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Two desirable properties of a quantum dynamics for loop quantum gravity (LQG) are that its generators
provide an anomalyfree representation of the classical constraint algebra and that physical states which lie
in the kernel of these generators encode propagation. A physical state in LQG is expected to be a sum over
graphical SUð2Þ spin network states. By propagation we mean that a quantum perturbation at one vertex of
a spin network state propagates to vertices which are “many links away” thus yielding a new spin network
state which is related to the old one by this propagation. A physical state encodes propagation if its spin
network summands are related by propagation. Here we study propagation in an LQG quantization of
Smolin’s weak coupling limit of Euclidean gravity based on graphical Uð1Þ3 “charge” network states.
Building on our earlier work on anomalyfree quantum constraint actions for this system, we analyse the
extent to which physical states encode propagation. In particular, we show that a slight modification of the
constraint actions constructed in our previous work leads to physical states which encode robust
propagation. Under appropriate conditions, this propagation merges, separates and entangles vertices
of charge network states. The “electric” diffeomorphism constraints introduced in previous work play a key
role in our considerations. The main import of our work is that there are choices of quantum constraint
constructions through LQG methods which are consistent with vigorous propagation thus providing a
counterpoint to Smolin’s early observations on the difficulties of propagation in the context of LQG type
operator constructions. Whether the choices considered in this work are physically appropriate is an open
question worthy of further study.
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I. INTRODUCTION

Loop quantum gravity [1–3] is an attempt at nonpertur-
bative canonical quantization of general relativity based
on a classical Hamiltonian description in terms of triads
(or, equivalently SUð2Þ electric fields) and conjugate
connections. While the SUð2Þ rotation constraint and the
3d diffeomorphism constraints can be satisfactorily repre-
sented and solved in quantum theory, the construction of
the Hamiltonian constraint operator involves an infinity
of choices. In order to identify the correct choice of the
Hamiltonian constraint, these choices should be confronted
with physical criteria. Two such criteria are that the con-
straint action be compatible with an anomalyfree repre-
sentation of the classical constraint algebra and that the
constraint action should be consistent with the propagation
of quantum perturbations. Whereas the “anomalyfree”
criterion ensures spacetime covariance, the “propagation”
criterion is motivated by the existence of classical solutions
to general relativity which describe propagating degrees of
freedom.
A clear statement of the propagation criterion in the

context of LQG states which live on graphs was first
provided by Smolin [4] as follows. Given a spin network

state, the action of a constraint deforms the state in the
vicinity of one of its vertices to yield a “perturbed” spin net
state. If the quantum dynamics is such that this perturbation
moves to distant (in terms of graph connectivity) vertices of
the original spin net state, the quantum dynamics will be
said to encode propagation and the initially perturbed state
and the final state can be said to be related by propagation.
Further, Smolin envisaged putative propagation as being
generated by successive actions of the Hamiltonian con-
straint and concluded that LQG techniques were unable to
generate propagation when viewed in this way. The under-
lying reason for the inability of successive actions of the
Hamiltonian constraint to generate propagation is the
ultralocality of such actions. More in detail, LQG tech-
niques yield constraint actions on spin network states
which are nontrivial only at the vertices of the spin network
state being acted upon. Further, the action at one vertex is
independent of that at any other vertex and results in a
deformation of the vertex structure of the spin net in
the immediate vicinity of the vertex being acted upon.
Further actions at this vertex yield further deformations
in its immediate “ultralocal” vicinity. Since such ultralocal
actions do not involve more than one vertex, such actions
cannot propagate perturbations to vertices far away.
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One way out of this, as noted by Smolin, is to define the
constraint action to involve more than one vertex. However,
as also noted by Smolin, it seems impossible to construct
operators with such actions as direct quantizations of the
classical expression for the Hamiltonian constraint.1

However, the study of parametrized field theory (PFT)
[6] implies that rather than visualizing propagation as being
generated by successive actions of constraint operators,
propagation should be seen as a property of physical states
as follows. Physical states lie in the joint kernel of the
quantum constraints and are constructed as sums of
infinitely many spin net states. Given one such spin net
summand, if there exists another summand which is related
to the first by propagation then we shall say that the
physical state encodes propagation. Note that this notion of
propagation as encoded by physical states is logically
distinct from that of spin net deformations generated by
successive actions of constraint operators. The former
involves the structure of solutions to the constraint whereas
the latter involves the action of the constraint operator.
Hence it is possible in principle (and seen in practice in [6])
that physical states can encode propagation despite the
inability of successive operator actions to generate such
propagation. Note also that while the notion of propagation
in terms of physical states is not generated by the repeated
ultralocal action of the constraints, it is nevertheless
crucially dependent on the properties of this action. The
reason is as follows. The properties of the action of the
constraint operators determine the structural properties of
physical states because physical states are constructed
precisely so as to be annihilated by this action. More in
detail since every physical state is a sum over spin network
summands, how these summands relate to each other is
then determined by properties of the constraint action. As
mentioned above, propagation is encoded in these relations
and it is in this indirect way that the properties of the
constraint operator action dictate if propagation ensues or
not. It is in this sense that the propagation criterion restricts
the choice of the Hamiltonian constraint operator.2

Next, consider the anomalyfree criterion. While LQG
does provide an anomalyfree representation of a very
nontrivial subalgebra of the constraint algebra, namely
that of the spatial diffeomorphism constraints [7–9], the
implementation of a nontrivial anomalyfree commutator
corresponding to the Poisson bracket between a pair of
Hamiltonian constraints is still an open problem [3,8,10].
A key identity discovered in [11], implies that this Poisson
bracket is the same as that of a sum of Poisson brackets
between pairs of diffeomorphism constraints smeared with
electric field dependent shifts which we shall call electric
shifts. Such diffeomorphism constraints are called electric
diffeomorphism constraints. Hence an implementation of
nontrivial anomalyfree commutators between Hamiltonian
constraints is equivalent to the imposition of this identity in
quantum theory. This requires the construction not only of
the Hamiltonian constraint operator but also these electric
diffeomorphism operators in such a way that the commu-
tator between a pair of Hamiltonian constraints equals the
appropriate sum of commutators of electric diffeomor-
phism constraints. This requirement is extremely nontrivial.
However, precisely because of this fact, the anomalyfree
criterion is expected to prove extremely restrictive for the
choice of Hamiltonian constraint operator.
Given the nontriviality of the two criteria and the

involved nature of full blown LQG, it is useful to
first develop intuition for structural properties of the
Hamiltonian constraint which are compatible with these
criteria in simpler toy models. In this regard Smolin’s weak
coupling limit of Euclidean gravity [12] offers an ideal
testing ground. Since this system may be obtained simply
be replacing the SUð2Þ electric and connection fields of
Euclidean gravity by their Uð1Þ3 counterparts, we shall
refer to this model as the Uð1Þ3 model. Its constraint
algebra is isomorphic to that of Euclidean gravity and
hence displays structure functions. An LQG quantization of
this system [11,13–15] leads to a representation space for
holonomy- flux operators spanned by Uð1Þ3 spin network
states which we call “charge” network states. These states
are labeled by graphs whose edges are colored by repre-
sentations of Uð1Þ3. Our recent work [15] concerns the
imposition of the anomalyfree criterion, as articulated
above, in the context of this model. Here we confront
the ideas of [15] with the propagation criterion as applied
to physical states. In doing so we shall not be concerned
with the enormous amount of technical detail entailed in the
constructions of [15]. Rather, we shall abstract what we
regard as the key features of those constructions and base
our analysis of propagation on these features and minimal
generalizations and modifications thereof. Whether this
broad treatment can then be endowed with the level of
technical detail in [15] so as to demonstrate compliance
with anomaly freedom is an open question.
We now turn to an account of the key features of

the work in [15]. The Hamiltonian constraint operator

1While this brief account represents the broad lesson drawn by
Smolin, it is a drastic oversimplification of Smolin’s analysis. The
reader is urged to consult Ref. [4] for a detailed account of this
analysis. It is also pertinent to note here that there is a hitherto
unnoticed obstruction to his beautiful arguments. We shall report
on this separately in a note with Thiemann [5].

2As we shall see in later in this paper as well as in [5] the key
property of the constraint operator action responsible for propa-
gation in physical states is that this action should be consistent
with nonunique parentage. A spin net is said to have nonunique
parentage if it can be obtained (up to diffeomorphisms) by the
action of the Hamiltonian constraint on two (diffeomorphically)
distinct spin nets; if we refer to the spin net in question as a
“child,” since this child is obtained by the action of the constraints
on two distinct “parents,” we may describe the child spin net as
having “nonunique parentage”).
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constructed in that work acts nontrivially on a charge
network state only at those of its vertices which have
valence greater than 3 provided these vertices are non-
degenerate in a precise sense.3 The Hamiltonian constraint
action on any such N (N > 3) valent vertex of a parent
charge net results in a sum over deformed child charge nets.
The graph underlying a child charge net is obtained by
deforming the parental graph in the vicinity of its vertex
along some parental edge at that vertex. Roughly speaking,
this deformation along a parental edge corresponds to a
“singular diffeomorphism” wherein the remaining N − 1
edges are pulled “almost” along this edge so as to form a
cone with axis along this edge. The resulting “child graph”
now has the original N valent parent vertex and an N valent
child vertex, the child vertex structure being conical in the
manner described. In addition the charges in the vicinity
of these two vertices are altered, these alterations arisng
from flipping the signs of certain parental charges due to
which the original parent vertex is now no longer non-
degenerate in the child. Thus, the constraint acts through a
combination of “singular diffeomorphisms” and “charge
flips.” For obvious reasons, and for future reference, we
shall refer to the Hamiltonian and electric diffeomorphism
constraint actions as N → N actions.
Reference [15] constructs a space of anomalyfree states

which support the action of this Hamiltonian constraint
operator so as to yield an anomalyfree constraint algebra in
the detailed sense articulated in that work and sketched
briefly above. Each such state is a specific linear combi-
nation of certain charge net states. Thus each such state is
specified by a “ket set” of charge net states and a set of
coefficients, one for each element of the ket set associated
with the anomalyfree state. The sum over all the elements
of the ket set with these coefficients then yields the
anomalyfree state so specified, on which constraint com-
mutators are anomaly free in the sense described above. In
particular the Hamiltonian constraint commutators are
shown to equal the appropriate sum of electric diffeo-
morphism constraint commutators in accordance with the
identity discovered in [11]. The electric diffeomorphism
constraint operators can be constructed very naturally in a
manner similar to the Hamiltonian constraint. The oper-
ators so constructed move the original parent vertex by
exactly the same “singular diffeomorphisms” as employed
by the Hamiltonian constraint, but with no charge flips,
with the singular nature of the singular diffeomorphisms
arising from the distributional nature of the quantum
electric shift.

The constructions of [15] also imply that in the special
case that the coefficients are chosen to be unity for all
elements of the ket set, it turns out that the anomalyfree
state is killed by the Hamiltonian and diffeomorphism
constraints as well as the electric diffeomorphism con-
straints. Such a state is then a physical state which supports
a trivial anomalyfree realization of the commutators.
Nontrivial anomalyfree commutators arise only if the
coefficients are chosen in a specific nontrivial way and
the resulting state is then an off shell state. From [15], such
an anomalyfree state can be thought of as an off-shell
deformation of the physical state obtained with unit
coefficients. The ket set associated with a physical state
and its off shell deformations in [15] satisfy the following
properties. The first property is that the ket set is closed
with respect to deformations generated not only by the
action of the Hamiltonian constraint but also by the electric
diffeomorphism constraints. Thus, in the parent-child
language used above, this property says that if a certain
charge net is in the ket set then so are all its deformed
children produced by the action of the Hamiltonian and
electric diffeomorphism constraints. The second property is
more subtle and can be phrased succinctly in the parent-
child language as follows. If a chargenet is in the ket set
then so are all its possible parents. Here a “possible parent”
p of a charge net c refers to any charge net which when
acted upon by the Hamiltonian or electric diffeomorphism
constraints gives rise to deformed children, one of which is
the charge net c. In addition to these properties, the ket set
is also closed with respect to semianalytic diffeomor-
phisms; amongst other things, this is necessary for an
anomalyfree representation of the commutators involving
the (usual) diffeomorphism constraints smeared with
c-number shifts. We summarize these properties in the
form of the statement (a) below:
(a) If the ket set has a certain charge net then

(a.1): All possible children generated by the action
of the Hamiltonian and electric diffeomorphism con-
straints on this charge net are also in the ket set.
(a.2): All possible parents of this charge net (i.e., all

charge nets which when acted upon by these con-
straints generate children one of which is the charge
net in question) are also in the ket set.
(a.3): The ket set is closed with respect to the action

of semianalytic diffeomorphisms.
In terms of ket sets subject to property (a),4 our

discussion of propagation may be restated as follows.
Smolin’s visualisation of propagation is based on the
repeated action of constraint operators. Such actions con-
cern property (a1) but not (a2). The key new element to be3The Hamiltonian and electric diffeomorphism constraint

actions of [15] are specified on charge net states with only a
single vertex whereas the discussion of propagation necessarily
involves multivertex chargenet states. However, since these
actions at different vertices are independent of each other, the
actions of [15] automatically define actions on multivertex charge
nets through a sum over actions on individual vertices.

