of the BWI kinetic term
with nonpolynomial structure is crucial. The nonpolyno-
mial feature itself was already known in [17], but our
supersymmetrization of both A,/ and B,' with their
physical propagations was not accomplished in D=3+1
in the past [17,19-21].

We have seen that despite the nonpolynomial involve-
ment of ¢ in the field strength P,/ = [(D,e?)e~?], the
duality transformation [16] of ¢’ to its Hodge dual B,,” is
possible in a nontrivial and nonpolynomial way. In other
words, our formulation provides a new link between our
new supersymmetric Proca-Stiickelberg theory and super-
symmetric Cremmer-Scherk theory [17].

Our supersymmetric Cremmer-Scherk formulation has
the term ¢**°B,,'F,,' analogous to BF theories [22].
However, we have the YM vector A”’ physically propagat-
ing with its kinetic term, and therefore it is not pure gauge:
F uvl # 0, as opposed to [17,19-21]. In this sense, the link
with the o model is entirely different from [17,19-21].

Our superspace reformulation in the Appendix is not
based on the conventional chiral multiplets [19-21]. Instead,
it is based on the superspace Blds. This method may cast
doubt on the validity of such a formulation, because in 4D
any component field in a supermultiplet is supposed to be
expressed as the € =0 sector of the super covariant
derivative of a certain (pre)potential superfield [25,31].

To such a reasonable viewpoint, we respond as follows:
Our system is an on-shell system, so that the conventional
superfield methods for off-shell formulations [25,31] do not
apply here. A typical on-shell system is N = 1 supergravity

in 10D [30], and no off-shell formulation has been
established in 10D. In such on-shell formulations, the only
known method is to satisfy all Blds of all super field
strengths, as we have done in our Appendix.

Despite the lack of off-shell superspace action of our
system, there is an exceptional aspect. Namely, in the
Abelian limit K — 0, our super-Proca-Stiickelberg
Lagrangian Lgpg (3.1) coincides with the Lagrangian
respecting the gauged real-shift R symmetry (3.4.35) in
superspace [31] and (3.4.39) in component [31]. This
special case does have the off-shell superspace-action
formulation. As such, our super-Proca-Stiickelberg system
is interpreted as non-Abelian generalization of that with the
real-shift Abelian R symmetry. The details of this statement
are given in the paragraphs with (A11) through (A14) in
Appendix.

As a whole, our investigation based on duality trans-
formations [16] for supersymmetric ¢ models, and non-
conventional gauge-symmetry breaking in supersymmetric
gauge theories provides a new avenue for supersymmetric
formulation of non-Abelian tensors [1,2]. Our final
super-Cremmer-Scherk theory is based on super-Proca-
Stiickelberg theory, as its very important foundation. Our
formulation has a very economical set of super multiplets,
which was neither explicitly presented as an application of
tensor-hierarchy formulations [1,2] nor in the context of
chiral-superfield formulations [19-21]. We have opened a
new direction of supersymmetry in 4D, which has not been
exploited in the past.
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APPENDIX: SUPERSPACE REFORMULATION
OF SUPERSYMMETRIC PROCA-
STUCKELBERG THEORY

As a reconfirmation of our N =1 supersymmetric
Proca-Stiickelberg theory, we reformulate it in superspace
[25]. The importance of this superspace reformulation is
summarized as five points. First, it is the good reconfir-
mation of Sec. III for its consistency. Second, our scalar ¢’
and pseudoscalar ¢/ transform differently under gauge
group, so we cannot use the conventional superfield
formulation in terms of chiral superfields [19-21]. Third,
our result here will be of importance for the future
applications of similar superspace formulations. Fourth,
our intrinsic nonpolynomial structure of our super-
Cremmer-Scherk formulation originates from the P A P
term in the modified field strength F in (3.2b), which will
be also reconfirmed by our superspace formulation. Fifth,
our superspace Blds do not automatically provide correct
field contents. Instead, the superspace reformulation
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provides nontrivial reconfirmation of the consistency of our
system, where any inconsistency will show up explicitly.
Our fundamental superfields are A/, A/, B,s', y,' and

