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Recent progress in observing and manipulating mechanical oscillators at quantum regime provides new
opportunities of studying fundamental physics, for example to search for low energy signatures of quantum
gravity. For example, it was recently proposed that such devices can be used to test quantum gravity effects,
by detecting the change in the ½x̂; p̂� commutation relation that could result from quantum gravity
corrections. We show that such a correction results in a dependence of a resonant frequency of a mechanical
oscillator on its amplitude, which is known as the amplitude-frequency effect. By implementing this new
method we measure the amplitude-frequency effect for a 0.3 kg ultra-high-Q sapphire split-bar mechanical
resonator and for an ∼10−5 kg quartz bulk acoustic wave resonator. Our experiments with a sapphire
resonator have established the upper limit on a quantum gravity correction constant of β0 to not exceed
5.2 × 106, which is a factor of 6 better than previously measured. The reasonable estimates of β0 from
experiments with quartz resonators yields β0 < 4 × 104. The datasets of 1936 measurements of a physical
pendulum period by Atkinson [E. C. Atkinson, Proc. Phys. Soc. London 48, 606 (1936).] could potentially
lead to significantly stronger limitations on β0 ≪ 1. Yet, due to the lack of proper pendulum frequency
stability measurement in these experiments the exact upper bound on β0 cannot be reliably established.
Moreover, pendulum based systems only allow one to test a specific form of the modified commutator that
depends on the mean value of momentum. The electromechanical oscillators to the contrary enable testing
of any form of generalized uncertainty principle directly due to a much higher stability and a higher degree
of control.
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I. INTRODUCTION

At present, one of the grandest challenges of physics is to
unite its two most successful theories, quantum mechanics
(QM) and general relativity (GR), into a single unified
mathematical framework. Attempting this unification has
challenged theorists and mathematicians for several deca-
des and numerous works have highlighted the seeming
incompatibility between QM and GR [1]. It was generally
supposed that this required energies at the Planck scale and
therefore beyond the reach of current laboratory technology
[2]. However, in a relatively recent publication, Pikovsky
et al. [3] proposed a new method of testing a set of quantum
gravity (QG) theories [4–8] by using an ingenious inter-
ferometric measurement of an optomechanical system. The
prediction of most of the QG theories (such as, e.g., string

theory) and the physics of black holes lead to the existence
of the minimum measurable length set by the Planck length
Lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
≃ 1.6 × 10−35 m [4,7,8]. This results in the

modification of the Heisenberg uncertainty principle in
such a way as to prohibit the coordinate uncertainty,
Δx ∼ ℏ=Δp, from tending to zero as Δp → ∞ [9–13].
The modified uncertainty relation, known as generalized
uncertainty principle (GUP), is model independent and can
be written for a single degree of freedom of a quantum
system as

ΔxΔp ≥
ℏ
2

�
1þ β0

Δp2 þ hpi2
M2

pc2

�
; ð1Þ

where β0 is a dimensionless model parameter, Mp ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
≃ 2.2 × 10−8 kg is the Planck mass, and hpi is

the quantum ensemble average of the momentum of the
system. The dependence of minimum uncertainty of*pavel.bushev@physik.uni-saarland.de
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coordinate on average momentum is questionable but some
theories [6,8] imply that it reflects the connection of
spacetime curvature and the density of energy and matter
manifested in Einstein’s equations of general relativity.
Another more intuitive form of the GUP, e.g.,

ΔxΔp ≥
ℏ
2

�
1þ γ0

�
Δp
Mpc

�
2
�
; ð2Þ

which depends only on the uncertainties of the canonical
variables of the particle but not on their mean values is
predicted in [7]. To test this theory one needs to either
measure the deviation of the oscillator’s ground-state
energy Emin with respect to its unperturbed value ℏΩ0=2
[14], or to test QG corrections to the dynamics of the
quantum uncertainty of the mechanical degree of freedom
using the pulsed measurement procedure proposed in [3],
which requires a quantum level of precision.
The lowest modal energies measured in large mechanical

systems such as an AURIGA detector with effective mass
of the mode meff ≃ 1000 kg [14] and in a dumbbell
sapphire oscillator with meff ≃ 0.3 kg [15] set the limit
on the QGmodel parameter γ0 ≲ 3 × 1033, which is still too
large compared to the predicted values of the order of
unity [16].