4Reference [15] only constructs ket sets each of whose
elements have single non-degenerate vertex. Here we implictly
assume that the considerations of [15] can be generalized to
multivertex ket sets. We shall discuss this further in Sec. VA.
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confronted when we analyze physical states are the
summands which owe their existence due to property (a2).
The fact that the sum, with unit coefficients, over

elements of the ket set subject to Property (a) defines an
anomalyfree, physical state, is a direct consequence of a
particular structural property of the Hamiltonian and
electric diffeomorphism constraint approximants employed
in [15]. We shall describe this property in Sec. II G.We note
here, that if we drop the anomalyfree requirement on
physical states, there is no reason to consider the electric
diffeomorphism constraints. Then, as will be apparent in
Sec. II G, for Hamiltonian constraints with this particular
structural property, physical states may be constructed as
sums over elements of ket sets with a weaker version of
property (a) wherein any mention of the electric diffeo-
morphism constraint is removed so that all children and
“possible” parents are only with reference to the
Hamiltonian constraint. However such states will not, in
general, support anomalyfree commutators since we have
no control on the “right-hand side” of the key identity of
[11]. If we now construct electric diffeomorphism con-
straint operators with the structural property described in
Sec. II G, then physical states which support anomalyfree
commutators may be naturally constructed as sums over
elements of ket sets with unit coefficients, these ket sets
being subject to property (a) in which both the Hamiltonian
and electric diffeomorphism constraints play a role. Such
physical states are then killed by both the Hamiltonian and
electric diffeomorphism constraints and thereby provide a
consistently trivial implementation of the anomalyfree
requirement. To summarize: for Hamiltonian and electric
diffeomorphism constraint actions with the structural prop-
erty described in Sec. II G, anomalyfree physical states can
be constructed as sums, with unit coefficients, over ele-
ments of ket sets subject to property (a) above.
In this work, it will prove necessary to slightly modify

the constraint approximants of [15] so as to engender
propagation. The modified actions also have the special
structural property of Sec. II G. Hence the ket sets we
consider in this work will all be subject to Property (a) and
will define anomalyfree physical states. Whether propaga-
tion ensues or not for a particular choice of such actions is
then dependent entirely on the properties of the possible
parents in property (a2).5 Hence our strategy in this work is
to analyse whether the ket sets relevant to choices of
constraint actions with the structure described in Sec. II G
have possible parents which facilitate propagation. If they
do, it follows that the physical states obtained as sums over
elements of such ket sets encode propagation. In what

follows we shall often use a more direct language and
simply say that such ket sets encode propagation. As stated
above, while physical states constructed as sums over
elements of ket sets are guaranteed to be anomaly free
with respect to the associated constraint actions of the type
discussed in Sec. II G, whether off shell deformations of
these physical states can be constructed which support
nontrivial anomalyfree commutator brackets is an open
question which we leave for future work.
We are now in a position to discuss the work done in

this paper. As a warm up exercise, we start with an
exploration of propagation of specific perturbations
between the vertices of a simple 2 vertex state. This
exercise serves to illustrate the notion of propagation
(or lack thereof) in the language of ket sets and possible
parents articulated above. The simple 2 vertex state
jsA;B;Ni that we study consists of a pair of vertices A, B
joined by N edges with charges subject to a genericity
condition. We create a “perturbation” of this state in the
vicinity of the vertex A by the action of the Hamiltonian
constraint. We show that this perturbation cannot “propa-
gate” to vertex B and be “absorbed” there in the context of
the constraint actions constructed in [15]. In the language
of ket sets, we show that the minimal ket set which
satisfies property (a) with respect to the constraint actions
of [15] and which contains jsA;B;Ni does not encode
propagation of this specific type of perturbation.
Equivalently, the physical state annihilated by the con-
straint actions of [15] and obtained by summing over the
elements of this ket set does not encode propagation of
this specific perturbation. Next, we study physical states
subject to a further physically reasonable condition. This
condition implies that physical states satisfy additional
operator equations which are also of the form discussed in
Sec. II G. A natural class of anomalyfree physical states
which are annihilated by the constraints of [15] and satisfy
the new condition may then be constructed as sums over
elements of ket sets which satisfy, in addition to property
(a), the property of closure with respect to children and
possible parents appropriate to the new condition. Once
again, we study the minimal ket set which contains the 2
vertex state jsA;B;Ni. In this case, we study the perturbation
created at the vertex A by the action of operators involved
in the specification of this additional condition. We show
that this perturbation can propagate to vertex B and be
absorbed there. In the language of ket sets, this minimal
ket set does encode propagation of this specific perturba-
tion from A to B by virtue of the richer class of children
and possible parents whose existence is traced to the new
condition. Thus, there is a natural class of physical states
which satisfy an additional physical condition and which
do encode propagation between vertices of a generic 2
vertex states of the type jsA;B;Ni. We note here that the new
condition is closely related to the combination of con-
straints appearing in Ref. [16] (see vi), pg 85, Chap. 6 of

5The structural property of constraint approximants alluded to
above was first discovered in the context of PFT [6]. While we did
not phrase that analysis explicitly in terms of ket sets, it is
straightforward to check that such a rephrasing is immediate and
that the key lesson of that analysis is the role played by the
properties of possible parents of (a2) in enabling propagation.
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this reference). This concludes our study of propagation
of specific types of perturbations of this simple 2 vertex
state.
Next, we consider generic multivertex states with more

than 2 vertices. We show that the “N → N” constraint
actions of [15] cannot generate propagation of any pertur-
bations between pairs of vertices of different valence. We
argue that at best, even for states subject to the additional
condition mentioned above, only a certain “1d” propaga-
tion may be possible for special multivertex states.
Therefore, in order to engender a more vigorous, 3d and
long range propagation, we slightly modify the N → N
constraint actions of [15]. The key features of the modified
constraint actions can be seen to arise from valid quantiza-
tion choices and differ from those of [11,13,15] in that they
change the valence of the vertex on which they act. It then
turns out that ket sets satisfying condition (a) with respect
to this modified action have a significantly richer structure
which encodes vigorous propagation. The key property of
the modified action is that it changes the valence of both the
original parent vertex as well as the child vertex in the
deformed children charge nets relative to [15]. This is
achieved by visualizing the “singular diffeomorphism”
deformation involved in the action of the Hamiltonian
and electric diffeomorphism constraints slightly differently
from that described above as follows.
We imagine the generalized diffeomorphisms to act by

pulling all but 3 of the remaining edges exactly along the
Ith edge with the remaining 3 edges being pulled “almost”
along the Ith edge in a conical manner. This results in a
child graph in which the original parent vertex valence
drops to N − 3 and the child vertex has a valence of 4. With
the incorporation of this modified action into that of the
Hamiltonian and electric diffeomorphism constraints, it
turns out that the ket sets subject to condition (a) do encode
propagation. We shall refer to this modification of the
constraint action as an N → 4 modification. As we shall
see, the deformations generated by the electric diffeo-
morphism constraints play a crucial role in this encoding of
propagation. Since the only reason the electric diffeo-
morphism constraints appear in our considerations is to
ensure compliance with the anomalyfree criterion, this
suggests that the two criteria of anomaly freedom and
propagation work in unision.
The layout of the paper is as follows. Section II starts

with a brief review of earlier material in [6,11,13,15] which
is of direct relevance to our work here. Specifically, in
Secs. II A–II E we review the constraint actions of [15]. In
the interests of pedagogy we suppress certain important
details in our treatment; these details are collected and
described in Sec. II F and may be skipped by readers
unfamiliar with [15]. In Sec. II G we review the structural
property of constraint approximants alluded to above
which is connected with property (a). Section III studies
propagation in the context of the N → N actions of [15].

In Sec. III Awe study propagation of specific perturbations
in a simple 2 vertex state as discussed above. In Sec. III B
we show that the constraint actions of [15] cannot engender
propagation between pairs of vertices of different valence
in multivertex states and argue that, at best, a “1d
propagation” may be possible for a very restrictive class
of multivertex states. In Sec. IV we describe the N → 4
modification of the constraint action and show that the ket
set compatible with this modified action encodes vigorous
propagation. As mentioned above, a comprehensive proof
that the constraint action considered in Sec. IV has a
nontrivial anomalyfree implementation would be at least as
involved as the considerations of [15] and is out of the
scope of this work. In Sec. V we discuss the new challenges
to be confronted relative to Ref. [15] in the construction of
such a putative proof as well as certain technicalities related
to our treatment of propagation hitherto. In Sec. VI we
discuss an important consequence of the N → 4 action,
namely the phenomenon of vertex mergers. Section VII
contains a discussion of our results and of open issues.
Our work here may be considered as a continuation of

that in the series of papers [11,13,15]. While a detailed
understanding of the considerations of this work, especially
that of Secs. II F and V, requires familiarity with these
works, an understanding of the broad features of this work
requires familiarity only with the reasonably self contained
expositon of Secs. II A–II E and II G of this work. Readers
not familiar with [11,13,15] may skip Secs. II F and Von a
first reading. Further, the reader interested mainly in the
long range 3d propagation results may skip Sec. III A
entirely.

II. BRIEF REVIEW OF RELEVANT
MATERIAL FROM REFS. [6,15]

A. Elements of the classical theory

The phase space variables ðAi
a; Ea

i ; i ¼ 1; 2; 3Þ are a
triplet of Uð1Þ connections and conjugate density weight
one electric fields on the Cauchy slice Σ with canonical
Poisson brackets fAi

aðxÞ;Eb
j ðyÞg¼δbaδ

i
jδ

3ðx;yÞ. The Gauss
law, diffeomorphism, and Hamiltonian constraints of the
theory are

G½Λ� ¼
Z

d3xΛi∂aEa
i ð2:1Þ

D½N⃗� ¼
Z

d3xNaðEb
i F

i
ab − Ai

a∂bEb
i Þ ð2:2Þ

H½N� ¼ 1

2

Z
d3xNq−1=3ϵijkEa

i E
b
jF

k
ab; ð2:3Þ

with Fi
ab ≔ ∂aAi

b − ∂bAi
a, qqab ≔

P
iE

a
i E

b
i , q ¼ det qab.

A key identity [11] holds on the Gauss law constraint
surface:
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fH½N�; H½M�g ¼ ð−3Þ
X3
i¼1

fD½N⃗i�; D½M⃗i�g ð2:4Þ

where the electric shifts Na
i are defined as:

Na
i ¼ NEa

i q
−1=3 ð2:5Þ

and the electric diffeomorphism constraints DðN⃗iÞ by

D½N⃗i� ¼
Z

d3xNa
i E

b
jF

j
ab ð2:6Þ

B. Quantum kinematics

A charge network label c is the collection ðα; q⃗I; I ¼
1;…; NÞ where α is an oriented graph with N edges,
the Ith edge eI colored with a triplet of Uð1Þ charges
ðq1I ; q2I ; q3I Þ≡ q⃗I such that the net outgoing charge at every
vertex vanishes. The gauge invariant holonomy associated
with c is hc,

hc ≔
YN
I¼1

e
iκγqjI

R
eI
Aj
adxa ; ð2:7Þ

where κ is a constant with dimensions ML−1, γ is a
dimensionless Immirzi parameter. Henceforth we use units
such that κγ ¼ 1. The Hilbert space is spanned by charge
network states jciwhich are eigen states of the electric field
operator. The eigen value of the electric shift operator
N̂a

i ðxÞ (see (2.5)) is nonzero only at vertices of the charge
net state and requires a regulating coordinate patch at each
of these vertices for its evaluation:

N̂a
i ðvÞjci ¼ Na

i ðvÞjci ≔
X
Iv

Na
Ivi
jci;

Na
Ivi

≔
3

4π
NðxðvÞÞν−2=3v qiIv ê

a
Iv
: ð2:8Þ

Here v is a vertex of c, Iv refers to the Ivth edge at v, and êaIv
to the unit Ivth edge tangent vector, unit with respect to the
coordinates fxg at v and NðxðvÞÞ denotes the evaluation of
the density weighted lapse N at v in this coordinate system.
ν−2=3v is proportional to the eigenvalue of the q̂−1=3 operator,
this eigenvalue being (possibly) nontrivial only for vertices
of valence greater than 3. We refer to the eigenvalue
Na

i ðvÞ ¼
P

IvN
a
Ivi

as the quantum shift. We emphasise that
for each vertex of valence N > 3 we need a choice of
regulating coordinates to evaluate this quantum shift.

C. Discrete Hamiltonian constraint from P1

The action of the discrete approximant to the
Hamiltonian constraint operator of [15] is motivated as
follows. A charge net state can be thought of heuristically

as a wave function of the connection which is itself a
holonomy. Accordingly we use the following notation for
the this wave function:

cðAÞ ¼ hcðAÞ ¼
YN
I¼1

e
iκγqjI

R
eI
Aj
adxa ¼ exp

�Z
d3xcai A

i
a

�

ð2:9Þ

where we have defined:

caiðxÞ ≔ caiðx; feIg; fqIgÞ

¼
XM
I¼1

iqiI

Z
dtIδð3ÞðeIðtIÞ; xÞ_eaI ðtIÞ: ð2:10Þ

Holonomy operators act by multiplication and the electric
field operator by functional differentiation on charge net
wave functions. Using the identity Na

i F
k
ab ¼ £N⃗i

Ak
b −∂bðNc

i A
i
cÞ, the classical Hamiltonian constraint can be

written on the Gauss Law constraint surface as:

H½N� ¼ 1

2

Z
Σ
d3xϵijkNa

i F
k
abE

b
j þ

1

2

Z
Σ
d3xNa

i F
i
abE

b
i

¼ 1

2

Z
Σ
d3xð−ϵijkð£N⃗j

Ak
bÞEb

i þ
X
i

ð£N⃗i
Ai
bÞEb

i Þ

ð2:11Þ

where we have added the classically vanishing second term
on the right-hand side of the first line. The action of the
corresponding operator on the state cðAÞ is obtained by
replacing the electric shift by the action of its operator
correspondent (2.8) which is, in turn, replaced by its
eigenvalue Na

i ðvÞ ¼
P

IvN
a
Ivi

to yield:

Ĥ½N�cðAÞ¼
X
Iv

−
ℏ
2i
cðAÞ

Z
△δðvÞ

d3xAi
aðϵijk£N⃗Iv

j
cakþ£N⃗Iv

i
cai Þ

ð2:12Þ

where for the purposes of our heuristics we have replaced
the quantum shift Na

i , which is strictly speaking non zero
only at the point x ¼ v on the Cauchy slice Σ, by some
regulated version thereof which is of small compact support
ΔδðvÞ of coordinate size δ3 about v (in the coordinates we
used to define the quantum shift). Next, we approximate the
Lie derivative with respect to the quantum shift in ΔδðvÞ by
the difference of the pushforward action of a small diffeo-
morphism and the identity as follows:

ð£N⃗I
i
caj ÞAk

a ¼ −
3

4π
NðxðvÞÞν−2=3v

×
φðqiIv ⃗êI; δÞ�cajAk

a − cajA
k
a

δ
þOðδÞ: ð2:13Þ
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where we imagine extending the unit coordinate edge
tangents ⃗êI to ΔδðvÞ in some smooth compactly supported
way and define φðqiIv ⃗êI; δÞ to be the finite diffeomorphism
corresponding to translation by an affine amount qiIvδ along
this edge tangent vector field. Using (2.13), we obtain:

Ĥ½N�cðAÞ ¼ 1

δ

ℏ
2i
cðAÞ 3

4π

X
v

NðxðvÞÞν−2=3v

×
X
Iv;i

Z
Σ
d3x½� � ��Iv;iδ þOðδÞ; ð2:14Þ

½� � ��Iv;1δ ¼ ½ðφca2ÞA3
a − ca2A

3
a� þ ½ðφc̄a3ÞA2

a − c̄a3A
2
a�

þ ½ðφca1ÞA1
a − ca1A

1
a�

½� � ��Iv;2δ ¼ ½ðφca3ÞA1
a − ca3A

1
a� þ ½ðφc̄a1ÞA3

a − c̄a1A
3
a�

þ ½ðφca2ÞA2
a − ca2A

2
a�

½� � ��Iv;3δ ¼ ½ðφca1ÞA2
a − ca1A

2
a� þ ½ðφc̄a2ÞA1

a − c̄a2A
1
a�

þ ½ðφca3ÞA3
a − ca3A

3
a�; ð2:15Þ

where we have written c̄ai ≡ −cai and where we have

suppressed the labels Iv, i to set φcaj ≡ φð ⃗qiIv êIv ; δÞ
�caj .