@' Our superfield strengths P,/ and F 4’ are defined by

Pyl =[(Eqe?)e ) +mAL = [(Vae?)e )], (Ala)
Fap' = E[AAB)I — CapCA!
+ mfIJKAAJABK + m—lfIJKPAJPBK
— FABI + m—lfIJKPAJPBK
= Fup' +m7' [Py, Pg}’, (Alb)

where E, = E,M0);, and Cy5€ = EyEp)™, as usual [25].
Our superspace Blds for P,/ and F,5' are

V[APB)I - TABCPCI — m}_ABI = O, (AZa)

1
ViuFe)' =Tius” Fpic) —Ef”KF[ABJPC)K =0, (A2b)

similar to [4,5]. These are also superspace generalizations
of the component Blds (3.3). The following superspace
constraints satisfy the BlIds at engineering dimensions
0<d<l:

Top® = +2(r) up» Fap' = —(rpA) g (A3a)
P(II = _)((115 v(1¢1 = _i(YSXI)a’ (A3b)

va)(ﬂ[ - _(yc)aﬂpcl - i(75yc)aﬂvc¢l
+ thJ'KL)(aK(},S){J)[iqSL’ (A3C)

1 .
Vs = +§ (D apFed" = im(ys)gpd’ + % xa’ 255
(A3d)

All other independent components, such as F aﬂ’ are zero.
Similarly, the following constraints are obtained from
Blds at d = 3/2:

VoPy' ==V xa' = m(rpd), (Ada)
va:’rbcl = +(7/[bvc]’11)a + fUKZaJ]:ch
- fIJK(}/[b\/IJ)aP\C]K' (A4b)

"“We use the superspace coordinate indices A = (a,a),
B = (b,p), ..., where a,b,... = (0),(1),(2),(3) (or a,B,... =
1, 2, 3, 4) are for bosonic (or fermionic) coordinates. For curved
coordinates we use M = (m,u),N = (n,v),..., where
m,n,...=0, 1, 2, 3 (or pu,v,...=1, 2, 3, 4). Our anti-
symmetrization in superspace is normalized as M p=
Myp — (—1)*BMy,, without the factor of 1/2. We use these
superspace notations only in this Appendix.

Finally, our superfield equations are obtained from
(A2)~(A4) at d = 3/2 and 2:"

(W;Ll)a + m)(rll _fIJK (yb/lj)(IPhK - imfIJK (yS)(J)(1¢K = 07

(A5a)
(72 4 migl + imfU8 (rd) 05 20, (ASD)
VP mfURG ) 0. (ASY

VL P 4 m (1) + 5 (7 rax®)
_ mfIJK¢Jva¢K _ fIJKfabJPbK -~ O, (ASd)
V2! — ) im U (s ) =0, (Ase)

For example, the A field Eq. (A5a) is obtained by the
operation

1 1
(Wﬂ“)a = +§ {vav vﬂ}}“ﬁl - EfIJKF(z[Hl/}K

1 1
=3 ValV4') 5V (Vady!) (A6a)
1 1JK 2J . K
:+§f va(i X )
1 1 .
+§vﬁ +5(76d)(lﬂf.£d1_lm(yS)(lﬁqsI—’—fleZajlﬁK
3 1 1 1 1 1JK (,,b 1] K
:+§(Wl )a+§m)(a _Ef (7/ A )an
i
—Emf”K(Ys)(J)aqﬁK- (A6b)

Needless to say, (A3) and (A4) have been used. In (A6a),
the y24 term out of the FA term has been ignored because
it is at O(®3). The same is also true for the y-field
equation by

1 1 1
V2o =+5{Ves VP ys' = 3 VoV ys) + EV”(VM/)
=—(Vx")y—2mA" = 2imf "  (ys )%, (A7)

yielding (A5b).