II. THEORY

From the GUP (1) one can derive the new canonical
commutation relation,

½x̂; p̂�β0 ¼ iℏ

�
1þ β0

�
p̂

Mpc

�
2
�
; ð3Þ

that is deformed by the QG correction defined by the model
parameter β0. As shown by Kempf et al. [6], parameter β0
defines the scale of the absolutely smallest coordinate
uncertainty Δxmin ¼ ℏ

ffiffiffiffiffi
β0

p
=ðMpcÞ. In this work, we exper-

imentally set an upper limit on the value of the model
parameter β0 using the dynamical implications of the
contorted commutator on the oscillations of a high-Q
mechanical resonator of mass m and (unperturbed) reso-
nance frequency Ω0.
We start our consideration with the simple premise that

the modification of the fundamental commutator for a
harmonic oscillator is equivalent to the nonlinear modifi-
cation of the Hamiltonian by means of the perturbative
transformation of momentum, p̂ → p̂ − β0p̂3=ð3M2

pc2Þ,
which restores the canonic commutator, ½x̂; p̂� ¼ iℏ,
at the expense of adding the nonlinear term to the
Hamiltonian of the resonator: Ĥ → Ĥ0 þ ΔĤ ¼ ðp̂2=2mþ
mΩ2

0x̂
2=2Þ þ β0p̂4=ð3mðMpcÞ2Þ. Such nonlinear correction

results in the dependence of the oscillator resonance fre-
quency on its energy [6,8,17]. The dynamics of the system

can be described by a well-known Duffing oscillator model
characterized by amplitude dependence of the resonance
frequency, i.e., the so-called amplitude-frequency effect
[18,19]. The necessary frequency resolution in order to
sense subtle QG effects can be estimated by using the
following expression:

δΩðAÞ=Ω0 ¼ β0ðmeffΩ0A=MpcÞ2; ð4Þ

where δΩ ¼ ΩðAÞ − Ω0 is the deviation of the amplitude-
dependent resonance frequency ΩðAÞ from the unperturbed
value Ω0,meff is the effective mass of the mode and A is the
oscillation amplitude. So, the experimentally measured
dependence of the resonance frequency on the amplitude,
particularly its null result, may be used to set an upper limit
for the model parameter β0.
The above-mentioned theoretical considerations do not

specify which degree of freedom is subject to the QG
corrections. If one considers a center of mass mode, then
the scale of perturbation is strongly enhanced for the
heavier than the Planck mass oscillators, as compared to
individual atoms and molecules in the lattice. For instance,
the precise measurement of the Lamb shift in hydrogen
yielded an upper bound for the model parameter β0 < 1036

[16]. However, recent experiments with microscopic high-
Q oscillators with effective masses ranging from 10−11 to
10−5 kg established a new upper bound for β0 < 3 × 107

[19]. The intrinsic acoustic nonlinearity of micro-
oscillators prevented testing of quantum gravity corrections
with greater precision.
In the following we describe an experiment with the

subkilogram split-bar (SB) sapphire mechanical oscillator,
where we demonstrate improvement for the upper value of
the correction parameter β0 compared to the previous work
with intermediate range mechanical oscillators [19] by
nearly an order of magnitude. In addition to that, we
provide reasonable estimates of β0 from experiments with
bulk acoustic wave (BAW) quartz resonators yielding the
limit of 4 × 104. As a consequence of the mean value
entered on the right-hand side of Eq. (1) the systems with
higher mass and larger amplitude are preferred. As an
example one may take measurements of the period of the
physical pendulum in 1936 [20], where a much lower upper
bound of β0 ≲ 10−4 can be established from the deviation
of the period dependence of amplitude from the well-
known Bernoulli nonlinearity. However, due to the absence
of the evaluation of the pendulum frequency stability the
exact upper bound on β0 cannot be obtained.