The integral in (2.14) is of order δ and we approximate
it by its exponential minus the identity to get our final
expression:

Ĥ½N�cðAÞ ¼ ℏ
2i
cðAÞ 3

4π

X
v

NðxðvÞÞν−2=3v

×
X
Iv

X
i

e
R
Σ
½����Iv;iδ − 1

δ
þOðδÞ: ð2:16Þ

For each fixed ðIv; iÞ the exponential term is a product of
edge holonomies corresponding to the chargenet labels
specified through (2.15). This product may be written as

h−1cði;flipÞhcði;flip;Iv;δÞ ; ð2:17Þ

where cði;flip;Iv;δÞ is the deformation of cði;flipÞ by φðqiIv ⃗êI; δÞ
and ci;flip has the same graph as c but “flipped” charges. To
see what these charges are, fix i ¼ 1 and some edge Iv
corresponding to the first line of (2.15). In cð1;flipÞ, the
connection A3

a corresponding to the 3rd copy of Uð1Þ is
multiplied by the charge net ca2 corresponding to the second
copy of Uð1Þ. This implies that in the holonomy hcð1;flipÞ the
charge label in the 3rd copy of Uð1Þ for any edge is exactly
the charge label in the second copy of Uð1Þ3 of the same
edge in c i.e., in obvious notation q3jcð1;flipÞ ¼ q2jc where we
have suppressed the edge label. A similar analysis for all
the remaining terms in (2.15) indicates that the charges
ðiÞqj, j ¼ 1, 2, 3 on any edge of cði;flipÞ are given by the

following “i- flipping” of the charges on the same edge
of c.

ðiÞqj ¼ δijqj −
X
k

ϵijkqk ð2:18Þ

The exact nature of the deformed chargenet cði;flip;Iv;δÞ
depends on the definition of the deformation. Since the
deformation is of compact support around v, the combi-
nation h−1cði;flipÞhcði;flip;Iv;δÞ is the identity except for a small
region around v. From (2.16), this term multiplies cðAÞ. We
call the resulting chargenet as cði;Iv;1;δÞ

6 so that in terms of
holonomies we have that:

hcði;Iv;1;δÞ ðAÞ ¼ h−1cði;flipÞðAÞhcði;flip;Iv;δÞ ðAÞhcðAÞ: ð2:19Þ

Our final expression for the discrete approximant to the
Hamiltonian constraint then reads:

Ĥ½N�δcðAÞ ¼
ℏ
2i

3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

X
i

cði;Iv;1;δÞ − c

δ
:

ð2:20Þ

A similar analysis for the action of the electric diffeo-
morphism constraint yields the following counterpart
of (2.16):

D̂½N⃗i�cðAÞ ¼
ℏ
i
cðAÞ 3

4π

X
v

NðxðvÞÞν−2=3v

×
X
Iv

e
R
Σ
φðqiIv ⃗êI ;δÞ�caj A

j
a−caj A

j
a − 1

δ
þOðδÞ:

ð2:21Þ

which then yields the final result

D̂δ½N⃗i�c ¼ ℏ
i
3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

1

δ
ðcðIv;i;0;δÞ − cÞ

ð2:22Þ

where cðIv;i;0;δÞ is obtained from c only by a singular
deformation without any charge flipping so that

ðcðIv;i;0;δÞÞai ðxÞ ≔ φðqiIv ⃗êIv ; δÞ�cai ðxÞ: ð2:23Þ

It remains to specify the deformation φðqiIv ⃗êIv ; δÞ. We do
so in the next section. As we shall see, this deformation is
visualized as an abrupt pulling of the vertex structure along

6The 1 in the subscript refers to the “positive” i-flip (2.18) as
distinct from a “negative” i-flip which we shall encounter in
(2.25) below.
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the Ivth edge. Due to its “abruptness” we refer to this
deformation as a singular diffeomorphism. In this language,
Eqs. (2.20) and (2.22) imply that whereas the action of the
Hamiltonian constraint is a combination of charge flips and
singular diffeomorphisms, the action of the electric diffeo-
morphism constraints is exactly that of singular diffeo-
morphisms without any charge flips.

D. Linear vertices, upward and downward cones
and negative charge flips

The following discussion implies that the detailed
specification of the deformation φðqiIv ⃗êIv ; δÞ is only needed
for a special class of chargenet vertices which are called
linear vertices. In this regard, recall from Sec. I that any
state of interest is associated with a corresponding ket set
and is built out of linear combinations of charge net states
in this ket set. The action of the Hamiltonian and electric
diffeomorphism constraints on any such state is then
determined by their action on elements of the ket set.
Charge net elements of these ket sets are characterised by a
certain linearity property [15]. In order to define this
linearity property recall from Sec. II C that the action of
these constraints on an element c of the ket set requires the
evaluation of the quantum shift (2.8) at vertices of c which
have valence greater than 3 which, in turn, requires the
choice of a coordinate patch around each such vertex. Let v
be any N valent (N > 3) vertex of an element c of a ket set.
Then the following linearity property holds: there exists a
small enough neighborhood of v such that the edges of c at
v in this neighborhood are straight lines with respect to the
coordinate patch at v. Such vertices are called linear with
respect to the coordinate patches associated with them and
these coordinate patches are referred to as linear coordinate
patches. Thus, for our purposes, it suffices to specify the
deformations φðqiIv ⃗êIv ; δÞ for linear vertices.
Accordingly consider any such vertex of c.7 From the

discussion above this deformation must distort the graph
underling c in the vicinity of its vertex v in such a way that
its vertex is displaced by a coordinate distance δ along the
Ivth edge direction to leading order in δ. Due to the
vanishing of the quantum shift everywhere except at v,
this regulated deformation is visualized to abruptly pull the
vertex structure at v along the Ivth edge. Due to the abrupt
pulling the original edges develop kinks signaling the point
from which they are suddenly pulled. Since these kinks are
points at which the edge tangents differ we call them C0

kinks. The final picture of the distortion is one in which the
displaced vertex lies along the Ivth edge and is connected to
the kinks on the remaining edges by edges which point

almost exactly opposite to the Ivth one. The structure in the
vicinity of the displaced vertex is exactly that of a “down-
ward” cone formed by these edges with axis along the Ivth
one. For small enough δ the linear nature of the vertex
provides the necessary linear structure to define this conical
deformation, with the cone getting stiffer as the regulating
parameter δ decreases.
The downward conical structure is appropriate for vertex

displacement by φðqiIv ⃗êIv ; δÞ along the outgoing “upward”
direction ⃗êIv along the Ivth edge which, in turn, is
appropriate for positive qiIv . For negative q

i
Iv
, the displace-

ment is downward along an extension of the Ivth edge past
v, with the remainingN − 1 edges forming an upward cone
around the cone axis along the Ivth edge.
Note also that we can equally well replace Eq. (2.13)

through the judicious placement of negative signs by:

ð£N⃗I
i
caj ÞAk

a ¼
3

4π
NðxðvÞÞν−2=3v

φðqiIvð− ⃗êIÞ; δÞ�cajAk
a − cajA

k
a

δ

þOðδÞ: ð2:24Þ

This would then result in upward conical deformations for
qiIv > 0 and downward ones for qiIv < 0.
A similar use of negative signs in equation (2.11) offers a

different starting point for our heuristics and leads to
negative charge flips for the deformed charge nets gen-
erated by the Hamiltonian constraint approximant:

ð−iÞqj ¼ δijqj þ
X
k

ϵijkqk ð2:25Þ

We denote the negative i-flipped child of the parent c by

cði;Iv;−1;δÞ; ð2:26Þ

the −1 denoting the negative flip (2.25).
To summarize: Using the parent-child language of

Sec. I, we have that (a) legitimate approximants to the
Hamiltonian and electric diffeomorphism constraints gen-
erate both upward and downward conically deformed
children irrespective of the sign of the edge charge labels
and (b) legitimate approximants to the Hamiltonian con-
straint generate both positive and negative flipped charge
net children. While our notation for deformed children will
not reflect the choice of upward and downward deforma-
tion (which we shall specify explicitly as and when
required), our notation will reflect the choice of positive
or negative charge flip as follows. We have already denoted
a positive flipped child by cði;Iv;1;δÞ with “1” signifying a
positive i-flip. We shall denote a negative flipped child by
cði;Iv;−1;δÞ with the “−1” signifying a negative flip. As in
Sec. II A we shall denote the holonomies associated with
these states by hcði;Iv;1;δÞ, hcði;Iv;−1;δÞ .

7The deformations described in this section are appropriate for
linear vertices subject to a further restriction, namely that at such
vertices no triple of edge tangents is linearly dependent. In the
language of [11,13,15] and of the next section, such vertices are
called “GR” vertices.
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Next, we note that it turns out [15] that, by virtue of the
linearity of the conical deformation in the vicinity of the
displaced vertex, the displaced vertices are also linear.
In addition, it also turns out that the constraint approx-
imants (2.20), (2.22) preserve a second set of properties
called GR and CGR properties of the vertex structure. We
describe these properties in the next section.

E. GR and CGR vertices

A linear GR vertex is defined as a linear vertex which has
valence greater than 3 and at which no triple of edge
tangents is linearly dependent. A linear vertex v of a charge
net c will be said to be linear CGR if:

(i) The union of 2 of the edges at v form a single
straight line so that v splits this straight line into
2 parts

(ii) The set of remaining edges together with any one of
the two edges in (i) constitute a GR vertex in the
following sense. Consider, at v, the set of out going
edge tangents to each of the remaining edges
together with the outgoing edge tangent to one of
the two edges in (i). Then any triple of elements of
this set is linearly dependent.

In (i) and (ii) above, the notion of straight line is
with respect to the linear regulating coordinate system
associated with the linear vertex v. The edges in (i) are
called conducting edges, the line in (i) is called the
conducting line and the remaining edges are called non-
conducting edges.
It is straightforward to see that the conical deformations

generated by the Hamiltonian and electric diffeomorphism
constraint approximants on parental vertices which are GR
result in displaced vertices in the children which are either
GR or CGR. While the displaced vertices in the children
generated by the electric diffeomorphism constraints pre-
serve the GR nature of the parental vertex, those generated
by the Hamiltonian constraint, depending on the charge
labelings and the edge along which the deformation is
generated, could be GR or CGR.
If the parental vertex is CGR, the conical deformations

are, in general, constructed slightly differently from those
encountered in Sec. II D. However in the specific case that
the deformation at a CGR vertex is along a conducting
edge, this deformation is identical to that described in
Sec. II D, in that the nonconducting edges lie on a cone with
axis along the conducting line. In the main body of this
work8 we shall only encounter parental vertices which are
GR or CGR, and in the latter case, will only encounter
deformations along conducting edges. We depict these
deformations in Figs. 1 and 2. More in detail, Fig. 1 depicts
downward conical deformations of a GR vertex. For
simplicity of depiction we have chosen the valence to be

N ¼ 4. Figure 2 shows a deformation along the set of
collinear “conducting” edges at a CGR vertex.
In our review hitherto we have skipped certain technical-

ities and, more importantly, extrapolated some of the
results and structures of [15] in a manner plausible to
us. We comment on these matters in the next section.

F. Technical caveats to our hitherto
broad exposition

(1) Interventions, upward directions and C1, C2 kinks:
The singular diffeomorphisms which are responsible for the
deformations underlying Eqs. (2.20) and (2.22) are of the

FIG. 1. Fig. 1(a) shows an undeformed GR vertex v of a
chargenet c with its Ith and Jth edges as labeled. The vertex
is deformed along its Ith edge in Fig. 1(b) wherein the
displaced vertex vI and the C0 kink, ṽJ on the Jth edge are
labeled. Figure 1(c) shows the result of a Hamiltonian type
deformation obtained by multiplying the chargenet holonomies
obtained by coloring the edges of Fig. 1(b) by flipped images of
charges on their counterparts in c, Fig. 1(a) by negative of these
flipped charges and Fig. 1(a) by the charges on c. If the edges of
Fig. 1(b) are colored by the charges on their counterparts in c then
one obtains an electric diffemorphism deformation.

FIG. 2. In Fig. 2(b) the vertex structure of Fig. 2(a) is deformed
along its Kth edge and the displaced vertex vK and the C0 kink ṽJ
on the Jth edge are as labeled. Figure 2(c) shows the result of a
Hamiltonian type deformation obtained by multiplying the 3
chargenet holonomies obtained by coloring the edges of Fig. 2(b)
by the flipped images of the charges on their counterparts in c, the
edges of Fig. 2(a) by the negative of these flipped charges and the
edges of Fig. 2(a) by the charges on c. If the edges of Fig. 2(b) are
colored by the charges on their counterparts in c then one obtains
an electric diffemorphism deformation.

8A minor exception is the state depicted in Fig. 6; however we
do not discuss its deformations in any detail.
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form φðqiIv ⃗êIv ; δÞ. Here φðqiIv ⃗êIv ; δÞ approximates the Lie
derivative with respect to the quantum shift through
equation (2.13). As sketched above one may choose to
approximate the Lie derivative of the quantum shift through
equation (2.24) in which case (2.20), (2.22) would be
modified by appropriate negative signs. In both cases the
upward direction for the cone was defined to be along the
outward point edge tangent ⃗êIv . We note here that this is not
how we proceeded in [15].
There we assigned an upward direction to each edge at

the vertex v of c based on the graph topology of c. This
direction was either outward or inward pointing. In the
latter case, we first multiplied the parental charge net by
judiciously chosen small loop holonomies which we called
interventions. The loops were chosen so that (a) these
interventions were classically equal to unity to Oðδ2Þ and
(b) the action of the intervening holonomies modified the
parental vertex structure so as to replace the edges which
were assigned inward pointing directions by edges whose
outward pointing directions at v coincided with the
assigned upward directions (c) the interventions resulted
in the conversion of CGR vertices to GR ones. The
resulting modified parent state was then acted upon by
(2.20), (2.22) and then multiplied by the inverse of the
intervening holonomies.9 As a result the deformations of
the parental state were dictated by the assigned upward
directions rather than the outward pointing parental tan-
gents and no extra negative signs were introduced. In
addition certain “C1 and C2” kinks were placed on the
parental edge (and/or its extension) along which the child
vertex was displaced so as to serve as markers for the
choice of upward direction [15]. The demonstration of
anomalyfree action in [15] was based on this complicated
choice of approximant and off-shell and physical states
were constructed from ket sets satisfying property (a) with
respect to these choices of approximants.
As we shall discuss further in Sec. VA, we believe that it

is possible to repeat the demonstration of anomalyfree
action by interpreting the choice of upward direction as a
regulating choice rather than as being fixed once and for all
by the graph topology as in [15]. In other words, we may
specify the choice of upward directions at the parental
vertex being acted upon by a product of constraint
operators as inward or outward for each edge freely. We
shall assume that with this freedom of choice, we will still
be able to provide a demonstration of anomalyfree con-
straint action along lines similar to that in [15] albeit
without the introduction of the C1 and C2 kinks referred to
above. The ket set satisfying property (a) appropriate to the
incorporation of this freedom of choice then contains
conically deformed children for cone axes which may be

chosen along or opposite to the outward pointing parental
edges at any vertex v of the parent independent of the sign
of the parental edge charges qiIv .