The bosonic superfield equations (A5c) through (ASe)
are obtained by applying spinorial derivatives on the
fermionic superfield equations (A5a) and (AS5b). Since
the computations will be just parallel to the component case
(3.16) and (3.17), their details are skipped here.

These superfield equations are consistent with our
component Lagrangian (3.1) and field equations in (3.9).

PThese superfield equations are valid up to O(®%), because
our Lagrangian Lgpg is valid up to O(®).
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Since our superspace-formulation system is an on-shell
system without any auxiliary fields, these field equations
are valid modulo field equations. For example, the A-field
equation term in (3.9b) does not show up explicitly in
superspace in (A6), because they are parts of superspace
“constraints” satisfying Blds at dimensions d > 3/2.

As has been also mentioned in Sec. III, because of the
lack of fundamental scalar superfield such as L, which was
valid for an Abelian TMs [28], we do not have a superspace
action formulation at the present time.

In order to dispel skepticism about the coexistence of
two fields ¢/ and ¢’ with the different transforming
properties under gauge group G, we first reconfirm the
closure (3.13) on ¢’ in superspace:

2(r)apVed’ = {Va. Vi = mfEF 7 ¥
= v((zv/3)¢l - mfIJKF{1/3J¢K

= v(a\ [_i(yS)V})y)(y}

= mfE(=m M y E ™)t (A8a)

£ —i(rs) 5" [= )y Pd’ = i(rs7") ), V'
+ ik KE 0 K (rsa?),0"]

- hIK’LM)(aL Z[]Md)K (Agb)

= +2(7")yVa¢' (QED.) (A8¢)

up to O(®?). In (A8a), the P-linear term vanishes, due to
the antisymmetry (y5yd)(aﬁ> = 0. Also in (A8a), we used
Fop' = Fog' + 7%y’ x5 and F 5" = 0. In (A8D), the
)(245 terms cancel each other as desired, thanks to the Jacobi
identity A/V-KIL = —pILJK,

To see the consistency of the coexistence of ¢’ and ¢/,
we finally reconfirm the closure (3.12): [V (V) e?)]e™? by
two different methods. The first one is using the definition
of Pl

[Va(Vpe?)]e™ =V (y[(Vge?)e™] + (V(,e?)(Vpe™)
= v(aPﬂ) - (V(ae‘/’)e“/’(vﬁ)e‘”)e“/’
(A9a)

- _[_2(76)(aﬁ)Pc - i(757c)(aﬂ)vc¢]

- m_lP(aPﬂ), (Agb)

= +2(y6)a[)’(vce(p)e_(p - m_l)((a)(ﬂ)v
(A9c)

where all terms are generator valued, carrying T/, e.g.,
ViPs = (Vo Pp) )T, etc. In (A9a), we used P, = —,.
while in (A9b), we also used that (ys7) 4 = 0.

The second method is to use the anticommutator
{va/i}:

Viu(Tpe))e™ = [{V,. Ty)erle

= (+T 4V e? +mFpe?)e™  (AlOa)

= [+2(yc)aﬁv68¢
+ m(faﬁ - m_lPaP/j)e"’]e_‘/' (Al()b)

= +2(r) s (Vee?)e ™ —m™ ya xp).-
(A10c)

In Eq. (A10a), we used {V,,V;}e? =T, 4V e? +mF ze?
which is the superspace version of (2.5c). Note that the
gauge field strength F'5 in (A10a) differs from F 4, and the
difference is corrected in (A10b). Needless to say, we also
used the constraint F 5 = 0 in (A10b).

As desired, the two results (A9c) and (A10c) based on
two different methods agree with each other, showing the
consistency of our system. It is crucial that the y? terms at
the quadratic order are consistent, which are by no means a
simple accidental coincidence. It also involves the subtle
difference between F,; and F,s, which should not be
screwed up. The closure (3.12) in component language was
tricky, but we also saw this subtlety is reflected also in
superspace language in an equally sophisticated way.