III. MEASUREMENTS OF CORRECTION
STRENGTH β0 WITH SAPPHIRE

DUMBBELL OSCILLATOR

Microwave oscillators based on electromagnetic whis-
pering gallery mode (WGM) sapphire crystals offer excel-
lent short- and middle-term frequency stability [21] due to
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WGM high quality factors exceeding 108 and the existence
of frequency-temperature turnover points. For these reasons
these devices found applications in fundamental tests
[22–24]. The mechanical modes of sapphire resonators
may attainQM ≃ 108–109 [25–27]. The resonance frequen-
cies of WGMs are very sensitive to changes in circum-
ference and the height of the cylinder resonator and to strain
in the crystal lattice thus yielding the necessary coupling
between mechanical and electromagnetic degrees of free-
dom for the observation of mechanical motion. Yet, no
acoustic nonlinearities have been detected for the large
sapphire mechanical resonators, making these devices an
excellent platform for QG tests.
The experimental setup, shown in Fig. 1(a), is based on a

cylindrical dumbbell shape or SB sapphire resonator, which
is fabricated out of a single crystal HEMEX-grade sapphire
fabricated by GT Advanced Technologies, Inc., USA. The
rotation symmetry axis of the resonator is parallel to the
c axis of the crystal. The SB resonator consists of two bars
with diameter 55 mm and height 28 mm, which are
separated by a neck of diameter 15 mm and length
8 mm, see Fig. 1(b). Two electromagnetic WGM resonators
are formed in each bar and undergo the same mechanical
motion, i.e., they oscillate in phase for the breathing mode,
which is similar to the fundamental longitudinal mode of
the conventional cylindrical resonator of the same length
and diameter. The resonance frequency of this mode is
Ω0=2π ¼ 127.071 kHz and its effective mass is calculated
by using finite element modelingmeff ¼ 0.3 kg. In order to

maximize the mechanical Q-factor, the resonator is sus-
pended via a niobium wire loop around the neck. The
whole construction is placed inside a temperature stabilized
vacuum chamber at 300 K. The vacuum chamber in turn is
placed on a vibration isolation platform and kept at a
pressure of ∼10−2 mbar.
A parametric transducer is used to detect the mechanical

vibrations of the SB resonator, see Ref. [15] for details. For
that purpose, the WGM sapphire resonator serves as a
dispersive element inside a closed electronic loop, which
together with an amplifier and a phase shifter constitutes a
microwave oscillator operating at the resonance frequency
of the chosen WGM mode [28]. An interferometric
frequency control system (FCS) suppresses spurious
phase fluctuations and locks the microwave oscillator to
the frequency of the WGE15;1;1 mode at ωWGE=2π ≃
9.774 GHz [29]. The in-loop voltage-controlled attenuator
α is used for the parametric excitation of the mechanical
vibrations at 127 kHz. Approximately half of the generated
power inside the microwave sapphire oscillator is diverted
to the interferometric frequency discriminator (IFD). The
output signal of the IFD is a linear function of its input
frequency and is measured with an HP 89410A spectrum
analyzer. All instruments are time referenced to the hydro-
gen maser frequency standard VCH-103.
The spatial overlap between microwave and mechanical

modes results in an interaction between these degrees of
freedom, which can be described by the standard opto-
mechanical Hamiltonian Ĥint ¼ −ℏg0â†â x̂, where g0 is a
single photon optomechanical coupling, â†; â are raising
and lowering operators for theWGM, and x̂ is the canonical
position operator for the center of mass mechanical motion
[30]. The microwave signal modulated at the resonance
frequency of mechanical mode Ω0 induces radiation-
pressure force which drives mechanical vibrations. The
calibration of the amplitude of the center of mass motion is
made by using the standard expression