10

(2) Multivertex states: The detailed demonstration of
anomaly freedom in [15] is in the context of ket sets with
elements which have only a single vertex where the
Hamiltonian and electric diffeomorphism constraints act
nontrivially. However the notion of propagation between
vertices can only be formulated for multivertex charge nets.
Note that the action of the constraints as derived in Sec. II A
at one vertex is independent of the action at a distinct
vertex. Hence the action of the constraints derived in [15]
can be easily generalized to multivertex charge nets and the
sum over v in (2.20), (2.22) constitutes exactly this
generalization. It is then necessary to also generalise the
detailed demonstration of anomaly freedom in [15] to the
case of ket sets satisfying property (a) whose elements have
multiple vertices on which constraint approximants act
nontrivially in accordance with this generalization. While
such a demonstration is outside the scope of this work, its
existence does seem plausible to us and we shall assume
this existence for the considerations in this paper. We
comment on this matter further in Sec. VA.

G. A key structural property of constraint
actions of interest

The structural property of constraint approximants Ĉδ

connected with property (a) of Sec. I and alluded to in that
section is that any such approximant takes the following
form:

Ĉδjsi ¼
X
v

X
deformation;v

adeformation;v
Ôdeformation;v − 1

δ
jsi:

ð2:27Þ
Here jsi is (the appropriate counterpart of) a spin net state.
The operator Ôdeformation;v is a kinematically well defined
operator which deforms the vertex structure of the “parent”
jsi in a δ coordinate sized vicinity of its vertex v in a
specific way and yields a deformed “child” spin net
Ôdeformation;vjsi, and adeformation;v is a nonzero complex
coefficient. The sums are over different deformations at
each vertex and then over all vertices.
We now show that this form implies that the state

obtained as the sum, with unit coefficients, over all
elements of any ket set which satisfies property (a) is an

9As discussed in [15] the displaced vertex in the resulting child
is either CGR or GR.

10Thus, the ket sets considered here differ from those of [15] in
that (a) there is no placement of C1, C2 kinks in children
(b) children which arise from both directions of conical defor-
mations of parental vertices irrespective of the signs of parental
edge charges are in the ket set rather than children which arise
only from uniquely prescribed choices of these directions as in
[15]; in this sense the ket sets here are slightly larger than those
of [15].

MADHAVAN VARADARAJAN PHYS. REV. D 100, 066018 (2019)

066018-10



anomalyfree physical state. More precisely, since the sum is
kinematically non-normalizable, it is more appropriate to
define the state as a sum over bra correspondents of
elements of the ket set. Such a state Ψ lies in the algebraic
dual space of complex linear mappings on the finite span of
(the appropriate analog of) spin network states. The
constraints operators act through dual action on such a
state. We show below that such a state is an anomalyfree
physical state with respect to the dual action of the
constraint operators of the form (2.27).
The constraint approximants act by dual action on such a

state as follows:

ΨðĈδjsiÞ

¼ Ψ
�X

v

X
deformation;v

adeformation;v
Ôdeformation;v − 1

δ
jsi

�

ð2:28Þ
and their continuum limit action is defined as

lim
δ→0

ΨðĈδjsiÞ

¼ lim
δ→0

Ψ
�X

v

X
deformation;v

adeformation;v
Ôdeformation;v − 1

δ
jsi

�
:

ð2:29Þ
We show that the contribution of each term in the sum
vanishes i.e., we show that

ΨðjsiÞ ¼ ΨðÔdeformation;vjsiÞ∀ jsi: ð2:30Þ

First let jsi lie in the complement of the ket set. Then the
left-hand side (lhs) of (2.30) vanishes. The right-hand side
(rhs) involves the action of Ψ on a child of jsi. This
vanishes by virtue of property (a2) of the ket set, for if it did
not vanish, that would imply the existence of a possible
parent jsi of the child Ôdeformation;vjsi such that this possible
parent is not in the ket set even though its child is. Next let
jsi be in the ket set. Then the lhs is equal to 1 becauseΨ is a
superposition of (bra correspondents of) elements of the ket
set with unit coefficients. The rhs is then also equal to 1 by
virtue of property (a1). Thus Ψ is in the kernel of the
electric diffeomorphism and Hamiltonian constraint oper-
ators. Finally, Ψ is diffeomorphism invariant by virtue of
property (a3). Since the diffeomorphism invariant stateΨ is
killed by the Hamiltonian constraint, Ψ is a physical state.
Since it is also killed by the electric diffeomorphism
constraint, constraint commutators consistently trivialize
and the state is also anomaly free. This completes the proof.
To summarize: The constraint approximants considered

in this work will all have the structure (2.27). For any ket
set which satisfies property (a) with respect to these
constraint approximants, the state obtained by summing
over elements of this ket set with unit coefficients is a

physical state i.e., it is a diffeomorphism invariant state
annihilated by these constraint approximants, and, hence,
by their continuum limits. Such a state also supports trivial
anomaly free constraint commutators. As discussed in
Sec. I (see also [6]), whether a physical state based on a
specific ket set supports propagation depends crucially on
the nature of the possible parents of property (a2). In
contrast to the single vertex ket sets considered in [15], the
ket sets considered in this work are based on multivertex
kets because the very notion of propagation as that between
vertices is defined only for the multivertex case.
As mentioned in Sec. I, whether off-shell deformations

of these multivertex physical states can be constructed in a
manner similar to the single vertex case of [15] so as to
support nontrivial anomalyfree commutators is a question
which is outside the scope of the work in this paper. We
return to this point in Sec. VA.

III. INSUFFICIENT PROPAGATION

In Sec. III A, in order to illustrate the various structures
involved in our discussion of propagation in Sec. I, we
study these structures in the context of a simple example,
namely that of a 2 vertex charge network state, each vertex
having the same valence. In Sec. III A 1 we consider a
perturbation created by the action of a single Hamiltonian
constraint on this state. We show that the minimal ket set,
consistent with the constraint actions of [15], which
contains this state does not encode propagation of this
perturbation. In Sec. III A 2 we enlarge this ket set by
requiring that the physical state it defines be subject to
additional conditions. We consider a specific perturbation
of the simple 2 vertex state created by the action of an
operator associated with these additional conditions. We
show that the enlarged ket set does encode propagation of
this perturbation from one vertex of the state to the other.
Besides their pedagogic value in illustrating our articulation
of propagation in terms of ket sets, the considerations of
Sec. III A 2 display an intriguing connection with the
existence of a certain elegant combination of constraints
in Ref. [16] (see footnote 11 in this regard).
In Sec. III B we investigate propagation between vertices

of different valence. Specifically, we show that the N → N
constraint actions of [15] are inconsistent with propagation
between vertices of different valence of a multivertex state,
and that, at best these actions may engender ‘1d’ propa-
gation between vertices of special multivertex states. The
arguments in Sec. III B are simple and robust and the reader
mainly interested in the motivation for the N → 4 modi-
fication may skip the slightly more involved considerations
of Sec. III A.

A. Propagation in a simple 2 vertex state

Consider the simple case of a Uð1Þ3 gauge invariant
parent charge net state pwith 2N-valent vertices connected
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by N edges as depicted in Fig. 3(a). Let the set of Uð1Þ3
edge charges be q⃗J; J ¼ 1; ::; N with q⃗J ¼ ðq1J; q2J; q3I Þ ∈
Uð1Þ3. Consider the “generic” case where p has no
symmetries and none of its charge components vanishes
so that:

qiJ ≠ 0 i ¼ 1; 2; 3 J ¼ 1;…; N: ð3:1Þ

We are interested in establishing propagation or the lack
thereof of specific perturbations between vertices A and B
in the context of N → N constraint actions.

1. No propagation

Here we consider the smallest ket set subject to
property (a) which contains p. A single N → N action
of the Hamiltonian constraint on this parent state yields
various children in this ket set. We focus on the child c
obtained by deforming the vertex structure at A along its
Ith edge as shown in Fig. 3(b). The deformation renders
the original parent vertex at A degenerate so that it has
vanishing volume eigenvalue and creates the new non-
degenerate vertex vI . The vertex vI is connected in c to
the C0 kinks fṽJ≠Ig on the parental edges feJ≠Ig by the
deformed counterparts of the latter as show in Fig. 3(b).
We are interested in the existence of other possible

parents of c in the ket set. By a possible parent we
mean a chargenet p0 whose deformation by at least one
N → N constraint action yields c upto diffeomorphisms.
By “other” we mean that p0 is not diffeomorphic to p.
Thus, we are interested in the existence of p0 not
diffeomorphic to p such that c is generated from p0
by any combination of at least one Hamiltonian or
electric diffeomorphism constraint deformation, ordinary
diffeomorphisms and, possibly, further Hamiltonian/
electric diffeomorphism deformations.
Since c contains only one set of trivalent kinks, it can

only be generated (up to diffeomorphisms) by a single
Hamiltonian constraint action on a state p0 with 2 N valent
vertices and no such kinks so that c ¼ ϕ0 dHamϕp0 wheredHam refers to a Hamiltonian constraint deformation.
Clearly by redefining p0 appropriately we may set ϕ equal
to the identity with no loss of generality. Let the vertices of

p0 be A0, B0 and let dHam act at A0 to yield c0 so that we have
that ϕ0c0 ¼ c.
Next, denoting the flipped charges on the deformed

edges in c by the subscript flip we have the following:
(a) By virtue of the genericity condition (3.1) on the

charge labels of p, it follows straightforwardly that the
charges qkJ − ðqflipÞkJ on the segments between A and
ṽJ are nonvanishing, thus implying that these seg-
ments are present in c.

(b) the parental graph can be immediately reconstructed
from that of c simply by removing the deformed edges
in c from vI to each ṽJ.

(c) the parental vertex whose deformation yields c can be
identified uniquely as A by virtue of A being degen-
erate in c.

(d) the parental edge charges qkJ≠I in p can be uniquely
identified with the charges qkJ≠I on the segments in c
from ṽJ to B and the parental edge charges on the Ith
edge in p can be idnetified with those on the edge from
vI to B in c.

From (a)–(d), p can be uniquely reconstructed from c.
Since ϕ0 preserves kink structure, vertex degeneracy, and

colorings, it immediately follows that ϕ0p0 ¼ p. Hence this
example illustrates the lack of propagation of this particular
perturbation.

2. Propagation from an additional condition

As discussed in Secs. I and II G, anomalyfree physical
states are annihilated by the diffeomorphism, Hamiltonian
and electric diffeomorphism constraints. Here, we demand
that these states be further annihilated by certain operator
implementations of the linear combinations

H�ðNÞ ¼ ð�HðNÞÞ þ 1

2

X3
i¼1

DðN⃗iÞ ð3:2Þ

of the Hamiltonian and electric diffeomorphism con-
straints.11 If the operators Ĥ�ðNÞ are regulated simply
as sums of the regulated versions (2.20) and (2.22) of the
individual Hamiltonian and electric diffeomorphism con-
straints, this condition is already satisfied by anomalyfree
physical states by virtue of their being annihilated by the
individual constraints. Here we do not regulate Ĥ�ðNÞ in
this trivial way. Instead we proceed as follows.

FIG. 3. Fig. 3(a) shows the simple 2 vertex chargenet of
interest. Figure 3(b) shows the result of a Hamiltonian constraint
deformation of the chargenet of Fig. 3(a) along its Ith edge with
the displaced vertex vI and the C0 kink ṽJ as labeled.

11As mentioned earlier these combinations are reminiscent of
the elegant combinations of the diffeomorphism and Hamil-
tonian constraints for Lorentzian gravity constructed in [16].
These combinations in that work obtain an elegant form
when expressed in terms of spinors. The trace part of the
combination yields the Hamiltonian constraint and the trace
free part yields electric diffeomorphism constraints smeared
with an additional electric field. For details see (see vi), pg. 85,
Chapter 6 of [16]).
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From Eqs. (2.16) and (2.21), it immediately follows that

Ĥþ½N�cðAÞ ¼ ℏ
2i
cðAÞ 3

4π

X
v

NðxðvÞÞν−2=3v

×
X
Iv

X
i

e
R
Σ
½����Iv;iδ þφðqiIv ⃗êI ;δÞ�caj A

j
a−caj A

j
a − 1

δ

þOðδÞ ð3:3Þ

¼ ℏ
2i

3

4π

X
v

NðxðvÞÞν−2=3v

×
X
Iv

X
i

e
R
Σ
½����Iv;iδ þφðqiIv ⃗êI ;δÞ�caj A

j
a − cðAÞ

δ
þOðδÞ ð3:4Þ

¼ ℏ
2i

3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

X
i

cði;Iv;þ;δÞðAÞ − cðAÞ
δ

þOðδÞ ð3:5Þ

where in the second line we used that cðAÞ ¼ exp
R
Σ c

a
i A

i
a.

and in third we defined the deformed state cði;Iv;þ;δÞðAÞ as

cði;Iv;þ;δÞðAÞ ≔ e
R
Σ
½����Iv;iδ þφðqiIv ⃗êI ;δÞ�caj A

j
a : ð3:6Þ

In the notation of Eqs. (2.20) and (2.22), we have that:

Ĥþ½N�δcðAÞ ¼
ℏ
2i

3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

X
i

cði;Iv;þ;δÞ − c

δ

ð3:7Þ

It is straightforward to check that in the notation developed
in the beginning of Sec. II A, the holonomy underlying the
deformed state cði;Iv;þ;δÞ is obtained as the product of the
holonomy corresponding to an i-flipped child generated by
the Hamiltonian constraint and the holonomy correspond-
ing to an electric diffeomorphism child as follows:

hcði;Iv;þ;δÞ ðAÞ ¼ ðh−1ci;flipðAÞhci;flip;Iv;δðAÞÞhcði;Iv;0;δÞ ðAÞ
¼ ðhcði;Iv;1;δÞ ðAÞh−1c ðAÞÞhcði;Iv;0;δÞ ðAÞ: ð3:8Þ

Here, from (2.17) the term in brackets in the first equality

corresponds to the e
R
Σ
½����Iv;iδ contribution to equation (3.6),

and the second equality follows from (2.19).
It is also straightforward to check that if the charge flip

(2.18) underlying the term ½� � ��Iv;iδ in (2.16) is replaced by
the negative charge flip (2.25), then the line of argumenta-
tion which leads to (3.3)–(3.5) yields the following regu-
lated action of Ĥ−ðNÞ:

Ĥ−½N�δcðAÞ ¼
ℏ
2i

3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

X
i

cði;Iv;−;δÞ − c

δ
:

ð3:9Þ

The holonomy underlying the deformed state cði;Iv;−;δÞ is
given by the product:

hcði;Iv;−;δÞ ðAÞ ¼ ðhcði;Iv;−1;δÞ ðAÞh−1c ðAÞÞhcði;Iv;0;δÞ ðAÞ; ð3:10Þ

where we have used the notation cði;Iv;−1;δÞ as in (2.26). The
discussion of Sec. II D may then be repeated in the context
of the deformed children generated by Ĥ�ðNÞ. It follows
that legitimate approximants to these operators can be
constructed so as to generate both upward and downward
conically deformed children irrespective of the sign of the
edge charge labels. Figure 4 depicts a downward conical
deformation of a parental GR vertex by these operators.
The holonomy underlying the deformed child is obtained as
the product of holonomies based on the graphs depicted in
the figure. The graphs involved are the same irrespective of
whether the child is generated by ĤþðNÞ or Ĥ−ðNÞ;
however the colorings in the two cases differ and are as
described in the figure caption.
Next, the discussion of Sec. II G can be applied to

Eqs. (3.7) and (3.9) to conclude the following. The ket set
appropriate to these equations contains all possible upward
and downward deformed children generated by the action
of Ĥ�ðNÞ on any parent in the ket set as well all possible
parents of any child in the ket set. The state obtained by

FIG. 4. Figure 4(a) shows an undeformed GR vertex v of a
chargenet c with its Ith and Jth edges as labeled. The vertex is
deformed along its Ith edge in Fig. 4(b) wherein the displaced
vertex vI and the C0 kink, ṽJ on the Jth edge are labeled.
Figure 4(c) shows the result of an H� type deformation obtained
by multiplying the chargenet holonomies obtained by coloring
the edges of Fig. 4(b) by flipped images of charges on their
counterparts in c, Fig. 4(a) by negative of these flipped charges
and Fig. 4(b) by the charges on c. If the flip is positive, the
deformation is generated by Hþ and if negative, by H−. As result
the charges on this deformed chargenet on the deformed edges are
the sum of the �-flipped and unflipped charges and the segments
from v to the kinks ṽJ carry the negative of the �-flipped images
of their charges in c.
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summing over all elements of this ket set is killed by the
actions (3.7), (3.9).
Since the requirement that Ĥ�ðNÞ annihilated states of

interest is imposed in addition to the demand that such
states be anomalyfree physical states with respect to the
Hamiltonian and diffeomorphism (and Gauss Law) con-
straints, the ket set of interest satisfies the closure properties
described in the previous paragraph and also satisfies
property (a) as articulated in Sec. I. We shall use the
properties described in the previous paragraph together
with property (a3) (i.e., the closure of the ket set with
respect to diffeomorphisms) to show that the minimal ket
set containing the simple 2 vertex state of Sec. III A 1 does
encode propagation of a perturbation created by the action
of ĤþðNÞ at one of its vertices. In what follows, for
notational convenience we rename this simple 2 vertex state
(called p hitherto) as c.
Our argumentation is primarily diagrammatical and

described through Fig. 5 as follows:
(1) We start at the left with the simple 2 vertex charge

net c with N valent vertices A, B connected through
N edges in Fig. 5(a). The outgoing charge on theKth
edge emanating from vertex A is denoted by qkK.

(2) This parent chargenet is deformed by the action of
ĤþðNÞ at the vertex A to give the child cði;IA;þ;δÞ
shown in Fig. 5(b). Since the vertex A is GR, the
deformation is of the type depicted in Fig. 4(c). As in
that figure, the index J will be used for edges which
are different from the Ith one. The charges on the
child may be inferred from (3.8). Denoting the kth
component of the outgoing charge label from a vertex
v to a vertex v̄ by qkvv̄ it is straightforward to infer that:

qkAṽJ ¼ −ðqflipÞkJ qkṽJB ¼ qkJ qkvIṽJ ¼ qkJ þ ðqflipÞkJ
qkAvI ¼ −ðqflipÞkI qkvIB ¼ qkI ð3:11Þ

Here by qkflip we mean the positive i-flip (2.18).12

(3) The charge net of Fig. 5(b) is acted upon by a
seminanalytic diffeomorphism so as to “drag” the
deformation from the vicinity of vertex A to the
vicinity of vertex B.13 We slightly abuse notation and
denote the images of vI, ṽJ by this diffeomorphism
by the same symbols vI , ṽJ.

(4) The charge net of Fig. 5(c) is deformed by the action
of an appropriate electric diffeomorphism at vI to
yield the charge net of Fig. 5(d). This transforms the
conical deformation in Fig. 5(c) which is downward
with respect to the Ith line from A to B to one which
is upward conical with respect to this line in Fig. 5
(d). As a result, the deformation is now downward
conical with respect to the (oppositely oriented) line
from B to A.14

(5) The charge net c0 of Fig. 5(f) has the same graph as
that of the charge net c but its charges from B to A
are different from those of c. Denoting these charges
by q0kI , these charges are related to those on c by

q0kI ¼ ðqflipÞkI : ð3:12Þ

Thus the outgoing charges from B in c0 are just the
positive i-flipped images of the incoming charges at

FIG. 5. The figures show the sequence of ket set elements Fig. 5(a) to Fig. 5(f) which encode propagation from vertex A to vertex B as
described in the main text. The ket set is the minimal one containing Fig. 5(a). It underlies a physical state subject to the additional
physical conditions of Sec. III B.

12The vertex vI is CGR (see Sec. II F). Equations (3.11) imply
that the net outgoing charges at this vertex are qkK þ ðqflipÞkK;
K ¼ 1;…; N. We assume that the charges qkK are such that the
CGR vertex is nondegenerate. For the definition of nondegener-
acy of a CGR vertex, see [15].

13We assume that the state cði;I;þ1;δÞ is such that it can be
transformed via an appropriate diffeomorphism to the state
depicted in Fig. 5(c). We shall comment further on this in
Sec. V B.

14For a downward deformation of a CGR vertex see Fig. 2(b).
An upward deformation may be visualized by turning Figs. 2(a)
and 2(b) upside down; see [15] and figures therein for details.
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B in c. This state will play the role of a possible
parent.

(6) The charge net c0 of Fig. 5(f) is deformed by the
action of Ĥ−ðNÞ at the vertex B. The deformed child
c0ði;IB;−;δÞ is depicted in Fig. 5(e). Once again we have
abused notation and re-used the symbols vI , ṽJ. The
charges on this state can be inferred from (3.10) and
(3.12). Using the fact that a negative i-flip is the
inverse of a positive i-flip, these charges turn out to
be identical to their counterparts in Fig. 5(b):

qkAṽJ ¼ −ðqflipÞkJ qkṽJB ¼ qkJ qkvIṽJ ¼ qkJ þ ðqflipÞkJ
ð3:13Þ

qkAvI ¼ −ðqflipÞkI qkvIB ¼ qkI : ð3:14Þ

(7) The chargenet c0ði;IB;−1;δÞ of Fig. 5(e) is deformed by
the action of an appropriate electric diffeomorphism
to give exactly the chargenet of Fig. 5(d).15

The minimal ket set containing the chargenet c of
Fig. 5(a) must contain the charge nets depicted in
Figs. 5(b)–5(f). Steps (1)–(7) imply that the chargenet of
Fig. 5(d) has 2 possible ancestors, one depicted in Fig. 5(a)
andone in Fig. 5(f). The sequence of elements Figs. 5(a)–5(f)
is then one which encodes the ‘emmission’ of a conical
perturbation at the vertex A of c depicted in Fig. 5(b) and its
propagation and final ‘absorption’ by vertex B to yield the
chargenet c0 in Fig. 5(f). Thus the imposition of appropriate
additional physical conditions on anomalyfree states can
engender propagation. Unfortunately, as we now argue, this
propagation seems to be, at best, only “1 dimensional” and
even this “best case” requires very special states.

B. No propagation between generic vertices
of multivertex states

The N → N deformations of [15] used hitherto create N
valent (CGR or GR) vertices from N valent parental ones.
Consider a pair of GR vertices v1, v2 in a multivertex graph
of different valences N1, N2. Any child vertex created from
a deformation of v1 has a valence N1 and any child vertex
created from a deformation of v2 has valence N2 ≠ N1.
Hence the set of children obtained through multiple
deformations of v1 and v2 split into two disjoint classes,
namely those with an N1 valent child vertex and those with
an N2 valent child vertex. The former are unambiguously
associated with v1 and their creation can be visualized
through a lineage associated with v1. Similarly any lineage
for the latter is associated with v2. Thus no possible parent
of any child in the latter lineage can be part of the former

lineage. This implies the impossibility of propagation
between two such vertices.
Next, consider a pair of GR N valent vertices v1, v2 in a

graph which are connected through M < N edges leaving
N −M edges free to connect with other parts of the graph.
For generic graph connectivity, once again children
obtained through deformations of v1, v2 fall into two
disjoint sets by virtue of their connectivity with these 2
sets of free edges and there is no propagation.
We digress here to note that the vertex deformations

defined in [15] can be naturally extended to the case of a
linear “multiply CGR” vertex. We define the multiply CGR
property as follows. An N valent linear M-fold multiply
CGR vertex v is one with the following vertex structure:
(a) There exists an open neighborhood U of v and a

coordinate patch thereon such that the edges at v are
coordinate straight lines in U.

(b) There are M pairs of edges at v such that the union of
each such pair forms a coordinate straight line in U
with v splitting this line into this pair of edges. There
are N −M edges which are not of this type.

(c) Consider the set of outgoing edge tangents to the
remaining N −M edges, together with one edge
tangent from each of the M collinear pairs. Then
any triple of edge tangents from this set is linearly
independent.

Deformations of such vertices can again be made, similar
to the CGR case by transforming them to GR vertices
through interventions [15]. Such deformations then create
child vertices whose valence (in the generalized sense
described above) is the same as that of the parent vertex.16

The arguments in the first two paragraphs of this section
indicate that long range propagation can at best be possible
for special graphs. Since the bottlenecks to propagation
arise from free edge connectivity and varying vertex
valence, one best case scenario where propagation could
conceivably occur between multiple vertices is as follows:

(i) These vertices are of the same valence, say N.
(ii) These vertices are connected to each other by

N edges.
This implies that these vertices must beN-fold CGRwith

no two edges connecting a pair of such vertices being
collinear at either of the two vertices so connected. This
leads to a graph connectivity depicted in Fig. 6 which is
intuitively 1 dimensional.
We are unable to construct other examples of graph

connectivity which could, conceivably, display propaga-
tion. It would be good to construct a proof that no such
examples exist. In any case, the arguments above indicate
that propagation in the context of N → N deformations can
occur, at best in graphs with very special connectivity.
Hence, notwithstanding the propagation in the simple 2

15The positions of the points ṽJ in Figs. 5(e) and 5(d) should be
identical. For reasons of visual clarity, these figures do not reflect
this fact.

16As mentioned in Sec. II F, whether these deformations can be
shown to be anomaly free in the sense of [15] is an open question.
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vertex graph described in Sec. III A 2 above, we seek a
modification of the N → N deformation of [15] so as to
engender vigorous, 3d, long range propagation for generic
graphs. As we shall see in the next section, the N → 4
modification described in Sec. I has this property.

IV. VIGOROUS PROPAGATION
FROM N → 4 DEFORMATIONS

In Sec. IVA we define a modified N → 4 implementa-
tion of the singular diffeomorphism encountered in
Sec. II C. In Sec. IV B we show that this modification
enables communication between vertices of different
valence as well between vertices which have free edges,
thus overcoming these bottle necks to propagation in the
N → N case. An immediate consequence is that of 3d long
range propagation between vertices of a chargenet based on
a graph which is dual to a triangulation of the Cauchy slice.
In such a graph a vertex is connected to a nearest vertex by
a single edge leaving 3 edges free (which in turn are
connected to other nearest vertices). Whereas the N → N
deformations do not engender propagation between verti-
ces of such a graph, this sort of graph structure is not a
barrier to propagation for the N → 4 deformation. We
discuss this explicitly in Sec. IV C. We note here that such
graphs underlie spin nets which have a ready semiclassical
interpretation in the SUð2Þ case [17]. Our argumentation in
Secs. IV B and IV C is largely pictorial and similar in
character to that of Sec. III A 2.

A. The N → 4 deformation

The argumentation of Sec. II C applies unchanged in the
case of the N → 4 deformations described here. Hence the
action of the constraint operators of interest is still built out
of singular diffeomorphisms and, in the case of the
Hamiltonian constraint, charge flips; all that changes is
the implementation of the singular diffeomorphisms.
We first define a downward conical N → 4 deformation

of an N valent GR vertex v of a charge net c. This N → 4
deformation replaces the N → N deformation of Fig. 1(b).
As in the N → N case, this N → 4 deformation corre-
sponds to that generated by an electric diffeomorphism
action. The deformed charge nets generated by the
Hamiltonian constraint can be obtained by combining this
deformation with charge flips exactly as in the N → N case
as described in the figure caption accompanying Fig. 1 with
the N → N deformed charge net of Fig. 1(b) replaced by its

N → 4 counterpart which we now construct and which is
displayed in Fig. 7(d).
To construct the N → 4 downward conical deformation

of an N valent linear GR vertex v [depicted in Fig. 7(a)] by
the singular diffeomorphism φðqiIv ⃗êIv ; δÞ (with qiIv assumed
to be positive as is appropriate for downward conicality),
we first fix 3 edges eJiv≠Iv ; i ¼ 1, 2, 3. We deform these 3
edges exactly as for the N → N downward conical defor-
mation withN ¼ 4. This part of the deformation is depicted
in Fig. 7(b). The remaining edges are pulled exactly along
the Ivth edge as depicted in Fig. 7(c). The N → 4
deformation combines both these deformations and is
depicted in Fig. 7(d). Dropping the v subscripts to the
edge indices in what follows, if the outward-going edge
charges at the (undeformed) vertex v are qiK; K ¼ 1; ::; N,
then in the (obvious) notation used in (3.11), the charges on
the deformed charge net of Fig. 7(d) can be readily inferred
from Figs. 7(b) and 7(c) to be

qkvIṽJi ¼ qkJi ; i ¼ 1; 2; 3

qkvIv ¼
X

J≠I;J1;J2;J3
qkJ ¼ −qkvvI ; ð4:1Þ

with the charges on the remaining parts of the graph being
exactly those on these parts of the graph in the undeformed
parent state c of Fig. 7(a).
As mentioned above, the deformed vertex structure of

Fig. 7(d) is created from the undeformed one of Fig. 7(a)
by an action of the electric diffeomorphism constraint.
The deformed vertex structure created by the Hamiltonian
constraint can then be constructed exactly as for theN → N
case by combining theN → 4 deformation of Fig. 7(d) with
appropriate charge flips as depicted in Fig. 7(e) and
described in the accompanying figure caption. If the charge
qiI is negative, the vertex v is displaced along the extension
of the Ith edge and the conical deformation of the 3 chosen
edges is then upward conical. We do not discuss upward
conical deformations in detail as we do not need them here;
the details are straightforward and we leave their working
out to the interested reader.
Due to the choice of 3 preferred edges in this deforma-

tion, the resulting charge net is now denoted by cði;Iv;J⃗vβv;δÞ
where β ¼ þ1;−1, 0 for positive, negative and no flips
and the particular choice of edge triple is indicated by
J⃗v ≡ ðJ1v; J2v; J3vÞ. The action of the constraint is then
obtained by summing over all possible triples of such
edges so that the Hamiltonian constraint action is

Ĥ½N�δcðAÞ ¼
ℏ
2i

3

4π

X
v

βvNðxðvÞÞν−2=3v

X
Iv

1

ðN−1
3
Þ

×
X
J⃗v

X
i

cði;Iv;J⃗v;βv;δÞ − c

δ
ð4:2Þ

FIG. 6. Fig. 6 shows a best case graph structure for the purposes
of putative propagation based on N → N deformations.
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and the electric diffeomorphism constraint action is

D̂δ½N⃗i�c ¼ ℏ
i
3

4π

X
v

NðxðvÞÞν−2=3v

X
Iv

1

ðN−1
3
Þ

×
X
J⃗v

1

δ
ðcðIv;i;0;J⃗v;δÞ − cÞ: ð4:3Þ

In Eq. (4.2), βv ¼ �1 depending on whether a positive or
negative flip is chosen for the deformations at v. In both the
above equations we have implicitly chosen the appropriate
downward/upward conical deformation dictated by the sign
of the edge charge qiIv . However these deformations can be
chosen to be either upward or downward provided, as
discussed in Sec. II D, we insert minus signs at appropriate
places in these equations. The main implication of all this is
that the set of children obtained from the action of
constraint deformations are generated through positive
and negative charge flips as well as upward and downward
conical deformations.