The confirmations (A9) and (A10) are equivalent to the
satisfactions of superspace BId (A2a) at the engineering
dimension d = 1. In particular, the closures (A9) and (A10)
justify the correct structure of V, )(ﬂ’ in (A3c), and
equivalently 5, ' in (3.4d) in component. This is hardly
trivial results, because it further verifies the total consis-
tency of the coexistence of ¢’ and ¢’ transforming differ-
ently under the gauge group G. The satisfaction of our BIds
is not the result of accidental coincidences.

At the present time, we have neither a superspace action
formulation nor an off-shell formulation with auxiliary
fields. This is similar to higher-dimensional supersym-
metry, where only on-shell formulations are known in
superspace. Typical examples are such as 10D supergravity
[30] or 11D supergravity [29].

Even though we have no superspace action formulation,
at least in the Abelian limit (/X — 0), our system can be
shown to be equivalent to that with gauged [31] R
symmetry [24], as follows. First, we generalize the original
R symmetry in [24] to the Abelian automorphism sym-
metry of 4D, N = 1 Poincaré superalgebra. It is realized in
terms of the superspace Grassmann coordinates together
with relevant fermionic component fields. Certain freedoms
exist in representations due to extra transformations on
superfields. To be more specific, a chiral superfield ® is
transformed under R symmetry, either by a phase:
0p® = ip®, real shift: §,P = a, or pure imaginary shift:
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0,® = iy. The chiral superfields with different realizations
of R symmetry are formally related as ® =¢® or ® = ¢'®".
For example, the free chiral superfield Lagrangian ®® is
invariant (up to a total divergence) under all these three
types of the R-symmetry representations. In the Abelian
limit /K — 0, the real-shift R symmetry is

Sep = —ma, S,A, = 0,0, S, =0, (All)
where ¢ (or ¢) is identified with the real (or imaginary) part
of the spin-0 fields of ®. Our action Igps (3.1) in the
Abelian limit f“K — 0 is actually invariant under §,
because of 6,P, = 6,(0,¢ + mA,) = 0.

Second, we can regard Eq. (3.4.35) in superfield for-
mulation in [31] as the gauging of the shift realization of R
symmetry. In other words, Eq. (3.4.35) in [31],

1
IAbclian = E/dGZWaWa + mz/dSZV2

- 1 _
+im/d8zv(q>—q>)+§/d8zq>q>, (A12)

can be interpreted as supersymmetric Abelian Proca-
Stiickelberg theory. Here we are following the conventional
superspace notation [31], such as W, = —(1/4)D*D,V.
The real-shift R symmetry is gauged in (A12), as I apefian 15
invariant under [31]

5, D=mA, S,d=mA, 5,V =—(A-A). (Al3)

N |

The component Lagrangian of (A12) is equivalent to
(3.4.39) in [31]:

(Fup)? + 5 (300) =3 m*(4,)° + 2 (27)

(@ut)? + mliz) =y

'CAbelian = -

(Al14)

N = | =

up to appropriate normalizations. The only minor differ-
ence is that (3.4.39) in [31] keeps auxiliary fields F and D,
while using the gauge ¢ = 0. The gauge ¢ = 0 is equiv-
alent to the absorption of our ¢ field into the longitudinal
component of A,: P, =0,p + mA, - +mA,. Modulo
these points, (A14) is nothing but our Lagrangian Lgpg
(3.1) in theit Abelian limit /X — 0. In other words, in the
Abelian limit of (3.1), we have the superspace action
formulation (A12) in terms of the chiral ® and real V
superfields. Hence in the Abelian limit, the two superfields
V and @ are fully disentangled off-shell and prior to any
gauge fixing.

From this viewpoint, our supersymmetric Proca-
Stiickelberg Lagrangian Lgpg (3.1) can be interpreted as
the non-Abelian generalization of the Abelian case (A12),
(A14) or (3.4.39) in [31].
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