δuðΩÞ ¼ δxðΩÞðdu=dfÞðdf=dxÞ; ð5Þ

where df=dx is determined from the amplitude of the
output IFD signal δuðΩÞ. That signal is proportional to the
applied modulated power δP,

δuðΩÞ ¼ χ

�
du
df

��
df
dx

�
2

δP; ð6Þ

where χ is the constant describing electromagnetic
coupling of the signal and mechanical property of the
oscillator [15]. The transduction constant is calculated to
be δx=δu ¼ 526 nm=mV.
The mechanical response of the SB resonator to the

acoustic excitation in the vicinity of the resonance fre-
quency is shown in Fig. 2(a). The applied excitation signal
at 127 kHz is relatively weak, resulting in the maximal

(a)

(b)

FIG. 1. (a) Simplified experiment schematic. See the text for
details. (b) Picture of the sapphire SB resonator. The ruler shows
the scale of the system.
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amplitude of mechanical vibrations of 6 pm. The output
signal is measured by using a phase-sensitive interfero-
metric setup which results in superposition of dispersive
and absorptive quadrature components. The solid curve
displays the fit of the experimental data to such
a composite absorptive-dispersive response and yields
the resonance frequency of the mechanical resonator
Ω0=2π ¼ 127070.9695� 0.0003 Hz, its FWHM linewidth
ΓM=2π ¼ 3.5 mHz, and the 55° mismatch between the
arms of the IFD.
The ringdown measurements of the mechanical vibra-

tions are made in two steps. In the first step the resonance
frequency of mechanical vibrations Ω0=2π is determined.
For that purpose, the radiation-pressure force is applied to
the resonator for the time sufficient to settle the mechanical
vibrations (several minutes). Then, the output signal δuðΩÞ
is measured for every frequency point in the scanning range
of 1 Hz. The resonance frequency corresponds to the point
which yields the maximal IFD response δuðΩÞ. This

procedure is repeated for the different excitation amplitudes
(20–35 pm) in every single experimental run and detected
no resonance frequency shift within an accuracy of 10 mHz
determined by the resolution bandwidth of a FFT analyzer.
In the second step, after the mechanical resonance fre-
quency is located, the amplitude modulation (AM) exci-
tation is turned off, and then the mechanical vibrations are
measured as they decrease due to acoustic losses. The
amplitude and frequency of the decaying vibrations, i.e.,
the amplitude and the frequency of the spectral peak, are
then tracked and recorded every 0.2 s. For that purpose a
marker is placed on the maximum voltage value in the
spectra, and its frequency and amplitude are recorded for
every time bin. The frequency accuracy of such measure-
ments is determined by the resolution bandwidth of the FFT
analyzer, which is set to 5 Hz.
The typical ringdown measurement is presented in

Fig. 2(b). For this particular example, the resonant fre-
quency is Ω0=2π ¼ 127070.97 Hz. The solid curve shows
the fit of the experimental data to the exponential decay
with characteristic time constant τ ¼ 173 s, which yields
the mechanical quality factor QM ¼ Ω0τ=2 ¼ 3.4 × 107

and the same FWHM linewidth ΓM which is found in
mechanical response measurements. In addition to the
extracting of the parameters of the exponential decay,
the Duffing equation was numerically solved in order to
attain the best fit parameters for the ringdown amplitudes.
Following this procedure we extract the upper limit for the
QG model parameter to be β0 < 6 × 1011.
The frequency measurements yield much more stringent

limit on β0. In all measured ringdown series, there is no
evidence of any detectable frequency shift up to the
maximum amplitude of mechanical displacement of
75 pm. The null-frequency shift measured in the experi-
ment corresponds to an accuracy of δΩ=Ω0 ¼ 3.9 × 10−5

and accordingly Eq. (4) yields the upper limit for the QG
model parameter β0 < 5.2 × 106.
The sapphire SB resonator demonstrates a large potential