In what follows we shall also require the deformation
generated by an electric diffeomorphism constraint on a 4
valentCGRvertex along its collinear edges. SinceN ¼ 4 this
deformation coincides with the N → N deformation with
N ¼ 4 depicted in Fig. 2(b). While Fig. 2(b) depicts a
downward conical deformation, an upward conical defor-
mation can be visualized by viewing Figs. 2(a) and 2(b)
upside down; for details see [15] and figures therein. The
charges on the deformed edges for such deformations are
exactly the same as thoseon their undeformed counterparts.17

We note here that the charges on the deformed child in
the case of a parental GR vertex can be quickly inferred as

FIG. 7. Figure 7(a) shows an undeformed GR vertex v of a chargenet c. Figure 7(b) shows the conical deformation of the 3 preferred
edges eJi ; i ¼ 1, 2, 3 along the Ith edge, the displaced vertex vI and the 3 C0 kinks, ṽJi ; i ¼ 1, 2, 3 are as labeled. Figure 7(c) shows the
remaining edges being pulled exactly along the Ith edge. The deformations of Figs. 7(b) and 7(c) combine to yield the N → 4
deformation shown in Fig. 7(d). Figure 7(e) shows the result of a Hamiltonian type deformation obtained by multiplying the chargenet
holonomies obtained by coloring the edges of Figs. 7(b) and 7(c) by the flipped images of charges on their counterparts in c, of Fig. 7(a)
by negative of these flipped charges and Fig. 7(a) by the charges on c. If the edges of Figs. 7(b) and 7(c) are colored by the charges on their
counterparts in c then they combine to yield the holonomy of Fig. 7(d), this being the result of an electric diffemorphism deformation.

17As mentioned in Sec. II F, the derivation of these deforma-
tions and charge labelings as well as the deformations along other
edges which contribute to the action of the constraint at this
vertex proceed through the use of interventions [15] which
convert the parental CGR vertex to a GR one. The interested
reader may consult [15] for details with regard to the intervention
procedure.
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follows without going through the holonomy multiplica-
tion of Fig. 7. The charges on the deformed edges
evIṽiJ ; i ¼ 1, 2, 3, are exactly the same as for the N → N
edges with N ¼ 4. Thus in the case of Hamiltonian
constraint deformation these charges are obtained through
positive or negative i-flips of the charges on their unde-
formed counterparts in c whereas for an electric diffeo-
morphism deformation these charges are identical to those
on their undeformed counterparts in c. The remaining
charges maybe inferred from Uð1Þ3 gauge invariance
together with the fact that the deformation is confined to
a δ size vicinity of the parental vertex.

B. Propagation between vertices with
different valence and with free edges

Consider two linear GR vertices A, B of a charge
network c with valences NA, NB. connected by M < N
edges leaving NA −M and NB −M edges free at vA and
vB. We now show that the N → 4 constraint action
engenders propagation between the vertices A, B. Our
argumentation is primarily diagrammatical and described
through Fig. 8 as follows:
(1) We start at the left with the “unperturbed” charge

network structure described above depicted in
Fig. 8(a). We shall be interested in a Hamiltonian
constraint generated deformation along the Ith edge
emanating from A and connecting to B. In order to
keep the figure uncrowded, it explicitly depicts only
this single edge between A, B and only a few more
edges at these vertices. The reader may think of
M − 1 of the edges emanating from A and M − 1 of
those from B as being connected so as to yield
M − 1 more edges connecting A, B. The connectiv-
ity of the remaining free edges does not affect the
argumentation.
We denote the outgoing edge charges at A by

qkJ; J ¼ 1; ::; N. In the N → 4 deformation at A
along eI, a choice of 3 edges eJi ; i ¼ 1, 2, 3 has
to be made. As we shall see below, propagation
generically ensues irrespective of which choice we
make.

(2) The parent chargenet c is deformed in a downward
conical manner along the Ith edge at A by the
action of ĤðNÞ at the vertex A to give the child
cði;I;J⃗;β;δÞ shown in Fig. 8(b), where we have used
the notation of (4.2) and dropped the “vertex”
suffix to avoid notational clutter. Here β can be þ1
or −1. In either case, we refer to the relevant
flipped image of the charge qi (2.18), (2.25) as
qiflip. The deformation of the GR vertex A is
exactly that of Fig. 7(e) with charges in the
vicinity of vertex A obtained exactly as described
in the figure caption accompanying Fig. 7(d).
These charges in obvious notation are

qkvIṽJi ¼ ðqflipÞkJi ; i ¼ 1; 2; 3 ð4:4Þ

qkAṽJi ¼ qkJi − ðqflipÞkJi ð4:5Þ

qkAvI ¼ qkI − ðqflipÞkI −
X

J≠I;J1;J2;J3
ðqflipÞkJ

¼ qkI þ
X3
i¼1

ðqflipÞkJi ¼ −qkvIA; ð4:6Þ

with the charges on the remaining part of the graph
remaining unchanged and wherewe have used gauge
invariance of at A in the unperturbed charge net c to
go from the first equality to the second in (4.6).

(3) The charge net of Fig. 8(b) is acted upon by a
semianalytic diffeomorphism so as to drag the
deformation from the vicinity of vertex A to the
vicinity of vertex B.18 We slightly abuse notation and
denote the images of vI, ṽJ by this diffeomorphism
by the same symbols vI , ṽJ.

(4) The charge net ofFig. 8(c) is deformedby the actionof
an appropriate electric diffeomorphism at the CGR
vertex vI as described in Fig. 2(b) to yield the charge
net of Fig. 8(d). This transforms the conical defor-
mation in Fig. 8(c) which is downwardwith respect to
the Ith line fromA toB to onewhich is upward conical
with respect to this line in Fig. 8(d). As a result, the
deformation is now downward conical with respect to
the (oppositely oriented) line from B to A.

(5) The charge net c0 of Fig. 8(e) is based on a graph
which is obtained by adding 3 edges to the graph
underlying the unperturbed state c. These edges
emanate from the vertex B and terminate at the 3
kinks ṽJi of Fig. 8(c). The charges on this charge net
in the vicinity of vertices A, B are as follows.

qkBṽJi ¼ ðqflipÞkJi ; i ¼ 1; 2; 3 ð4:7Þ

qkAṽJi ¼ qkJi − ðqflipÞkJi ð4:8Þ

qkAB ¼ qkI þ
X3
i¼1

ðqflipÞkJi ¼ −qkBA; ð4:9Þ

with the charges on the remaining parts of the graph
being the same as in c.

(6) The charge net c0 of Fig. 8(e) is deformed in a
downward conical manner by the action of the
electric diffeomorphism D̂ðN⃗iÞ at its NB þ 3 valent

18We assume that the state cði;I;J⃗;β;δÞ is such that it can be
transformed via an appropriate diffeomorphism to the state
depicted in Fig. 8(c). We shall comment further on this in
Sec. V B.
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vertex B along the edge from B to A with the chosen
3 edges being exactly the edges from B to each of
ṽJi ; i ¼ 1, 2, 3 to give exactly the state in Fig. 8(d).

The minimal ket set containing the chargenet c of
Fig. 8(a) must contain the charge nets depicted in
Figs. 8(b)–8(e). Steps (1)–(6) imply that the chargenet of
Fig. 8(d) has 2 possible ancestors, one depicted in Fig. 8(a)
andone in Fig. 8(e). The sequence of elements Figs. 8(a)–8(e)
is then one which encodes the “emission” of a conical
perturbation at the vertex A of c depicted in Fig. 8(b) and
its propagation and final “absorption” by vertex B to yield the
chargenet c0. The result of this absorption is an additional
connectivity in the graph which additionally entangles the
verticesA andB. Further, the valence of vertexB as a result of
this absorption has increased by 3. It is in this sense that the
N → 4 action generates propagation between vertices of
different valence as well as in the presence of free edges.
Here we have implicitly assumed that the vertices v in

Fig. 8(a), vI in Fig. 8(b) andB in Fig. 8(e) are nondegenerate.
The first two assumptions are simply assumptions on the
charge labelings of vertex A in c. The third is an assumption
on the labelings of the vertex B of the charge net in Fig. 8(e).
As mentioned above the vertex structure at B in Fig. 8(e) is
obtained by adding 3 extra edges to the original vertexB in c.
These are positioned in the vicinity ofB so as to renderBGR
in c0. It seems reasonable to us that exploiting the available
freedom in positioning these 3 edges relative to the original
edges at B would enable us to choose an edge configuration
such that B is nondegenerate in c0.

C. 3d propagation

Let the unperturbed charge network c in the previous
section be based on a graph dual to a triangulation of Σ by

tetrahedra. Every vertex of this graph is then (linear) GR
and 4 valent. Each vertex is connected to 4 other vertices
each such connection being through a single edge. In the
language of the previous section, each vertex then has 3 free
edges. Figure 9(a) shows the graph structure of c in the
vicinity of 3 of its vertices A, B, C.
Repeating the considerations of the previous section, we

“perturb” c at its vertex A through the action of the
Hamiltonian constraint to yield cði;I;J⃗;β;δÞ shown in
Fig. 9(b) and then “evolve” this perturbation at A in c to
B yielding the chargenet c0 of Fig. 9(c) in which the vertex
B is now 7 valent. We shall rename c0 as cAB in what
follows so as to remind us that the perturbation has
traversed the path A − B in c to yield c0 ¼ cAB. Here we
show how to further evolve this perturbation beyond the
vertex B through the exclusive use of electric and semi-
analytic diffeomorphisms, once again through a primarily
diagrammatic argument (see Fig. 9).
In what follows we use the (obvious) notation wherein an

edge connecting the point P to the point Q is denoted by
ePQ and the charge thereon by qkPQ.
(1) We act by an electric diffeomorphism at B of cAB

which deforms the vertex structure at B along the
edge eBC as depicted in Fig. 9(d). The 3 additional
edges chosen for this deformation are exactly the
edges eBṽJi . This results in a reduction of valence of
B back to 4 together with creation of the displaced
vertex which we call v0 The vertex v0 is now directly
connected to the edges eJi emanating from A at the
points ṽJi . Each of the segments lv0ṽJi which connect
v0 to ṽJi are obtained by deforming the edges eBṽJi
and thus each of these segments has a kink at ṽ0Ji as
shown in Fig. 9(d). The charges on these segments

FIG. 8. The figures show the sequence of ket set elements Fig. 8(a) to Fig. 8(e) which encode propagation from vertex A to vertex B of
different valence as described in the main text. The ket set is the minimal one containing Fig. 8(a) appropriate to the N → 4 deformation.
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are exactly the same as those on the edges eBṽJi .
From (4.7), we have (in obvious notation)

qkv0ṽJi
¼ qkBṽJi ¼ ðqflipÞkJi ; i ¼ 1; 2; 3 ð4:10Þ

From gauge invariance and the fact that the defor-
mation only affects the immediate vicinity of B we
have from (4.10) that:

qkv0B ¼ −
X3
i¼1

ðqflipÞkJi − qkv0C; qkv0C ¼ qkBC ð4:11Þ

where we have denoted the charge on eBC in c (and
hence also in cAB) by qkBC. The charges on the

remaining parts of the graph are exactly those on
these parts of the graph in cAB

(3) We act by a semianalytic diffeomorphism ϕ so as to
move the vertex v0 to the vicinity of C as shown in
Fig. 9(e).19 Abusing notation slightly we continue to
refer to the moved vertex as v0.

(4) Similar to (4) of Sec. IV B we act by an electric
diffeomorphism at v0 so as to change the sign of the
conicality of the vertex structure to obtain the
chargenet depicted in Fig. 9(f).

(5) Similar to (5) of Sec. IV B, the charge net depicted in
Fig. 9(f) can be obtained by the action of an electric
diffeomorphism at the 7- valent vertex C of the

FIG. 9. The figures show the sequence of ket set elements Fig. 9(a) to Fig. 9(g) which encode propagation from vertex A to vertex C as
described in the main text. The unperturbed chargenet in Fig. 9(a) is based on a graph which is dual to a triangulation of the Cauchy slice.
The ket set is the minimal one which contains Fig. 9(a) and is appropriate to the N → 4 deformation.

19An assumption similar to that in footnote 18 applies.

MADHAVAN VARADARAJAN PHYS. REV. D 100, 066018 (2019)

066018-20



chargenet cABC depicted in Fig. 9(g), with charge
labels as follow:

ðGÞqkCṽ0
Ji
¼ ðqflipÞkJi ; i ¼ 1; 2; 3; ð4:12Þ

ðGÞqkCB ¼ −
X3
i¼1

ðqflipÞkJi þ qkCB: ð4:13Þ

Here the left superscript (G) indicates charges on the
chargenet cABC depicted in Fig. 9(g), qkCB is the
charge on the edge eCB of the unperturbed charge net
c of Fig. 9(a) and, as in (4.10), ðqflipÞkJi ; i ¼ 1, 2, 3
denote the flipped images of the charges qkJi ; i ¼ 1,
2, 3 in c on the three chosen edges eJi ; i ¼ 1, 2, 3 for
the N → 4 deformation. The charges on the remain-
ing parts of the graph in Fig. 9(g) are unchanged
relative to their values on these parts of the graph in
Fig. 9(f).

Once again, the charge nets in Figs. 9(a)–9(g) must all be
in the ket set and the sequence Figs. 9(a)–9(g) describes the
propagation of the perturbation from vertexB to vertexC of
cAB. Here similar to the case of c0 in Sec. IV B, we have
assumed that the 7-valent vertex C of cABC is nondegen-
erate (the nondegeneracy of the vertex v0 follows from that
of the assumed degeneracy of vI in Sec. IV B).
To summarize: the sequence

c → cði;I;J⃗;β;δÞ → cAB → cABC ð4:14Þ

represents propagation of a perturbation from the vertex A
to the vertex C which is two links away from A. The path
of propagation is A–B–C. Clearly, with assumptions of
nondegeneracy similar to (5) above for the 7-valent vertices
encountered in the course of propagation, together with
assumptions on the existence of appropriate semianalytic
diffeomorphisms similar to that in footnote 18, we may
propagate this perturbation along a path joining A to a
vertex Afinal as far away as we desire. This shows that the
N → 4 action generically engenders 3d long range
propagation.

V. PROPAGATION AND ANOMALYFREE ACTION

In Sec. VA we discuss the new challenges to be
confronted in rendering the constraint actions discussed
in this paper consistent with the requirement of anomaly-
free commutators as articulated in [15]. One outcome of
this discussion is the suggested enlargement of the ket sets
considered hitherto by replacing the role of semianalytic
diffeomorphisms in property (a3), Sec. I by a larger set of
transformations which we call linear vertex preserving
homeomorphisms or lvh transformations. In Sec. V B we
describe certain technical issues which we overlooked in
our treatment of propagation hitherto and suggest that these

issues may be alleviated as by the use of these trans-
formations. In Sec. V C we discuss the issue of “fake”
propagation.

A. New challenges for a proof of anomalyfree action
consistent with propagation

The physical states considered hitherto are based on ket
sets subject to property (a). The considerations of Sec. II G
imply that these physical states provide a trivial anomaly-
free representation space for the Hamiltonian (and spatial
diffeomorphism) constraints. Several new challenges must
be confronted relative to [15] in order to construct off shell
deformations of these states which support a nontrivial
anomalyfree implementation of constraint commutators.
We describe the ones we are able to anticipate below.
(1) New issues for the N → N action:
(1a) Multiple vertices20: The work in [15] constructs the

desired off shell states based on ket sets with elements each
of which has only a single vertex where the Hamiltonian
constraint acts non-trivially through N → N deformations.
The first challenge is to generalize this construction to the
case of multivertex ket sets. Due to the independence of the
action of the Hamiltonian and electric diffeomorphism
constraints at independent vertices, we feel that it should
be possible to generalize the considerations of [15] to the
multivertex case with N → N deformations. The candidate
ket set subject to property (a) would consist of multivertex
kets. We would then seek to construct appropriate off shell
states as linear combinations of (the bra correspondents of)
these kets with coefficients which were products, over
vertices, of the single vertex coefficients of [15]. The new
feature of the multiple action of constraints would be the
appearance of contributions from different vertices. The
new challenge would be developing an efficient book
keeping of these contributions and defining appropriate
“Q-factors” [15] to ensure the existence of anomalyfree
continuum limit commutators.
(1b) Coordinate patch specification: In addition to (1a),

an appropriate diffeomorphism covariant specification of
coordinate patches for each vertex of each multivertex ket
in the ket set is necessary in order both to define the action
of the (higher density) constraints as well as to evaluate
the off-shell state coefficients mentioned above. Such a
specification exists for the single vertex states of [15]. Its
detailed construction rests on the choice of certain fiducial
coordinate patches with respect to which certain preferred
classes of kets in the ket set known as primaries, have linear
vertices (see [15] for details). It then turns out that the
physical states constructed in [15] have an imprint of the
choice of these fiducial coordinate patches; this is unsat-
isfactory from the point of view of the “background
independent” philosophy of LQG. Work in progress
suggests that this imprint can be removed by enlarging

20This is a slightly more detailed discussion of (2), Sec. II F.
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the single vertex ket sets of [15] so that the semianalytic
diffeomorphisms of property (a3) in Sec. I are replaced by a
larger set of transformations, which we tentatively identify
as homeomorphisms which preserve the linearity of linear
vertices and which we refer to as ‘linear-vertex preserving
homeomorphisms’ or “lvh” transformations.
The coordinate patches at such vertices are then related

by transformations which have a much more local
character than diffeomorphisms. Since many of the con-
siderations of [15] rest on local Jacobian transformations,
it seems that the constructions of [15] can be generalized
to the context of these larger ket sets. Assuming such a
generalization is successful, we anticipate that a further
generailization of this coordinate patch specification to
the multivertex case should not face any significant
obstacles.
(1c)Upward direction specification21: As mentioned in

Sec. II F, the constructions of [15] involve a unique
specification of upward or downward conical deforma-
tions at a vertex deriving from the signs of the charges at
the vertex and the unique identification of an upward
direction at the vertex from the graph structure in the
vicinity of the vertex. The graph structure involved in the
unique identification of an upward direction is that of
the placement and type of kinks (i.e., C0, C1, C2 [15]) in
the vicinity of the vertex. We believe that the creation and
placement of the C1, C2 kinks is an unnecessary feature
of the constructions of [15] and that the specification of
an upward direction at the parental vertex being acted
upon can be made freely. What seems to be important in
defining the action of the products of regulated constraint
operators on a parent state is that the upward directions
defining each operator in this product be suitably
correlated with the free choice of upward direction
associated with the action of the first operator in the
product on a parental vertex. In this way, the choice of an
upward direction is a further regulator choice in defining
constraint operator products. Anomalyfree commutators
then refer to the equality of 2 operator products related
through a replacement of Hamiltonian constraint com-
mutators by electric diffeomorphism commutators in
accordance with the identity (2.4), wherein the 2 operator
products are assigned the same choice of upward direc-
tion at the parental vertex. The end result is that the ket
set would contain both upward and downward deforma-
tions of parents independent of the sign of the parental
charges. While our intuition is that it should be possible
to demonstrate all this, it is of course essential to
explicitly construct such a demonstration.
(1d) States subject to additional physical requirements:

As seen in Sec. III A the N → N constraint action does not
engender propagation. This is slightly ameliorated by the

imposition of further physical requirements in Sec. III B.
While we feel that the considerations of [15] should
generalize to multivertex ket sets not subject to these
requirements, for ket sets subject to this requirement still
new challenges arise related to the fact that the action
of Ĥ�ðNÞ of Sec. III B do not generically preserve the
number of nondegenerate vertices.22 However since even
with the additional requirements, generic ket sets of
Sec. III B do not engender vigorous propagation we shall
not discuss this case further. Instead we proceed to a
discussion of challenges in the context of theN → 4 action.
(2) The N → 4 action: Coordinate patch specification

remains an issue and the discussion in (1b) above applies
equally well to the N → 4 action. New issues arise from the
fact that, unlike the N → N action, the N → 4 action does
not preserve the number of nondegenerate vertices. For
example, if we have a single vertex charge net with a
nondegenerate vertex of valence N, a Hamiltonian con-
straint N → 4 action on this vertex yields a state with an N
valent vertex and a 4 valent vertex, which for N ≥ 7 are
both generically non-degenerate. Thus unlike the N → N
case, it is not meaningful to talk of “fixed vertex sectors.”
Related to this, the second action of a constraint acquires
possible contributions not only from the 4 valent child
vertex created by the first action but also from the N valent
vertex at the location of the original parental vertex. Since
the off shell states constructed in [15] were geared to the
preservation of the number (and valence) of the non-
degenerate vertices by the N → N action, accommodating
this new feature is the key new challenge. Its confrontation
requires a better understanding of the potential children
created by the action of the second constraint on the N
valent vertex at the location of the original parental vertex.
A detailed analysis reveals that a second key challenge
arises from the ubiquitous existence of 4 valent vertices of
nonunique parentage (such vertices being necessary for
propagation).
To summarize: There are at least 2 new and nontrivial

challenges to be overcome relative to the N → N case. In
this sense it is certainly that the N → N case is potentially
much better suited to anomaly freedom by virtue of its
relative simplicity. However since it seems to lack the
crucial physical property of being consistent with long
range propagation, it is essential to attempt to overcome
the new challenges and provide a proof of anomaly free-
dom for the N → 4 action. While we remain optimistic that
this can be done (perhaps with minor propagation preserv-
ing modifications of the N → 4 action), an explicit proof
presents an open problem.

21This issue and the related exposition involves an assumed
familiarity with fine technical issues in [15].

22Note however that the action of the Hamiltonian and
diffeomorphism constraints do preserve the number of non-
degenerate vertices modulo the “eternal nondegeneracy”
assumption of [15]. This is in contrast to the N → 4 constraint
action; see the next point (2) for details.
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B. Issues related to the movement and
absorption of child vertices

Our demonstrations of propagation hitherto overlooked
issues concerned with the specification of coordinate
patches at vertices where the Hamiltonian and electric
diffeomorphism constraints act. More in detail, propagation
ensues due to our demonstration of nonunique ancestry of
the same child. Our arguments purport to show that the
same child can be generated, up to diffeomorphisms, by
constraint actions in the vicinity of one ancestral vertex and
equally well by constraint actions in the vicinity of a
neighboring ancestral vertex. In our arguments we have
made two assumptions, one explicit and one implicit. The
first is an assumption that semianalytic diffeomorphisms
can be used to “move” child vertices in the vicinity of one
ancestral vertex to the vicinity of a neighboring ancestral
vertex, and is explicitly mentioned in footnotes 13, 18 and
19. The second, implicit, assumption relates to the “absorp-
tion” of the moved vertex by the second ancestral vertex
resulting in a distinct “possible” ancestor, or, equivalently,
the creation of this moved vertex by constraint actions at
this second ancestral vertex in this distinct ancestor. These
actions create deformations which are conical with respect
to the coordinate patch associated with this second ances-
tral vertex and this patch is in general different from the one
associated with the first ancestral vertex so it is not clear if
the moved vertex can be conical with respect to the patch
associated with this second ancestral vertex. If it is not, then
the candidate “possible ancestor” cannot be an ancestor of
such a child and propagation does not ensue. Hence the
implicit assumption is that the child vertex can be moved
from the vicinity of one ancestral vertex to a neighboring
ancestral vertex in such a way that it does represent a
deformation of this neighboring vertex in the candidate
possible ancestor which is conical with respect to the
ancestral coordinate patch at this neighboring vertex in this
possible ancestor.
We believe that both these assumptions are unnecessary

if we admit the lvh transformations described in (1b) of
Sec. VA. In other words, these lvh transformations can be
used to move a child vertex from the vicinity of one
ancestral vertex to the vicinity of a neighboring ancestral
vertex in such a way that the moved child vertex can indeed
be created by the candidate possible ancestor used in our
arguments for propagation in Secs. III A 2, IV B and IV C.
Showing this requires developments along the lines of (1b),
Sec. VA and constitutes a problem for future work.

C. The issue of “fake” propagation

As discussed in Sec. I, propagation is said to be encoded
by a physical state if in the set of its kinematic summands
there exists a “propagation” sequence of states starting with
a parent p and describing the propagation of its perturba-
tions from one parental vertex to another followed by
absorption of these perturbations to yield another possible

parent p0. In order that this notion of propagation be
strongly tied to the properties of the quantum dynamics
(i.e., to the properties of the constraint operators), it is
essential that the coefficients in the sum over kinematic
summands are uniquely determined (up to an overall
constant factor) by the requirement that the physical state
in question is annhilated by the constraints. This rules out
fake propagation wherein the physical state in question is
itself an arbitrary linear combination of physical states such
that each physical state in this combination contains only a
subset of elements of the desired propagation sequence as
summands. Such fake propagation arises only because of
the “artificial” choices of linear combination of individual
physical states and is not strongly tied to the dynamics.
Thus it is important to establish that the examples of
propagating physical states we construct in Sec. IVare ones
whose summand coefficients are uniquely determined.
In this regard, we note that the physical states which

encode propagation in Sec. IV are “minimal” physical
states containing a parent p of interest. By a minimal
physical state containing a charge net pwe mean one which
is built out of a sum (with unit coefficients) over all
elements of the minimal ket set containing p. In turn, by the
minimal ket set containing p we mean the smallest ket set
subject to property (a) which contains p. Section IV then
constructs examples of a minimal ket set containing a
specific parent p of interest such that this ket set also
contains propagation sequences of states which start
with p. The question is then if the specific N → 4
implementation of the constraints uniquely fixes the coef-
ficients in a linear superposition of elements of a minimal
ket set to be unity up to an overall factor. A proof of an
affirmative answer to this question is desirable but should
be straightforward to construct given that both upward and
downward conical deformations are generated independent
of the sign of charge labels, if need be by the use of
interventions (see Sec. II F and [15]) together with judi-
cious sign insertions [see the discussion around Eq. (2.24)].
The idea is to then construct legitimate expressions for the
constraints in which the “(deformed child—parent)” con-
tributions to (2.29) can occur with either positive or
negative signs independently of each other so that the
condition that a physical state Ψ is annihilated by all these
expressions reduces to (2.30).
While a proof along the lines sketched above is appro-

priate with regard to minimality in the context of property
(a) of Sec. I, there is a further fine technical point which
arises due to the desired enlargement of these minimal ket
sets through the replacement of semianalytic diffeomor-
phisms in the articulation of property (a3) by the larger
set of lvh transformations advocated in (1b) and (2) of
Sec. VA. We shall refer to properties (a1), (a2) together
with this replacement of (a3) as the lvh modification of
property (a). We note that the enlargement of the ket set
through the requirement of consistency with the lvh
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modified property (a) is not a direct result of the imple-
mentation of the Hamiltonian, electric diffeomorphism and
semianalytic diffeomorphism constraints but is motivated
by the general requirement of background independence as
discussed in (1b). More in detail, that this requirement
indicates that physical states should not depend on ad-hoc
regulating coordinate choices. Since we strongly believe
that any trace of ad-hoc regulating structures in our
physical state space would lead to unphysical conse-
quences, we are only interested in propagation for those
physical states which do not bear any trace of such
regulating structures. In the context of our discussion of
fake propagation we then adopt a working definition for the
engendering of propagation as follows.
The minimal lvh extended ket set containing p is defined

to be the smallest ket set containing p which is consistent
with the lvh modification of property (a). A physical state
Ψlvh will be said to encode propagation from a parent
chargenet state p if:

(i) Ψlvh is constructed as the sum over elements, with
unit coefficients, of elements of the ket set Sket;lvh.

(ii) Sket;lvh is the minimal lvh extended ket set
containing p.