for an even more stringent test of β0 ≪ 1. Here, we propose
two possible ways to improve the experiment. Firstly, the
mechanical response [Fig. 2(a)] could be measured for
much larger input power δP. It is possible to excite
vibrations in a sapphire resonator with an amplitude of
several nanometers [27]. That would result in a much
higher signal-to-noise ratio and as a consequence would
improve the accuracy of determination of the mechanical
resonance frequency Ω0 to better than 0.1 mHz. Together
with an increase of the oscillation amplitude up to 0.1–1 nm
scale, the upper limit on the correction strength may
potentially be improved by at least 8 orders of magnitude
arriving at the level β0 ≲ 10−2. Secondly, one can imple-
ment an electromechanical sapphire oscillator by closing a
feedback loop with the IFD output signal δuðΩMÞ. In that
case the uncertainty in determination of frequency shift will
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FIG. 2. (a) Mechanical response of the SB resonator to the
acoustic excitation of the in-phase breathing mode around
127 kHz. The solid curve shows the fit to the quadrature signal
due to double-balanced mixing. (b) Typical ringdown measure-
ment of the in-phase breathing mode. The solid curve shows the
fit to the exponential decay.
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be decreased with the integration time T as 1=
ffiffiffiffiffiffiffiffiffi
Ω0T

p
.

Assuming a driving amplitude of the SB resonator of A ≃
1 nm and an average time of T ¼ 1 h, the testable limit
β0 ≪ 1 is within experimental accuracy.

IV. ESTIMATION OF THE CORRECTION
STRENGTH β0 WITH BAW

Another mechanical system, namely a quartz bulk BAW
resonator, also constitutes a fruitful platform for precise
tests of quantum gravity. This system exhibits a high
resonance frequency Ω0=2π ≃ 10 MHz, a milligram scale
of the effective mass of oscillating modes [31], a large
Q-factor close to 1010 at low temperatures [32], and a high-
frequency stability of electromechanical oscillators reach-
ing a level of 5 × 10−14. The above listed features of quartz
BAW are very attractive for fundamental tests such as
Lorentz symmetry [33]. However, we note that quartz
crystals possess their own quite strong elastic nonlinearities
that can mimic the quantum gravity effect. These non-
linearities lead to a similar frequency shift, quadratic in
amplitude and known as the amplitude-frequency effect or
isochronism, see Ref. [34], p. 245. This effect can be made
to nearly vanish by means of an optimal choice of the cut
angle of the crystal, known as the LD-cut [18,35]. The
QG correction strength can be estimated from Eq. (4) and
by using the experimental parameters meff ¼ 5 mg,
Ω0=2π ¼ 10 MHz, δΩ=2π ≃ 1 mHz, A ≃ 1 nm. Our esti-
mation yields β0 ≲ 4 × 104, which is still limited by elastic
nonlinearity. In order to single out the quantum gravity
frequency from such nonlinearity, the amplitude-frequency
shift shall be measured in dependence on the effective mass
of the resonating mode. We also believe that experimenting
with kilogram-scale quartz BAW [36] will result in a much
more stringent test of the quantum gravity model parameter
in regime β0 ≲ 0.1, because of weaker nonlinearity due
to the lower acoustic energy density and much larger
effective mass.

V. ESTIMATION OF THE CORRECTION
STRENGTH β0 WITH PHYSICAL PENDULUMS

At present, the most stringent limit on correction strength
β0 is arguably set by the experiments with physical
pendulums, e.g., by the 1936 Atkinson measurements of
the period of a kilogram-scale physical pendulum as a
function of its amplitude. The combination of relatively
large angular amplitudes, θ0 ∼ 1°, and large mass, ∼1 kg,
makes the pendulum an ideal object for testing the
generalized commutator described by Eq. (1). Since the
physical pendulum possesses an intrinsic softening non-
linearity, leading to a quadratic (in the first order) depend-
ence of the oscillation period on the angular amplitude, the
QG correction can be considered an additional quadratic
nonlinearity that can be determined from the accurate
measurement of the period-amplitude dependence and

comparison of the result against the well-known formula,
see Ref. [37]. Using a Legendre polynomial approximation
of the elliptic integral in the exact dependence of the
pendulum period on angular amplitude θ0, one can rewrite
Eq. (4) for the physical pendulum as follows:

δTðθ0Þ
T0

¼
�
1

16
− β0

�
2πmL
MpcT0

�
2
�
θ20 þ

11

3072
θ40; ð7Þ

where δTðθ0Þ is the amplitude-dependent deviation of the
period of the pendulum T0, m is the mass of the pendulum,
θ0 ≃ A=L is the angular amplitude of the pendulum, andL is
its length. The numeric terms describe the intrinsic non-
linearity of physical pendulum. The dependence between the
rate and arc (θ0) for the free pendulumwasmeasured already
in 1936 [20], using a pendulum with length L ¼ 1 m and
mass m ≃ 6 kg. Using the data in this work, we estimate
β0 ≲ 10−4. Other experiments with different kinds of pen-
dulums carried at different times show no evidence of the
deviation of the oscillation period from the conventional
theory of a physical pendulum [38,39], and result in a similar
estimate on the upper limit for β0 [40].
In general, a mechanical pendulum cannot serve as an

accurate clock, for its resonance frequency (or period)
fluctuates over time due to various environmental factors:
temperature, humidity, pressure, ageing, local gravity
variation, seismic excitation, etc. At best such a system
provides fractional frequency stability at the 10−5 level
at 1 s, compared to 10−14 for the best quartz BAW. Spurious
modes of the pendulum can also lead to significant cross
talk between the modes, leading to unaccounted non-
linearities. The lack of data on such crucial metrological
characteristics of the experiment as Allan deviation, i.e., the
frequency stability of the oscillations, the Q-factor of a
system, and the absence of any information on systematic
errors ensuing from the design of the suspension point,
allows only a qualitative conclusion that β0 ≪ 1. For a
proper measurement of β0 one has to repeat the experiments
with pendulums or with metrological systems such as SB
sapphire resonators or BAWs in a systematic metrologi-
cal way.

VI. CONCLUSION

In this work, we designed an experiment to test the
modification of dynamics of a mechanical oscillator fol-
lowing from the generalized uncertainty principle predicted
by some phenomenological theories of quantum gravity.
We set an upper limit on the QG correction strength β0 to
the canonical commutator (3), using an ultra-high-Q
mechanical sapphire resonator with a subkilogram mass
of the resonating mode. In the original work [3] an
experiment was proposed where the sequence of light
pulses separated by a quarter of a mechanical oscillation
period was reflected off an oscillator four times before
measuring its phase, which should depend on β0. Our
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results show that the same goal can be attained in a simpler
and more reliable way using continuous rf measurements of
frequency of the electromechanical oscillator that can be
measured with higher precision than any other physical
parameter.
The overview experimental tests of correction strength

β0 using mechanical oscillators is presented in Fig. 3,

where the measured β0 is plotted as a function of effective
mass of the mechanical mode. Evidently, heavier oscillators
result in more stringent limits on correction strength.
Although massive mechanical pendulums could be used
to set a limit on β0 ≪ 1 in the variant of GUP relation
described by Eq. (1), the high Q-factor and unprecedented
frequency stability of the state-of-the-art quartz BAW
resonators and SB sapphire resonators are more promising
for precise tests of a more intuitive form of the GUP
described by Eq. (2) that follows from the minimal length
scale conjecture of quantum gravity theories [41] as it
requires a quantum level of sensitivity in frequency
measurement. Having said that, the perspective of utilizing
low-frequency (<1 Hz) mechanical oscillators or pendu-
lums in this context remains unclear compared to the high-
frequency systems (kHz–GHz), where the near quantum
regime [42] or even the quantum limit [43–45] has already
been reached.
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