(iii) There is a propagation sequence in Sket;lvh starting
from p with elements of this sequence being related
by the action of Hamiltonian constraint deforma-
tions, electric diffeomorphism deformations and lvh
transformations.

Clearly this definition requires clarity on the exact nature
of the lvh transformations alluded to in (1b), Sec. VA. As
indicated in Sec. VA, this clarification along with other
issues discussed in Sec. VA constitute open problems
worthy of further study.

VI. VERTEX MERGERS AND THE ISSUE
OF COARSE GRAINING

While, in Sec. IV C, we illustrated propagation in the
context of a parent charge net based on a graph which is
dual to a triangulation of the Cauchy slice, it is instructive
(and fun) to explore other consequences of the N → 4
action for states based on graphs with this, as well as
different, vertex structures. In this section we focus on the
phenomenon of vertex merger.
For parent graphs, in which a pair of parental vertices are

connected by a single line which extends beyond these
vertices (rendering the vertices “CGR”), it turns out that
this action can effectively merge parental vertices, the
chargenets with these merged vertices corresponding to
possible parents of appropriately deformed children of the
parent chargenet. To see this imagine that in Fig. 9(a) the
edge eAB extends beyond A and connects to some other
vertex D in the graph. Applying an downward conical
electric diffeomorphism deformation with respect to eBC to
the (now CGR) parental vertex A, we effectively “move” A
towards B. We bring the deformed vertex in the vicinity of

B (see Sec. V B for pertinent discussion), reverse the
conicality of the deformed vertex structure by an appro-
priate electric diffeomorphism and then get B to “absorb”
this conical deformation through the use of an electric
diffeomorphism on a possible parent in which B is now 7
valent and A has disappeared. For special graphs with
appropriately connected (multiply) CGR parental vertices
(see Sec. III B for the definition of a multiply CGR vertex),
a repeated application of appropriate electric and semi-
analytic diffeomorphisms can cause these parental vertices
to merge to form a single high valent vertex reminiscent of
classical “collapse.” Since we have not explored the
classical dynamics of Uð1Þ3 theory adequately, we do
not know if this dynamics admits such collapsing solutions.
In case (as we are inclined to believe) it does not, we would
view the (physical state based on the minimal ket contain-
ing the) parental state above as not of physical interest. Of
course the identification of vertex merging with collapse is
only intuitive because, similar to the notion of propagation,
it is based on the behaviour of charge net summands in the
sum which defines a physical state rather than on the
behavior of physical expectation values of Dirac observ-
ables. On the other hand, one may speculate that if the
N → 4 action can be incorporated into the action of the
constraints for gravity, such an incorporation could pos-
sibly carry the seeds of both graviton propagation and
gravitational collapse.
From Figs. 8 and 9, the simple modification from the

N → N to the N → 4 action not only creates and merges
vertices it also creates new connections between structures
in the vicinity of vertices thus “entangling” them. Thus this
modification has the desirable property of a simple local
rule which leads to rich nonlocal structure. Due to this
property, theUð1Þ3 model offers an ideal testing ground for
coarse graining proposals in the context of the N → 4

action. Specifically we have in mind a Uð1Þ3 implementa-
tion of the proposals of Livine and Charles [18] for the
SUð2Þ case. Since coarse graining and the recovery of
effectively smooth fields is a key foundational issue in
LQG, the Uð1Þ3 model hereby acquires additional signifi-
cance as a toy model for LQG.23

Reverting to the example of a charge net based on a
graph which is dual to a triangulation, it is possible to
construct an evolution sequence from the unperturbed state
c of Fig. 9 which leads to a single vertex of high valence

23Recall however that the Uð1Þ3 model maybe understood as a
weak coupling limit of Euclidean gravity [12]. Since a well-posed
initial value formulation, and the consequent integrability of
Hamiltonian vector fields of the constraints are not expected to
exist for Euclidean theory, it may be that the same holds for the
Uð1Þ3 model. If this is true, then it is pertinent to point out that
despite the appropriateness of the Uð1Þ3 model as a toy model to
probe structural properties of the quantum constraints as done in
this work and in [11,13,15], the model may not serve as a useful
testing ground for issues connected with semiclassicality.
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surrounded by parental vertices which are rendered degen-
erate. A sketch of this construction is as follows. We start
from the parental chargenet c of Fig. 9(a) and generate the
chargenet cAB of Fig. 9(b). In doing so we have increased
the valence of vertex B to 7 with a concomittant loss of
nondegeneracy of vertex A cause by the vanishing of the ith
component of all the outgoing charges there (see the
discussion in Sec. II). We then deform cAB as follows:
(a) We perturb some nearest nondegenerate parental

vertex D connected to A by the action of a Hamiltonian
constraint. Since the connection must be through one of the
3 edges eJi , the perturbation will encounter the trivalent
kink ṽJi for some fixed i (more precisely this kink is a CGR
bivalent vertex) before getting to A.
(b) We may then, through the exclusive use of semi-

analytic diffeomorphisms and electric diffeomorphisms
together with appropriate assumptions on nondegeneracy
of vertices of possible parents:
(b1) get ṽJi to “absorb” the conical perturbation render-

ing it 5 valent,
(b2) emit it towards A rendering ṽJi bivalent CGR as

before,
(b3) get the vertex A to absorb this perturbation so as to

render A 7 valent, and, (b4) get A to emit this perturbation
and B to absorb it rendering A degenerate and 4 valent, and
B, 10 valent and connected to D, in addition to its prior
connectivity with A.
Thus at the end of (a)–(b4) we have again increased the

valence of B by 3 at the cost of rendering a nondegenerate
vertex, in this case vertexD, degenerate. We may then, with
appropriate nondegeneracy assumptions, repeat this pro-
cedure for any path connecting a nondegenerate vertex
to B, thereby increasing the valence of B by 3 each time and
simultaneously rendering the nondegenerate vertex, degen-
erate. The end result is the vertex B of high valence with all
vertices in a region surrounding B rendered degenerate.
Note that this process of vertex merger is distinct from the
case alluded to above wherein the original parental vertices
merge through the exclusive application of electric and
semianalytic diffeomorphisms. Indeed, since no parental
vertex of a graph dual to a triangulation [see Fig. 9(a)] is
CGR, that mechanism of vertex merger fails. Instead, as
sketched above, we need to employ the Hamiltonian
constraint deformation of step (a) as well.
It is not clear if the state obtained from repeated

applications of the steps (a)–(b4), with many degenerate
parental vertices and a single nondegenerate one at the
“microscopic” level, represents a classically singular con-
figuration precisely because any such interpretation is
intertwined with the issue of coarse graining of such a
state. This discussion points to a clear need for an
unambiguous interpretation of physical states and their
kinematic summands. If, following such a putative inter-
pretation, generic physical states display properties at
variance with generic classical solutions, one may need

to further modify the dynamics perhaps by a suitable
mixture of N → 4 and N → N deformations. For example,
if we want to avoid the state obtained through repeated
applications of (a)–(b4), we may create an obstruction to
the accumulation of valence by B beyond some fixed
valence Nmax as follows. We define a dynamics which
generates N → 4 deformations for all nondegenerate ver-
tices of valence N < Nmax and which generates N → N
deformations for vertices of valence N ≥ Nmax. Clearly, if
through repeated applications of (a)–(b4), we increase the
valence of B to N such that Nmax > N ≥ Nmax − 3, a
further such application will be obstructed at step (b4)
because any possible parental vertex of valence N ≥ Nmax
can only yield a child vertex of valence N rather than one of
valence 4. Thus, for such a dynamics, evolution sequences
for generic parental graphs will not generate vertices of
valence greater than or equal to Nmax by vertex mergers.
Note however that the evolution sequence describing long
range 3d propagation in Sec. IV C remains consistent with
such a dynamics provided Nmax > 7, a valence of 7 being
the maximum valence encountered in this evolution
sequence. Also note that our discussion of vertex mergers
above is subject to the same technical caveats discussed in
Sec. V B in connection with propagation.

VII. DISCUSSION

Early pioneering works [19] on the quantization of the
Hamiltonian constraint for gravity in the late 1980s and
early 1990s together with the development of a rigorous
quantum kinematics (see for e.g., [20] as well as [1,2,7] and
references therein) and some ideas from other researchers
[21] lead to the detailed framework for the construction of a
Hamiltonian constraint operator in Thiemann’s seminal
work [22]. This framework organizes this construction as
the continuum limit of quantum correspondents of classical
approximants to the Hamiltonian constraint. The resulting
operator carries an imprint of the choice of these approx-
imants and is hence infinitely nonunique. Current work
seeks to subject the resulting operator to physically and
mathematically well motivated requirements so as to reduce
this nonuniqueness. On the other hand, since these require-
ments are extremely nontrivial, the mathematical tools and
techniques needed to confront them also have to be
constantly upgraded. For example, the work [23] seeks
to construct this operator such that it is well defined on a
Hilbert space rather than a representation space with no
natural inner product. This leads to the consideration of
new Hilbert spaces which lie between the kinematic Hilbert
space of LQG and the linear representation space known as
the habitat [8]. The works [9,11,13,15] seek constructions
which are consistent with nontrivial anomalyfree commu-
tators and lead to new tools such as electric field dependent
holonomy approximants [9], the use of electric diffeo-
morphism deformations arising from the discovery of a
new classical identity [11], diffeomorphism covariant
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choices of coordinate patches [13], interventions [15] and a
new mechanism for diffeomorphism covariance [15].
In this work we confront the Hamiltonian constraint of

the Uð1Þ3 model by the requirement of propagation. The
new mathematical elements which allow us to bypass the
obstructions to propagation (modulo the caveats discussed
in Sec. V B) pointed out by Smolin [4] are the structural
property of the constraint discussed in Sec. II F (and
uncovered in [6]) together with the N → 4 action. As with
all new additions to our toolkit, it is necessary to accu-
mulate intuition as to what they do and, if necessary
improve them further or discard them. It is in this general
context that the developments presented in this paper
should be viewed.
Thus, while on the one hand the N → 4 action engenders

vigorous propagation thereby showing the basic LQG
framework for the construction of the Hamiltonian con-
straint is powerful enough to bypass the “no propagation”
folklore in the field (see also, however, the discussion at
the end of this section), it also leads to the phenomenon of
vertex merger discussed in Sec. VI. More generally, the
N → 4 action separates vertices, merges vertices and
increases graphical connectivity leading to rich nonlocal
structure. The work in this paper studies aspects of this
structure in the context of a few examples of parental
graph structures. It is necessary to study a larger diversity
of such examples so as to explore the full power of the
N → 4 action, and if necessary subject it to further
improvement.
In this regard, it is an open issue as to whether the N → 4

or some other choice of improved constraint actions is
physically appropriate for the Uð1Þ3 model. In view of the
discussion in Secs. VI and I, any resolution of this issue
involves (a) an understanding of coarse graining of kin-
ematic states and a consequent interpretation of physical
states, (b) an understanding of the classical solution space
of the model, and, (c) an analysis of constraint commutator
actions on a suitable off shell state space so as to check if
the chosen actions are anomaly free in the sense of [15]. In
relation to (c), focusing exclusively on the N → 4 action,
we have discussed the challenges inherent in a putative
demonstration of nontrivial anomalyfree action in Sec. VA.
If these challenges can be overcome, we believe that a
mixture of N → 4 and N → N actions of the type discussed
towards the end of Sec. VI should then also not present
significant obstacles to such a demonstration. With regard
to issues (a) and (b), as indicated in Sec. VI, we believe that
the Uð1Þ3 model provides a valuable toy model to test
proposals for coarse graining in LQG such as those in [18].
The next step beyond the Uð1Þ3 model is that of the

construction of a satisfactory quantum dynamics for full
blown LQG. By “satisfactory” we mean, at the very least,
“anomalyfree” and “consistent with propagation.” By
“anomalyfree,” we mean a constraint action which admits
the construction of a space of off shell states which support

nontrivial anomalyfree commutators in the sense of [15]. In
this regard, we believe that it is important that the constraint
action be such that a second constraint action acts non-
trivially on the deformed structure created by a first such
action; this property (which holds for the N → 4 deforma-
tion) is crucial for the putative emergence of the desired
M∂aN − N∂aM dependence of the commutator on the
lapses M, N which smear the two constraints. By
“consistent with propagation” we mean the existence of
sequences of kinematic state summands which describe
propagation.
We note here that while the seminal constructions of the

Hamiltonian constraint by Thiemann [22,24] do not have
the property that second constraint actions act on defor-
mations generated by the first, it turns out that contrary to
common belief [4], there is no “in principle” obstruction to
the encoding of propagation by physical states in the kernel
of Thiemann’s constraint [5]. More in detail, Smolin
provided a beautiful characterization of propagation in
Ref. [4] and applied this characterization to physical states
in the kernel of Thiemann’s constraint, the latter formulated
as in [22,24]. As mentioned in footnotes 1 and 2 the no
propagation argumentation of Ref. [4] faces a hitherto
unnoticed obstruction in the form of states of non-unique
parentage [5]. Thus despite the fact that Thiemann’s
constraint does not display the detailed structure (2.27),
its action shares the property of consistency with non-
unique parentage (see footnote 2) with the constraint
actions considered in this work and it is this property
which serves as an obstruction to the arguments of [4]. This
observation represents ongoing work with Thiemann and
we shall report on this elsewhere [5].
Returning to the issue of anomalyfree actions consistent

with propagation for the case of full blown LQG, we briefly
detail our current understanding of the situation for the case
of Euclidean LQG wherein the Uð1Þ3 gauge group of this
work is replaced by SUð2Þ. We may think of the challenges
to be overcome in the construction of such actions for
Euclidean LQG to be of 2 types: the first to do with the
graph structure of spin net work states and the second to do
with the non-Abelian nature of SU(2). Roughly speaking,
we believe that the work here together with that in
[11,13,15] will be adequate (modulo the open issues
sketched above) to confront challenges of the first type.
The new challenges will be of the second type. In this
regard, there already certain structures available to us which
are SUð2Þ analogs of keyUð1Þ3 ones. First, the key Poisson
bracket identity (2.4) also holds unchanged for the SUð2Þ
case [11]. Second, recall that we made crucial use of the
identity Na

i F
k
ab ¼ £N⃗i

Ak
b − ∂bðNc

i A
i
cÞ, to motivate the

action of the constraint in Sec. II. The key feature of this
identity is that it allows us to interpret the classical
evolution equations in terms of electric diffeomorphisms
and charge flips. It turns out that there exists a beautiful
SUð2Þ analog of this interpretation for the classical
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equations of Euclidean gravity [25]. The availability of
these two structures provides a starting point for an analysis
of the SUð2Þ case. To summarize: our hope is that the
framework of [22,24] together with the structures devel-
oped in [11,13,15] and in this work as well as the
geometrical interpretation of classical evolution [25] will
prove useful for the putative construction of an anomalyfree
quantum dynamics, consistent with propagation, for
Euclidean, and finally, for Lorentzian gravity.
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